Cal‘negie Mell()n [Jniversity Ejl?ift‘rki)b\tj‘tion Statement A] Approved for public release and unlimited
istribution.

Software Engineering Institute

Cloud Computing:
An Architecture-centric View

John Klein
Jklein@sei.cmu.edu

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other manner without requesting
formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government purposes, the SEI recommends
attendance to ensure proper understanding.

DM18-0567

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- . . © 2018 Carnegie Mellon University distribution. 2
Software Engineering Institute

Obijectives for This Course

Explain how cloud computing is different from traditional data center deployment

Identify how the controllability and observability of cloud-based systems impacts test and
evaluation approaches

Explain how cloud computing promotes and inhibits system quality attributes (including
cybersecurity), and how this impacts test and evaluation approaches

Identify potential areas of risk in cloud-based systems

(,]arnogi(‘ Mellon University Cloud Comp um‘g‘]' An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
’ N © 2018 Carnegie Mellon University

- . . distribution.
Software Engineering Institute

Introduction

Who am 1?

Who are you?

y

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

© 2018 Carnegie Mellon University distribution. 4

Software Engineering Institute

Instructor Introductions

John Klein
Senior Member of the Technical Staff, CMU SElI

jklein@sei.cmu.edu

https://www.sei.cmu.edu/about/people/profile.cfim?id=klein 14435

Tim Morrow

Security Solutions Engineer, CMU SEI

tom@cert.org
https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow 16360

Carnogio Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
“ © 2018 Carnegie Mellon University

. . . distribution.
Software Engineering Institute

https://www.sei.cmu.edu/about/people/profile.cfm?id=klein_14435
https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow_16360

Agenda -1

Definitions and fundamental concepts

 essential characteristics of cloud computing, cloud
delivery service models, deployment approaches
(private, community, hybrid), government-specific cloud
offerings

Enabling technologies
e virtualization, containerization, infrastructure as code

Cloud native services

» out-of-the-box services from cloud providers for storage
and databases, application integration, monitoring,
scaling and load balancing, identity and access
management, analytics

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
© 2018 Carnegie Mellon University distribution.

Agenda — 2

Introduction to Security

J” Quality attributes in the cloud

* how cloud computing promotes or inhibits qualities such
as availability, performance, scalability, testability,
modifiability/ extensibility, and cybersecurity

Distributed systems concepts

« communication/coordination limits in distributed
systems, consistency/availability/partition tolerance
tradeoffs for distributed state/data, time synchronization

Using the cloud to support test and evaluation

» how to leverage the elasticity and scalability of the cloud
to test and evaluate systems

Carncgio Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
7 © 2018 C: arnegie Mellon University distribution. 7

Software Engineering Institute

Rules of Engagement

We will be very busy today.

To complete everything and get the most from
the course, we will need to follow some

rules of engagement:
* Your participation is essential.

"l
* Feel free to ask questions at any time.

* Discussion is good, but we might need to cut some discussions short in the interest of
time.

* Please try to limit side discussions during the lectures.

* Please turn off your cell phone ringers and computers.

e Let's try to start on time.

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

Carnegie Mellon University Distribu
v © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

Any Questions So Far?

Carnegic Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i < © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

Cloud Computing: An Architecture-centric View

Definitions and Fundamental
Concepts

Carn(\,gi(\, Mellon University Cloud Computing: An Architecture-centric View
X) v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

10

Definitions and Fundamental Concepts

In this module, we will discuss
» What makes cloud computing different from a typical data center
 Cloud service models
 Cloud delivery models
 Cloud options available for US government systems
» Security controls
* Service level agreements

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

11

Data Center Deployment

room for
high-heat-density servers

caged colocation room

air conditioning system o L = generators

man trap entry

staging room

NOC room

security equipments

rack colocation room i
raised floor

Carnegie Mellon Um'versity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
A K X © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

Cloud Computing

“A model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Source: National Institute of Standards and Technology (NIST), 2011

(,:ill‘llﬂgi(‘ Mellon l,'lli\'(‘l‘sil.\ Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 13
Software Engineering Institute

Cloud Computing Models and Essential Characteristics

Service Software as a Service | Platform as a Service Infrastructure as a
Models (SaaS) (PaaS) S (EES))

Deployment Public Private Community
Models

Essential Measured Service Resource Pooling
Characteristics

On-Demand Self Service Broad Network Access Rapid Elasticity

Source: National Institute of Standards and Technology (NIST), 2011

Carnegio Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i < © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

14

NIST Cloud Model's Five Essential Characteristics

On-demand self-service — a consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without requiring human interaction with each
service provider.

Broad network access — capabilities are available over the network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets,
laptops, and workstations)

Resource pooling — the service provider's computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned
and reassigned according to consumer demand.

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 15

Software Engineering Institute

NIST Cloud Model's Five Essential Characteristics

Rapid elasticity — capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand.

Measured service — cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage,
processing, bandwidth, and active user accounts).

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited 16

Carnegie Mellon University Distribu
) v © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

Deployment Models

Public
 Offered as a service, usually over an Internet connection
 Typically charge a pay-per-use fee
» Users can scale on-demand and do not need to purchase hardware
 Cloud providers manage the infrastructure and pool resources into capacity required by consumers

Private

» Deployed inside the firewall and managed by the user organization

» User organization owns the software and hardware running in the cloud

» User organization manages the cloud and provides cloud resources

» Resources typically not shared outside the organization and full control is retained by the organization
Hybrid

« Combination of public and private cloud and/or community

Community
 Cloud that contains functionality tailored for the industry that it serves

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

17

Service Delivery Models

Infrastructure as a Service (laaS)
* CPUs
* Disk drives
» Networks
» Data centers

Platform as a Service (PaaS)
» Development and runtime tools and environment

Software as a Service (SaaS)
» Enterprise apps
» Desktop apps
» Mobile apps

Carn(\,gip Mellon University Cloud Computing: An Architecture-centric View
.) i © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

18

Shared Responsibilities Model

You manage
AL

Traditional IT

N

Applications

Middleware
Operating System
Virtualization
Servers

Storage

Networking

-

You manage

A

g J

.

