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1. INTRODUCTION:

 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. KEYWORDS: 

 
 

3. ACCOMPLISHMENTS:

Powered prostheses are a promising new technology that may help lower limb amputees 
to function at higher levels in their daily lives. These individuals suffer from significantly 
impaired mobility including expending up to 60% more energy than non-amputee 
individuals. Less than 25% of transfemoral amputees older than 50 achieve community 
mobility on passive prostheses. Research and industry teams have begun building 
powered prostheses that include motors to actively assist amputees to walk and perform 
various tasks encountered in everyday situations such as stepping up a stair, standing up, 
and traversing difficult and uneven terrain such as slopes and ramps. An important 
objective is for the computer on the prosthesis to understand what the amputee wants to 
do. By accurately decoding the amputee’s intentions, the computer can appropriately 
coordinate the assistance of the powered prosthesis to the amputee’s needs. A powerful 
technique to understand the amputee’s intentions is to use pattern recognition, which is a 
technology that is commonly used in speech recognition, image analysis and medical 
diagnostics. Pattern recognition is capable of automatically determining the amputee’s 
intent and can allow amputees to easily and intuitively use their powered prostheses in 
their everyday lives. However, if the pattern recognition software incorrectly estimates the 
user intent, then the powered prosthesis may not be as helpful or may even get in the way 
of an amputee’s intended movements. Additionally, pattern recognition requires training 
data that must be collected from the amputee before using it. We have developed new 
pattern recognition systems that are more accurate and do not necessarily require training 
data directly from the amputee. The proposed research will develop and test these pattern 
recognition systems with amputees using a state-of-the-art powered prosthesis. The 
research will determine the benefit of pattern recognition intent recognition systems by 
measuring key clinical parameters such as how quickly amputees are able to move with 
the powered prosthesis and their energetic cost of doing so. The end result of this 
research will be intent recognition systems capable of implementation on computers 
embedded on powered prostheses. This will be useful to lower limb amputees who use 
powered prostheses in the future as intent recognition systems can help amputees 
achieve a greater level of independence and mobility.   

Powered knee/ankle prostheses, amputation, intent recognition, biomechanical outcomes, 
prosthetic control systems, pattern recognition 
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What were the major goals of the project? 

What was accomplished under these goals? 

Specific Aims 1: Compare intent recognition accuracy of the user-independent system to the 
user-dependent system in real-time as amputees ambulate over different locomotion modes. 
Major Task 1: Subject Recruitment and Fitting  

• Milestone of HRPO and IRB approval at 3 months – 100% completion (on time)
Major Task 2: Prepare prosthetic leg for amputee testing 

• Milestone of fully functional system ready for patient testing at 9 months – 100% complete (on time)
Major Task 3: Amputee training and initial data collection for pattern recognition systems 

• Milestone of a full set of data from each subject collected at 18 months – 45% complete
Major Task 4: System Implementation 

• Milestone of user-dependent and user-independent intent recognition systems ready for deployment – 25%
complete

Specific Aim 2: Quantify the metabolic cost of walking, amputee biomechanics of motion and 
completion time and compare between user-dependent and user-independent intent 
recognition 
Major Task 5: Comparison of user-dependent and user-independent systems during a real-
time experiment 

• Milestone – experimental comparison between clinical effectiveness of different intent recognition controllers
on amputees – 0% complete

Specific Aim 3: Compare clinical outcome measures of powered prosthesis ambulation with 
active intent recognition to passive prosthesis ambulation. 
Major Task 6: Comparison of clinical parameters of powered prosthesis compared to passive 
prosthesis 

• Milestone – experimental comparison of clinical effectiveness of powered prosthesis compared to passive
prosthesis – 25% complete

Quarter 1 Activities and Accomplishments: 

Major Task 2: Prepare prosthetic leg for amputee testing 
We have been continually working to make improvements to our overall system even though 
patient testing started around month 9 of the grant. In January and February, we designed a way of 
getting the Li-Po battery to be onboard the device for ease of testing, reducing safety concerns, and 
lowering the time for experimental setup (See Figure 3 and 4). Other mechanical improvements to 
the device included creating better straps for able-bodied walking adapter to ensure the interface 
would not get loose over time as an experimental protocol was being run. Nylon feet were 
manufactured for both left and right sided amputations to allow for the user to feel more 
comfortable walking with the device. New torsional springs were manufactured with the same 
design except with a smaller thickness to reduce the stiffness to allow for better closed loop 
control. Additional heights to adjust to a wider range of transfemoral amputees were machined for 
the prosthesis shank insert. 
Major Task 3: Amputee training and initial data collection for pattern recognition systems 
In January, testing with able-bodied subjects was a priority to ensure stability of the device across 
walking speeds. A metabolic system was used to measure energy expenditure across the different 
conditions in order to get a baseline to compare with. Subjects were first asked to walk in parallel  
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bars and then told to walk over the treadmill at variable speeds. In February, the controls 
architecture was expanded to have the functionality of performing different ambulation modes 
(level-walking, ramp ascent/descent, and stair ascent/descent). This allows for the operator to 
easily change ambulation modes directly from the GUI while an experiment is being performed. 
Another important addition to the control framework was to add the ability to scale equations on 
impedance parameters easily from the GUI compared to changing values in the actual code and re-
compiling which may take some time and hinder experimental protocols. Both of these additions 
were important to develop since they would allow users to ambulate better in a more natural and 
smooth manner. In March, we also began testing our new control framework by tuning parameters 
for ramp ascent for both an able-bodied subject and a patient with transfemoral amputation (Figure 
5). Several trials were tested both on a treadmill that had an ability to adjust inclination angle as 
well as walking up a ramp on our terrain park at different grades. 
Over the course of the last few months, we were able to collect more data with both able-bodied 
subjects and amputee subjects (~25 sessions with able-bodied subjects and ~7 sessions with 
amputees). In order to begin creating our intent recognition system, we had 2 amputees walking at 
a range of speeds from .63 m/s to 1.07 m/s on a level-ground treadmill (Figure 4). We found that 
we were able to achieve excellent kinematic results and maintain comfortable walking across the 
wide range of walking speeds for both subjects (Figures 1 and 2). We began exploring different 
machine learning algorithms that could estimate walking speed with the embedded mechanical 
sensors on the device which includes encoders, IMU’s, and a 6-DOF load cell. Different 
classification and regression techniques were primarily explored since there is not a single-best 
approach that is best suited for estimating walking speed. We plan to be able to use these machine 
learning techniques in real-time with our device, where the algorithm can make informed decisions 
based off of a trained model. Another experimental procedure that was tested with able-bodied 
subjects included scaling an equation based on walking speed. We wanted to compare how well the 
equation could adapt to walking speeds under different trajectories. Specifically we started by 
scaling the stiffness impedance parameter in late stance to be adjusted by an equation that linearly 
scales in accordance to walking speed. In order to keep developing the hardware and real-time 
implementation of machine learning for our intent recognition system, different microcontrollers 
were benchtop tested to see how all of our sensors would be integrated into the new system. 
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Figure 1: Prosthesis kinematics as a function of walking speed for the first transfemoral amputee subject. Importantly, we are able 
to maintain similar kinematic profiles at both the knee and ankle across a wide range of walking speeds. We did not need to change 
underlying impedance parameters across conditions, thus showing our controller was able to easily accommodate a wide range of 
walking speeds. Each curve is averaged across 1 minute of walking on a treadmill at each speed. 

Figure 2: Prosthesis kinematics as a function of walking speed for the second transfemoral amputee subject which demonstrate a 
similar trend. Similarly, our controller was able to accommodate a wide range of walking speeds for the second subject as well. 
Each curve is averaged across 1 minute of walking on a treadmill at each speed. 
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Figure 3: Current state of the device (left two figures). Mechanical improvements throughout the quarter have continued to help 
increase the robustness of experimental data collections on both able-bodied test subjects and patients with amputation. On the 
right, we show our alignment procedure in that we change the shank height of the device to align the knee joint center of rotation 
and ensure the overall build height of the device is the same as the patient’s take home device 

 
Figure 4: Patient walking on treadmill for walking speed experiment. Each subject was able to walk at a wide range of walking 
speeds without changing underlying impedance parameters. 
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Figure 5: Prosthesis testing with an individual with transfemoral amputation on a ramp. Testing has moved to working on 
controlling the leg and gathering data on ramps on our new terrain park (pictured). The gray tiles show force plate insert locations 
for collecting biomechanics data.  

Quarter 2 Activities and Accomplishments: 
 
Major Task 2: Prepare prosthetic leg for amputee testing 
We have been continually working to make improvements to our overall system even though 
patient testing started around month 9 of the grant. The primary development work that we’ve been 
doing over the last three months is to upgrade the electronics package. We need a more robust set 
of controllers for implementing the machine learning techniques. To this end, we are planning to 
offload a lot of the low level computations to a separate microcontroller which will free up space 
on the raspberry pi for running the state machine at a faster rate and running machine learning 
algorithms. 
Major Task 3: Amputee training and initial data collection for pattern recognition systems 
This has been a major source of our effort over the last 3 months. In previous months, we had 
created the functionality of adding the ability to scale equations on impedance parameters easily 
from the GUI. In April, we began to test these equations in various conditions such as walking 
speeds and different ambulation modes to allow users to walk in a more natural and smooth 
manner. In April we finished tuning ramp descent with one pilot transfemoral amputee to ensure 
that the device was performing well. At the end of April, we were able to have an analysis of 
kinematic and kinetic data at different conditions under different scaling equations in order to see if 
adjusting control parameters could lead to a reduction in metabolic cost compared to constant 
impedance parameters in able bodied subject tests. We have put this set of experiments on hold as 
we have now turned our focus to amputee subject testing. 

In May, the first pilot testing of working with circuits on the terrain park was performed 
with a single transfemoral amputee. We also recruited two new transfemoral amputees into our 
study in June who walked on the prosthesis (Figure 6). Kinsey Herrin, our new on the ground 
prosthetist, successfully fit and aligned both subjects on the device. We then proceeded to tune 
level walking as well as ramp ascent and descent in the same session with both subjects. Both 
subjects were easily able to walk on the ramp and over level after their first session. 

We also tested with 4 transfemoral amputees in which they were expected to complete a 
“ramp circuit” multiple times over a range of inclination angles. Powered prosthesis tuning was 
performed with each subject to allow for the user to feel comfortable walking with the powered 
device for each ambulation mode (i.e. level walking, ramp ascent, and ramp descent). 
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The ramp circuit involved starting in standing mode, taking a level walking step, transitioning to 
ramp ascent, walking up a 16 foot ramp, and transitioning back to level walking, turning around 
after a few steps on the elevated platform, transitioning to ramp descent, walking down the ramp, 
and finally transitioning back to level walking (see supporting video for an example of a ramp 
circuit). For each subject, we collected at 3 different ramp incline angles varying from 8 to 12 
degrees. One subject was able to complete a more rigorous “walking speed” protocol which 
involved walking at approximately 12 different static/constant speeds ranging from 0.6 to 1.2 m/s 
on a force instrumented treadmill and 3 dynamic trials where walking speed was changing 
throughout the trial (see supporting video for a ‘fast’ walking trial on the treadmill). This was the 
next step in progressing to achieve a real-time machine learning algorithm that could estimate 
walking speed by giving us robust training data to test our model to a greater extent than what was 
collected earlier in the year for the Dynamic Walking presentation. Overall in the last quarter, we 
were able to collect more data with able-bodied subjects and amputees (~10 more able-bodied 
sessions and ~ 10 more sessions with various transfemoral amputees). 

Major Task 4: System Implementation 
In May, we presented at a Dynamic Walking conference, where we presented a continuous 

walking speed estimation using a regression machine learning algorithm with data collected on our 
prosthetic device. Two transfemoral subjects were asked to walk at a range of walking speeds from 
0.63 m/s to 1.07 m/s. We used embedded mechanical sensors on the prosthesis (i.e. encoders, load 
cell, and IMU’s) as input feature signals in order to generate a good model that could estimate 
walking speed. We have begun analyzing both the walking speed and ramp data to begin creating 
robust machine learning algorithms to estimate walking speed and ramp transitions/inclination 
angle in a user-independent manner. Initial results (user-dependent) are shown in Figure 7 for 
walking speed estimation. 

In June, two papers were accepted to the ASME DSCC conference later this fall (See 
Appendices B and C). One paper discussed how a simulation model of the prosthetic device could 
be used to better inform the person tuning the device to select different impedance parameters 
depending on the target kinematic trajectory. The simulation was performed using ROS and an 
accompanying software package called Gazebo. The results showed that we could achieve a mean 
absolute error of approximately 10%. The simulation framework is displayed in Figure 8. The other 
paper described how the mechanical device of the leg as well as the control architecture was 
designed/structured. We showed that the powered prosthetic device was able to match able-bodied 
kinematics and kinetics found in previous literature (Figure 9). We plan to include both these full 
papers as supporting material in the year-end report.   

Major Task 6: Comparison of clinical parameters of powered prosthesis compared to passive 
prosthesis 

We have begun to prepare for a comparison of powered vs passive prostheses for our 
Specific Aim #3. Primarily, this has involved setting up equipment for biomechanical 
measurements. We were able to sync our motion capture system with both our EMG systems and 
initial pilot testing was performed of looking at EMG information in respect with the motion 
capture system with an able-bodied subject wearing the prosthetic device via an iWalk adapter. We 
have practiced putting on motion capture on both the sound side and the prosthesis device and plan 
to test with a pilot amputee subject in July. 
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Figure 6: Left - One of our new transfemoral participants walking on the powered leg in the parallel bars. Right – 
Experienced patient using the leg for a variable walking speed trial on our new Bertec (force instrumented) treadmill. 

Figure 7: Machine learning capability for estimating walking speed. In this analysis, the data at the predicted speed was 
withheld from the machine learner and it has to predict the withheld data by regressing across the other walking speeds. 
We found that the machine learning techniques did an excellent job with interpolating walking speed between points in the 
training set, but did not extrapolate well at the edges. This supports that the machine learning strategy is feasible, but 
training data at the highest and lowest walking speeds is need in order to get robust results. Overall, we were able to 
predict walking speed with an average error of 0.1 m/s which we believe is accurate enough for excellent real-time scaling 
of device parameters with walking speed. 
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Figure 8: Overview of the optimization process: the controller module executes the power prosthesis controller firmware based on 
ROS. Model is the virtual representation of the device in the Gazebo environment. Simulation results are analyzed using a 
biological trajectory reference, creating an optimization cost function that is used in a pattern search optimization that sets the 
parameters for the device operation. 

