

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

THESIS

CONTINUED MODERNIZATION OF THE NPS TRANSONIC COMPRESSOR TEST RIG

by

Keenan S. Harman

September 2019

Thesis Advisor: Second Reader: Anthony J. Gannon Garth V. Hobson

Approved for public release. Distribution is unlimited.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 2019	3. REPORT TY	YPE AND DATES COVERED Master's thesis	
 4. TITLE AND SUBTITLE CONTINUED MODERNIZA COMPRESSOR TEST RIG 6. AUTHOR(S) Keenan S. Harris 	TION OF THE NPS TRANSONIC		5. FUNDING	G NUMBERS
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)8. PERFORMINGNaval Postgraduate SchoolORGANIZATION REPOMonterey, CA 93943-5000NUMBER				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
	TES The views expressed in this the Department of Defense or the U.		he author and d	do not reflect the
12a. DISTRIBUTION / AVAILABILITY STATEMENT12b. DISTRIBUTION CODEApproved for public release. Distribution is unlimited.A				
13. ABSTRACT (maximum 200 words) The research objective of this thesis is to continue the modernization efforts of the Naval Postgraduate School's transonic compressor test rig. The current transonic compressor rig, used for testing, research and development, was built in the 1960s and operates using a compressed air turbine drive. A new design that is more efficient, more robust and less maintenance-intensive will utilize an electric drive train as the prime mover. The project is building a new rig based on the designs of the current one. This research continued to model new components using Solidworks and conducted structural and fluid flow analysis of rotating parts using ANSYS Workbench and will be used to move toward further development, manufacturing and testing of the new rig.				
14. SUBJECT TERMS 15. NUMBER OF transonic compressor test rig, transonic compressor, compressor test rig PAGES 81				AGES
			16.	5. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICAT ABSTRACT Unclassified		D. LIMITATION OF BSTRACT UU

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

Approved for public release. Distribution is unlimited.

CONTINUED MODERNIZATION OF THE NPS TRANSONIC COMPRESSOR TEST RIG

Keenan S. Harman Lieutenant Commander, United States Navy BSME, University of Wisconsin, 2007

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 2019

Approved by: Anthony J. Gannon Advisor

> Garth V. Hobson Second Reader

Garth V. Hobson Chair, Department of Mechanical and Aerospace Engineering

ABSTRACT

The research objective of this thesis is to continue the modernization efforts of the Naval Postgraduate School's transonic compressor test rig. The current transonic compressor rig, used for testing, research and development, was built in the 1960s and operates using a compressed air turbine drive. A new design that is more efficient, more robust and less maintenance-intensive will utilize an electric drive train as the prime mover. The project is building a new rig based on the designs of the current one. This research continued to model new components using Solidworks and conducted structural and fluid flow analysis of rotating parts using ANSYS Workbench and will be used to move toward further development, manufacturing and testing of the new rig.

TABLE OF CONTENTS

I.	INT	RODUCTION	1
II.	DES	SIGN PROCESS	7
	А.	OVERVIEW	7
		COMPONENT MODELING	
		MECHANICAL ANALYSIS	
	D.	FLUID ANALYSIS	18
III.	DIS	CUSSION/CONCLUSION	23
IV.	FUT	URE WORK	25
APP	ENDI	X A. ANSYS MODAL ANALYSIS PROJECT REPORT	27
APP	ENDE	X B. ANSYS REPORT DATA FOR CFX ANALYSIS	59
LIST	T OF R	EFERENCES	63
INIT	TAL D	DISTRIBUTION LIST	65

LIST OF FIGURES

Figure 1.	Legacy Transonic Compressor Test Rig1
Figure 2.	Legacy 1000 kW Allison-Chalmers Compressor Versus New 300 kW Synchrony Electric Motor. Source: [1]2
Figure 3.	TCR Manual Control Unit. Source: [1]
Figure 4.	Legacy 500 kW Elliot Compressor Versus New 55 kW Chicago Pneumatic Compressor. Source: [1]4
Figure 5.	Legacy TCR Facility Setup. Source [1]7
Figure 6.	Assembly of Modernized TCR Model8
Figure 7.	LT Byrd Model of Electric Motor Support and Housing. Source: [1]9
Figure 8.	TCR Discharge Support Components10
Figure 9.	TCR Transmission
Figure 10.	Cross Sectional View of the TCR with Rotating Transmission in Blue
Figure 11.	TCR Shaft and Supports12
Figure 12.	First Shaft Bending Mode12
Figure 13.	Second Shaft Bending Mode
Figure 14.	Natural Frequencies for Shaft13
Figure 15.	Bending Mode for Shaft and Rotor Attachment14
Figure 16.	Additional Deformation Mode 814
Figure 17.	Additional Deformation 1014
Figure 18.	Natural Frequencies for Shaft and Rotor Attachment15
Figure 19.	Maximum Principal Stress15
Figure 20.	Bending Mode for Entire Transmission Assembly16
Figure 21.	Additional Bending Mode 1216

Figure 22.	Additional Bending Mode 14	16
Figure 23.	Campbell Diagram for Entire Transmission Analysis at 2nd Engine Order.	17
Figure 24.	TCR Balance Piston	18
Figure 25.	Flow Setup of Balance Piston Wedge	19
Figure 26.	Pressure Drop Across Labyrinth Seal.	20
Figure 27.	Mach Number Across Labyrinth Seal with Inlet Pressure of 1 Bar	21
Figure 28.	Supersonic Flow from Labyrinth Seal at 2 Bar Inlet Pressure	21

LIST OF TABLES

	Table 1.	Total force and Mach Number of each Test Run		2
--	----------	--	--	---

LIST OF ACRONYMS AND ABBREVIATIONS

Hz	Hertz
in	inches
kN	kilonewton
kW	kilowatt
m	meters
m/s	meters per second
NPS	Naval Postgraduate School
rpm	revolutions per minute
TCR	Transonic Compressor Test Rig
TPL	Turbopropulsion Laboratory

I. INTRODUCTION

The current Naval Postgraduate School (NPS) transonic compressor test rig (TCR) has been allowing students and faculty to test, research, and develop compressor blades and stages for over five decades. Since 1968, the TCR has been a test platform for innovative flow measurements and has provided experience for graduate students to operate and test high speed compressors [1]. The legacy test rig is shown in Figure 1. Most advances in high-speed compressor fan technology have been improvements in computer simulation, however, there is still a need to test these simulations in a real-world environment and evaluate their accuracy against experimental data [2]. The NPS Turbopropulsion laboratory (TPL) is one of only a handful of facilities in the world capable of these tests: "The most amazing aspect of this rig is that it was designed on the late 60's by the late Professor Mike Vavra and the rig is still state-of-the-art today" [2].

Figure 1. Legacy Transonic Compressor Test Rig.

In order to continue to be seen as an advanced testing facility, the TCR requires a modern upgrade. The University of Notre Dame Transonic Axial Compressor facility operates a single stage axial compressor test rig driven by a DC motor [3]. Likewise, the Technische Universität Darmstadt in Darmstadt, Germany operates two high-speed compressor test rigs driven by an electrical drive [4]. Government facilities with similar capabilities include the NASA Glenn Research Center [5] and the Compressor Research Facility at the Air Force Research Laboratory at Wright-Patterson Air Force Base [6]. Each of these test rigs are driven by electric motors. The TPL has the unique distinction of being in both the government and academic sectors. The driving force for the legacy TCR is two opposed-rotor turbine stages driven with compressed air from a 12-stage Allison-Chalmers axial compressor [3]. The modern design will replace this oversized and out dated prime mover with an electric motor made by Dresser-Rand shown side by side in Figure 2.

Figure 2. Legacy 1000 kW Allison-Chalmers Compressor Versus New 300 kW Synchrony Electric Motor. Source: [1].