~

la

Infrastructure
(as a Service)

Applications

Middleware

“\/
29JAIa5 B Sk palai|leq

Platform
(as a Service)

Applications

You manage

Data

J

h.

a0|Alas B se palai|laq

"\‘/'
a2JAlas B SE palaAllaqg

AN

Software
(as a Service)

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View

© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

19

Drivers for Cloud Computing Adoption

Availability

247 access to data and applications from anywhere

Big Data

Public clouds have significantly reduced the cost of entry into big data, machine learning, and
artificial intelligence systems

Elasticity and
Scalability

Organizations can request, use, and release as many resources as needed based on
changing needs and user demand

Lower Infrastructure
Costs

The pay-per-use model allows an organization to only pay for the resources they need with
basically no investment in the physical resources available in the cloud — there are no
infrastructure maintenance or upgrade costs

Reduced
Development Times

* Available tools and platforms, in addition to DevOps procedures, can reduce amount of
code to write and deployment times
» Multi-organizational projects can work simultaneously on common data and information

Reliability

In order to support SLAs (service-level agreements), cloud providers have reliability

mechanisms that are much more robust than those that could be cost-effectively provided by a

single organization

Risk Reduction

Organizations can use the cloud to test ideas and concepts before making major investments
in technology

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
© 2018 Carnegie Mellon University distribution.

20

Challenges for Cloud Computing Adoption

Interoperability

A universal set of standards and/or interfaces has not yet been defined, resulting in a
significant risk of vendor lock-in

Latency

All access to the cloud is done via the internet, introducing latency into every communication
between the user and the environment

Legal Issues

There are concerns in the cloud computing community over jurisdiction, data protection, data
location, fair information practices, international data transfer, and legal access to data

Platform or Language
Constraints

Some cloud environments provide support for specific platforms and languages only

Security

The key concern is data privacy: organizations typically do not have control of or know where
their data is being stored

Skills/Knowledge

Different skills are needed to make use of clouds at the different services than a traditional IT
center

Compliance Satisfying NIST Special Publication 800-53 security controls and assessment procedures for
the program’s appropriate security control level
Portability Cloud service providers provide similar functionality but implement their services differently

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
© 2018 Carnegie Mellon University distribution.

21

FedRAMP

Government-wide program for unclassified cloud computing that standardizes:
» Security assessment
» Authorization
» Continuous monitoring for cloud products and services
* https://www.fedramp.gov/about-us/about/

There are three main players in the FedRAMP process:
» Agencies
 Cloud service providers (CSPs)
 Third party assessment organizations (3PAQOS)

FedRamp Authorization Playbook is the starting point
* https://www.fedramp.gov/introducing-the-new-agency-authorization-playbook/

ic View [Distribution Statement A] Approved for public release and unlimited

(,:le‘ll(‘,gi(‘ 1\[(‘"0" l,‘ni\'(‘rsi[\ Cloud Computing: An Architecture-centr
? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

22

Relevant Security Documentation for FedRAMP

FIPS Publication 199 Standards for Security Categorization of Federal Information and
Information Systems

FIPS Publication 200 Minimum Security Requirements for Federal Information and
Information Systems

NIST 800-53 Security Controls Catalog, revision 4

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
’ N © 2018 Carnegie Mellon University

- . . distribution.
Software Engineering Institute

23

FIPS Publication 199

Defines three levels of potential impact on organizations or individuals should there be a breach of security
(i.e. a loss of confidentiality, integrity, or availability).

LOW impact if the loss of confidentiality, integrity, or availability could be expected to have a limited adverse
effect on organizational operations, organizational assets, or individuals.

MODERATE impact if the loss of confidentiality, integrity, or availability could be expected to have a serious
adverse effect on organizational operations, organizational assets, or individuals.

HIGH impact if the loss of confidentiality, integrity, or availability could be expected to have a severe or
catastrophic adverse effect on organizational operations, organizational assets, or individuals.

Security Categorization:
SC(system)={(confidentiality, impact), (integrity, impact), (availability, impact)}

(,:ill‘llﬂgi(‘ Mellon Un i\'(‘l‘sil) Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 24
Software Engineering Institute

FIPS Publication 200

Identifies seventeen security-related areas with regard to protecting the confidentiality, integrity,

and availability of federal information systems and the information processed, stored, and

transmitted by those systems.
1. access control

awareness and training

audit and accountability

> W D

certification, accreditation, and security
assessments

configuration management

contingency planning

5
6
7. identification and authentication
8. incident response

9

maintenance

10.
11.
12.
13.
14.
15.
16.
17.

media protection

physical and environmental protection
planning

personnel security

risk assessment

systems and services acquisition
system and communications protection

system and information integrity

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
) - © 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

25

Examples of FedRAMP Cloud Service Providers (CSPs)

Provider Service Model Impact Level Authorizations
Supported

AWS US East/West laaS Moderate

AWS GovCloud laaS Moderate 39
AWS GovCloud High laaS, PaaS High 8
Google G Suite PaaS, SaaS Moderate 10
Google Services (Google Cloud laaS, PaaS, SaaS Moderate 0
Platform Products)

Microsoft Commercial Cloud laaS, PaaS Moderate 56
Microsoft Azure Government laaS, PaaS High 15
Microsoft 365 Multi-Tenant & SaaS Moderate 33

Supporting Services

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon Universit distribution. 26
Software Engineering Institute

Service-Level Agreements

A service level agreement (SLA) is a formal negotiated agreement (contract) between
service consumers and providers.
Minimal SLA outline

* Parties in the agreement

 Services provided that are covered by the SLA

 Service performance metrics

* Incident handling — procedures, response times, consequences when response times
are not met

» Records/logs to keep
» Performance review and problem management
» Termination arrangements

Each CSP has their own SLA.