Figure 9: Kinematic data from ankle (left) and knee (right) joints on a prosthetic device, averaged and segmented over 40 strides 
plotted versus percent  gait cycle compared to healthy biomechanics [Winter, 1990]. We believe our device is doing an excellent job 
of replicating biological human kinematics which is a desirable characteristic for a prosthetic leg. 

Quarter 3 Activities and Accomplishments: 

Major Task 2: Prepare prosthetic leg for amputee testing 
We have been continually working to make improvements to our overall system even though 
patient testing started around month 9 of the grant. The primary development work that we’ve been 
doing over the last three months is to upgrade the electronics package. While the construction was 
on-going, we used this downtime to finalize a new electronics system that will be implemented in 
new experimental protocols. This new electronics system utilizes a micro-controller that is 
responsible for handling all of the low level control of reading encoder positions of both motors 
and loadcell and sending up relevant information to the mid-level controller. The mid-level 
controller is responsible for changing between states in a finite state machine that discretizes the 
gait cycle. The low-level control also calculates the desired torque and transforms this into a 
current that is sent to the motor drivers to actuate each joint. With this new system, it will be easy 
to also add closed-loop torque control to the device. We also developed the mechanical structure to 
be mounted that enables SEA to be implemented onto the device. Overall the new electronics 
system is faster and will add better robustness to continue for longer periods of time. 
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 Major Task 3: Amputee training and initial data collection for pattern recognition systems 
In July, we focused heavily on testing with various transfemoral amputees (~10 more 

sessions). When testing with transfemoral amputees they were expected to complete a “ramp 
circuit” multiple times over a range of inclination angles (Figure 11). Preliminary tuning was 
performed with each subject to allow for the user to feel comfortable walking with the powered 
device compared to their passive devices for each ambulation mode (i.e. level walking, ramp 
ascent, and ramp descent). 

The ramp circuit involved starting in standing mode, taking a level walking step, 
transitioning to ramp ascent, transitioning back to level walking, transitioning to ramp descent, and 
finally transitioning back to level walking. Sensors included in this circuit involved inertial 
measurement units, encoders, and six-axis load cell embedded onto the prosthetic device. Six 
different ramp inclination angles were tested with at least 3 trials at each incline (trials after all 
tuning and accommodation was complete). 

Since the previous report, we were able to collect another subject that was able to complete 
a more rigorous “walking speed” protocol which involved walking at approximately 12 different 
static/constant speeds on a force instrumented treadmill and 3 dynamic trials. This data has been 
used heavily for preparing for System Implementation (see below).  

In the end of September, we recruited another transfemoral amputee to bring us to a total of 
7 people (Figure 10). We performed an initial tuning and fitting with the new person and begin 
initial tuning. We will resume our normal operation of collecting data this quarter. 

Major Task 4: System Implementation 
We have begun developing a structure of training this data off-line and creating machine 

learning algorithms that can eventually be implemented on our device in real-time. Hence 3 main 
areas that are being explored include intent recognition, slope estimation, and walking speed 
estimation. For intent recognition, we have begun working on classification models to characterize 
the transitions to/from the ramp with our initial data collected with patients.   

One of the analyses we have done is to look at the contributions of each sensor on the prosthesis for 
intent recognition. Combinations of 6 axis load cell, IMU (foot vs shank vs thigh), and joint encoders 
were analyzed (Figure 12). To evaluate the sensitivity of the features, the selected windows were 
further characterized as either transition or steady state, where transition steps transitioned to a 
different mode, while steady state steps stay in the same mode. From these characterizations, two 
types of error can be analyzed: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
# 𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑡𝑡𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡

𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑚𝑚𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
# 𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚 𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑚𝑚𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑡𝑡𝑚𝑚 𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑚𝑚𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡

Figure 12 and 13 shows forward sensor selection being applied using a linear discriminant 
analysis (LDA) as a classifier. Individually, the foot sensor was most useful for minimizing error, 
with the steady state error achieved being 5.8 % and transition error being 16.1%. This may be due 
to the acceleration profiles (X, Y, and Z direction) recorded by the foot IMU being more 
differentiable between modes compared to other sensors. Knee joint encoder provides the least 
value of all sensors for both steady state and transition errors. For LDA, although similar sensor 
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  minimizing steady state errors (7.35%). Based on our initial assessments, it appears that including 
IMUs on the foot, shank and thigh each have value added for improving intent recognition 
capability. 
 
Major Task 6: Comparison of clinical parameters of powered prosthesis compared to passive 
prosthesis 

We have begun to prepare for a comparison of powered vs passive prostheses for our 
Specific Aim #3. In the end of July, we also performed a pilot experiment with 1 transfemoral 
amputee to begin doing a passive versus active comparison of prosthetic devices using motion 
capture analysis on a force-instrumented treadmill. We submitted an abstract to the American 
Academy of Orthotists & Prosthetists - 45th Academy Annual Meeting & Scientific Symposium 
and are currently under review based on this pilot work (see Appendix E). This experiment allowed 
us to begin thinking about how we can use motion capture on the device to compare sound and 
affected limb kinematics and kinetics. 

In the months of August and September, the lab was “shutdown” due to construction to add 
equipment to increase functionality of the lab. See Figure 14 for a picture showing off the new gait 
lab and some of the associated functionality. First, the motion capture system was suspended 
around our “experimental area” which allows us to capture motion capture on the terrain park, 
force-instrumented treadmill, and overground area with embedded force plates. We have also 
added a safety harness system that can go around the entire lab to ensure user safety. We have also 
received and been trained on a new metabolic system (K5-COSMED) which allows for breath by 
breath energy expenditure analysis. New force plate mounts were added throughout the lab for 
overground dynamics assessment. A patient changing room was built to help with subject prep. 
 

 
Figure 10: Left - One of our new transfemoral participants walking on the powered leg in the new harness system over force plates. 
This patient is a low K3 ambulator and had extremely high enthusiasm for walking with the powered leg in his written clinical 
outcome measures (PEQ – validated clinical outcome measure, see Appendix F).  
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Figure 11: Demonstration of ramp walking. We now have successfully trained four transfemoral amputees to use the powered 
prosthesis to ascend/descent the ramp. Additionally, three of those have now completed the ramp experimental protocol which 
involves walking up and down the ramp 3 times at each of 6 different ramp incline angles (from 5 to 14 degrees). 

Figure 12: Sensor placement on the powered prosthesis, IMUs (blue) on foot, shank, and thigh. 6-DOF load cell (red) on foot. Knee 
and ankle joint encoders (orange).  
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Figure 13: Forward sensor selection being applied using a linear discriminant analysis (LDA) as a classifier. Individually, the foot 
sensor was most useful for minimizing error, with the steady state error achieved being 5.8 % and transition error being 16.1%. 
This may be due to the acceleration profiles (X, Y, and Z direction) recorded by the foot IMU being more differentiable between 
modes compared to other sensors. Knee joint encoder provides the least value of all sensors for both steady state (top) and 
transition (bottom) errors. For LDA, although similar sensor trends are observed in minimizing steady state and transition errors, 
the load cell is more useful for minimizing steady state errors (7.35%).

Figure 14: New gait lab that has been renovated over the summer. We now have a completed terrain park with force plate inserts in 
the ramp and stairs and force plates in front of the stairs and ramps to capture transitions. Additionally, we have force plates in the 
level walkway to capture steps on the level and going around turns. Our force treadmill (Bertec) is level with the ground. A full 
harness system has been installed over head with multiple trollies with harnesses for fall arrest, body weight support, pediatric, and 
bariatric populations. A Vicon, 34 camera system surrounds the entire area allowing full capture inside the volume of the lab. The 
terrain park is adjustable to accommodate a wide variety of stair heights and ramp inclination angles. We have substantially 
increased the size and capability of the lab with the renovations over the summer and we believe this will significantly help the grant 
activities. 
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 Quarter 4 Activities and Accomplishments: 

Major Task 2: Prepare prosthetic leg for amputee testing 
We have been continually working to make improvements to our overall system even though 
patient testing started around month 9 of the grant. The primary development work that was done 
in October/mid-November was to finalize and validate that the electronics package was able to 
handle all of the new functionality to allow for smoother and more robust control. This new 
electronics system utilizes a micro-controller that is responsible for handling all of the low level 
control of reading encoder positions of both motors and loadcell and sending up relevant 
information to the mid-level controller. The torsional springs stiffness values were validated using 
a test rig in an axial loading machine to ensure that computer simulated modeling stiffness values 
matched actual stiffness values. Another aspect that was improved upon was the wiring between 
various sensors and the raspberry pi using newly manufactured printed circuit boards to ensure all 
the electronics would be on-board the device. This allowed for more stable and robust wire 
management between all of the electronics, as seen in Figure 15. 

Figure 15: One of our new transfemoral participants walking on the powered leg in the new harness system over force plates (left) 
and ramps (middle). This patient is a K4 ambulator and had extremely high enthusiasm for walking with the powered prosthesis. 
The new electronics package in a compact blue case (right). 

Major Task 3: Amputee training and initial data collection for pattern recognition systems 
After the construction was completed in October, we resumed our normal operation of data 

collection. In order to create a suitable walking speed estimator, we focused on a getting an 
adequate number of transfemoral amputee to complete a more rigorous “walking speed” protocol 
which involved walking at different static walking speeds on a force-instrumented treadmill 
ranging from 0.5 m/s to their maximum preferred speed. We also are recording motion capture data 
for all of trials in order to better understand the underlying biomechanics seen in amputees (i.e. 
sound vs. prosthesis). We also instrumented each subject with a set of markers on their sound limb 
and torso as well as their respective prosthesis (see Major task 6). Preliminary tuning was 
performed with each subject to allow for the user to feel comfortable walking with the powered 
device compared to their passive devices for each ambulation mode (i.e. level walking, ramp 
ascent, and ramp descent) before walking on the treadmill. 
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  Since the previous report, we were able to collect a total of 6 subjects through this protocol, 
with a planned 7th in the next quarter. This data will be used in helping prepare for System 
Implementation (see below). In the last quarter, we recruited and trained two additional patients 
with transfemoral amputation which brings our recruitment numbers to a total of 9 which was the 
original number proposed for this grant. We performed an initial tuning and fitting with the new 
people and begin initial tuning. One of the subjects that was fit a year ago also came in and was 
trained to use the device for the first time during this quarter. We will finish the last person in the 
walking speed protocol, and move towards collecting a comprehensive data set of stairs and ramps 
that include encoder, inertial measurement units, six-axis loadcell and biomechanics information to 
be used in developing smart intent recognition algorithms.  
 We were invited to submit a follow up journal paper to our MHSRS conference submission 
to the MHSRS 2018 Supplements (See Appendix A). A journal paper was submitted to MHSRS 
Supplement to Military Medicine Update in November 2018. This paper showed how impedance 
parameters were tuned across users and ambulation modes to show the ease of using our 
implemented mid-level controller consisting of an impedance controller paired with a finite state 
machine. We show some of our initial kinematic results with patients using the device. This paper 
is under review at the moment and will be provided as a supplement in a future report once it is in 
final form and accepted for publication. 
 
Major Task 4: System Implementation 
 The data collection infrastructure developed on the prosthesis forms an excellent basis for 
real-time slope prediction. These data can be learned from using machine learning algorithms (i.e. 
neural networks) to determine the ground slope a user is currently experiencing. We can use this 
prediction to alter certain parameters of the device to give more appropriate assistance and improve 
their biomechanics while walking on slopes. In the process of investigating the results of different 
policies, it is important to separate the data into two groups: steady state examples (steps in which 
there is no change in ambulation mode) and transition examples (steps during which occurs a step 
from one ambulation mode of level-walking, ramp ascent or ramp descent to another). Transition 
steps require more time to determine the ground slope and are generally harder to produce reliable 
estimates. One initial option is to train a machine learning system with only transition data which is 
displayed in Figure 16.  
 As can be seen, this strategy reduces the error and also the standard deviation of the mean 
of the transitional examples; however, it drastically increases the error associated with the steady 
state examples. With this large amount of mean absolute error (MAE), the output is unusable. An 
immediate tradeoff is evident between transitional and steady state error using this strategy. This 
could be remedied by crafting two neural network models, one for transition examples, during a 
transitional step, and one for steady state examples during all other times. This could capitalize on 
the lower error during transitions, but allow the steady state error to remain low. The next idea to 
reduce the transitional error stems from the fact that for a given subject, there are very few 
transitional examples. One method to increase the number of data points for an algorithm to learn 
from involves using data previously acquired from other subjects. Concatenating the data from four 
subjects resulted in surprising results, as seen in Figure 17. 
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Figure 16: Estimating slope inclination angles by training on all data versus only transitional data using a neural network 
algorithm. 

Figure 17: Reduction in mean absolute error can be achieved by concatenating prior subjects to give the machine learning 
algorithm more to learn from.  
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 The key results to notice is how training on transitional data once again lowered error across the 
board. The new strategy of using all available data did not help much when the steady state 
examples were left in the datasets. However, combining the two methods separating models for 
steady state and transition steps and training on one large dataset from all the subjects resulted in a 
much lower error and smaller deviation across subjects. A final strategy that we have considered is 
to separate the data into separate models for ramp ascent vs ramp descent due to the varying sensor 
patterns between the two tasks. The results of separating the data into these two groups is shown in 
Figure 18, while also showing the effect of the previous policy. Again, augmenting the transitional 
data with other subjects’ data yields decent reductions on the error and deviation. The red line in 
this plot shows the minimum error from the previous figure. In all cases, separating the data into 
ascent and descent data yields a lower error, finally below one degree of mean absolute error. If a 
classifier separated the examples into ramp ascent or ramp descent examples, the regression models 
would be able to generate much better predictions. The final error of this system (less than 1 degree 
of slope mean error) is very promising as a system for implementation on the prosthesis. We are 
now working to get our slope estimation system implemented in real time as well as a classifier for 
recognizing mode changes, which will aid with slope determination at the transition steps. 