While reliably supporting the NPS turbomachinery laboratory for many years, the TCR has drawbacks. Based on power input to the compressor and power output of the shaft, the TCR runs at around 30% energy efficiency [1]. Likewise, the TCR has a

lengthy setup process and requires around 30 minutes for the system to reach stable conditions once started. It is operated manually via a system of throttles and dump valves to control the compressed air flow from the input compressors. The control unit can be seen in Figure 3. This process is cumbersome and requires at least three people to operate. Once operating and stable, the TCR functions at a single speed, approximately 27,000 rpm, and is difficult to adjust.

Figure 3. TCR Manual Control Unit. Source: [1].

The modernized test rig will replace the turbine drive with a 300 kW variable speed electric motor. The electric motor will be integral with the test rig and will eliminate the need for the main compressor that took up the space of an entire room next

to the test cell. The new electric motor will also greatly reduce maintenance time and improve performance reliability due to the active magnetic bearing on the Synchrony motor [7]. The electric motor is expected to operate above 90 percent efficiency compared to the 30% energy efficiency of the legacy TCR [1].

Along with efficiency, the overall energy savings is large. The test rig also requires a compressor to supply air to the balance piston to remove axial thrust. Previously, a large 500 kW Elliot Compressor was used for this purpose. It has since been replaced by a 55 kW Chicago Pneumatic compressor shown side by side in Figure 4. The legacy system drew around 1500 kW between the two compressors. The new TCR will operate using around 355 kW total. It will use less energy to operate but also allows for growth in the future to test larger compressors while not needing more energy than the legacy test rig required.

Figure 4. Legacy 500 kW Elliot Compressor Versus New 55 kW Chicago Pneumatic Compressor. Source: [1].

The new motor will operate at a top speed of 21,000 rpm but can be varied to achieve desired speeds. While this is lower than the legacy test rig, the key parameter is not rotational speed of the compressor but rather tip speed of the compressor blade. In

order to reach the tip speeds required to simulate operations similar to today's modern aircraft engines, the new test rig needs to be larger. Previously, compressor blades were designed to be 0.287 m (11.3 in) in diameter and the test rig could achieve a tip speed of around 405 m/s or a Mach number of 1.19. With a lower rotational speed, the new TCR was designed to be larger and more robust. A larger transmission shaft, balance piston, and support system allows compressor stages to be around 0.452 m (17.8 in) in diameter, achieving a tip speed of 495 m/s or Mach 1.45. This is a 22% higher tip speed achieved compared to the legacy test rig.

II. DESIGN PROCESS

A. OVERVIEW

In order to maintain the TPL at NPS as a leading compressor test facility alongside the others mentioned in the introduction, the TCR modernization is vital. This research consisted of three different focus areas in order to continue the modernization of the TCR. The new rig is based off of the legacy TCR design and had already been started from previous projects, but modeling was not completed [1]. New components were designed to further the modernization. The second area was a mechanical analysis of existing modeled components using ANSYS Workbench. Specifically, the rotating transmission of the TCR was analyzed to determine deformation modes of the rig and natural frequencies that should be avoided during operation. The third focus area was a fluid analysis of flow over the balance piston to ensure adequate size of both the balance piston and the secondary compressor. A schematic of the legacy TCR facility and air supply system is shown in Figure 5 and an assembly view of the new TCR model is in Figure 6.

Figure 5. Legacy TCR Facility Setup. Source [1].

Figure 6. Assembly of Modernized TCR Model.

B. COMPONENT MODELING

Much of the new TCR had been modeled in previous work by thesis student LT Andre Byrd and Engineering Assistant Louie Duriez [1]. There was a shift in the design following LT Byrd's design for mounting of the electric motor. The back stanchions on which bear the weight of the motor were lowered from the legacy design and the motor is fix to a thick steel plate rather than resting in a cradle as in LT Byrd's design. The previous design can be seen in Figure 7. The next components to be modeled were the discharge support components of the rig. The key factors were to size the components to achieve the desired tip speed of the compressor blades and to maintain a similar flow area relationship to the legacy TCR.

Figure 7. LT Byrd Model of Electric Motor Support and Housing. Source: [1].

The rotational speed of the legacy TCR is 27,000 rpm, which equates to a tip speed of around 405 m/s. However, the electric motor of the modernized design has a max rotational speed of 21,000. To achieve the same tip speed as the older model, the new TCR would have to be built to a larger diameter. With the modernization, it was desired to not just meet the capabilities of the old design but to exceed them. With that in mind, the new test rig was modeled to achieve results as if the old TCR were at a speed of 33,000 rpm. The diameter of the compressor blades was increased from 0.287 m (11.3 in) to 0.452 m (17.8 in) which will allow testing of tip speeds up to 496 m/s or a Mach number of 1.45. The model of these new components can be seen in Figure 8. Once modeling was complete, the components were added to the assembly of the TCR seen in Figure 6.

Figure 8. TCR Discharge Support Components.

C. MECHANICAL ANALYSIS

The rotating components or transmission of the new TCR were designed by Engineering Assistant Louie Duriez during his internship at NPS. A modal analysis was performed on these modeled components using ANSYS Workbench. The rotating transmission is shown in Figure 9. These are the rotating portion of the model, which can be seen highlighted in blue in Figure 10.

Figure 9. TCR Transmission. 10

Figure 10. Cross Sectional View of the TCR with Rotating Transmission in Blue.

Analysis was started by modeling the shaft of the transmission alone to ascertain the deformation, maximum principal stress and the natural frequency modes. The test speed was set to the design rotational velocity of 21,000 rpm. A cylindrical support was placed at each end to radially support the shaft. The support closest to the balance piston also provided axial support as the balance piston prevents axial movement of the transmission. No bending constraint was applied to accurately represent bearing support boundary conditions. The shaft and the supports are shown in Figure 11.

Figure 11. TCR Shaft and Supports.

The CFX solution showed bending modes for the shaft with natural frequencies around 1600 Hz. The two bending mode results are shown in Figure 12 and Figure 13. The natural frequencies of the first six modes are shown in Figure 14.

Figure 12. First Shaft Bending Mode.

Figure 13. Second Shaft Bending Mode.

Figure 14. Natural Frequencies for Shaft.

For the next model, the rotor attachment was added to the analysis. This added mass to the components and would change the deformation modes. Again, the modes of concern were bending modes on the shaft which again occurred around a frequency of 1600 Hz, shown in Figure 15. The addition of the rotor attachment also added deformation modes not seen with the shaft alone. The first mode is believed to be a

numeric anomaly and doesn't appear to represent a realistic deformation mode. Mode 2, shown in Figure 15 is the first bending mode. Examples of other modes are shown in Figure 16 and Figure 17. Figure 18 shows the natural frequencies of this configuration.

Figure 15. Bending Mode for Shaft and Rotor Attachment.

Figure 16. Additional Deformation Mode 8.

Figure 17. Additional Deformation 10.

Figure 18. Natural Frequencies for Shaft and Rotor Attachment.

Lastly, the balance piston and coupling devices were added to analyze the entire transmission. The highest principal stress was found to be in the coupler and occurred at a place with a sharp angle, a typical stress concentration point, shown in Figure 19. This component could be redesigned in order to lower the stress depending on manufacturing abilities, possible with a chamfered angle instead. Similar bending modes were found on the shaft, shown in Figure 20, with a slightly raised natural frequency around 1630 Hz. Even more deformation modes were introduced centering around vibrations of the balance piston, shown in Figure 21 and Figure 22.

Figure 19. Maximum Principal Stress.

Figure 20. Bending Mode for Entire Transmission Assembly.

Figure 21. Additional Bending Mode 12.

Figure 22. Additional Bending Mode 14.