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? v © 2018 Carnegie Mellon University distribution. 27

Software Engineering Institute

Example: Amazon Compute SLA

Amazon Compute Service Level Agreement

Last Updated: December 1, 2017

This Amazon Compute Service Level Agreement (this “SLA™) is a policy governing the use of
the Included Products and Services (listed below) by you or the entity you represent (“you’)
under the terms of the AWS Customer Agreement (the “AWS Agreement”) between Amazon
Web Services, ne. and its affiliates (“AWS™, “us™ or “we™) and you. This SLA applies
separately to each account using the Included Products and Services. Unless otherwise provided
herein, this SLA is subject to the terms of the AWS Agreement and capitalized terms will have
the meaning specified in the AWS Agreement. We reserve the right to change the terms of this
SLA in accordance with the AWS Agreement.

Included Products and Services

= Amazon Elastic Compute Cloud {Amazon EC2)

= Amazon Elastic Block Store (Amazon EBS)

» Amazon Llastic Container Service (Amazon TCS)
s AWS Fargatc for Amazon ECS (AWS Fargatc)

Service Commitment

AWS will use commercially reasonable efforts to make the Included Products and Services each
available with a Monthly Uptime Percentage (defined below) of at least 99.99%, in each case
during any monthly billing cycle (the “Service Commitment™). In the event any of the Included
Products and Services do not meet the Service Commitment. vou will be eligible to receive a
Service Credit as described below.

Definitions

s "Monthly Uptime Percentage™ is calculated by subtracting from 100% the percentage of
minutes during the month in which any of the Included Products and Services, as
applicable, was in the state of “Region Unavailable.” Monthly Uptime Percentage
measurements exclude downtime resulting directly or indirectly from any Amazon
Compute Services SLA Exclusion (defined below).

s “Region Unavailable™ and “Region Unavailability™ mean that more than one Availability
Zone in which vou are running an instance or task (one or more containers), as
applicable, within the same Region. is “Unavailable™ to you.

» “Unavailable” and “Unavailability”” mean:

For Amazon EC2, Amazon ECS, or AWS Targate, when all of your running
instances or running tasks, as applicable, have no external connectivity.

For Amazon EBS, when all of your attached volumes perform zero read write 10,
with pending IO in the queue.

o A "Service Credit™ is a dollar credit, calculated as set forth below, that we may credit
back to an eligible account,

https://aws.amazon.com/ec2/sla/

Cﬂ[‘[l(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
) v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

28

Definitions and Fundamental Concepts

In this module, we discussed
» What makes cloud computing different from a typical data center
 Cloud service models
 Cloud delivery models
 Cloud options available for US government systems
» Security controls
* Service level agreements

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

29

Cloud Computing: An Architecture-centric View

Enabling Technologies

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 30
Software Engineering Institute

Enabling Technologies

In this module, we will discuss
* What is virtualization and how it enables cloud computing
» How virtual servers are different from physical servers
» What are containers and how they support cloud computing
* How virtual machines are managed using scripts

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

31

Focusing our discussion

For much of the rest of this course, we are going to focus on Amazon’s laaS technology —
Amazon Web Services or AWS

Why laaS?
» Our experience is that laaS is the starting point for many system migrations to the
cloud
» Understanding laaS provides the necessary foundation to understand other cloud
services - PaaS and Saa$S are built on top of laaS

« Amazon’s laaS is starting to bleed into PaaS and SaaS

Why Amazon?
» Market leader in commercial and government sectors
 Broad offering, covers diverse capabilities
» Other vendors map their offerings to Amazon’s

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? v © 2018 Carnegie Mellon University distribution. 32

Software Engineering Institute

How do they do it?

How does a cloud service provider deliver Infrastructure as a Service?
How do they achieve elasticity and on-demand capacity?

How much do you need to care about it?

(]arn(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
' © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

33

Virtualization

NIST definition (800-125)
* Virtualization is the simulation of the software and/or hardware upon which other
software runs.
Types of virtualization:
 Application — e.g., Java Virtual Machine
» Operating system — e.g., containers like Docker

 Full — One or more operating systems (and their applications) running on top of virtual
hardware

We’'ll talk about Full Virtualization first, and then come back to Containers

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 34
Software Engineering Institute

Types of Full Virtualization

Appii;:ation “ Applit;ation Appli.cation
Application Application Application || Guest 0S Guest 0S
Guest 0S Guest 0S Application]| Hypervisor
Hypervisor Host OS
Hardware Hardware
Bare metal Hosted
Type 1 Type 2

Source: NIST 800125 (mostly used on Desktop)

Carncgio Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i < © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

Virtualization Influences Deployment Partitioning

With physical servers:

» Deploy multiple applications on a physical server — introduces dependency
management concerns

« Efficiency — Fill the server’s capacity (while maintaining some reserve headroom)
* Physical failure may be a concern, i.e. don’t deploy the primary and backup to the
same physical server
With virtualized servers:
» Simplify dependencies — deploy one application per VM instance
« Efficiency of physical hardware utilization is the cloud provider’s concern

* Physical hardware failure is (mostly) handled by the cloud service provider — we’ll talk
later about deployment patterns to improve availability