Figure 18: Reduction in mean absolute error by only training on separate ambulation mode transitions by comparing between a 
single subject and all available subjects. 
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  Major Task 6: Comparison of clinical parameters of powered prosthesis compared to passive 
prosthesis 
We have begun to prepare for a comparison of powered vs passive prostheses for our Specific 
Aim #3. In the end of July, we also performed a pilot experiment with 1 transfemoral amputee to 
begin doing a passive versus active comparison of prosthetic devices using motion capture 
analysis on a force-instrumented treadmill. Our abstract to the American Academy of Orthotists 
& Prosthetists - 44th Academy Annual Meeting & Scientific Symposium was accepted on the 
pilot work from the summer. During Q4, we performed an experiment to directly compare 
passive prosthesis ambulation with powered prosthesis ambulation using our experimental 
device with N=6 individuals with transfemoral amputation. We did this comparison at level 
walking on the treadmill, slope ascent on the treadmill, and slope descent on the treadmill. We 
formally collected bilateral biomechanical data (including motion capture and force plates) to 
compare kinematics and kinetics of walking with the powered prosthesis compared to their take 
home passive device, as seen in Figure 19. Our primary hypothesis is that the prosthesis will 
better replicate human biomechanics (kinematics and kinetics) compared to a passive device. We 
also will analyze if supplying more human like biomechanics on the device will alter intact joint 
biomechanics. The desired outcome is to eventually reduce the excess joint loads on the four 
biological joints (non-amputated side hip, knee and ankle, and amputated side hip). We believe 
this initial assessment will help inform how we can change the controller to provide better 
assistance to individuals with a transfemoral amputation using powered prostheses.   
 

                         
Figure 19: Motion capture on both the powered prosthesis (left) vs. passive device (right). Data was captured on a force-
instrumented treadmill in a level ground, incline, and decline configurations. 
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 In order to begin how to compare biomechanics of the sound limb versus prostheses, we 
developed several models in OpenSim, an open-source software that allows for modeling, 
simulating, and analyzing the neuromusculoskeletal system. Since this software typically deals 
with able-bodied individuals, we had to configure our models to include the powered prosthesis in 
the both the left and right configurations in order to begin performing inverse kinematics and 
inverse dynamics. The models also needed to be validated which can be seen in Figure 20. We will 
continue to analyze biomechanics data and report on these in more detail in a future report. 

Figure 20: OpenSim models created in order to better perform biomechanical analysis of calculating kinematics and kinetics using 
forceplates and motion capture. 
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Q4 Results and Discussion: 
We have now been able to successfully train nine individuals with transfemoral amputation 

to walk on the device in different walking modes (i.e. overground and ramps). One major 
achievement this quarter has been able to update the stability of our controllers to allow for 
smoother walking steps and transitions. We submitted a journal paper demonstrating the ease of 
using an impedance controller paired with a finite state machine. The control system was able to 
correctly and robustly identify the phase of gait, set gait phase specific impedance, and generate 
near normal lower limb kinematics using minimal tuning of impedance parameters (7 out of 84). 
This controller was also capable of scaling powered assistance to the user across a range of walking 
speeds and inclination grades, which restored functionality lost through amputation. 

Next, we have been able to make significant progress in developing implementable 
machine learning algorithms that can be used in real-time in the future. We have shown that we are 
able to create relatively accurate machine learned models that can predict walking speed and slope 
inclination angles in our offline analyses (seen in figures above). We will continue to expand our 
framework in the next couple of quarters to ensure we can use these models in real-time and update 
device parameters to easily adapt to the environment.  

In Quarter 4 we had started integrating motion capture and force plates into our data 
collection protocols to allow us to analyze biomechanical data in a variety of contexts. We have 
developed several OpenSim models to help us perform a more thorough biomechanical analysis 
(i.e. inverse dynamics and kinematics) to compare between the sound and affected side when 
walking. We have basic pipelines developed for calculating the inverse dynamics and plan to 
expand on this analysis over the next couple of quarters including extending to ramp and stair 
ambulation. 
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What opportunities for training and professional development has the project provided?   

 
 
 

How were the results disseminated to communities of interest?   

 
 
 
What do you plan to do during the next reporting period to accomplish the goals?   
If this is the final report, state “Nothing to Report.”   
 

Describe briefly what you plan to do during the next reporting period to accomplish the 
goals and objectives.   

Training and Professional Development: 
This project provided significant training for a large range of individuals (see project personnel). This 
included training for 3 primary groups: 1) Graduate students in Mechanical Engineering and Robotics, 
2) Professional Graduate students in the Prosthetics and Orthotics program at Georgia Tech (2
students), 3) Physical Therapist Graduate students in Emory’s PT program (4 students) and 4)
Undergraduate training for students in Mechanical, electrical, computer, and biomedical engineering as
well as computer science. Training programs included a weekly overall project meeting that rotated
between 3 topics: 1) Training session led by PI Young on a technical topic, 2) Journal club on related
research, 3) Student presentations on work to date and future plans. These meetings helped to train the
study team, share results, and learn about updates in the field. Additionally, PI Young met with the
project leaders (graduate students) on a weekly basis. These meetings were specifically for project
planning and also aiding the graduate students in learning how to perform the studies for the grant.
Additional day-to-day training was provided as needed by the PI for the study team. A joint biweekly
meeting with the Sawicki lab has occurred throughout the year, which included significant training in
research methodology and has been a valuable added training tool for the team. Also, PI Young
continued a Vertically Integrated Project (VIP) at Georgia Tech to increase undergraduate participation
and training in research. This project was featured as one of the primary sub-teams in the overall VIP
team called “Robotic Human Augmentation”. Essentially, this program provides structured training
both through the program and the PI as a team of undergrads works on a specific project. A team of 6-8
undergraduates worked on this project each semester through this program, which provides
communication and scientific skills. This program also helps to provide professional development as
the undergrads in the VIP program present at two research seminar session each semester. The graduate
students also had a number of professional development opportunities through presentations of their
work to date on the project at internal poster sessions and workshops at Georgia Tech for graduate
students. Lastly, PI Young hosted a workshop in May 2018 in conjunction with Freedom Innovations to
display their microprocessor knee and how they performed clinical fittings to aid the Georgia Tech
P&O crowd on best practices for clinical fitting and calibration of advanced knee/ankle prostheses.

We provided significant outreach to K-12 students throughout the year, but especially during Robotic 
Week in April at Georgia Tech. A large number of school groups toured PI Young’s lab and a demo of 
the prosthetic device was available and really helped increase interest in the field. The powered leg 
platform is visually attractive and was of great interest to a large number of younger participants. We 
also provided a number of lab tours upon request of local schools and communities. This project really 
helped to stimulate interest in the field by showing a real application to directly impact clinical care. 

1. We plan to continue patient experiments to advance our training and data collection protocols
for the grant activities. We will finish our “walking speed protocol” to give us N=7 as well as
start a new protocol of collecting stairs, ramps, and overground trials. In this new protocol, we
will collect information from our sensor suite to be used in our system implementation as well
as collecting biomechanics with our motion capture system
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4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or 
any change in practice or behavior that has come about as a result of the project relative to: 
 
What was the impact on the development of the principal discipline(s) of the project?    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What was the impact on other disciplines?    
 
 
 
 
 

Our project is likely to make an impact in the field by advancing the state-of-the-art in control of powered 
prosthetic legs for improving clinical outcomes with patients with transfemoral amputation. In particular, 
we expect smarter algorithms to predict what a patient is trying to do and provide the correct set of 
directions to a robotic assistive prosthesis to provide adequate support. For example, if a patient is trying 
to ascend a set of stairs, we are designing a system that anticipates this desire and provides automatic and 
natural support through a powered prosthesis to help a patient walk, ascend a set of stairs and continue to 
walk. A key advantage of this technology is being able to provide active power generation at the knee and 
ankle, which allows us to help a patient similar to what biological muscles do. We hope to fully restore 
assistive capabilities on the amputated side such that both lower limbs are providing similar amount of 
overall work. This would help solve a huge issue in the field in that patients with amputation tend to rely 
on their non-amputated side much more than their prosthesis which leads to asymmetric loading and 
degeneration of the joints. Our research will help to offload that excess loading by providing smart 
assistance to the impaired side and ideally lead to better long term clinical outcomes in this patient 
population. 

The technology that was researched and developed for this powered prosthesis is of great value to other 
closely related disciplines. A clear example for this is in PI Young’s lab who also work on powered 
orthoses and robotic exoskeletons. Many of the technologies and techniques that are being developed for 
this project are being extended by other students to problems in the area of powered orthosis technology. 
Thus, we foresee the benefits of this study extending beyond powered prostheses and into many wearable  
 

2. We plan to finish modeling and validating both active and passive prostheses in OpenSim to 
begin performing more in depth biomechanics analysis. We will develop pipelines to process 
data through Vicon (i.e. motion capture system) to be passed onto OpenSim, where inverse 
kinematics and inverse dynamics will be calculated. Since no prior models have been created, 
we will have to confirm whether our modeled/simulated outputs match actual device dynamics 
by comparing kinematics and kinetics from both sides. 

3. We have continued to make modifications to improve the leg and its functionality. We will 
construct a casing for the device for improved and sustainable functionality as well as a 
preventative measure to ensure no wires are damaged. We will also want to benchtop test the 
new closed loop torque control with the new SEA configuration before implementing on the 
device. 

4. We will begin performing trials of real-time machine learning algorithms. We will begin with 
trying to ensure that a reasonable output can be generated from the machine learning predictor 
specifically for slope estimation. If successful, we will look to improve our scaling equations to 
add greater flexibility in control by adapting to the real-time output of inclination angle. 

5. We will look into building a new active prosthesis (i.e. Open Source leg from University of 
Michigan). We will look into purchasing new hardware and electronics in creating a lighter 
powered prosthesis as our next platform. We plan to use our existing code framework and 
incorporate our developed controllers and machine learning algorithms on the new device.  
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What was the impact on technology transfer?   
 
 

What was the impact on society beyond science and technology? 

 

5. CHANGES/PROBLEMS:

Changes in approach and reasons for change

Actual or anticipated problems or delays and actions or plans to resolve them 

Nothing to report 

Ultimately, the primary area in which the study is likely to make an impact beyond science and 
technology is in the area of improving social and economic conditions for persons with amputation. We 
hope to use this technology to improve mobility outcomes and long-term health outcomes for persons 
with lower limb amputations. Improving mobility outcomes will likely lead to social improvements 
through increased community ambulation skills and abilities. Increased community participation 
increases quality of life and overall health outcomes and is a positive benefit for society. Improving 
health outcomes will lead to significant economic benefits by reducing the load on the overall health 
system in treating potentially preventable diseases such as osteoarthritis and osteoporosis that result from 
asymmetric loading of the lower limbs in patients with amputation, which our technology hopes to 
address in the future. 

Nothing to Report 

As discussed with the Program Manager, we had major lab renovation occurring over the summer and into 
the fall. Specifically, August and September were heavily affected as the lab was closed during these 
months. We continued to work on other aspects of the project, but this has put us behind from a data 
collection stand point. Additionally, we had another shut down to finish renovations for 2 weeks during 
October. The lab was completely finished in mid-October and has greatly improved clinical and 
biomechanical functionality that will be utilized heavily for the efforts on this grant. This has delayed the 
overall progress of the grant, but only from a timeline perspective, which we hope to make back up by 
requesting a 1-year no cost extension at the end of next year. Notwithstanding these delays, data collection 
is moving along smoothly with our very active cohort of individuals with transfemoral amputees and we 
are now moving along nicely. 

robotic systems for human augmentation and assistance of patients with walking disability. For example, 
we have a project that is already translating some of the technology from this project for a hip exoskeleton, 
which has an application area in providing assistance for stroke survivors. Thus, we see the technology and 
other developments of this project extending beyond the amputee patient population and will help in many 
other kinds of walking disability through translation to wearable robotic systems. 
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Changes that had a significant impact on expenditures 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, 
and/or select agents 

Significant changes in use or care of human subjects 

 

Significant changes in use or care of vertebrate animals. 

Significant changes in use of biohazards and/or select agents 

6. PRODUCTS:  List any products resulting from the project during the reporting period.  If
there is nothing to report under a particular item, state “Nothing to Report.”

• Publications, conference papers, and presentations
Journal publications.

 
 
 

Books or other non-periodical, one-time publications.  

 

Because of delays due to downtime in the lab for renovations, we have delayed spending appropriately to 
use in the no cost extension period to ensure a successful completion of the project. 

Nothing to report 

N/A 

N/A 

A journal paper was submitted to MHSRS Supplement to Military Medicine Update in 
November 2018. This paper is under review at the moment and will be provided as a 
supplement in a future report once it is in final form and accepted for publication. 

Nothing to report 
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Other publications, conference papers, and presentations.   
 

 
 

• Website(s) or other Internet site(s) 
 
 
 
 
 

1) We submitted an abstract in February to the Military Health System Research Symposium 
(MHSRS) conference. The title of this abstract is: “Powered knee/ankle prostheses for improving 
walking capabilities in individuals with transfemoral amputation.” The authors (in order) are: 
Aaron Young (PI), Krishan Bhakta, Jonathan Camargo-Leyva, and Lee Childers. This paper was 
accepted in April as a poster presentation for the August 2018 meeting. Our team presented this 
work at the MHSRS conference in August and it was received well. 
 

2) We submitted an abstract in February on the project to the 2018 Dynamic Walking conference. 
This abstract was entitled: “Sensor Fusion for Continuous Walking Speed Estimation on Powered 
Prostheses.” This abstract focuses on using our intent recognition algorithms for walking speed 
estimation on the prosthesis. We presented this work as a lab at the Dynamic Walking 2018 
conference with multiple presentations on the prosthesis project. Dr. Young gave an overview of 
the lab and project, Jonathan Leyva presented on the sensor fusion machine learning strategy, and 
Krishan Bhakta presented on the powered prosthesis and the capability of doing real-time walking 
speed prediction. 

 
3) We submitted two papers on the project to the ASME DSCC conference in October. Both of these 

are full conference proceedings papers (10 pages) that are available online and indexed. The 
primary paper on the project was invited to a special session on Bio-Mechatronics and Physical 
Human Robot Interaction. This paper is entitled: “Control and Experimental Validation of a 
Powered Knee and Ankle Prosthetic Device.” This paper focused on our controls work in getting 
the device implemented on patients with transfemoral amputation. Krishan Bhakta was the lead 
author for this paper and presented this work as an oral presentation in October 2018. 
 