A Campbell diagram for the full transmission is shown in Figure 23. This shows the natural excitation frequency versus the rotational speed of the shaft. The Campbell diagram was created in ANSYS and it shows each mode in 2000 rpm increments up to the max speed of 21,000 rpm. The black line is the engine order line. Where this line crosses the mode lines is a critical speed shown by the red triangle. This is the operating point where natural frequency of the transmission could be excited by the running speed of the rig and should be avoided. The first engine order showed no realistic critical frequencies. The second engine order is shown in the Campbell diagram in Figure 23. It crosses two different modes at the critical speed around 17,300 rpm. This speed is close to the expected operating speed of the test rig and will need closer examination to determine if it will be acceptable or if a modification to the design could change the critical speed.

Figure 23. Campbell Diagram for Entire Transmission Analysis at 2nd Engine Order.

D. FLUID ANALYSIS

The TCR is equipped with a balance piston, shown in Figure 24, that eliminates axial thrust on the shaft and bearings caused by the test compressor when at speed. Compressed air is supplied by the secondary compressor to the right side of the balance piston and causes a force on the piston in the opposite direction from forces by the spinning test compressor blades. CFX was used to model the flow of compressed air against the balance piston and through its labyrinth seal to determine adequate size for both the compressor and balance piston.

Figure 24. TCR Balance Piston.

First, the flow area around the balance piston was designed in Solidworks using the part file for the balance piston. The spacing for the labyrinth seal was set at 216 microns (0.0085 in) based on the minimum diameter tolerance for manufacture of the balance piston and maximum diameter tolerance for the casing. This would model flow through the labyrinth seal at the largest possible gap. The flow area was then reduced to a 5° slice to lower the computing time. The flow around an axis through the center of the piston is assumed to be symmetric.

In CFX, the flow inlet was set to a constant 1 bar of pressure from the compressor. The outlet was set to ambient pressure. The walls representing the casing around the balance piston were stationary while all surfaces of the rotating equipment were set to revolve at the TCR design speed of 21,000 rpm. This would simulate any flow caused by the rotating equipment. Figure 25 shows the CFX setup of the balance piston flow.

Figure 25. Flow Setup of Balance Piston Wedge.

The solution from CFX showed the flow of air into the front of the piston and the flow through the labyrinth seal. The pressure drop across the seal can be seen in Figure 26. CFX also calculated the force on the balance piston in the axial direction. Since the model was reduced to a 5° slice of the total cylinder, the force was multiplied by 72 to generate the total force on the balance piston. The air exiting the labyrinth seal remained at a subsonic velocity for the first solution set at 1 bar of pressure. Figure 27 shows the velocity gradient of the air through the seal. The flow exiting the labyrinth seal goes reaches sonic speed for all inlet pressures above 2 bar. An example is shown in Figure 28.

Figure 26. Pressure Drop Across Labyrinth Seal.

Figure 27. Mach Number Across Labyrinth Seal with Inlet Pressure of 1 Bar.

Figure 28. Supersonic Flow from Labyrinth Seal at 2 Bar Inlet Pressure

The solution was repeated in CFX using inlet pressures of 0.5, 2, 3, 5, 7.5, and 10 bar. Table 1 shows the results of total axial force on the balance piston and the Mach number of the flow exiting the labyrinth seal. The 1 bar inlet pressure setting generated a force of 7.602 kN. This value should be more than adequate to counter the axial force made by the test compressor. The air pressure from the secondary compressor has a max output of 10 bar which modeled a force on the balance piston of 64.957 kN. Since the expected thrust of from the spinning test compressor is less that 5 kN, the size of both the balance piston and the secondary air compressor are large enough to make the TCR function and allow for much larger compressor blades to be tested.

An attempt was made at this point to refine the mesh around the tip region to ensure accuracy of the calculations. The number of nodes in the mesh was increased from 266,959 to 675,950 with a negligible change to both velocity of the tip region and force on the balance piston.

Test Pressure (bar)	0.5	1	2	3	5	7.5	10
Total Force (kN)	4.417	7.602	13.691	19.797	32.311	48.357	64.957
Mach Number	0.83	0.88	1.14	1.31	1.54	1.79	2.06

 Table 1.
 Total force and Mach Number of each Test Run

III. DISCUSSION/CONCLUSION

Once built, the modernized design of the transonic compressor test rig should be extremely beneficial to students and staff at NPS and maintain the Turbopropulsion Laboratory as a leader in high-speed compressor fan research. The new design will allow for more frequent use of a broader range of possible designs all while lowering energy consumption. The new TCR progressed towards completion with new components being modeled. Modal analysis of the rotating components of the TCR showed deformation modes of concerns and corresponding natural frequencies. This analysis will allow operators to know what frequencies are most likely to cause damage within the TCR and avoid operating at those speeds. This will ideally limit maintenance and repair costs and extend the operating life of the modernized TCR. Fluid analysis of the balance piston provided valuable data to ensure that both the secondary air compressor and balance piston are adequately sized for the new test rig. THIS PAGE INTENTIONALLY LEFT BLANK

IV. FUTURE WORK

The Modernized TCR is very close to being fully modeled. Continued work to design the TCR should be completed so that the manufacturing stage can begin. Further mechanical analysis of the completed model of the TCR and a fluid analysis of flow through the entire rig will be necessary.

One of the issues that came up when analyzing the flow around the balance piston was the excess pressure that was created due to the rotation. This caused an anomaly where pressure in the chamber would be higher than the inlet pressure from the compressor. It warrants further investigation into whether the balance piston could be designed to use this pressure rise and eliminate the need for a compressor entirely. THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A. ANSYS MODAL ANALYSIS PROJECT REPORT

Project

First Saved	Wednesday, May 15, 2019
Last Saved	Wednesday, May 22, 2019
Product Version	19.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Contents

- <u>Units</u>
- <u>Model (A4, B4)</u>

0

- o <u>Geometry</u>
 - Parts
 - <u>Materials</u>
 - <u>Structural Steel</u>
- o <u>Coordinate Systems</u>
- o <u>Connections</u>
 - <u>Contacts</u>
 - Contact Regions
- o <u>Mesh</u>
- o <u>Named Selections</u>
- o <u>Static Structural (A5)</u>
 - Analysis Settings
 - Rotational Velocity
 - Loads
 - Solution (A6)
 - Solution Information
 - Results
- o Modal (B5)

.

- Pre-Stress (Static Structural)
- Analysis Settings
- <u>Rotational Velocity</u>
 - Solution (B6)
 - <u>Solution Information</u>
 - <u>Total Deformation</u>
 - <u>Campbell Diagram</u>
- Material Data
 - o <u>Structural Steel</u>

Units

TABLE 1

Unit System	Metric (m, kg, N, s, V, A) Degrees RPM Celsiu	
Angle	Degrees	
Rotational Velocity	RPM	
Temperature	Celsius	

Model (A4, B4)

Geometry

TABLE 2Model (A4, B4) > Geometry

Object					
Object Name	Geometry				
State	Fully Defined				
Definition					
	E:\KeenanHarman\ANSYS\shaft+rotor+balance_piston\shaft+rotor+balance_piston				
Source	.x_t				
Туре	Parasolid				
Length Unit	Meters				
Element Control	Program Controlled				
Display Style	Body Color				
y	Bounding Box				
Length X					
Length Y	0.26645 m				
Length Z	0.26645 m				
5	Properties				
Volume	1.9559e-003 m ³				
Mass	15.354 kg				
Scale	10.001 Kg				
Factor	1.				
Value					
	Statistics				
Bodies	3				
Active					
Bodies	3				
Nodes	187691				
Elements	91100				
Mesh Metric	None				
Wietho	Update Options				
Assign					
Default	No				
Material					
	Basic Geometry Options				
Solid Bodies	Yes				
Surface	Yes				
Bodies					
Line Bodies	No				
Parameters	Independent				
Parameter Key	ANS;DS				
Attributes	No				
Named	No				
Selections					
Material Properties	No				
i ioportico	Advanced Geometry Options				