(,:ill'll(‘,}.’,‘i(‘ Mellon University (;\oKuli{ fom p u{[\‘n ‘(‘j /\\‘j /\rch\\[ecme—cenn ic View [Distribution Statement A] Approved for public release and unlimited
’ i 2018 Carnegie Mellon University

- . . distribution. 36
Software Engineering Institute

Virtualization and the Cloud

Cloud Service Providers use Type 1 virtualization

AWS used the Xen hypervisor, now moving to KVM-based implementation*

Physical reboots are a very rare event

Instance = executing guest OS + application (and middleware)

Multi-tenant — Instances on same physical server may belong to different users

N\
\

Application

Application

Guest 0OS

Guest 0S

Hypervisor

Hardware

Instance 2

* https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/

Carn(‘,gi(‘]\’[(‘“()n ljlli\'(‘l'Sit\' Cloud Computing: An Architecture-cent
- . . © 2018 Carnegie Mellon University
Software Engineering Institute

ric View

[Distribution Statement A] Approved for public release and unlimited
distribution.

37

Images and Instances

An instance is a deployed and executing image.
» An image can be used to create multiple instances.

How are images created?
« Start with a base image — this is a minimal bootable guest OS image
» Deploy and start the base image
* Install more software (middleware, application, etc.) on the running instance
» Configure and tune the running instance (users, firewall, application settings)
» Take a snapshot of the instance to create a new image

We’'ll talk more this later — Infrastructure as Code

(,];1r[1(\,gi(‘ Mellon Un iversity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

38

A VM instance is not like a traditional physical server —
Storage

The disk on a physical server retains state from one boot to the next boot
* Not necessarily the case in the cloud

Boot volume (AWS EC2):
* Instance Store-backed

- Ephemeral, data is not saved on shutdown, next boot is from clean image
- Slower to start (in EC2)

* EBS Store-backed

- Persistent, behaves like physical server boot disk
- Faster to start (in EC2)

- Incurs storage charges even when instance is not running

We don’t back up virtual servers — the image is the backup

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University distribution.

[Distribution Statement A] Approved for public release and unlimited

39

A VM instance is not like a traditional physical server —
Networking, Configuration, Access

Networking

* VM instances are assigned dynamic hostnames and IP addresses — there are no static
IP addresses in the cloud

 Architectures must use discovery instead of static configuration

We can pass configuration variables to an instance when we start it.
 E.g., role=master or role=slave

Your only access is via ssh - you get the instance’s key when you launch it. Don’t Lose
That Key!

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 40
Software Engineering Institute

Instances and Physical Hardware

The cloud service provider manages allocation of instance to physical nodes

Most cloud service providers offer several types of instance profiles
« CPU and memory capabilities
» Hypervisor tuning
* Network and storage

Each profile has a different pay-per-use cost
Profiles change over time as technology evolves

(]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

41

Example — Survey of Instance Types* in
Amazon Elastic Compute Cloud (EC2)

General Purpose
* 4 subtypes, various sizes (23 total)
» Balance CPU, Memory, 1/0O

Compute Optimized

» 3 subtypes, 1 w/ SSD (16 total)
» High-end CPUs, variable memory sizes

Memory Optimized
* 4 subtypes, 3 w/ SSD (19 total)
« Up to 3,905GiB memory

Accelerated Computing
4 subtypes (11 total)
* GPU and FPGA

Storage Optimized
» 3 subtypes, HDD and SSD (15 total)
 High instance storage for replicated databases

*As of 1 Dec 2017

Czlrnogio Mellon University Cloud Computing: An Architecture-centric View
? - © 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

42

Containers

A VM image contains a full guest operating system
» May take 30-45 seconds to start, possibly longer depending on the time to copy the
image from storage

What if my application doesn’t need all of the services that the OS provides? E.g.,
Microservices or a Function-as-a-Service

An Application Container* is a construct designed to package and run an application or its
components running on a shared Operating System.
Containers are “lightweight” - <50 msec startup time, small enough to cache locally

» Based on Linux kernel namespaces and cgroups

* Less robust isolation than VM provides, but enough for most use cases

Some similarities to VMs - boot from image, storage is ephemeral

Some differences — Images can be composed, networking is bridged through host’s IP

address
*From NIST 800-180 Draft

(,:ill'll(‘,}.’,‘i(‘ Mellon University Cloud Computin ‘(‘j An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
’ ? 2018 Carnegie Mellon University

-) : distribution. 43
Software Engineering Institute

Container Compared to Full Virtualization

System
Virtual Machine

Application
Container

\ Virtual Machine

E.g., Docker

Application g
Container

And, of course, you can run
your container daemon on a
guest OS ina VM

Source: NIST 800-180 Draft

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X i . © 2018 Carnegie Mellon University distribution. 44
Software Engineering Institute

Container Technology

This technology space can be confusing, because containers are being applied for both
desktop and server use cases

Docker was emerging as the leading container engine (docker.org) for both cases,
although recent business decisions have created some concerns
Desktop Use Case
» Don't install applications or runtimes, instead run software in a container
 Especially useful if you need multiple versions of a runtime

Server Use Case
« Small, fast deployable units
* Fine-grained scalability

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 45
Software Engineering Institute

Containers on the Desktop

(This is not directly related to cloud computing)

$ sudo apt-get install docker.io

$ docker pull python:2.7
$ docker pull python:3.3
$ docker pull python:3.4

$ docker run -i -t --rm python:2.7 python -m timeit "[i
10000 loops, best of 3: 82.2 usec per loop

$ docker run -i -t --rm python:3.3 python -m timeit "[i
10000 loops, best of 3: 83 usec per loop

$ docker run -i -t --rm python:3.4 python -m timeit "[i
10000 loops, best of 3: 87.7 usec per loop