4) The second ASME DSCC paper was about a modeling study of impedance parameters for the 
powered prosthesis. This paper was entitled: “Stochastic Optimization of Impedance Parameters 
for a Powered Prosthesis Using a 3D Simulation Environment” and was accepted into the regular 
session. Jonathan Camargo was the lead author for this paper and also presented this work as an 
oral presentation in October 2018. 
 

5) We submitted a paper to IEEE EMBC in April 2018 (see Appendix D). This paper was accepted 
for a poster presentation in the July conference in Hawaii. The paper was entitled: “Continuous 
Walking Speed Estimation using Neural Networks and Multi-Sensor Data Fusion.” This paper 
focused on the machine learning and sensor fusion techniques to estimate walking speed. It was 
presented at the conference in July 2018. 
 

6) We submitted a conference paper to the 45th Meeting of the American Academy of Orthotists & 
Prosthetists in July 2018. The authors and title are as follows:*Krishan Bhakta, Jonathan Camargo 
Leyva, Maximillian Spencer, Brian White, Noah Cho, Kinsey Herrin, Lee Childers, Aaron Young, 
"Effect of Experimental Powered Prosthesis on Hip Kinetics: A single Case Pilot Study," 45th 
Meeting of the American Academy of Orthotists & Prosthetists, submitted July 2018. This 
conference paper discussed some of the initial biomechanical results with the powered leg 
compared to a passive leg. 

http://www.epic.gatech.edu/ 
 
This is the lab website which shows the research project, collaborators, funding source, 
and researchers on the project as well as relevant pictures and descriptions. 

http://www.epic.gatech.edu/
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Technologies or techniques 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Inventions, patent applications, and/or licenses 
 
 
 
 

• Other Products   
 

 
 
 

7.  PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 
 

What individuals have worked on the project? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have continued to make improvements to the powered leg to both the mechanical and 
electronic systems embedded on the device. For mechanical improvements, we have added 
the functionality of scaling device height to new amputees, improved prosthetic feet 
capabilities (i.e. left vs. right, traction), and added improved sensors. For the electronics, we 
have made a compact and lightweight system that has more robust communication, 
enhanced physical connections via updated printed circuit boards, as well as updated code 
changes to further enhance our controller’s capabilities. We have also developed in-house 
biomechanics model that incorporates the powered prosthesis in order to simulate/model 
accurate inverse kinematics and inverse dynamics. We plan to disseminate this technology 
in future journal articles.  

Nothing to report 

Name:        Aaron Young 
Project Role:       PI 
Researcher Identifier:     
Nearest person month worked:     6 
Contribution to Project:    No change 
 
Name:       Lee Childers 
Project Role:      Senior Personnel 
Researcher Identifier:     
Nearest person month worked:   2 
Contribution to Project:  No change 
 
Name:       Kinsey Herrin 
Project Role:      Senior Personnel/Supporting Prosthetist 
Researcher Identifier:     
Nearest person month worked:   2 
Contribution to Project:  No change 

Nothing to report 
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Name:      Krishan Bhakta 
Project Role:      Graduate Student 
Researcher Identifier:     
Nearest person month worked:      27 
Contribution to Project:                No change 

Name:  Jonathan Camargo-Leyva 
Project Role:  Graduate Student 
Researcher Identifier:     
Nearest person month worked:       27 
Contribution to Project:  No change      
Funding Support:         Fullbright Fellowship 

Name:   Trent Rankin 
Project Role:   Master’s Student 
Researcher Identifier:     
Nearest person month worked:  6 
Contribution to Project:  No change      

Name:         Summer Lee 
Project Role:       MSPO Student 
Researcher Identifier:  
Nearest person month worked:    1 
Contribution to Project:   No change 

Name:         Brian White 
Project Role:       MSPO Student 
Researcher Identifier:  
Nearest person month worked:   2 
Contribution to Project:   Helped to fit amputees to the powered prosthesis. 

Name:         Maximillian Spencer 
Project Role:       MSPO Student 
Researcher Identifier:  
Nearest person month worked:    2 
Contribution to Project:   Helped to fit amputees to the powered prosthesis. 

Name:   Meghan O’Malley 
Project Role:   Emory PT Student 
Researcher Identifier:     
Nearest person month worked:       1 
Contribution to Project:  Help with biomechanics analysis with prosthesis      
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Name:                                              Alanna Dyko 
Project Role:                                   Emory PT Student 
Researcher Identifier:                             
Nearest person month worked:       1 
Contribution to Project:                 Help with biomechanics analysis with prosthesis          
 
Name:                                              Aiden Yoon 
Project Role:                                   Emory PT Student 
Researcher Identifier:                             
Nearest person month worked:       1 
Contribution to Project:                 Help with biomechanics analysis with prosthesis          
 
Name:                                              Phillip Kellogg 
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8. SPECIAL REPORTING REQUIREMENTS

COLLABORATIVE AWARDS:  N/A

QUAD CHARTS:  Attached as a separate document

9. APPENDICES: Quad Chart

Appendix A: Military Health System Research Symposium (MHSRS) Abstract

Appendix B: ASME DSCC Conference Paper #1

Appendix C: ASME DSCC Conference Paper #2

Appendix D: IEEE EMBC 2018

Appendix E: 45th Meeting of the American Academy of Orthotists & Prosthetists

Appendix F: Prosthetic Survey

During Year 2, Ms. Kinsey Herrin took over as lead clinician and prosthetist on this grant. She has 
taken over the role of recruiting subjects, bringing them in, fitting them to the device and performing 
prosthetic alignment. She largely took over Lee Childers role in this aspect. Lee has continued to serve 
as a consultant on the project and has actively been monitoring data and publications as a result of this 
work and helping with manuscript preparation. These changes have been positive and clinical support 
on the project is proceeding well. 

Organization Name: CalTech 
Location of Organization: Pasadena, California 
Partner’s contribution to the project: Collaboration. Specifically, Dr. Ames, who was originally a 
collaborator at Georgia Tech left his position here to go to CalTech. He and his group have continued to 
collaborate on the project, specifically the design of the prosthetic leg throughout the grant. 
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Title: Powered knee/ankle prostheses for improving walking capabilities in individuals with 
transfemoral amputation 

Background: Powered prostheses are a promising new technology that may help people with 
lower limb loss to improve function. These individuals suffer from significantly impaired 
mobility that results in up to 60% more energy than non-amputee individuals. To improve 
mobility in prosthesis users with a transfemoral amputation, our multidisciplinary Team 
spanning across investigators at Georgia Tech, the Center for the Intrepid and California Institute 
of Technology have been developing a new state-of-the-art prosthesis that actively generates 
mechanical power at the knee and ankle joints.    A challenge with powered multi-joint prosthetic 
systems has always been the integration of a sensor suite with a control system that can 
recognize different tasks and environments the person is walking in, and then respond 
accordingly.  The human user adds another layer of complexity.  This person has lost a large 
portion of their motor system and must interact with the device via the soft tissues of their 
residual limb inside the prosthetic socket.  The person will also be responding to their 
environment and with an intent to move a certain way.  The powered prosthesis is not directly 
attached to the user’s motor system and must infer, indirectly, the intent of the user within the 
context of the environment and then aid the user in the movement task.  We have taken a 
systematic approach to developing this powered prosthesis and control system by first starting 
with a well-defined task where the intent of the user is known before progressing to more 
complex tasks.  The purpose of this initial study was to test the ability of the control system in 
conjuction with our new powered prosthesis to integrate with the user during steady state 
walking on a treadmill.  We defined success for this stage of develop as a prosthesis that can, (1) 
correctly recognize the different phases of gait, (2) tune joint impedance to scale across a range 
of gait speeds, (3) generate knee and ankle kinematics similar to intact walking.  These results 
will then inform device development and enable further development that will allow for other 
tasks such as traversing stairs and slopes and performing transitions between sitting, standing and 
walking.  

Methods:  
Powered Prosthesis Device: The new knee/ankle powered prosthesis that we have designed has a 
number of novel features including two series elastic actuators that allow for high accuracy 
torque sensing and control at both the knee and ankle joints. The ankle joint has two degrees-of-
freedom (DoF) including a powered dorsi/plantar flexion DoF and a passive, compliant DoF for 
inversion/eversion function. The knee joint has one DoF for flexion/extension.  Each degree-of-
freedom (3 total) is equipped with an absolute encoder to measure position and velocity 
information of joint rotation. The device weighs approximately 7.5 kg, can accommodate build 
heights of 46 cm to 63 cm, and can deliver up to 72 Nm of continuous torque at the knee and 105 
Nm at the ankle. The device is a fourth generation design built in collaboration with Dr. Aaron 
Ames lab at the California Institute of Technology. 

Control System: The device used a finite state machine in conjunction with impedance control to 
modulate device assistance. The finite state machine was broken into four states for walking: 
early/mid stance, late stance, swing phase flexion and swing phase extension. Thresholds placed 
on mechanical sensors were used to switch between states in the state machine. Impedance 
control laws were used within each state which set a virtual spring and damper. Mechanical 



power was injected into the system by changing the equilibrium point of the virtual spring during 
state changed. This control strategy allowed for key properties of the gait cycle to be controlled 
including powered plantarflexion during push-off, powered knee flexion swing initiation, 
powered knee extension assistance, and stiffening of the knee and ankle for breaking during 
early to mid-stance. 

Experimental Design: Three individuals with transfemoral amputation (age 58, 36, 51; weight 
[kg] 95.2, 93.9, 74.8; height[m] 1.80, 1.80, 1.82) were recruited and provided informed consent 
for this IRB protocol approved by the Georgia Institute of Technology. The shank height of the 
device was adjusted to align the knee center of rotation with the patient’s biological knee center. 
The device was fitted and aligned by a certified prosthetist and the patient walked in a set of 
parallel bars overground while learning to walk with powered assistance. Control parameters and 
prosthetic alignment were tuned during this time to ensure comfortable transfer of power during 
walking and minimization of clinical gait deviations. This adjustment period typically took 30-45 
minutes per subject. After each patient was comfortable walking with the device, they proceeded 
to walking on a treadmill. We analyzed the biomechanics of walking using the outputs from 
sensors in the prosthesis at a range of speeds of six different speeds evenly spaced between 0.6 
m/s to 1.1 m/s. Each patient walked for 1 minute in each of the six conditions. Outcome 
measures included kinematics and kinetics of the knee and ankle, accuracy of the state machine 
in recognizing phase changes, and subjective patient evaluations. 

Results:  
The tuning performed while the participant walked in the parallel bars was sufficient to obtain 
steady state walking across the range of speeds on the treadmill.  This was evident in that each 
user was able to achieve stable and comfortable walking without the research Team having to 
manually change parameters during the experimental conditions on the treadmill.  
Our phase estimation accuracy using the state machine was extremely robust. Each patient took 
between 200-300 steps for a total of 748 prosthesis steps overall which resulted in 2992 phase 
transitions during walking on the treadmill. The state machine was able to recognize these with 
100% accuracy and never failed to transition or transition too early. Knee kinematics closely 
followed able-bodied data with a peak knee angle of ~60 degrees during swing flexion. The knee 
remained generally extended throughout the stance phase in these participants, with an average 
of 0.31° and 0.14° standard deviation of knee flexion.  This is contrary to normal gait that has ~ 
20 degrees of  stance phase knee flexion.  However, none of the patients felt comfortable when 
this was allowed during tuning and so it was tuned out of the device for the experiment.  Ankle 
angle profiles also closely followed biological patterns across subjects and the prosthesis 
demonstrated ankle plantarflexion during initial swing leading to ankle dorsiflexion during mid-
swing. Both knee and ankle angle profiles were relatively invariant across walking speeds. Ankle 
torques followed a biological pattern and increased during push-off for powered plantarflexion 
assistance as a function of walking speed. Knee torques were invariant as a function of walking 
speed.  

Conclusions: 
This new powered knee/ankle prosthesis was able to generate reliable walking gait across a wide 
range of walking speeds for individuals with a transfemoral amputation.  The control system was 
able to correctly identify the phase of gait, set the correct gait phase specific impedance, and 



generate near normal lower limb kinematics.  The lack of knee flexion during stance phase was 
intentional due to user preference, not the capability of the prosthesis.  This may be because 
motion inherit in the limb/socket interface may allow for the impact absorption normally handled 
by knee flexion or the users did not employ knee flexion strategies during stance in their own 
prostheses and were not trained to use it in our prosthesis.  Future research will extend this work 
by providing biomimetic assistance for ramps and stairs.  



Appendix B: ASME DSCC Conference Paper #1 
Title: Control and Experimental Validation of a Powered Knee and Ankle 

Prosthetic Device 
Authors: Krishan Bhakta, Jonathan Camargo, Aaron J Young 

Date of Conference: September 30th – October 3rd 2018 
Session Title: Bio-Mechatronics and Physical Human Robot Interaction 

Location of Conference: Atlanta, Georgia 



1 Copyright © 2018 by ASME 

Proceedings of the ASME 2018 Dynamic Systems and Control Conference 
DSCC2018 

September 30-October 3, 2018, Atlanta, Georgia, USA 

DSCC2018-9218 

CONTROL AND EXPERIMENTAL VALIDATION OF A POWERED KNEE AND ANKLE 
PROSTHETIC DEVICE 

Krishan Bhakta 
Georgia Institute of Technology 

Department of Mechanical 
Engineering 

Atlanta, GA, 30332, USA 
kbhakta3@gatech.edu 

Jonathan Camargo 
Georgia Institute of Technology 

Department of Mechanical 
Engineering 

Atlanta, GA, 30332, USA 
jon-cama@gatech.edu 

Aaron J Young 
Georgia Institute of Technology 

Department of Mechanical 
Engineering 

Atlanta, GA, 30332, USA 
aaron.young@me.gatech.edu 

ABSTRACT 
 Developing active prostheses require robust design 

methodologies and smart controllers in order to appropriately 

provide net positive mechanical work to the user. Passive 

prostheses are limited in their ability to sustain walking for long 

periods of time as well as ambulating over different 

terrains/environmental conditions. In this paper we present a 

control architecture and validation results on three individuals 

with transfemoral amputation using our powered knee and ankle 

prosthetic device. A three stage controller structure is proposed: 

high-level control, mid-level control, and low-level control. The 

high-level controller is responsible for determining the 

locomotion mode. At the mid-level control, an impedance 

controller is paired with a state machine to coordinate the 

kinematics and kinetics of the device with the user during 

community ambulation tasks. At the low-level control, the 

device is paired in conjunction with a series elastic actuator 

(SEA) at each joint to enable closed-loop torque control (PID 

control). Our results indicate that our powered prosthetic device 

is capable of scaling to a range of speeds without having to tune 

many impedance parameters. Our approach shows that our 

device is a good platform for further testing robust controllers 

that can provide powered assistance to the user. 