Use Associativit y	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	No
Decompos e Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3Model (A4, B4) > Geometry > Parts

Object Name	B2103_rotor_attachment	B2105- 1 main drive shefts	B2108-			
		1_main_drive_shafts	3_balance_piston			
State		Meshed				
	Graphics	Properties				
Visible	Yes					
Transparency	1					
	Definition					
Suppressed	No					
Stiffness Behavior	Flexible					
Coordinate System	Default Coordinate System					
Reference	Du Environment					
Temperature		By Environment				
Behavior	None					

Material				
Assignment	Structural Steel			
Nonlinear Effects		Yes		
Thermal Strain Effects	Yes			
	Bound	ding Box		
Length X	3.1979e-002 m	0.41656 m	5.334e-002 m	
Length Y	0.12192 m	6.604e-002 m	0.26645 m	
Length Z	0.12192 m	6.604e-002 m	0.26645 m	
	Proj	perties		
Volume	2.1226e-004 m ³	1.2105e-003 m ³	5.3313e-004 m ³	
Mass	1.6663 kg	9.5023 kg	4.1851 kg	
Centroid X	0.46072 m	0.24638 m	2.748e-002 m	
Centroid Y	1.2463e-008 m	-2.5602e-009 m	1.1571e-007 m	
Centroid Z	3.9542e-010 m	-9.5338e-011 m	-5.2754e-006 m	
Moment of Inertia Ip1	2.9714e-003 kg·m²	4.6939e-003 kg⋅m²	2.8334e-002 kg·m²	
Moment of Inertia Ip2	1.5668e-003 kg⋅m²	0.10696 kg·m²	1.4352e-002 kg·m²	
Moment of Inertia Ip3	1.5668e-003 kg⋅m²	0.10696 kg·m²	1.4355e-002 kg⋅m²	
	Sta	tistics		
Nodes	4244	11362	172085	
Elements	2317	6527	82256	
Mesh Metric	None			

Coordinate Systems

TABLE 4 Model (A4, B4) > Coordinate Systems > Coordinate System					
Object Name	Global Coordinate System	Coordinate System			
State	Fully Defir	ned			
	Definition				
Туре	Cartesian	Cylindrical			
Coordinate System ID	0.				
Coordinate System		Program Controlled			
APDL Name					
Suppressed		No			
	Origin				
Origin X	0. m				
Origin Y	0. m				
Origin Z	0. m				
Define By		Global Coordinates			
Location		Defined			
Directional Vectors					
X Axis Data	[1. 0. 0.]	[01.0.]			
Y Axis Data	[0.1.0.]	[0. 01.]			
Z Axis Data	[0. 0. 1.]	[1. 0. 0.]			

Principal Axis				
Axis		Z		
Define By		Global X Axis		
Orientation About Principal Axis				
Axis		Х		
Define By		Default		
Transformations				
Base Configuration		Absolute		
Transformed Configuration		[0.0.]		

Connections

TABLE 5

Model	(A4,	B4)	>	 Connections

Object Name	Connections			
State	Fully Defined			
Auto Detection				
Generate Automatic Connection On Refresh	Yes			
Transparency				
Enabled	Yes			

TABLE 6 Model (A4, B4) > Connections > Contacts				
Object Name				
State	Fully Defined			
Definit	ion			
Connection Type	Contact			
Scope				
Scoping Method	Geometry Selection			
Geometry	All Bodies			
Auto Detection				
Tolerance Type	Slider			
Tolerance Slider	0.			
Tolerance Value	1.5087e-003 m			
Use Range	No			
Face/Face	Yes			
Face Overlap Tolerance	Off			
Cylindrical Faces	Include			
Face/Edge	No			
Edge/Edge	No			

Statistics

Priority

Group By

Search Across

Active Connections

Connections

Include All

Bodies

Bodies

2

2

Object Name State	Contact Region Fully D Scope	Contact Region 2 efined	
	Scope	efined	
	-		
	- .		
Scoping Method	Geometry	Geometry Selection	
Contact	3 Faces	7 Faces	
Target	7 Fa	ces	
Contact Bodies	B2103_rotor_attachment	B2105-1_main_drive_shafts	
Target Bodies	B2105-1_main_drive_shafts	B2108-3_balance_piston	
Protected	N	0	
Definition			
Туре	Bonded		
Scope Mode	Automatic		
Behavior	Program Controlled		
Trim Contact	Program Controlled		
Trim Tolerance	1.5087e-003 m		
Suppressed	No		
	Advanced		
Formulation	Program (
Small Sliding	Program Controlled		
Detection Method	Program Controlled		
Penetration Tolerance	Program Controlled		
Elastic Slip Tolerance	Program Controlled		
Normal Stiffness	Program Controlled		
Update Stiffness			
Pinball Region Program Controlled		Controlled	
Geometric Modification			
Contact Geometry Correction	None		
Target Geometry Correction	rection None		

TABLE 7		
Model (A4, B4) > Connections > Contacts > Contact Regions		

Mesh

TABLE 8 Model (A4, B4) > Mesh			
Object Name	Mesh		
State	Solved		
Display			
Display Style	Use Geometry Setting		
Defaults			
Physics Preference	Mechanical		
Element Order	Program Controlled		
Element Size	Default		
Sizing			
Use Adaptive Sizing	Yes		
Resolution	Default (2)		
Mesh Defeaturing	Yes		

Defeature Size	Default	
Transition	Fast	
Span Angle Center	Coarse	
Initial Size Seed	Assembly	
Bounding Box Diagonal	0.60349 m	
Average Surface Area	1.4542e-003 m ²	
Minimum Edge Length	5.0924e-005 m	
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Standard Mechanical	
Target Quality	Default (0.050000)	
Smoothing	Medium	
Mesh Metric	None	
Inflation		
Use Automatic Inflation	None	
Inflation Option	Smooth Transition	
Transition Ratio	0.272	
Maximum Layers	5	
Growth Rate	1.2	
Inflation Algorithm	Pre	
View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Number of Retries	Default (4)	
Rigid Body Behavior	Dimensionally Reduced	
Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Statistics		
Nodes	187691	
Elements	91100	

Named Selections

TABLE 9				
Model (A4, B4) > Named Selections > Named Selection				ions
	Object Name	bearing1	bearing2	
	State Fully Defined		Defined	
	Scope			
	Scoping Method	Geometry	Selection	
	Geometry	1 Face		
	Definition			
	Send to Solver	Ye	es	
	Protected	Program (Controlled	
	Visible	Ye	es	

Program Controlled Inflation	Exclude		
Statistics			
Туре	Manual		
Total Selection	1 Face		
Surface Area	4.5832e-003 m ²		
Suppressed	0		
Used by Mesh Worksheet	No		

Static Structural (A5)

TABLE 10 Model (A4, B4) > Analysis			
Object Name	Static Structural (A5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22. °C		
Generate Input Only	No		

TABLE 11 Model (A4, B4) > Static Structural (A5) > Analysis Settings

Object Name	Analysis Settings			
State	Fully Defined			
	Restart Analysis			
Restart Type	Program Controlled			
Status	Done			
Step Controls				
Number Of Steps	1.			
Current Step Number	1.			
Step End Time	1. s			
Auto Time Stepping	Program Controlled			
Solver Controls				
Solver Type	Program Controlled			
Weak Springs	Off			

Solver Pivot Checking Large	Program Controlled Off		
Deflection Inertia Relief	Off		
Iteller	Rotordynamics Controls		
Coriolis Effect	On		
Ellect	Restart Controls		
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	Yes		
Combine Restart Files	Program Controlled		
Nonlinear Controls			
Newton- Raphson Option	Program Controlled		
Force Convergen ce	Program Controlled		
Moment Convergen ce	Program Controlled		
Displacem ent Convergen ce	Program Controlled		
Rotation Convergen ce	Program Controlled		
Line Search	Program Controlled		
Stabilizatio n	Off		
Output Controls			
Stress	Yes		
Strain	Yes		
Nodal Forces	No		
Contact Miscellane ous	No		