Example from http://tiborsimko.org/docker-for-python-applications.html

for i in range(1000)]"

for i in range(1000)]™

for i in range(1000)]"

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
_ . v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

46

Server-side Containers

Driven by microservices (a small, cohesive, independently deployable distributed service
developed by a single team)

Applications have many (i.e. 10s) of microservices, with some executing multiple
instances
Concerns

» Packaging dependencies

» Deployment efficiency (100s of instances)

Enter containers and container orchestration technology
» Docker container engine
» Kubernetes (“K8s"*) container management

Containers enable the function as a service, AKA serverless architecture style

* But only if you are a rock star full stack ninja developer

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? v © 2018 Carnegie Mellon University distribution. 47

Software Engineering Institute

Creating VM Instances

Amazon Web Service (AWS) homepage has 10-minute Tutorial: Launch a Linux Virtual
Machine using Amazon EC2

» Uses the AWS Management Console

» Wizard-driven VM instance creation — step through a few screens to configure and
launch the instance

» Console shows the status of your running instances
» Great way to get started with AWS!

But this approach is not viable for more than a few instances
» Manual and error-prone
» Slow

Automate all the things — treat your infrastructure as code

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

48

Automate all the Things —
Infrastructure as Code

Infrastructure as code is the process and technology to manage and provision computers
and networks (physical and/or virtual) through scripts.

Scripts/code provide:
» Scale
e Automation
* Version control

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
N . 7 © 2018 Carnegie Mellon University distribution. 49
Software Engineering Institute

Technology support for infrastructure as code

AWS Command Line Interface and language-specific libraries
* Wraps the AWS API — use your favorite scripting tools (shell script, Python, Ruby, ...)
* Fine-grained and detailed control

« Can do more than just manage VM instances
« Manage images, manage storage and snapshots, ad hoc operations on services like
DynamoDB and Identity and Access Management (IAM)

DevOps tools like Chef and Puppet use higher-level abstractions, make things easier and
more efficient

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 50
Software Engineering Institute

Chef Script Examples
(Chef scripts use Ruby)

httpd_service “an websites® do

end

instance_name “bob*
servername “www.computers.biz
version "2.4F

mpm “event®

threadlimit "4096"
listen_ports ["12347]

action :create

action :start

mysql_service "foo" do

end

Examples from https://github.com/chef-cookbooks/httpd and https://github.com/chef-cookbooks/mysql

port "3306"
version "5.5°

initial_root_password "change me-

action [:create, :start]

Carnegie Mellon University

Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

51

Immutable/Versioned Infrastructure

Infrastructure as code promotes an IT operations approach called immutable infrastructure
* Immutable — “write once”
» Don't update, recreate (or replace)

Don’t patch a running system, instead
» Rework the infrastructure as code scripts that generated the image
» Create a new image
 Test instances of the new image
* Deploy the new image to production

Allows us to version our infrastructure

* Rollback — some large-scale systems can’t be tested outside of the production environment —
Infrastructure as Code and versioned infrastructure provide a safety net for testing in these
situations

 Parity — test and production environments are identical

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 52

Software Engineering Institute

Infrastructure as Code - Takeaways

You need to be familiar with both approaches:
» Chef/Puppet/etc. — Fast, easy, default development tools
« AWS Command Line Interface — finer-grained control and visibility for T&E activities

Contractors should deliver their infrastructure as code artifacts
* Treat these like any other software deliverable
* It is code — some up-front design is usually needed to define approach and overall
structure
* It is code — some documentation is needed to describe the artifacts
Key to agility
* Versioned infrastructure provides a safety net for rapid exploration and experimentation

Repeatability reduces implementation diversity

(,:ill'll(‘,}.’,‘i(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? v 2018 Carnegie Mellon University distribution. 53

Software Engineering Institute

One more thing —
Network Virtualization and Virtual Private Clouds

VMs provide isolation when sharing physical computer hardware
What about sharing the network?
A virtual private cloud or VPC uses private subnet addresses and VLAN technology to
isolate network traffic between VMs

* When a VM is launched, it is assigned to a VPC

» Some CSPs (e.g., AWS) allow you to also purchase physical hardware isolation — VMs

deployed to a VPC will not share physical hardware with VMs outside that VPC

Amazon also allows you to pay to place a VPN endpoint in the VPC

* Allows extending the enterprise network directly into the cloud for hybrid service
delivery

[Distribution Statement A] Approved for public release and unlimited
distribution.

54

(j;u-npgi(- Mellon University Cloud Computing: An Architecture-centric View
- >) v 2018 Carnegie Mellon Universit
Software Engineering Institute

Enabling Technologies

In this module, we discussed
* What is virtualization and how it enables cloud computing
» How virtual servers are different from physical servers
» What are containers and how they support cloud computing
* How virtual machines are managed using scripts

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

55

Cloud Computing: An Architecture-centric View

Cloud Native Services

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 56
Software Engineering Institute

Cloud Native Services

In this module, we will discuss
* Cloud platforms include many out-of-the-box services
* Architectures can trade off cloud native vs. portable implementations
» Impact on testing/assurance approach

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
-) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

57

Lift and shift to the cloud?

<lift-and-shift>

1. Package each of your servers iInto a virtual machine image

2. Choose a cloud service provider
3. Select appropriate instance types
4. Deploy your VM images

</lift-and-shift>

Done? Not quite!

<remediation>
1. Persistent storage
2. Static IP addresses
3. .

</remediation>

Carn(\,gip Mellon University Cloud Computing: An Architecture-centric View
.) i © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

58

The case for cloud native services

Scalable, secure, and highly-available distributed services are hard
» PostgreSQL has 270 configuration parameters
» Kafka message queue has 140 “top-level” configuration parameters
 How many impact security? performance? availability?