1 INTRODUCTION 
Transfemoral amputation is a significant cause of disability 

in the United States, the expected number of people to have limb 

loss will have doubled by the year 2050 [1]. Passive prostheses 

lack the ability to generate net power at both the knee and ankle 

joints which limits the capabilities of a user to ambulate freely. 

Transfemoral amputees walking with passive prostheses have 

been shown to expend 60% more metabolic energy compared to 

healthy subjects during level walking [2]. Hence developing a 

prosthesis that is able to deliver the appropriate power and 

mechanical torque is necessary for improving quality of life for 

users. Additionally, with on-board mechanical sensors, active 

prostheses have the potential to assist people in a variety of 

locomotion tasks besides just level-walking [3].  

Existing devices on the market including iWalk’s BiOM 

[4,5], Ossur’s Power Knee [6], and Ottobock’s C-Leg [7] may 

help overcome some of the limitations seen in passive 

prostheses. Even though these devices are able to help amputees 

ambulate better, there are still limited approaches of handling 

different modes of locomotion. Current methods include 

compensatory movement of the leg or physical contact with a 

switch to transition between modes which is burdensome to the 

user [8]. Ideally, a device should be able to help provide smooth 

natural transitions between locomotion modes as well as reduce 

the time spent on the intact limb [9].  

However, there are still many challenges involved in making 

a device optimal for the user such as mechanical design, 

selection of electronics, and hardware/software integration. Our 

prosthetic device currently uses an impedance based controller 

which allows the user to dynamically interact with the 

environment, rather than adhering to kinematic trajectories [10–

13]. The design utilizes a set of series elastic actuators (SEA) for 

executing closed loop control via measured feedback.  A three 

stage control scheme is proposed to help the user ambulate over 

common walking tasks. A variety of mechanical sensors 

(encoders, IMU’s, and 6-axis loadcell) and actuators are 

embedded on the system in order to capture sensor information 

and provide appropriate powered assistance. The on-board 

sensing and control architecture are presented to give a complete 

design overview. Finally, the device and controller architecture 

was validated by testing on two able-bodied subjects and three 

transfemoral amputees walking at a wide range of walking 

speeds. 
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2 MECHANICAL DESIGN 
An updated design was developed based off of AMPRO3 

[14] from a collaboration between the EPIC (Exoskeleton and

Prosthetic Intelligent Controls) lab at Georgia Tech and the

AMBER (Advanced Mechanical Bipedal Experimental

Robotics) lab at CalTech. The device is a powered knee and

ankle device that has one actuated DOF at the knee joint in the

sagittal plane, and 2 DOF’s at the ankle which consist of an

actuated plantarflexion and dorsiflexion DOF and a passive

inversion and eversion DOF.

Figure 1: Overview of the knee-ankle prosthetic device. A 

37V battery is used to power the actuators, while a portable 

battery power bank is used for the microprocessor. 

The device weighs approximately 8 kg (including battery) 

and is more customizable by having the ability to change heights. 

The device has a knee adapter component that allows for testing 

with able-bodied subjects through a pin joint system, while a 

pyramid connector can be mounted on top to connect directly 

with an amputee’s socket configuration. Both knee and ankle 

joints are actively controlled using two 206 W brushless DC 

motors (MOOG BN23) which are capable of achieving 

approximately 1 N-m peak torque [1].  In order to reach human 

biological torque capabilities, the device utilizes a gear 

transmission ratio of 1:175 at the ankle joint and 1:120 at the 

knee joint. The gearbox consists of a harmonic drive (CSG-17-

100-2UH-LW) that reaches a 1:100 reduction and a variable

pulley-belt system that produces the remaining gear reductions

for both joints. The following table shows the device specs based

on an efficiency of 70% [14].

Table 1: Device Specifications 

Joint Knee Ankle 

Peak Torque 84 Nm 122.5 Nm 

Continuous 

Torque 
26.5 Nm 38.5 Nm 

Max Angular 

Velocity 
5.8 rad/s 4.0 rad/s 

Range of 

Motion 

0-70 deg

(Sagittal)

-25 to 40 deg (Sagittal)

Passive Springs (Frontal)

Figure 2: Features of the device including: SEA’s (top left), 

harmonic drive (top right), encoders (middle left), motors and 

motor controller (middle right), microprocessor (middle right), 

6-DOF load cell (bottom left), and IMU’s (bottom right).

The height adjustment linkages and inserts allow for 

matching sound-side knee joint centers of persons with 

transfemoral amputation. The process of measuring the knee 

joint center and configuring the device to fit properly with the 

user came under the instruction of a certified prosthetist at the 

Masters of Science in Prosthetics and Orthotics (MSPO) 

program at Georgia Tech. To measure the knee joint center, one 

must locate the tibial plateau and the femoral condyle and find 

the mid-point between these two anatomical locations on the 

sound side limb. To ensure that the fit is correct and achieve 

good biomechanics, the biological knee joint and the prosthetic 

knee joint rotation must be aligned while the person is walking. 

The ability of our device to be adjusted for different height 

conditions allows the user to feel more stable and prevent the 

user from having gait deviations from abnormal height 

differences during walking tasks. The device height is able to 

range from 40.6 cm to 57.5 cm in fixed increments to 

accommodate a large range of users including using an able-

bodied adapter.  

Figure 3: Diagram of knee joint center (left) [15]. Device 

height validation and knee joint center alignment with user’s 

passive prosthetic setup (right). 
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The shape of the series elastic actuator (SEA) joints were 

based off a design seen in [14,16]. The material chosen for the 

torsional spring was maraging 300 steel (Service Steel 

Aerospace). Finite element analysis (FEA) was performed in 

SolidWorks to model the torsional spring stiffness. The desired 

stiffness in [14] was designed to reach 20 Nm/deg.  

 
Figure 4: FEA displacement results on M300 steel under 50 

N*m static torque condition. 
 

FEA yielded similar results at 18.34 ± .05 Nm/deg. The 

analysis was performed under the following conditions. All of 

the holes seen in the torsional spring design were statically 

fixed to emulate mounting position on the prosthetic device. 

The simulated torque varied from 10-50 Nm to match device 

continuous torque capabilities in order to create a torque-

displacement figure where the torsional spring stiffness value 

was found by fitting a linear best fit line. Experimental testing 

was performed with Instron axial-torsion machine where an 

axial force was applied to a custom rig that allowed for 

translating the axial force to a torque via a known length lever 

arm. The experiment was performed under different force 

conditions to confirm whether the spring acted linearly under 

repeated loading. A linear regression model was fit to the 

experimental data where the knee torsional spring was found to 

be 12.463 Nm/deg (R2  = .993) and the ankle torsional spring 

was found to be 10.632 Nm/deg (R2  = .981).   

 

 
Figure 5: Testing of torsional spring. An absolute encoder 

(green sensor) is mounted on the axis of the spring to measure 

the spring deflection. An axial force from the Instron is applied 

to a level arm in order to generate a torque about the spring. 

 

 

 
Figure 6: Experimental data of torque versus angular 

displacement for both knee and ankle joints. A linear 

regression is fit to the experimental data to extrapolate the 

stiffness value for each torsional spring. 
 

 

Passive prostheses use certain types of feet that allow a 

user to have better control when supporting their own body 

weight as well as providing some return of elastic energy [17]. 

The foot design on our prosthetic device was created to have 

more advantageous effects as mentioned in [18]. Due to design 

constraints of keeping a compact design profile, the foot has a 

radius of curvature of approximately 93.5 mm at the forefoot. 

This helps the user to smoothly transition from step to step that 

occurs at push off. After preliminary testing, we found that the 

foot was poor at providing good heel contact and push-off 

biomechanics.  A heel was added to allow for better plantar-

flexor control. Two feet were manufactured out of nylon to 

allow for users to wear the device on either side depending on 

their affected limb. The dimensions of the each foot is 

approximately 236.03 mm by 88.46 mm (length x width). The 

design also includes mounting holes for where the load cell and 

an IMU can be placed for sensor feedback of the foot 

kinematics. 
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Figure 7: Nylon foot design of the prosthetic device 

3 ELECTRONICS 
A Raspberry Pi 3 Model B microprocessor (4x ARM 

Cortex-A53, 1.2 GHz) runs the control architecture of the device. 

It is responsible for gathering sensor information and performing 

any computation on board the device. The low-level control of 

outputting motor torques comes from using two gold solo whistle 

ELMO motion controllers (G-SOLWHI20/100SE). The motion 

controllers are responsible for reading the two encoders at each 

joint – an incremental encoder (US Digital E5) on the input side 

of the motor and an absolute encoder (Renishaw RM22) on the 

output side of the joint which can measure the spring deflection 

of the torsion spring. The Raspberry Pi is also able to record 

sensor information from 3 inertial measurement units (IMU’s, 

YOST 3-Space USB) which are fixed to the foot and shank on 

the device and attached to the thigh of the user. Furthermore, a 

6-DOF load cell (SRI M3714C2) is incorporated in the foot 

design of the device.  

To ensure the functionality of the Raspberry Pi is optimal, a 

custom printed circuit board (PCB) was designed for attaching 

to the ELMO motion controller as well as incorporating an off 

the shelf CAN bus shield for communication purposes. The PCB 

allows for the Raspberry Pi to communicate with the ELMO 

motion controllers and load cell simultaneously through CAN 

bus communication protocols. The Raspberry Pi also allows for 

the IMU’s to be integrated with available USB ports. The result 

of this implementation is the ability for all the electronics to be 

onboard the device and used in real-time by the microprocessor. 

The whole system is powered through a 10-cell battery (37 V), a 

3600 mAh Li-Po battery (Venom Power) and a portable power 

bank for the Raspberry Pi. The electrical components and sensors 

are shown in Fig. 2. All of the controls on the device are coded 

in C++ packages that run on the robot operating system (ROS) 

platform. An accompanying GUI capable for relaying live 

signals was coded using Python packages.  

4 CONTROL DESIGN 

4.1 HIGH-LEVEL CONTROL 
Determining which locomotion mode a user is in is the 

responsibility of the high level controller. This allows for the user 

to ambulate across a variety of walking tasks such as level-

ground walking, ramp ascent/descent, and stair ascent/descent. 

The high level controller is implemented on the microprocessor 

which handles sensor inputs and converts to walking mode 

outputs. These outputs are determined by using sensor fusion 

techniques and machine learning algorithms to better adapt to the 

user. The details of the high level control and validation are not 

a focus of this paper, but prior work can be found in 

literature[19–22].  

 

4.2 MID-LEVEL CONTROL 
The device is controlled using an impedance based model 

that generates torque commands (τ), for both the knee and ankle 

joints via Eq. (1): 

 

𝜏𝑖 = −𝑘𝑖(𝜃𝑖 − 𝜃𝑒,𝑖) − 𝑏�̇�𝑖    (1) 

 

where 𝑖 relates to the joint, 𝜃 relates to the joint angle, �̇� relates 

to the joint angular velocity. The positive values correspond to 

knee flexion and ankle dorsiflexion, while negative values 

correspond to knee extension and ankle plantarflexion. The three 

virtual impedance parameters of each joint were stiffness, 𝑘, 

equilibrium angle, 𝜃𝑒, and damping coefficient, 𝑏. The 

impedance controller was implemented in conjunction with a 

finite state machine, which modified these impedance 

parameters in order to provide appropriate torque control in each 

phase. The finite state machine was divided into four states. The 

stance phase was divided into early stance and late stance, while 

the swing phase was divided into swing flexion and swing 

extension. Transitions between states were triggered through 

embedded mechanical sensors on the prosthetic device. In Fig. 

8, T1 refers the ankle angle threshold to transition from early 

stance to late stance, T2 refers to the load cell force in the z-

direction to be lower than a threshold to transition between late 

stance and swing flexion, T3 refers to the knee velocity threshold 

to transition between swing flexion to swing extension, and T4 

refers to the load cell force in the z-direction to be greater than a 

threshold to transition between swing extension back to early 

stance.   

 
4.3 LOW-LEVEL CONTROL 

This device is capable of providing torque feedback 

compared to other available powered prostheses. The torque 

desired outputted by the mid-level control is transformed to a 

current that is sent to the device. The actual torque from the 

SEA’s is calculated via Eq. (2) where 𝑘 is the stiffness of the 

torsional spring and 𝜃 is the angular deflection of the spring. A 

PID control loop is used to minimize the error between the 

desired and actual torque.   

 
 

 
 

 

𝜏𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑘 ∗ 𝜃𝑠𝑝𝑟𝑖𝑛𝑔            (2) 
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Figure 8: Prosthetic control architecture diagram. High-level controller that determines what locomotion mode the user is in via sensor 

fusion techniques (top). Mid-level controller that uses an impedance controller and finite state machine to generate desired torques 

(middle). Low-level controller that runs closed loop control with torque feedback from the Series Elastic Actuators (bottom).   

5 DEVICE VALIDATION 
The device was validated by running through several 

benchmarks of testing. Our validation for this paper focused 

exclusively on the mid-level controller. The low level controller 

only commanded the torque from the mid-level layer and did not 

correct based on feedback from the series elastic actuators. All 

testing was done in level-walking and thus intent recognition 

performed in the high-level layer was not needed for these 

validations results. First, the device underwent a series of tests to 

determine the communication protocols and electronic hardware 

required to communicate to all of the sensors and test the torque 

inputs versus the dynamics of the device. Human subject testing 

included two able bodied subjects and three subjects with 

transfemoral amputation. 