General Miscellane ous Store	No
Results At	All Time Points
	Analysis Data Management
Solver Files Directory	E:\KeenanHarman\ANSYS\shaft+rotor+balance_piston\shaft+rotor+balance_piston _files\dp0\SYS\MECH\
Future Analysis	Prestressed analysis
Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	mks

TABLE 12 Model (A4, B4) > Static Structural (A5) > Rotations

Object Name	Rotational Velocity		
State	Fully Defined		
Scope			
Scoping Method	Geometry Selection		
Geometry	All Bodies		
Definition			
Define By	Components		
Coordinate System	Global Coordinate System		
X Component	21000 RPM (ramped)		
Y Component	0. RPM (ramped)		
Z Component	0. RPM (ramped)		
X Coordinate	0. m		
Y Coordinate	0. m		
Z Coordinate	0. m		
Suppressed	No		

FIGURE 1 Model (A4, B4) > Static Structural (A5) > Rotational Velocity

 TABLE 13

 Model (A4, B4) > Static Structural (A5) > Loads

Object Name	Cylindrical Support	Cylindrical Support 2		
State	Fully Defined			
	Scope			
Scoping Method	Named Selection			
Named Selection	bearing1 bearing2			
Definition				
Туре	Cylindrical Support			
Radial	Fixed			
Axial	Fixed	Free		
Tangential	Free			
Suppressed	No			

Solution (A6)

TABLE 14Model (A4, B4) > Static Structural (A5) > SolutionObject NameSolution (A6)StateSolvedAdaptive Mesh RefinementMax Refinement Loops1.Refinement Depth2.Information

Status	Done			
MAPDL Elapsed Time	37. s			
MAPDL Memory Used	2.834 GB			
MAPDL Result File Size	53.375 MB			
Post Processing				
Beam Section Results	No			
On Demand Stress/Strain	No			

TABLE 15

Model (A4, B4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information		
State	Solved		
Solution Information			
Solution Output	Solver Output		
Newton-Raphson Residuals	0		
Identify Element Violations	0		
Update Interval	2.5 s		
Display Points	All		
FE Connection Visibility			
Activate Visibility	Yes		
Display	All FE Connectors		
Draw Connections Attached To	All Nodes		
Line Color	Connection Type		
Visible on Results	No		
Line Thickness	Single		
Display Type	Lines		

TABLE 16

Model (A4, B4) > Static Structural (A5) > Solution (A6) > Results

Object Name	Directional Deformation	Maximum Principal Stress		
State	Solved			
Scope				
Scoping Method	Geometr	y Selection		
Geometry	All E	Bodies		
Definition				
Туре	Directional Deformation Maximum Principal Stres			
Orientation	X Axis			
By	Time			
Display Time	Last			
Coordinate System	Coordinate System			
Calculate Time History	Yes			
Identifier				
Suppressed	No			
	Results			
Minimum	0. m	0. Pa		
Maximum	0. m	0. Pa		
Average	0. m	0. Pa		
Minimum Occurs On	B2103_rotor_attachment			

Maximum Occurs On	B2103_rotor_attachment		
Information			
Time		l. s	
Load Step		1	
Substep		1	
Iteration Number		1	
Integration Point Results			
Display Option		Averaged	
Average Across Bodies		No	

FIGURE 2

Model (A4, B4) > Static Structural (A5) > Solution (A6) > Directional Deformation

 TABLE 17

 Model (A4, B4) > Static Structural (A5) > Solution (A6) > Directional Deformation

 Time [s]
 Minimum [m]
 Maximum [m]
 Average [m]

 1.
 0.
 0.
 0.

FIGURE 3 Model (A4, B4) > Static Structural (A5) > Solution (A6) > Maximum Principal Stress

 TABLE 18

 Model (A4, B4) > Static Structural (A5) > Solution (A6) > Maximum Principal Stress

 Time [s]
 Minimum [Pa]
 Maximum [Pa]
 Average [Pa]

 1.
 0.
 0.
 0.

Modal (B5)

TABLE 19			
Model (A4, B4) > Analysis			
Object Name	Modal (B5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Modal		
Solver Target	Mechanical APDL		
Options			
Generate Input Only	No		

TABLE 20Model (A4, B4) > Modal (B5) > Initial ConditionObject NamePre-Stress (Static Structural)StateFully DefinedDefinitionPre-Stress EnvironmentStatic Structural

Pre-Stress Define By	Program Controlled	
Reported Loadstep	Last	
Reported Substep	Last	
Reported Time	End Time	
Contact Status	Use True Status	
Newton-Raphson Option	Program Controlled	

 TABLE 21

 Model (A4, B4) > Modal (B5) > Analysis Settings

- - -

Object Name	Analysis Settings		
State	Fully Defined		
	Options		
Max Modes to Find	15		
Limit Search to Range	No		
Spin Softening	Program Controlled		
	Solver Controls		
Damped	Yes		
Solver Type	Program Controlled		
	Rotordynamics Controls		
Coriolis Effect	On		
Campbell Diagram	On		
Number of Points	12		
	Output Controls		
Stress	No		
Strain	No		
Nodal Forces	No		
Calculate Reactions	No		
General Miscellaneo us	No		
Damping Controls			
Stiffness Coefficient Define By	Direct Input		
Stiffness Coefficient	0.		
Mass Coefficient	0.		
	Analysis Data Management		

Solver Files Directory	E:\KeenanHarman\ANSYS\shaft+rotor+balance_piston\shaft+rotor+balance_piston _files\dp0\SYS-1\MECH\
Future Analysis	None
Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Solver Units	Active System
Solver Unit System	mks

TABLE 22 Model (A4, B4) > Modal (B5) > Rotations			
Object Name	Rotational Velocity		
State	Fully Defined		
	Scope		
Scoping Method	Geometry Selection		
Geometry	All Bodies		
Definition			
Define By	Components		
Coordinate System	Global Coordinate System		
X Component	Tabular Data		
Y Component	Tabular Data		
Z Component	Tabular Data		
X Coordinate	0. m		
Y Coordinate	0. m		
Z Coordinate	0. m		
Suppressed	No		

TABLE 23 Model (A4, B4) > Modal (B5) > Rotational Velocity Points V [rpm] V [rpm] Z [rpm]

Points	X [rpm]	Y [rpm]	Z [rpm]
1	0.		
2	2000.		
3	4000.		
4	6000.		
5	8000.	0.	0.
6	10000		
7	12000		
8	14000		
9	16000		
43			

10	18000
11	20000
12	21000

Solution (B6)

TABLE 24			
Model (A4, B4) > Modal (
Object Name	Solution (B6)		
State	Solved		
Adaptive Mesh Refinement			
Max Refinement Loops	1.		
Refinement Depth	2.		
Information			
Status	Done		
MAPDL Elapsed Time	13 m 51 s		
MAPDL Memory Used	7.4072 GB		
MAPDL Result File Size	1.5539 GB		
Post Processing			
Beam Section Results	No		

The following bar chart indicates the frequency at each calculated mode.