Managing distributed services is hard
» Patching and updating is harder in distributed system
* Monitoring
» Adding capacity to a running system

Wouldn't it be nice if this was somebody else’s problem?

Cloud Native Services to the rescue!

(,:ill‘llﬂgi(‘ Mellon University Cloud Comp um‘g‘]' An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¥ © 2018 Carnegie Mellon University

- . . distribution.
Software Engineering Institute

59

AWS Cloud Native Services

(8]

Compute

XK

Developer Tools

&

Machine Learning

=

Business Productivity

0[5

Storage

i

Management Tools

i

Mobile Services

G

Desktop & App Streaming

Explore Our Products

S

Database

[0

Media Services

&=

AR & VR

4P

Internet of Things

@

Migration

0

Security, Identity &
Compliance

En

Application Integration

o

Game Development

&

Networking & Content
Delivery

Analytics

Customer Engagement

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited

distribution.

60

Cloud Native Services — Annotation Key

Replaces a traditional, portable component
(You could build this yourself in the cloud)

Only cloud service provider can feasibly
deliver this service

There are some judgement calls here.

Note that we don’t categorize every service offering.

Cﬂ[‘[l(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
) v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

61

AWS Cloud Native Services — Compute

Explore Our Products

(8] = =

Database

Compute Storage

Amazon EC2
Virtual Servers in the Cloud

Amazon Elastic Container Service
Run and Manage Docker Containers

Amazon Elastic Container Registry
Store and Retrieve Docker Images

AWS Elastic Beanstalk
Run and Manage Web Apps Run C

AWS Serverless Application Repository
Discover, Deploy, and Publish Serverless Applications

Amazon Lightsail
nch and Manage Virtual Private Servdg

AWS Fargate
tainers without Managing Servers or @usters
Auto Scaling
Automatic Elasticity

@ o

Networking & Content
Delivery

Migration

azon Elastic Container Service for Kuberi :tes
Run Managed Kubernetes on AWS

AWS Batch

AWS Lambda
Run your Code in Response to Eventy

VMware Cloud on AWS
Build a Hybrid Cloud without Custom Hardware

Cloud Computing: An Architecture-centric View

Carnegie Mellon University
- © 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

62

AWS Cloud Native Services — Storage

(8] =

Compute Storage

Amazon 53
Scalable Storage in the Cloud

Amazon Glacier
Low-cost Archive Storage in the Cloud

AWS Snowball Edge
Petabyte-scale Data Transport with On-board Compute

Explore Our Products

=

Database

Amazon EBS
Block Storage for EC2

AWS Storage Gateway
Hybrid Storage Integration

AWS Snowmobile

Exabyte-scale Data Transport

@ S

Migration Networking & Content
Delivery

Amazon Elastic File System
Managed File Storage for EC2

AWS Snowball
Petabyte-scale Data Transport

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

63

Storage — Seems like a lot of options!

Basics:

* EBS - Elastic Block Store — the virtual hard disks for your VM
- An EBS volume can be mounted by only one VM instance at a time
- Size limited to 16TB per volume
- Can be backed up/snapshot’ed in case of application crash

* EFS — Elastic File System — NFS in the cloud
- Distributed file system, can be mounted by many VMs at a time
- No size limits
- Managed by AWS

» S3 — Simple Storage Service — object (blob) storage
- Access via API or via http (can use to host static web content)
- Virtually unlimited scale (both objects and buckets/namespaces)
- Managed by AWS

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

64

Storage

“Advanced”:
» Glacier — low cost cold storage
» Storage Gateway — hybrid cloud storage solution
» Snowball and Snowmobile — peta-/exa-scale transport and storage (i.e. sneakernet)

» Snowball Edge — Onboard ingest processing

(]arn(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
} K < © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

65

AWS Cloud Native Services — Database

(8]

Compute

Amazon Aurora

High@Performance Managed Relational Databasq

Amazon ElastiCache

In-memory Caching System

Explore Our Products

S

Database

Amazon RDS
ged Relational Database Service for MySQ

Amazon Redshift
, Simple, Cost-effective Data Warehousing

@ &

Migration Networking & Content
Delivery

Amazon DynamoDB
Managed NoSQL Database

Amazon Neptune
Fully Managed Graph Database Service

AWS Database Migration Service
Migrate Databases with Minimal Downtime

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

66

AWS Cloud Native Services — Networking

(8] =

Compute Storage

Amazon VPC
Isolated Cloud Resources

Amazon AP| Gateway
Build, Deploy, and Manage APIs

Explore Our Products

Amazon CloudFront
Global Content Delivery Network

AWS Direct Connect
dicated Network Connection to A

% o

Migration Networking & Content
Delivery

Amazon Route 53
Scalable Domain Name System
Elastic Load Balancing
High Scale Load Balancing

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

67

AWS Cloud Native Services — Management

Explore Our Products

2 = @ o

Compute Storage Database Migration Networking & Content
Delivery
X [0
Developer Tools Management Tools Media Services Security, Identity & Analytics
Compliance

Amazon CloudWatch AWS CloudFormation AWS CloudTrail
Monitor Resources and Applications bate and Manage Resources with Templaie Track User Activity and APl Usage

AWS Config AWS OpsWorks AWS Service Catalog

Track Resource Inventory and Changes Altomate Operations with Chef and Pupp Create and Use Standardized Products

AWS Systems Manager AWS Trusted Advisor AWS Personal Health Dashboard
n Operational Insights and Take Action Optimize Performance and Security Personalized View of AWS Service Healt

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

AWS Cloud Native Services — Security

(sl o = @ S

Compute Storage Database Migration Networking & Content
Delivery
Developer Tools Management Tools Media Services Security, Identity & Analytics
Compliance