5.1 METHODS 
Benchtop Testing 

The device was fixed to a frame as seen in Fig. 9 at the 

knee adapter component where there was no ground contact. 

Several tests were conducted in order to determine torque-angle 

relationships for both joints. The torque versus angle dynamics 

were controlled by the impedance control law seen in Eq. 1 

through open-loop control but with the damping coefficient set 

to zero. The knee torque-angle relationship as seen in Fig. 10 

was generated by having the user set the initial position of the 

knee joint at maximum extension (𝜃 = 0°) and having a torque 

input that would cause knee to flex a certain amount. The ankle 

torque-angle relationship also seen in Fig. 10 was generated by 

having the user set the initial position of the ankle at maximum 

plantarflexion (𝜃 = −25°) and creating a torque input that 

dorsi-flexes the ankle up.  
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Figure 9: Experimental test setup for benchtop testing 

 

Able-bodied testing 

First experimental protocols of walking with the device were 

performed by able-bodied subjects by using a modified iWALK 

adapter at the knee. All subjects gave written, informed consent 

on the approved protocol by the Georgia Institute of Technology. 

AB01 and AB02 were 20 and 21 years old, respective weights 

were 81.65 kg, and 88.45 kg, and heights were 1.85 m and 1.75 

m. An adjustable platform shoe was appropriately fitted to help 

the user balance due to the introduced height difference by the 

adapter. Users were asked to ambulate at preferred walking 

speeds on a treadmill and told to rely minimally on the parallel 

bars (primarily used for balance). Starting parameters were taken 

from [23].  

 

Amputee Testing 

3 subjects (TF01, TF02, and TF03) with unilateral transfemoral 

amputations completed the experimental protocol, which was 

approved by the Georgia Institute of Technology Institutional 

Review Board. All subjects gave written, informed consent on 

the approved protocol. Subject’s ages were 58, 36, 51 years old, 

weights were 102.06 kg, 99.79 kg, 74.84 kg, and heights 1.80 m, 

1.83 m, 1.80 m. All subjects were community ambulators (K3 

and above). The prosthetic device was configured to the user 

under the supervision of a certified prosthetist. Baseline 

impedance parameters were taken from [23] for tuning the 

controller for level-ground walking. Constant values were used 

and tuned to each subject appropriately until they felt 

comfortable walking with the device and met some common 

ambulation goals suggested by the prosthetist. Parameters were 

configured for each user by performing a visual inspection of the 

kinematics and feedback for the prosthetist and user. The 

prosthetist observed the user’s gait in both the sagittal and frontal 

plane and appropriately adjusted the socket to device connection 

to improve their gait as well as letting the operator know what 

needed to be improved. The operator would adjust the impedance 

parameters in order to match the feedback received by the user 

and prosthetist. A parameter sweep of impedance parameters was 

performed until the user and prosthetist were satisfied with the 

user’s performance. Each session began with the users walking 

inside a set of parallel bards until they were comfortable with the 

device. The next step was to let the users walk on a treadmill at 

their preferred walking speed with the device. For each trial and 

tuning process, a gait belt harness was utilized to ensure user 

safety during walking. Impedance parameters were recorded 

with any changes compared to the default values for every user. 

After users were tuned and ensuring minimal weight acceptance 

on the parallel bars, kinematic and kinetic data was collected as 

well as IMU and loadcell data.  

A second session of data collection was performed with 

variable walking speeds for one minute for each respective 

speed. The range of speeds tested were 0.63 m/s, 0.72 m/s, 0.80 

m/s, 0.89 m/s, 0.98 m/s, and to 1.07 m/s. The default parameters 

were the same ones used from the first session of data collection 

with minor changes in tuning parameters. Similarly, the 

amputees were asked to walk over parallel bars before walking 

on the treadmill. Two of the three individuals with amputation 

were brought back for this session.  

 

 
Figure 10: Transfemoral amputee (TF02) walking on 

treadmill at different speeds (level-walking). 

 
5.2 DATA ANALYSIS  

Data was recorded using the data-logging capabilities 

provided through the ROS platform (rosbag record) for all the 

sensors embedded on the device. The rosbag data was then post-

processed which included segmentation and normalization using 

the early stance state from the mid-level control which emulates 

the heel strike to heel strike behavior seen in the gait cycle. 

Average kinematic and kinetic data of approximately 40 strides 

per trial was then plotted for able-bodied individuals and 

amputees.  Data was then compared to literature values seen in 

[24].  

 

5.3 RESULTS  
Benchtop Testing 

Figure 11 shows the desired torque outputted by the impedance 

controller under different stiffness conditions for the knee and 
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ankle joints. The behavior from the knee joint and ankle joints 

show that there is a linear relationship of the torque versus 

angle for a certain range of motion when using the open-loop 

control methodology.  

Figure 11: Desired knee torque versus knee angle at different 

impedance stiffness values (top). Desired ankle torque versus 

ankle angle at different impedance stiffness values (bottom). 

Able-bodied testing 

Users, regardless of experience level were able to walk with the 

device with constant impedance parameters. Minor changes of 

tuning parameters were made to improve joint kinematics and 

user comfort. Figure 12 shows the average kinematic and 

kinetic profiles from the device while an able-bodied user 

(AB01) ambulated on a treadmill at their preferred walking of 

0.9 m/s. Table 2 shows the constant parameters and transition 

thresholds as the user was walking with the device. The peak 

plantarflexion angle seen was -12.72 degrees, while the peak 

knee flexion angle was 61.73 degrees. The maximum 

plantarflexion torque reached was -1.08 Nm/kg, while he 

maximum knee extension torque was -0.76 Nm/kg.  

Amputee Testing 

Figure 13 shows the kinematic data of users walking at their 

preferred speed (~0.90 m/s). Only 6 impedance parameters and 

3 trigger thresholds across all 3 amputee users needed to be tuned 

which are bolded in Table 2.  

Figure 12: AB01 average kinematic and kinetic data across 40 

strides of both the knee and ankle joints compared to healthy 

biomechanics data [24]. 
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Table 2: Impedance Parameters for able-bodied individuals and amputees 

 
 

 

 
Figure 13:  Kinematic data from ankle (top) and knee 

(bottom) joints on a prosthetic device, averaged and segmented 

over 40 strides plotted versus percent  gait cycle compared to 

healthy biomechanics [24]. 
 

Two subjects with transfemoral amputation were also able to 

ambulate over a range of speeds from 0.63 m/s to 1.07 m/s as 

seen in Fig. 14. The purpose of ambulating over different speeds 

was to test and ensure that the device was able to accommodate 

and handle different conditions. For TF01, the maximum 

plantarflexion angles varied between -4.63 to -7.78 degrees. The 

maximum plantarflexion torque was 0.84 Nm/kg at 1.07 m/s. 

The maximum knee flexion angles varied from 63.59 to 66.92 

degrees. The maximum knee torque exerted during the trials was 

0.75 Nm/kg. For TF02, the maximum plantarflexion angles 

varied between -4.22 and -8.15. The maximum plantarflexion 

torque was 0.88 Nm/kg at 0.80 m/s. The maximum knee flexion 

angles varied from 47.36 to 64.05 degrees. The maximum knee 

torque exerted during the trials was 0.61 Nm/kg.    

 

6 DISCUSSION 
The prosthetic device is able to match kinematics relatively 

well compared to Winter’s kinematic data [24]. The ankle 

torque is not as smooth compared to biological torque since the 

device is changing impedance parameters at discrete states. The 

knee also does not flex in early stance since users feel more 

comfortable walking with the device in this manner, hence 

there is no need to generate knee extension torque. The knee 

torques are greater in swing extension compared to biological 

values because the device must ensure that the leg is fully 

extended before the next heel contact. Also compared to 

healthy subjects, there may be reduced energy from the 

proximal leg to help propel the leg forward which results in the 

device needing to provide additional extension support. 

Generated torque profiles do not closely match to the Winter 

data, but this may be due to the fact that the device is operating 

under an open-loop control architecture, where the actual 

torque is assumed to be the desired torque.  

Table 2 outlines tuning parameters across all experimental 

subjects. The reason that swing flexion parameters were 

modified was to account for providing foot clearance through 

the swing phase of the gait cycle. Swing extension parameters  

k (Nm/deg) b (Ns/deg) θ (deg) k (Nm/deg) b (Ns/deg) θ (deg) T1 (deg) T2 (N/kg) T3 (deg/s) T4 (N/kg )

Early Stance 3 0 0 3.5 0.25 0

Late Stance 1.75 0.05 17.2 3.6 0.1 -11.5

Swing Flexion 1 0.05 63 2.6 0.1 1.75

Swing Extension 1.25 0.13 0 2.1 0.525 1.75

Early Stance 3 0 0 3.5 0.25 0

Late Stance 1.75 0.05 17.2 3.5 0.1 -10

Swing Flexion 1.2 0.05 63 2.6 0.1 3.5

Swing Extension 1.25 0.2 0 2.1 0.525 1.75

Early Stance 3 0 0 3.5 0.25 0

Late Stance 1.75 0.05 17.2 3.5 0.1 -11.5

Swing Flexion 1 0.05 63 2.6 0.1 1.75

Swing Extension 1.2 0.09 0 2.1 0.525 1.75

Early Stance 3 0 0 3.5 0.25 0

Late Stance 1.75 0.05 17.2 3.5 0.1 -11.5

Swing Flexion 1 0.05 63 2.6 0.1 1.75

Swing Extension 1.25 0.13 0 2.1 0.525 1.75

Early Stance 3 0 0 3.1 0.25 0

Late Stance 1.75 0.05 17.2 3.5 0.1 -15

Swing Flexion 1.1 0.05 63 2.6 0.1 5

Swing Extension 1.25 0.13 0 2.1 0.525 1.75

Subject Phase
Knee Parameters Ankle Parameters Trigger Thresholds

AB01 8.5 1.84 0.3 2.18

AB02 5.5 1.62 0.3 1.88

TF01 5.15 1.06 0.3 1.47

TF02 8.5 1.55 0.3 1.78

TF03 7.0 1.60 0.3 1.87
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Figure 14: TF01 Kinematic and kinetics data from ankle (left) and knee (right) joints on a prosthetic device across a range of speeds. 

were modified to ensure the leg was fully extended at ground 

contact. Changes in equilibrium angle and stiffness values in 

late stance for the ankle were performed to give the user better 

push-off mechanics. T2 and T4 were turned simultaneously 

based on the load cell to provide proper transitions between 

swing and stance phases. In particular the transition from stance 

to swing had to be placed earlier to render a fast transitional 

response of the device near toe-off. T1 was based on ankle 

angle and was tuned based on subject preference of when late 

stance assistance at the ankle was comfortable on a per subject 

basis. Adjusting these thresholds allowed for the user to feel 

more comfortable walking on the device. 

One positive outcome of the device was the ease of 

translating the values seen in [23] into our current setup. Also we 

found that there was a relatively small amount of tuning needed 

to generate smooth walking on the device which is in contrast to 

common refrain in the field that impedance control is 

disadvantageous due to the infeasibility of tuning a large number 

of impedance parameters [25–27]. The implementation of our 

control strategies also gave the clinicians much more flexibility 

to adjust specific parameters of amputee gait which vary 

tremendously amongst patients. It is difficult to find control 

approaches that can provide these features that better assist the 

user. Another positive seen from our device is the ability to 

accommodate to a wide range of walking speeds without having 

to change the impedance parameters per speed.  

One of the main challenges in the mechanical design was to 

allow for variable height increments for different users compared 

to the older design [14]. Adding a heel at the foot was useful for 

providing better plantar-flexor control which enabled the user to 

feel more comfortable with the device. The device also had an 

easy to change configuration that helped fit across different 

prosthetic socket configurations as well as the able-bodied knee 

adapter.  Also transmitting power from the motor to the joint is a 

difficult problem since there are always inefficiencies which in 

this case are: a large gear reduction, friction effects, and 

mechanical hardware. Our future design iterations will try to take 

this into account, as well as reducing the overall weight of the 

device. 

For preliminary testing and device validation, an open-loop 

control method was implemented due to restrictions of 

measuring the actual torque. These limitations include the poor 

resolution of the current absolute joint encoders attached at the 

output side of the device as well as large stiffness value of the 

torsional springs. Hence an improvement that needs to be made 

is to measure the actual torque. After implementing a SEA based 

closed loop methodology of measuring spring displacement and 

translating to actual torque, will allow us to determine whether 

the device is able to provide appropriate torques for the user. 

Regardless, the kinematic and kinetic data shows that this device 

is capable of providing enough torque needed to ambulate on 

level-ground walking.  

In the future we would like to implement scaling equations 

as seen in [23] to better enhance device performance for the user 

and provide a better transition of torque values during different 

states of our mid-level control. Other future work will include 

configuring the device to handle multiple ambulation modes to 

develop a more robust controller that is able to handle different 

environmental conditions.    



 10 Copyright © 2018 by ASME 

7 CONCLUSIONS 
As powered prostheses become an increasingly common clinical 

option, the underlying factors of being easy to tune, reducing 

acclimation time, and providing supportive mechanical power 

will be important to determine success of the hardware. Device 

performance testing on the benchtop, with able-bodied 

individuals, and three individuals with transfemoral amputation 

validated that our device is capable of providing powered 

assistance to the user using a standard impedance control 

paradigm across a range of walking speeds. Our approach 

indicates that our device and overall control architecture is a 

good platform for further testing robust controllers that provide 

powered assistance to common community ambulation tasks.  
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ABSTRACT
Developing controllers for powered prostheses is a daunting 

task that requires involvement from clinicians, patients and 
robotics experts. Difficulties arise for tuning prosthetic devices 
that perform in multiple conditions and provide more 
functionality to the user. For this reason, we propose the 
implementation of a simulation framework based on the open-
source 3D simulation environment Gazebo, to reduce the burden 
of experimentation and aid in the early stages of development. In 
this study, we present a minimalist plugin for the simulator that 
allows the interfacing of a virtual model with the native 
prosthesis controller and renders the finding of impedance 
parameters as a pattern search problem. To demonstrate the 
functionality of this approach, we used the framework to obtain 
the parameters that offer the most similar joint trajectory to the 
respective biological counterpart during swing phase for ground 
level walking. The optimization results are compared against the 
response of a physical 2DOF knee-ankle prosthesis operating 
under the optimized parameters, showing congruence to our 
model-based results. We found that a simulation-based solution 
is capable of finding parameters that create an emerging behavior 
that approximates to the kinematic trajectory goals within a 
tolerance (mean absolute error ~10%). This provides an 
appropriate method for development and evaluation of 
impedance-based controllers before deployment to the physical 
device. 