FIGURE 4 Model (A4, B4) > Modal (B5) > Solution (B6)

			Model (A4, B4) > N			
Set	Solve	Mode	Damped Frequency	Stability	Modal Damping	Logarithmic
	Point		[Hz]	[Hz]	Ratio	Decrement
1.		1.	81.335			
2.		2.	812.65			
3.		3.	813.92			
4.		4.	937.88			
5.		5.	991.94			
6.		6.	994.15			
7.		7.	1102.3			
8.	1.	8.	1609.1			
9.		9.	1609.4			
10.		10.	1632.2			
11.		11.	1632.7			
12.		12.	2626.1			
13.		13.	2626.9			
14.		14.	2772.7			
15.		15.	2823.7			
16.		1.	81.335			
17.		2.	780.98	0.		
18.		3.	846.93			
19.		4.	929.25			
20.		5.	937.89			
21.		6.	1061.2			
22.		7.	1102.3		0.	0.
23.	2.	8.	1514.5		0.	0.
24.		9.	1631.5			
25.		10.	1633.4			
26.		11.	1709.9			
27.		12.	2501.7			
28.		13.	2757.5			
29.		14.	2772.7			
30.		15.	2823.7			
31.		1.	81.335			
32.		2.	750.02			
33.		3.	869.84			
34.		4.	881.89			
35.		5.	937.89			
36.		6.	1102.3			
37.	3.	7.	1133.7			
38.		8.	1425.7			
39.		9.	1630.6			
40.		10.	1634.2			
41.		11.	1816.4			
42.		12.	2383.1			
43.		13.	2772.7			
44.		14.	2823.8			

TABLE 25 Model (A4, B4) > Modal (B5) > Solution (B6)

4 -		4 -	000 1 7
45.		15.	2894.7
46.		1.	81.335
47.		2.	720.38
48.		3.	814.69
49.		4.	918.17
50.		5.	937.89
51.		6.	1102.3
52.		7.	1210.4
53.	4.	8.	1342.7
54.		9.	1629.7
55.		10.	1635.1
56.		11.	1928.7
57.		12.	2270.7
58.		13.	2772.6
59.		14.	2823.9
60.		15.	3038.
61.		1.	81.335
62.		2.	692.05
63.		3.	763.66
64.		4.	937.88
65.		5.	955.78
66.		6.	1102.3
67.		7.	1265.3
68.	5.	8.	1291.3
69.		9.	1628.8
70.		10.	1636.
71.		11.	2046.7
72.		12.	2164.3
73.		13.	2772.5
74.		14.	2824.
75.		15.	3187.4
75. 76.		15. 1.	
			81.335
77.		2.	664.99
78.		3.	716.58
79.		4.	937.88
80.		5.	994.65
81.		6.	1102.3
82.		7.	1193.3
83.	6.	8.	1376.2
84.		9.	1627.9
85.		10.	1636.9
86.		11.	2063.8
87.		12.	2170.1
88.		13.	2772.3
89.		14.	2824.1
90.		14.	3342.7
	7		
91.	7.	1.	81.335

00		6	000.0
92.		2.	639.2
93.		3.	673.24
94.		4.	937.88
95.		5.	1034.8
96.		6.	1102.3
97.		7.	1126.6
98.		8.	1464.8
99.		9.	1627.
100.		10.	1637.9
101.		11.	1969.
102.		12.	2298.7
103.		13.	2772.2
104.		14.	2824.3
105.		15.	3503.6
106.		1.	81.335
100.		2.	614.63
107.		<u>2</u> . 3.	633.42
109.		4.	937.88
110.		5.	1064.7
111.		6.	1076.2
112.		7.	1102.3
113.	8.	8.	1556.8
114.		9.	1626.1
115.		10.	1638.8
116.		11.	1879.7
117.		12.	2432.2
118.		13.	2771.9
119.		14.	2824.5
120.		15.	3670.1
121.		1.	81.335
121.		2.	591.24
122.		2. 3.	
			596.87
124.		4. 5	937.88
125.		5.	1007.5
126.		6.	1102.3
127.	_	7.	1118.7
128.	9.	8.	1625.2
129.		9.	1639.7
130.		10.	1652.2
131.		11.	1795.6
132.		12.	2570.4
133.		13.	2771.7
134.		14.	2824.8
135.		15.	3841.8
136.		1.	81.335
130.	10.		563.3
	10.	2.	
138.		3.	569.04

120		Λ	027 00
139.		4.	937.88
140.		5.	954.61
141.		6.	1102.3
142.		7.	1162.4
143.		8.	1624.3
144.		9.	1640.6
145.		10.	1716.6
146.		11.	1750.6
147.		12.	2712.8
148.		13.	2771.4
149.		14.	2825.1
150.		15.	4018.6
151.		1.	81.335
152.		2.	532.54
153.		3.	547.91
154.		4.	905.71
155.		5.	937.88
156.		6.	1102.3
157.		7.	1207.2
158.	11.	8.	1623.4
159.		9.	1641.5
160.		10.	1642.4
		11.	
161.			1851.7
162.		12.	2771.1
163.		13.	2825.4
164.		14.	2859.3
165.		15.	4200.2
166.		1.	81.335
167.		2.	518.12
168.		3.	537.75
169.		4.	882.67
170.		5.	937.88
171.		6.	1102.3
172.		7.	1230.
173.	12.	8.	1607.
174.		9.	1623.
175.		10.	1641.9
176.		11.	1903.3
177.		12.	2771.
178.		13.	2825.5
179.		14.	2933.9
180.		14.	4292.7
160.		15.	4292.1

 TABLE 26

 Model (A4, B4) > Modal (B5) > Solution (B6) > Solution Information

 Object Name
 Solution Information

 State

Solved

Solution Inform	ation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All
FE Connection Vi	sibility
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Line Thickness	Single
Display Type	Lines

Μ		BLE 27 B5) > Solution (B6) > Results		
	Object Name			
	State	Solved		
	S	Scope		
	Scoping Method	Geometry Selection		
	Geometry	All Bodies		
	De	finition		
	Туре	Total Deformation		
	Set Number	1.		
	Amplitude	No		
	Sweeping Phase	0. °		
	Identifier			
	Suppressed	No		
	R	esults		
	Minimum	3.51e-007 m		
	Maximum	0.69976 m		
	Average			
	Minimum Occurs On	B2105-1_main_drive_shafts		
	Maximum Occurs On	B2108-3_balance_piston		
		rmation		
	Mode	11		
	Damped Frequency	81.335 Hz		
	Stability	0. Hz		
	Modal Damping Ratio	0.		
	Logarithmic Decrement	0.		

 TABLE 28

 Model (A4, B4) > Modal (B5) > Solution (B6) > Total Deformation

Set	Solve Point	Mode	Damped Frequency [Hz]	Stability [Hz]	Modal Damping Ratio	Logarithmic Decrement
1.	1	1.	81.335	0	0	0
2.	Ι.	2.	812.65	0.	υ.	0.

~		-	.
3.		3.	813.92
4.		4.	937.88
5.		5.	991.94
6.		6.	994.15
7.		7.	1102.3
8.		8.	1609.1
9.		9.	1609.4
10.		10.	1632.2
11.		11.	1632.7
12.		12.	2626.1
13.		13.	2626.9
14.		14.	2772.7
15.		15.	2823.7
16.		1.	81.335
17.		2.	780.98
18.		3.	846.93
19.		4.	929.25
20.		5.	937.89
21.		6.	1061.2
22.		7.	1102.3
23.	2.	8.	1514.5
23.	Ζ.	9.	1631.5
24. 25.		9. 10.	
			1633.4
26.		11.	1709.9
27.		12.	2501.7
28.		13.	2757.5
29.		14.	2772.7
30.		15.	2823.7
31.		1.	81.335
32.		2.	750.02
33.		3.	869.84
34.		4.	881.89
35.		5.	937.89
36.		6.	1102.3
37.		7.	1133.7
38.	3.	8.	1425.7
39.		9.	1630.6
40.		10.	1634.2
41.		11.	1816.4
42.		12.	2383.1
43.		13.	2772.7
44.		14.	2823.8
44. 45.		14.	2894.7
46.		1.	81.335
47.	4.	2.	720.38
48.		3.	814.69
49.		4.	918.17