AWS Identity & Access Management Amazon Cloud Directory Amazon Cognito
Manage User Access and Encryption Keys Create Flexible Cloud-native Directories Identity Management for your Apps

AWS Single Sign-On Amazon GuardDuty AWS Direct Connect

Cloud Single Sign-0On (SS0) Service Managed Threat Detection Service Dedicated Network Connection to AWS

Amazon Inspector Amazon Macie AWS Certificate Manager
Analyze Application Security Discover, Classify, and Protect Your Data ision, Manage, and Deploy SSL/TLS Certificad

AWS CloudHSM AWS Directory Service AWS Key Management Service

e-based Key Storage for Regulatory Compliarfiie Host and Manage Active Directory naged Creation and Control of Encryption Ke

AWS Organizations AWS Shield AWS WAF

Policy-based Management far Multiple AWS Accounts DDoS Protection Filter Malicious Web Traffic

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

AWS Cloud Native Services — Analytics

(a] S = @ =
=
Compute Storage Database Migration Networking & Content

Delivery

XK %0 0 [

Management Tools Media Services Security, Identity &
Compliance

Developer Tools

Analytics

Amazon Athena Amazon EMR
Query Data in 53 using SQL Hosted Hadoop Framework

Amazon CloudSearch

Managed Search Service

AMaZC : Amazon Redshift
ork with Real-time Streaming Data Fas

Simple, Cost-effective Data Wa

Amazon Elasticsearch Service
n and Scale Elasticsearch Clusters

Amazon Quicksight
Fast Business Analytics Service

rehallsing

AWS Glue
Prepare and Load Data

Carncgic MCHOIIUHiVOI‘Sity Cloud Computing: An Architecture-centric View
Software Engineering Institute

© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

70

AWS Cloud Native Services — Integration

(8] = =

Compute Storage Database
PN B
Developer Tools Management Tools Media Services

& [T &9

Machine Learning Mobile Services AR & VR

AWS Step Functions
Coordinate Distributed Applications

mazon Simple Queue Service (SQ
Managed Message Queues
Amazon MQ
anaged Message Broker for ActiveM{

@

Migration

0

Security, Identity &
Compliance

)

Application Integration

Am

&

Networking & Content
Delivery

Analytics

Customer Engagement

zon Simple Notification Service (S |S)
Pub/Sub, Mobile Push and SMS

Cal‘n(‘,gio Mellon UniV(‘,I‘Sity Cloud Computing: An Architecture-centric View
N . . . © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited

distribution.

71

Hey, what about the other CSPs?

Microsoft Azure:
http://aka.ms/awsazureguide maps from AWS services to Microsoft Azure services

Google Compute Platform (GCP):

https://cloud.google.com/free/docs/map-aws-google-cloud-platform maps from AWS
services to GCP services

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

Carnegie Mellon University Distribu
v © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

72

Function as a Service —
FaaS, a.k.a. “Serverless”

BS
[S]

Storage

Compute

Amazon EC2
Virtual Servers in the Cloud

Amazon Elastic Container Registry
Store and Retrieve Docker Images

AWS Elastic Beanstalk
Run and Manage Web Apps

AWS Serverless Application Repository
Discover, Deploy, and Publish Serverless Applications

Explore Our Products

S

Database

Amazon Elastic Container Service
Run and Manage Docker Containers

Amazon Lightsail

Launch and Manage Virtual Private Servers

AWS Fargate

Run Containers without Managing Servers or Clusters

Auto Scaling
Automatic Elasticity

@ o

Networking & Content
Delivery

Migration

Amazon Elastic Container Service for Kubernetes
Run Managed Kubernetes on AWS

AWS Batch
Run Batch Jobs at Any Scale

AWS Lambda

Run your Code in Response to Events

VMware Cloud on AWS
Build a Hybrid Cloud without Custom Hardware

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

73

Fine-grained virtualization

VM —run OS on virtualized hardware
Container — run process on virtualized OS

What if | want to just run a function?

Function as a Service, or “Serverless”
» Pack up up your function code and dependencies (i.e. libraries)
» Upload the zip file to the CSP and bind it to a REST endpoint

* When the endpoint is invoked, the CSP creates a container and runs your function,
passing the in the parameters from the REST invocation

» Pay per use, based on execution duration and memory utilization

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

74

FaaS Limitations and Options

Concurrency — Autoscaling
» Specify the number of concurrent instances when you bind to the REST endpoint
» CSP sets upper limit

Startup latency — “cold start”
 Delay in launching the container on the initial concurrent invocation
» Container is not unloaded immediately on function exit — remains for a few seconds

» Keep-alive: Send dummy invocations to keep the function “warm” — trades off cost
against lower latency

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’ . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

75

FaaS Architecture Style

Extends “stateless service” style, e.g., request context is passed in by client

Return object to client in response

Any service state and data must be stored using a cloud native service (e.g., DynamoDB
or S3)

Composition

* Client orchestrates invocations to multiple functions

* Nesting — a function synchronously invokes other services
- Need to complete within the execution time limits for the initially invoked service
- Return response to client

» Chaining — a function asynchronously invokes another service
- Avoids execution time limits
- Can’t return a response to the client

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited 7 6

Carnegie Mellon University Distribu
) v © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

Cutting through some of the Serverless hype

Benefits:
» For some workloads, FaaS pay-per-use cost will be less than other approaches
» For some applications, FaaS will be simpler to develop

» Some consider this to be “DevOps as a Service” — it pushes many Site Reliability
Engineering concerns to the CSP, and may reduce full-stream development costs

» Enforces stateless architecture style, which improves scalability

Challenges:
« Can be difficult to debug
« Discontinuity in evolution if you reach the complexity or execution time limits of FaaS
» Use of cloud native services will inhibit portability (may not be a concern)

[Distribution Statement A] Approved for public release and unlimited

(,:;ll'll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View Distribut
g “ 2018 Carnegie Mellon University distribution.