INTRODUCTION
Taking inspiration from the motor patterns in humans, 

biomimicry has helped advance the field of prosthetics. Ivanenko 
et al. studied the spatiotemporal maps of motor neuron activation 
during locomotion, finding that human motor control during 
walking shows discrete periods of activity [1]. By recording 
EMG signals during walking on a treadmill at different speeds, 
researchers obtained a transient map of motor neuron activity. 

From this, they suggested that the activity of locomotion could 
be represented by five periods of motor neuron activation.  

Discrete states prostheses use a similar approach for 
generation of locomotion patterns. A common method for state 
of the art devices is the use of impedance-based control with 
parameters that dynamically activate on these discrete events 
[2]–[4]. Impedance control defines the interaction of an input of 
position (or velocity) and the resulting force (or torque) on a 
system [5]. Thus, when defining this interaction, the controller 
must specify dynamic parameters of behavior such as stiffness, 
damping and equilibrium position. The compliance of an 
impedance-based controller offers the advantage of good 
adaptability and human-device interaction, which provides better 
response than pure motion control [6]. However, this method has 
the drawback of a potentially steep difficulty in determining the 
configuration of parameters that are required under each task. 
For powered prostheses, it usually requires an expert with 
practice on how the parameters affect the behavior. In addition, 
it needs a person wearing the device, and be subject to time-
consuming experimentation. 

The problem increases when developing multiple 
ambulation modes and terrain conditions, since it requires the 
assignment of values for parameter sets that produce different 
kinematics and kinetics responses for each terrain or mode 
evaluated. Some authors have proposed techniques to reduce the 
burden of clinical experiments by generating empirical tuning 
rules and equations. For example, Simon et al. presented a 
powered knee ankle prosthesis that offers five ambulation modes 
together with intrinsic control strategies and a set of starting 
configuration parameters. This method provides joint impedance 
parameters that scale according to the kinematics signals, user’s 
characteristics and some empirical constants found 
experimentally [7]. 

Other works have tried to use AI and optimization 
methods to aid with the configuration process. They completely 
rely on the use of a physical prosthesis, together with 
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experimental protocols and human experts that provide empirical 
tuning rules. Huang et al. encoded a set of human expert tuning 
rules in a fuzzy logic tuner that applied the rules online during 
able body walking on a treadmill. This cyber-expert approach 
relies on the previous information given from a human expert 
and still requires an initial manual configuration [8]. Abdelhady 
et al. suggests the use of optimization algorithms for tuning the 
controller of the knee joint during the swing motion. The authors 
present a process for finding PID controller parameters using an 
optimization with hardware in the loop. This allows adjusting the 
motion for the swing phase without the need of experiments with 
patients, providing a suitable alternative for reducing the needs 
of testing with the final user [9].  

With this context, it is evident that the field needs to 
develop better tools for configuration of walking controllers, to 
reduce the need of experimentation and provide a safe testing 
framework for developers. For this reason, we propose the use 
of simulation to estimate an initial set of parameters based on a 
model of a knee-ankle prosthesis driven by the same logic that 
drives the physical device. This would provide the benefit of 
reducing the encumbrance of experimental configuration of the 
parameters, and offer a platform for developing, debugging and 
testing different controllers.  

Some authors have developed computer simulations of 
bipedal locomotion before as a constrained mechanical system 
to estimate the kinematic response of controllers[10] and drive 
the design phase of a prosthesis by studying the energy 
expenditure[11]. These solutions allow the simulation of walking 
only under a constrained situation and require the controller to 
be translated to a set of DAE (differential algebraic equations). 
In contrast, we implement a framework that enables the 
simulation of our prosthetic device, by driving a virtual model 
using the same controlling firmware as the one used by the real 
device. The framework captures the response of the virtual 
device under different parameters of operation, providing a 
reference model to evaluate the performance of the system, and 
allowing its use for validation of different controller’s logic. 
Furthermore, we propose the use of the framework to realize an 
optimization process that, through a minimization of a trajectory 
cost function, finds the best set of parameters that drive the 
device during a representative task, in this case, the swing phase 
of ground level walking. 

METHODS 
Power prosthesis operation 
We based the controller on the concept of impedance control, as 
outlined by previous researchers using powered knee-ankle 
prostheses [3], [4], [12]. This has advantages of providing better 
adaptation to different terrains and changes in user ambulation in 
clinical trials compared with other approaches in the field to date. 
The logic of the controller is to divide the locomotion into phases 
that require a specific type of interaction between the forces 
produced by the system and its current kinematic state. Such 
interaction is regulated by changing virtual dynamic parameters: 
joint stiffness, damping and equilibrium position. With this 
approach, the definition of a task like ground level walking 

translates to the constitution of a finite state machine (Figure 1) 
that transitions through the phases, and the parameters associated 
to each phase. These parameters provide the control law for the 
impedance equation (Eq. 1). 

    𝜏𝜏 = −𝑘𝑘�𝜃𝜃 − 𝜃𝜃𝑒𝑒𝑒𝑒� − 𝑏𝑏�̇�𝜃     (1) 

In this equation, joint torque (𝜏𝜏) is proportional to the difference 
of the joint angle (𝜃𝜃) and the equilibrium angle (𝜃𝜃𝑒𝑒𝑒𝑒); providing 
an actuator excitation with the intention to reach a desired 
position, but offering a compliant result that is regulated by the 
selection of a stiffness value (𝑘𝑘) representing how rigid is the 
joint, and a damping term (𝑏𝑏) that acts as a virtual viscous 
friction.  

Figure 1. Finite state machine for ground level walking. Gait cycle is divided in 
a four states machine that modifies the controller parameters during operation. 

For the finite state machine like the one presented in Figure 1, 
the response of the device is thus defined by the values 𝑘𝑘, 𝑏𝑏, and 
 𝜃𝜃𝑒𝑒𝑒𝑒 , for each one of the four states and both active joints in the 
prosthesis. This derives in a problem of setting up 24 different 
parameters before the device can operate to enable ground level 
walking. 

Overview of the optimization process 
A virtual model allows the verification of the controllers by 
means of a simulated environment, reducing the dependency of 
experimental evaluation and easing the debugging process 
during software development. Additionally, we are interested in 
benefit from the functionality of the framework by using it to 
tune the parameters using a stochastic optimization process that 
searches for the best set of parameters for a given motion task, 
represented by a control algorithm. 

Figure 2. presents the block diagram of the complete process of 
stochastic optimization of the controller parameters. In the 
previous section, we discussed the control law used for the joints 
and defined the parameters that are associated to its operation. 
As seen in the block diagram, the model connects directly to the 
controller, offering the closest resemblance to the operation with 
the device.  Thus, the model block, describes the behavior of the 
device and represents the simulation of the power prosthesis. The 
analysis block transforms the simulation results in a scalar cost 
function used to evaluate the performance metrics, and the 
optimization block iterates to adjust the parameters accordingly. 
In the following sections, the methods involved in the 
implementation of these blocks are described. 



 3 Copyright © 2018 by ASME 

 

Figure 2. Overview of the optimization process: the controller module executes the power prosthesis controller firmware based on ROS. Model is the virtual 
representation of the device in the Gazebo environment. Simulation results are analyzed using a biological trajectory reference, creating an optimization cost function 

that is used in a pattern search optimization that sets the parameters for the device operation.

Model 
With the results from the multibody dynamics survey from Ivaldi 
[13], and after some exploration with different software 
packages, we opted for using Gazebo simulator [14] as the core 
of the framework. This gave us the benefits of open source and 
better compatibility with our controllers, that operate using 
Robot Operating System (ROS) [15]. The device of study is a 
powered prosthesis with two active DOF electrically actuated, 
one passive DOF, as presented in Figure 4 . It is an updated 
design based on AMPRO3 [16] from a collaboration between 
Exoskeleton and Prosthesis Intelligent Control (EPIC) at 
Georgia Institute of Technology, with the Advanced Mechanical 
Bipedal Experimental Robotics Lab (AMBER) at California 
Institute of Technology. The model of the device was produced 
in the SDF format [17] based on information obtained from both 
the CAD model (robot kinematics, visual geometry, inertia 
tensor estimation) and the physical device (mass, damping 
estimation). 

 

Figure 3. Powered prosthesis. A knee and ankle prosthesis with active ankle 
plantarflexion/dorsiflexion, knee flexion/extension, and passive 

inversion/eversion. The sensors include: joint encoders, IMU for each link and 
a 6DOF loadcell incorporated in the foot. 

Mass was measured by a scale using the machined parts of the 
device, and damping was estimated using a linearized model of 
the system response to a set of step torque inputs covering the 
range of operation (0 – 20 Nm). Finding damping values of 5.60 
Nms for the knee and 2.47 Nms for the ankle, and standard 
deviation of 1.33 Nms and 0.7 Nms respectively.  Step responses 
for each joint are shown in Figure 4. 

  
          A             B 

Figure 4. Experimental step response on the physical device. Figure shows the 
average of 10 trials of the step response each different torque input. A. Knee 

joint. B. Ankle joint. 

We developed a custom plugin for gazebo to interface the model 
to the ROS environment by two signals: joint state (𝜃𝜃, �̇�𝜃) and 
torque (𝜏𝜏). These signals use the same format than the real 
device. Therefore, we do not require any modifications to our 
controller firmware. This allowed the interface with the model 
through ROS ecosystem, exposing the signals from the joint state 
in the simulation and creating a way to send torque actions to the 
joints. This effectively allows commanding the joints with a 
particular torque (revolute joint) or force (prismatic joint) and 
permits the recording of the joint position and velocity 
information. The inheritance diagram of the plugin is presented 
in Figure 5. Where the class EffortPlugin handles the interaction 
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with the API of the Gazebo environment and RosEffort creates 
the interface with ROS. Once the simulations are launched, the 
plugin is loaded to the model and torque commands can be 
calculated by the external controller that receives the model state. 
This represents the core of the framework, constituting a fully 
connectable virtual model of the prosthesis. 

Figure 5. Class Inheritance for the Gazebo-ROS effort plugin. RosEffort class 
exposes the joint state with an ROS publisher and the torque with an ROS 

subscriber 

The plugin can be instantiated from the SDF file, where the user 
can select specific joints to be exposed to ROS. For this study, 
we solely configured interaction to the knee and ankle joints, 
leaving the inversion/eversion joint rigid and not recorded. Using 
the Gazebo environment and running the controller on the same 
ROS network, we created a simulation solution that opens 
different possibilities for controller development. 

Analysis 
After the simulation, the results from the virtual device motion 
can be postprocessed to produce a scalar value that represents 
how well the response fits the desired behavior. Such behavior 
could be interpreted in the sense of energy expenditure, 
kinematics, kinetics, or stability. As our initial outcome is to 
mimic biological trajectory we propose the cost function given 
by Eq. 2, with 𝜃𝜃𝑖𝑖∗ corresponding to the desired trajectory. 

𝐽𝐽𝑖𝑖 = �𝜃𝜃𝑖𝑖(𝜆𝜆)−𝜃𝜃𝑖𝑖
∗(𝜆𝜆)�

‖𝜃𝜃𝑖𝑖(𝜆𝜆)∗‖
   (2) 

The cost function uses the L-2 norm of the difference of the 
simulated trajectory with respect to the desired trajectory in the 
interval of the non-dimensional time of the state in the swing 
phase (𝜆𝜆 ∈ ℜ|0 ≤ 𝜆𝜆 ≤ 1). This is normalized to the squared root 
of the energy of the goal function 𝜃𝜃𝑖𝑖∗(𝜆𝜆) to allow for the 
comparison of the error signal to the desired signal. The scalar 
cost function of the optimization process is then the Euclidean 
norm of each joint cost. For natural ground level walking, goal 
trajectories are selected to be the biological profile of the knee 
and ankle as reported by Winter [18]. 

Optimization 
For the optimization process we chose a pattern search algorithm 
[19], this method offers an efficient alternative to do a broad 
search of the cost function on the parameter space. The process 
consists of launching simulations at each iteration (𝑘𝑘), over 
points of a variable size mesh (𝑀𝑀𝑘𝑘) given by eq 3. This mesh is 

constructed around center point (𝑥𝑥𝑘𝑘) and following the 
directions 𝐷𝐷. Directions, are chosen with the mesh adaptive 
direct search (MADS) algorithm [20], [21] that makes the mesh 
narrow down to the direction of the best result obtained. 

𝑀𝑀𝑘𝑘 = 𝑥𝑥𝑘𝑘 + �𝛥𝛥𝑘𝑘𝑑𝑑𝑗𝑗  | 𝑑𝑑𝑗𝑗 ∈ 𝐷𝐷�  (3) 

RESULTS
To evaluate the functionality, we run the optimization to find 8 
parameters comprising equilibrium angles and stiffness for 
swing flexion and extension. The parameter domain intervals are 
reported in Table 1. Damping term was not included in the 
optimization process. Since the system identification showed a 
high damping factor for the prosthesis joints and from 
preliminary exploration of the simulations, we observed that the 
response is not sensitive to small changes in the damping 
parameter. This makes the joints of the real device a highly 
damped system and thus we considered only the stiffness and 
equilibrium terms in the optimization process.  

Table 1. Domain for parameter search 
Swing Flexion Swing Extension 
Knee Ankle Knee Ankle 

𝑘𝑘[Nm/deg] 0 to 8 0 to 8 0 to 8 0 to 8 
𝜃𝜃𝑒𝑒𝑒𝑒[deg] 30 to 80 -20 to 20 -10 to 20 -20 to 20

Exploring this search domain, we found multiple sets of 
parameters and the associated performance given by the cost 
function. Figure 6. details the simulation results, where each line 
shows a specific combination of parameters that was executed in 
simulation. The color scale represents the resulting value of the 
cost function.    

Figure 6. Equilibrium angle parameters explored during optimization 

Figure 7. Stiffness parameters explored during optimization. 

Cost 

Cost 
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The best set of parameters were found after ~500 searching 
iterations, the corresponding values are presented in Table 2.  