50.		5.	937.89
51.		6.	1102.3
52.		7.	1210.4
53.		8.	1342.7
54.		9.	1629.7
55.		10.	1635.1
56.		11.	1928.7
57.		12.	2270.7
58.		13.	2772.6
59.		14.	2823.9
60.		15.	3038.
61.		1.	81.335
62.		2.	692.05
63.		3.	763.66
64.		4.	937.88
65.		5.	955.78
66.		6.	1102.3
67.	-	7.	1265.3
68.	5.	8.	1291.3
69.		9.	1628.8
70.		10.	1636.
71.		11.	2046.7
72.		12.	2164.3
73.		13.	2772.5
74.		14.	2824.
75.		15.	3187.4
76.		1.	81.335
77.		2.	664.99
78.		3.	716.58
79.		4.	937.88
80.		5.	994.65
81.		6.	1102.3
82.		7.	1193.3
83.	6.	8.	1376.2
84.		9.	1627.9
85.		10.	1636.9
86.		11.	2063.8
87.		12.	2170.1
88.		13.	2772.3
89.		14.	2824.1
90.		15.	3342.7
91.		1.	81.335
92.		2.	639.2
93.		3.	673.24
94.	7.	4.	937.88
95.		5.	1034.8
96.		6.	1102.3

07		7	4400.0
97.		7.	1126.6
98.		8.	1464.8
99.		9.	1627.
100.		10.	1637.9
101.		11.	1969.
102.		12.	2298.7
103.		13.	2772.2
104.		14.	2824.3
105.		15.	3503.6
106.		1.	81.335
107.		2.	614.63
108.		3.	633.42
109.		4.	937.88
110.		5.	1064.7
111.		6.	1076.2
112.		7.	
	0		1102.3
113.	8.	8.	1556.8
114.		9.	1626.1
115.		10.	1638.8
116.		11.	1879.7
117.		12.	2432.2
118.		13.	2771.9
119.		14.	2824.5
120.		15.	3670.1
121.		1.	81.335
122.		2.	591.24
123.		3.	596.87
124.		4.	937.88
125.		5.	1007.5
126.		6.	1102.3
120.		7.	1118.7
	0		
128.	9.	8.	1625.2
129.		9.	1639.7
130.		10.	1652.2
131.		11.	1795.6
132.		12.	2570.4
133.		13.	2771.7
134.		14.	2824.8
135.		15.	3841.8
136.		1.	81.335
137.		2.	563.3
138.		3.	569.04
139.		4.	937.88
140.	10.	5.	954.61
141.		6.	1102.3
141.		7.	1162.4
142.			
143.		8.	1624.3

144.		9.	1640.6
145.		10.	1716.6
146.		11.	1750.6
140.		12.	2712.8
147.		12.	2771.4
149.		14.	2825.1
150.		15.	4018.6
151.		1.	81.335
152.		2.	532.54
153.		3.	547.91
154.		4.	905.71
155.		5.	937.88
156.		6.	1102.3
157.		7.	1207.2
158.	11.	8.	1623.4
159.		9.	1641.5
160.		10.	1642.4
161.		11.	1851.7
162.		12.	2771.1
163.		13.	2825.4
164.		14.	2859.3
165.		14.	4200.2
166.		13. 1.	81.335
		1. 2.	
167.			518.12
168.		3.	537.75
169.		4.	882.67
170.		5.	937.88
171.		6.	1102.3
172.		7.	1230.
173.	12.	8.	1607.
174.		9.	1623.
175.		10.	1641.9
176.		11.	1903.3
177.		12.	2771.
178.		13.	2825.5
179.		14.	2933.9
180.		15.	4292.7
100.		15.	4232.1

TABLE 29Model (A4, B4) > Modal (B5) > Solution (B6) > Result ChartsObject NameCampbell DiagramStateSolved

State	Solved							
Scope								
Rotational Velocity Selection	Rotational Velocity							
Campbell Diagram Controls								
Y Axis Data	Frequency							
Critical Speed	Yes							

2.
Yes
Rotational Velocity
Program Controlled
0. RPM
21000 RPM
Frequency
Program Controlled
0. Hz
4292.7 Hz
n
No

FIGURE 5 Model (A4, B4) > Modal (B5) > Solution (B6) > Campbell Diagram

Model (A4,	B4) > Mod	al (B5) > S	Solution (B6)	> Campbell	Diagram
------------	-----------	-------------	---------------	------------	---------

Mo de	Whirl Direct ion	Mode Stabil ity	Criti cal Spe ed	0. rpm	200 0. rpm	400 0. rpm	600 0. rpm	800 0. rpm	100 00 rpm	120 00 rpm	140 00 rpm	160 00 rpm	180 00 rpm	200 00 rpm	210 00 rpm
1.	FW	STAB LE	244 0.1 rpm	81.3 35 Hz											

		STAB	173	812.	780.	750.	720.	692.	664.	639.	614.	591.	569.	547.	537.
2.	BW	LE	03	65	98	02	38	05	99	2 Hz	63	24	04	91	75
			rpm	Hz	Hz	Hz	Hz	Hz	Hz		Hz	Hz	Hz	Hz	Hz
3.	FW	STAB	NO	813. 92	846. 93	881. 89	918. 17	955. 78	994. 65	103 4.8	107 6.2	111 8.7	116 2.4	120 7.2	123 0.
Э.		LE	NE	Hz											
			172	937.	929.	869.	814.	763.	716.	673.	633.	596.		532.	518.
4.	BW	STAB	68	88	25	84	69	66	58	24	42	87	563.	54	12
		LE	rpm	Hz	3 Hz	Hz	Hz								
		STAB	NO	991.	937.	937.	937.	937.	937.	937.	937.	937.	937.	937.	937.
5.	FW	LE	NE	94	89	89	89	88	88	88	88	88	88	88	88
				Hz											
		STAB	NO	994.	106	113	121	129	137	146	155	165	175	185	190
6.	FW	LE	NE	15	1.2	3.7	0.4	1.3	6.2	4.8	6.8	2.2	0.6	1.7	3.3
				Hz											
7	BW	STAB	NO	110 2.3											
7.	DVV	LE	NE	Z.S Hz	Z.S Hz	Z.S Hz	Z.S Hz	Hz	Hz	Hz	Z.S Hz	Hz	Hz	Z.S Hz	Z.S Hz
				160	151	142	134	126	112	112	106	100	954.	905.	882.
8.	BW	STAB	NO	9.1	4.5	5.7	2.7	5.3	3.3	6.6	4.7	7.5	61	71	67
0.	2	LE	NE	Hz											
			NO	160	163	163	162	162	162	162	162	162	162	162	162
9.	BW	STAB	NO	9.4	1.5	0.6	9.7	8.8	7.9	7.	6.1	5.2	4.3	3.4	3.
		LE	NE	Hz											
		STAB	NO	163	163	163	163	163	163	163	163	163	164	164	164
10.	FW	LE	NE	2.2	3.4	4.2	5.1	6.	6.9	7.9	8.8	9.7	0.6	1.5	1.9
				Hz											
		STAB	NO	163	170	181	192	204	217	229	243	257	271	285	293
11.	FW	LE	NE	2.7	9.9	6.4	8.7	6.7	0.1	8.7	2.2	0.4	2.8	9.3	3.9
				Hz 262	Hz 250	Hz 238	Hz 227	Hz 216	Hz	Hz 196	Hz	Hz	Hz	Hz 164	Hz 160
12.	BW	STAB	NO	262 6.1	250 1.7	238 3.1	227 0.7	4.3	206 3.8	9.	187 9.7	179 5.6	171 6.6	2.4	7.
12.		LE	NE	Hz	Υ. Hz										
				262	275	289	303	318	334	350	367	384	401	420	429
13.	FW	STAB	NO	6.9	7.5	4.7	8.	7.4	2.7	3.6	0.1	1.8	8.6	0.2	2.7
		LE	LE NE	Hz											
		OTAD	NO	277	277	277	277	277	277	277	277	277	277	277	277
14.	BW	STAB LE	NO	2.7	2.7	2.7	2.6	2.5	2.3	2.2	1.9	1.7	1.4	1.1	1.
			NE	Hz											
		STAB	NO	282	282	282	282	282	282	282	282	282	282	282	282
15.	FW	LE	NE	3.7	3.7	3.8	3.9	4.	4.1	4.3	4.5	4.8	5.1	5.4	5.5
				Hz											