Table 2. Domain for parameter search 
Swing Flexion Swing Extension 
Knee Ankle Knee Ankle 

𝑘𝑘 (Nm/deg) 2.11 3.23 0.64 2.41 
𝜃𝜃𝑒𝑒𝑒𝑒  (deg) 64.9 -17.93 -3.67 0.63 

Signals from the simulation can be recorded using regular ROS 
tools (e.g. rosbag) and thus, we collected the simulation profiles 
to visually compare against the desired trajectory. Figure 8 
presents the best 10% of the simulated trajectories as a shaded 
profile compared to the goal trajectory. Profiles are plotted with 
respect to the non-dimensional time λ that represents the lapse 
of swing phase. For the ankle joint, we found a mean error of 
3.9% (0.77°) of the goal angle range, and for the knee, a mean 
error of 6.2% (4.01°) of the goal angle range. Ankle plantar 
flexion achieved a peak value of -18.4° and knee flexion reached 
a peak value of 62.5°. This shows that the simulation can 
effectively recreate trajectories close to the biological motion. 

A 

B 

Figure 8. Optimization results. Average and standard deviation of the trajectory 
of the best 10% of the optimization results compared to the desired response. A. 

Ankle trajectory B. Knee trajectory.  

As a final validation of the simulation results, we run the physical 
device under the swing parameters obtained from simulation. 
Joint trajectories were recorded from able body level walking 
ambulation on a treadmill at a speed of 0.58m/s. The average and 
standard deviation of n=32 swing profiles are shown in Figure 9, 
contrasted to the best simulated profile. With respect to the 
experimental validation, for the ankle joint, we found a mean 

difference of 13.6% (2.62°) of the goal angle range, and for the 
knee, a mean error of 12.53% (8.02°) angle range. Ankle plantar 
flexion shows a mean peak at -18.77° and knee flexion reached 
61.2° during swing. The mean and standard deviation of 
trajectory profile obtained in the validation are presented in 
Figure 9. For comparison, the best simulated profile and the goal 
trajectory are also displayed.  

A 

B 

Figure 9. Validation by implementing parameters on the physical device.  A. 
Ankle trajectory B. Knee trajectory. 

DISCUSSION
We utilized the simulation framework to develop an 

optimization-based search for eight impedance parameters, 
consisting of stiffness and equilibrium angle for knee and ankle 
joints during swing flexion and swing extension phases of 
ground level walking. The process required running 514 
simulations under different parameter combinations before 
converging within the minimum 5% of the cost function. With 
an average running time of 1.2s per simulation, the approach 
seems feasible for using in more complex situations, where 
parallelization could be exploited to reduce wall time. 

The optimal set of parameters found in the process was 
consistent with experimental results with the real powered 
prosthesis, following an overall trajectory similar to the 
biological profile goal. The response showed some differences 
with respect the experimental validation results, were the path 
did not accurately match the simulated trajectory. As we found 
in the system identification process (Figure 4), non-linear 
characteristics are present in the damping; this can potentially 
introduce a difference that was not accounted in the model, 
which uses a linear damping term. 

Plantar flexion ↓ 

Dorsiflexion ↑ 

Flexion ↑ Extension ↓ 

Dorsiflexion ↑ Plantar flexion ↓ 

Flexion ↑ Extension ↓ 
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From the simulation results, it is evident that the controller 
is not able to perfectly track the biological trajectory. This 
expected limitation is due to the discrete operation that switches 
between different sets of parameters. In comparison to a pure 
trajectory tracking control, this approach allows more flexibility 
in the response of the device to external perturbations and 
interaction forces. This translates to a tradeoff between 
compliance (seen as the variable stiffness of the joints) versus 
reaching an accurate trajectory.  Nevertheless, for aesthetic 
purposes and patient’s acceptance, we want to provide the users 
with a response close to the biological, and in the case of swing 
motion; this was the most important target to achieve. Other 
optimization goals could provide a reduction in energy 
expenditure, terrain adaptability, robustness to perturbation, etc. 
These were beyond the scope of this initial study. Other authors 
have proposed the use of non-linear controllers that incorporate 
impedance control law as a feedforward term or virtual 
constraints, to increase the performance of prostheses in terms of 
tracking accuracy or energy efficiency [16], [22]. These 
alternatives could also serve as way of simplifying the 
parameters tuning process, where a virtual framework would 
provide an intuitive tool for developers and clinicians. 
 
CONCLUSION 

We developed a framework for optimization of impedance 
parameters for the Gazebo simulator software. Using a virtual 
model of a powered knee-ankle prosthesis, we implemented   the 
optimization of impedance parameters during swing phase. This 
approach could provide adequate usability and advantage for 
virtual verification and debugging in the early stages of 
controller development. Additionally, it can serve as a tool for 
parameter tuning, allowing the execution of this process in using 
a realistic physics engine to estimate device response without 
doing physical experimentation. This is advantageous because it 
reduces in-person tuning of prosthesis parameters and saves 
signficant efforts and time in implementing impedance based 
controllers for prostheses. The plugin for Gazebo is publicly 
released under an opensource repository with MIT License [23]. 
This type of virtual model opens various possibilities for 
simulation of simple and controlled conditions, but it is still 
limited for its use in the full human-device interaction, lacking 
inputs equivalent to the person that is using the device. Future 
work should aim towards the development of ground contact 
information and hip motion to simulate a more comprehensive 
walking activity. 
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Continuous Walking Speed Estimation using Neural Networks and
Multi-Sensor Data Fusion

Jonathan Camargo, Noel Csomay-Shanklin, Bharat Kanwar and Aaron Young. Member, IEEE

Abstract— Walking speed is a relevant parameter for
diagnosing health conditions and assessing fall risk. We
propose a novel approach that uses multi-sensor data fusion
techniques from sensors attached to the human body to predict
walking speed as a continuous variable, without requiring a
kinematic model of human walking. For the walking speed
range of 0.6 m/s to 1.6 m/s, our method predicts walking
speeds it has not been trained on with a mean squared error
of 4.5%, only a 0.60% increase compared to a network
trained on all speeds. With this approach, we can achieve
higher resolution in speed estimation than traditional discrete
classification methods.

Keywords - Sensor Fusion, Walking Speed Prediction,
Machine Learning, Neural Networks

I. INTRODUCTION

Changes in walking speed represents a quantitative mea-

surement for predicting different health conditions and is a

main component in fall risk assessment [1, 2]. In clinical

applications, gait parameters are often estimated by obser-

vation and timing or by using external sensors such as

motion capture systems [3]. To reduce the complexity of

measurement systems, and enable monitoring outside of the

lab, researchers explore the development of methods for es-

timation of gait parameters based on wearable sensors. Most

prominent examples use Kalman filters to make an optimal

estimation. These methods estimate speed as a continuous

variable but require a reduced order model of the kinematics

[4]. Machine learning methods are not constrained by the

definition of a prior kinematics model, but usually handle

the speed as a categorical variable (e.g low, medium, high).

Using sensor fusion, we propose the use of a neural

network(NN) as a continuous regression model to predict the

walking speed at 20Hz based on the information extracted

from the last 250ms window of data.

II. METHODS

A flat ground treadmill walking experiment was conducted

on three able-bodied subjects (age(yr): 21,19,22; weight(kg):

88.5,56.7,61.2; height(m): 1.75,1.65,1.70) after giving in-

formed consent to an IRB approved protocol. Subjects were

instrumented on one leg with EMG on major lower limb

muscles, 3 IMU (one per segment), 3 electrogoniometers

(one per joint), and FSR heel contact sensors to parse the gait

cycle during post-processing. Subjects walked on a treadmill

for 30 seconds at speeds in a range from 0.4 to 1.8 m/s.

We extracted time domain features from each moving

window of data, and reduced the dimensionality by selecting

the top ten features according to heuristic criteria from

feature visualization. NN architecture is single hidden layer

with size 8. In order to assume continuity of the overall

network speed predictions, multiple networks were trained,

each with one of the speeds removed from the training data.

Each network was then tested on the speed removed from

its training set and the mean-squared speed prediction errors

were recorded. With sufficiently small errors, the assumption

of continuity holds.

III. RESULTS AND DISCUSSION

Figure 2. Speed prediction results on test data of a NN. “Speed in” was

trained with samples of all the speeds; “Leave speed out” was trained with

samples from all speeds except the testing speed. Shaded area is ±SD.

When randomly selecting training and testing data among

discrete walking speeds between 0.6 and 1.6 m/s and com-

paring the prediction of the NN to the true value, a mean

squared error of 3.90% of true speed value was achieved.

By reserving individual walking speeds as part of a test set,

and training the algorithm on the remaining walking speeds

from the experiment, the NN was able to predict walking

speeds with a mean squared error of 4.50%. This marginal

increase in error demonstrates that the resulting NN is able to

interpolate unknown speeds based on other sampled speeds,

and can estimate walking speed continuously with a high

degree of accuracy and not only at the discrete points in

which it was trained.
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INTRODUCTION 
Individuals with transfemoral amputation (TFA) exert up to 
three times more hip power on their prosthetic side (Winter 
1991). Hip hiking and other gait deviations compensate for 
power lost from absent biological muscles. However, an 
experimental powered knee-ankle prosthesis (Graham et al., 
2016) has been shown to replace the missing biological forces 
generated by muscles and is especially useful during 
ambulation over slopes. The purpose of this case study was to 
compare the biomechanical effects of the powered knee-ankle 
prosthesis to the subject’s passive microprocessor system. 

METHOD 
Subject: One 37 y/o male (183cm, 98.5kg, K4) with a right TFA 
consented to participate in this IRB approved case study.  

Apparatus: Motion capture system (Vicon, Centennial, CO) 
and split-belt instrumented treadmill (Bertec, Columbus, OH). 

Procedures: Retroreflective markers were placed on the 
subject, the habitual passive microprocessor prosthesis (Otto 
Bock C-Leg, Triton VS Foot), and the powered prosthesis (Fig. 
1). Data was collected during up slope walking and down 
slope (7.5º and 1.0 m/s) and level ground walking trials (1.0 
m/s, and 1.2 m/s) for each prosthesis. Joint moments were 
compared between the passive and powered knee-ankle 
systems without statistical analysis to highlight potential areas 
future larger studies may focus on. 

RESULTS 
Over level ground, the powered prosthesis reduced hip flexion 
moment during pre-swing compared to the passive prosthesis 
(Fig. 2). This same reduction in hip flexor moment was 
observed both for ramp ascent and ramp descent circuits (Fig. 
3). In contrast, while using the powered prosthesis, hip 
extensor moments on the sound side increased compared to 
use with the passive prosthesis (not shown). 

DISCUSSION 
The reduction of hip flexor moment seen with the powered 
prosthesis during terminal stance/initial swing is particularly 
relevant for subjects with TFA as this motion is critical for 
advancement of the prosthetic side. With the powered 
prosthesis, the assistance shown during walking could 
potentially reduce risk of hip and back related secondary 
musculoskeletal pathologies, which are common clinical 
problems in this population. The increase in hip extension 
moment on the sound side is likely due to the increased weight 
(+4.5kg) of the experimental prosthesis and the need to 
stabilize the core to properly plant the device during initial 
contact. While this study is limited by the n=1 design, we 
anticipate similar results as other subjects participate in this 
study. 

CLINICAL APPLICATIONS 
The development of powered prostheses is an important area 
for research as these devices can restore lost biomechanical 
function to the user and potentially improve their quality of life 
over time. When these devices are shown to have improved 
efficacy over current clinical standards, then they are more 
likely to be reimbursed by third party payers and implemented 
into modern clinical practice.  
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(Left to right): Fig 1: Powered prosthesis and experimental setup; Fig 2: Prosthetic side hip moment for the passive (dotted) and powered prosthesis 
(solid) during level ground walking at 1.0 m/s (black) and 1.2 m/s (grey); Fig 3: Prosthetic side hip moment during ramp ascent (RA) and ramp 
descent (RD) at 1.0 m/s 
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Appendix F: Prosthetic Survey 



Subject ID: __________________________________  Date: _____________________  
 

Please answer the following questions for your CURRENT prosthesis. 

  



Subject ID: __________________________________  Date: _____________________  
 

Please answer the following questions for GT’s prosthesis. 
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Study/Product Aim(s)
• Compare intent recognition accuracy of the user-independent
system to the user-dependent system in real-time as amputees
ambulate over different locomotion modes
• Quantify the metabolic cost of walking, amputee biomechanics of
motion and completion time and compare between user-dependent
and user-independent intent recognition.
• Compare clinical outcome measures of powered prosthesis with
active intent recognition to passive prosthesis ambulation.

Approach

We will recruit and train 7 transfemoral amputees on a powered 
knee/ankle prosthesis and collect from this group a set of sensor 
data as they ambulate over a locomotion circuit including level 
walking, stairs and ramps. We will implement our intent recognition 
systems on the powered prosthesis and test them in real-time and 
measure metabolic cost of walking, completion time, and user 
biomechanics and compare to passive prosthesis ambulation.

Goals/Milestones 

CY17 Goal – Subject Recruitment and Fitting

 Obtain HRPO and IRB approval

 Fully functional system ready for patient testing

CY18 Goals – Initial Data Collection and System Implementation

 Collect sensor data from amputees on level and ramps

CY19 Goal – Real-Time Experimental Testing

 Collect sensor data from amputees ambulating over ramps/stairs

 Implement intent recognition systems on the powered prosthesis

 Real-time tests of intent recognition systems with amputees using 

the powered prosthesis

CY20 Goal – Finish all remaining tasks

 Analyze data and prepare for publication

Comments/Challenges/Issues/Concerns

• We are a few months behind schedule due to lab renovations

Budget Expenditure to Date

Projected Expenditure: $499,915

Actual Expenditure:  $200,158.51
Updated: 2/7/2019

Timeline and Cost

Activities  CY  17   18   19 20

Subject Recruitment and Fitting

Estimated Budget ($K) $145  $75  $100  $180

Training and Data Collection

System Implementation

Real-Time Testing

Accomplishment: We have successfully completed a treadmill based biomechanics 
protocol on six individuals with transfemoral amputation comparing powered 
prosthesis to passive device performance. An OpenSim model incorporating the 
prostheses was developed to analyze 3D locomotion kinematics and kinetics.