Material Data

Structural Steel

TABLE 30Structural Steel > ConstantsDensity7850 kg m^-3

Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat Constant Pressure	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 31

Structural Steel > Color

 Red
 Green
 Blue

 132
 139
 179

TABLE 32

Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength Pa

0

TABLE 33 Structural Steel > Compressive Yield Strength Compressive Yield Strength Pa

2.5e+008

TABLE 34Structural Steel > Tensile Yield StrengthTensile Yield Strength Pa2.5e+008

 TABLE 35

 Structural Steel > Tensile Ultimate Strength

 Tensile Ultimate Strength Pa

4.6e+008

 TABLE 36

 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

 Zero-Thermal-Strain Reference Temperature C

22

TABLE 37 Structural Steel > S-N Curve

Alternating Stress Pa	Cycles	Mean Stress Pa
3.999e+009	10	0
2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0

8.62e+007 1.e+006 0

 TABLE 38

 Structural Steel > Strain-Life Parameters

Strength Coefficient Pa	U U		,	Cyclic Strength Coefficient Pa	Hardenind
9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 39								
Structural Steel > Isotropic Elasticity								
Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	Temperature C				
2.e+011	0.3	1.6667e+011	7.6923e+010					

 TABLE 40

 Structural Steel > Isotropic Relative Permeability

 Relative Permeability

10000

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B. ANSYS REPORT DATA FOR CFX ANALYSIS

1. File Report

 Table 1. File Information for CFX

Case	CFX
File Path	E:\KeenanHarman\New_test_ring\ME4225\balance_piston_flow_slice_4_1bar_ run2_files\dp0\CFX\CFX\Fluid Flow CFX_008.res
File Date	03 June 2019
File Time	12:23:52 PM
File Type	CFX5
File Versi on	19.2

2. Mesh Report

 Table 2.
 Mesh Information for CFX

Domain	Nodes	Elements
Default Domain	266959	1362329

3. Physics Report

Table 3. Domain Physics for CFX

Domain - Default Domain					
Туре	Fluid				
Location	B219				
Materi	als				
Air Ideal Gas					
Fluid Definition	Material Library				
Morphology	Continuous Fluid				
Settin	gs				
Buoyancy Model	Non Buoyant				
Domain Motion	Rotating				
Angular Velocity	2.1000e+04 [rev min^-1]				
Axis Definition	Coordinate Axis				
Rotation Axis	Coord 0.1				
Reference Pressure	1.0000e+00 [atm]				
Heat Transfer Model	Total Energy				
Include Viscous Work Term	True				
Turbulence Model	k epsilon				
Turbulent Wall Functions	Scalable				
High Speed Model	Off				
Domain Interfa	ce - Periodic				
Boundary List1	Periodic Side 1				
Boundary List2	Periodic Side 2				
Interface Type	Fluid Fluid				
Settin	gs				
Interface Models	Rotational Periodicity				
Axis Definition	Coordinate Axis				
Rotation Axis	Coord 0.1				
Mesh Connection	Automatic				

 Table 4. Boundary Physics for CFX

Domain	Boundaries	
	Boundary - Inlet	

	Туре	INLET		
	Location	Inlet		
		Settings		
	Flow Direction	Normal to Boundary Condition		
	Flow Regime	Subsonic		
	Heat Transfer	Stationary Frame Total Temperature		
	Stationary Frame Total Temperature	2.8815e+02 [K]		
	Mass And Momentum	Stationary Frame Total Pressure		
	Relative Pressure	3.0000e+00 [bar]		
	Turbulence	Medium Intensity and Eddy Viscosity Ratio		
		Boundary - Periodic Side 1		
	Туре	INTERFACE		
	Location	Sym1		
Default	Settings			
Domain	Heat Transfer	Conservative Interface Flux		
	Mass And Momentum	Conservative Interface Flux		
	Turbulence	Conservative Interface Flux		
		Boundary - Periodic Side 2		
	Туре	INTERFACE		
	Location	Sym2		
		Settings		
	Heat Transfer	Conservative Interface Flux		
	Mass And Momentum	Conservative Interface Flux		
	Turbulence	Conservative Interface Flux		
		Boundary - Outlet		
	Туре	OPENING		
	Location	Outlet		
		Settings		
	Flow Direction	Normal to Boundary Condition		
	Flow Regime	Subsonic		

Heat Transfer	Opening Temperature			
Opening Temperature	2.8815e+02 [K]			
Mass And Momentum	Opening Pressure and Direction			
Relative Pressure	0.0000e+00 [bar]			
Turbulence	Medium Intensity and Eddy Viscosity Ratio			
Boundary - Default Domain Default				
Туре	WALL			
Location	F161.219, F162.219, F163.219, F169.219, F170.219, F172.219, F173.219, F174.219, F175.219, F176.219, F177.219, F178.219, F179.219, F180.219, F181.219, F182.219, F183.219, F184.219, F185.219, F186.219, F187.219, F188.219, F189.219, F190.219, F191.219, F192.219, F193.219, F195.219, F196.219, F197.219, F198.219, F199.219, F200.219, F201.219, F202.219, F203.219, F204.219, F205.219, F207.219, F208.219, F209.219, F210.219, F211.219, F212.219, F213.219, F214.219			
Settings				
Heat Transfer	Adiabatic			
Mass And Momentum	No Slip Wall			
Wall Roughness	Smooth Wall			
	Boundary - Stationary			
Туре	WALL			
Location	Stationary			
	Settings			
Heat Transfer	Adiabatic			
Mass And Momentum	No Slip Wall			
Wall Velocity	Counter Rotating Wall			
Wall Roughness	Smooth Wall			

LIST OF REFERENCES

- A. Byrd. "Modernization of the Transonic Axial Compressor Test Rig." Master's Thesis, Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 2017. http://hdl.handle.net/10945/56876
- [2] A. J. Gannon and G. V. Hobson, "Performance Testing of Transonic Rotors," *Mech. Eng.*, pp. 52–53, 2010. Available: http://libproxy.nps.edu/login?url= https://search.proquest.com/docview/742466821?accountid=12702.
- [3] J. Cameron et al. "A Transonic Axial Compressor Facility for Fundamental Research and Flow Control Development." *44th AIAA Aerospace Sciences Meeting and Exhibit*, 2006. Available: https://doi.org/10.2514/6.2006-416
- [4] "Transonic Compressor 1," Technische Universität Darmstadt. Accessed June 6th, 2019. [Online]. Available: https://www.glr.tudarmstadt.de/glr_forschung/verdichter/tsv1/index.en.jsp
- [5] R. A. Brokopp. "NASA Glenn's Single-Stage Axial Compressor Facility Upgraded." *Research and Technology*, 2003. Available: http://hdl.handle.net/2060/20050215485.
- "Compressor Research Facility (CRF)," Aerospace Systems Directorate. Accessed June 6th, 2019. [Online]. Available: https://www.wpafb.af.mil/Portals/60/documents/afrl/rq/wpafb/rq-compressorresearch-CRF-%202018.pdf?ver=2018-07-06-132112-140
- [7] B. Grossman. "Testing and Analysis of a Transonic Axial Compressor." Master's Thesis, Department of Aeronautical Engineering, Naval Postgraduate School, Monterey, CA, 1997. http://hdl.handle.net/10945/9064

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

- 1. Defense Technical Information Center Ft. Belvoir, Virginia
- 2. Dudley Knox Library Naval Postgraduate School Monterey, California