Software Engineering Institute

How do you choose whether to implement your own or use a
cloud native service?

Development cost
* Probably lower if you start design to use cloud native service
» Obviously higher if you have to rework to use cloud native service

Pay per use cost
 For a given scale, cloud native services are usually more expensive
» Most cloud native services offer autoscaling or easy manual scaling

Service management cost
 Cloud services need no tuning, patching, updating, ...
» Harder to quantify — what does it cost to manage your own service?

Security posture
 Cloud native services may be more secure than a self-implemented solution hosted in the cloud

» Cloud native services may already be accredited
» Again, hard to quantify

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 78

Software Engineering Institute

Test/Assurance Implications

1. Understand where cloud native services are being used
* You need to look at the architecture/design to see this
2. Research the weaknesses, common misuse patterns, and limitations of each native
service
» Netflix engineering blog is one source for AWS
* Lots of stories in the blogosphere

3. Test autoscaling, failover, access control configuration, ...

* You are more likely to find problems with application’s use of the service than the
service implementation

« We'll talk more later about testing

4. Test carefully to avoid unintended side-effects
« See the case studies that follow here

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

79

But before the case studies, a note on terminology

“Partition” has multiple meanings in the context of cloud computing

Verb, e.g., network partition

» Cause the network to split into two or more subnetworks that cannot communicate with
each other

e Thisis the P in CAP

Noun, e.g., database patrtition

* In a distributed database, the complete data set is divided and each division may be
copied. Each of these subsets is called a partition.

* Partitions are assigned to physical nodes, where they are stored.

(,];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. g X < © 2018 Carnegie Mellon University distribution. 80
Software Engineering Institute

Case study* — accidentally triggering performance throttling

System used AWS DynamoDB, a key-value distributed database service

DynamoDB hashes the key to select a partition to store the value
» Hashing function balances data across storage partitions

Service pricing is based on peak I/O for a partition
* Service throttles all accesses when you hit your I/O limit in any partition

Test script:
for value = 1 to 1000000
store(key”’, value)
end

What's wrong with that?

*A. Roussel and R. Branson. The Million Dollar Engineering Problem [Online]. https://segment.com/blog/the-
million-dollar-eng-problem

(,:ill‘llﬂgi(‘ Mellon Un i\'(‘l‘sil) Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 81
Software Engineering Institute

Case study — accidentally triggering performance throttling

Note that the key never varies
» Every write operation is hashed to the same storage partition
* Tight loop in the script quickly saturates 1/O for that partition and triggers rate throttling
for all partitions

All 1/0 is throttled and everything slows down

Lessons learned:
1. Design your test cases to be compatible with the service’s architecture

2. If you can’t control the access pattern, then add protection against misuse (in this
case, they pre-filtered requests and discarded requests where
key="key”|”ID”|"id"|’key _id"|...)

[Distribution Statement A] Approved for public release and unlimited

distribution. 8 2

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
. g . c. © 2018 Carnegie Mellon University
Software Engineering Institute

Case study*—initializing database triggers (nearly) endless
partition re-balancing

MongoDB is a document database — each record is a JSON object

Database configuration defines maximum patrtition size
* When a partition hits that limit, it is split
* A new partition is created, half of the data is moved to the new partition
 This does not interrupt database access

Scenario — loading a database prior to testing
* Empty database has one partition
 Write test data records until the partition size limit is hit, triggers split and re-balance

 Writing continues during re-balance, quickly hits size limit for one of the new patrtitions,
triggers another rebalance before the first one finished...

*J. Klein, I. Gorton, N. Ernst, et al., “Application-Specific Evaluation of NoSQL Databases,” in Proc. IEEE Big Data
Congress, New York, NY, USA, 2015, pp. 526-534. doi: 10.1109/BigDataCongress.2015.83

[Distribution Statement A] Approved for public release and unlimited

distribution. 8 3

(j;u-npgi(- Mellon University Cloud Computing: An Architecture-centric View
. ’) i 2018 Carnegie Mellon University
Software Engineering Institute

Case study — initializing database triggers (nearly) endless
partition re-balancing

Result:
* [t took about 2 hours to write 10 million records
* It took the database about 24 hours to complete all the rounds of re-balancing

Work-arounds:
 Turn off rebalancing during the loading, then turn it on and let it run once

» Snapshot the storage image after the database was loaded (need to be careful with
this — data contains write timestamps that may introduce new issues when reused
later)

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

84

Cloud Native Services

In this module, we discussed
* Cloud platforms include many out-of-the-box services
* Architectures can trade off cloud native vs. portable implementations
» Impact on testing/assurance approach

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
-) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

85

Cloud Computing: An Architecture-centric View

Quality Attributes in the Cloud

Carnegie Mellon Um'versity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 86
Software Engineering Institute

Quality Attributes in the Cloud

In this module, we will discuss
» How cloud-based architectures promote and inhibit quality attributes
* What are the assurance considerations for several quality attributes

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
-) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

87

What is a quality attribute?

Quality attributes are properties of work products or goods by
which stakeholders judge their quality.

Some examples of quality attributes by which stakeholders judge
the quality of software systems are

» performance « availability
s security » throughput
« modifiability » configurability
 reliability » subsetability
o usability * reusability
 calibrateability « scalability

(];u'n(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- >) v 2018 Carnegie Mellon University distribution.
Software Engineering Institute

Quality attributes in cloud-based systems

In cloud-based systems, some quality
attributes are promoted, some are inhibited,
and some are unaffected

We'll assess the cloud’s impact on several
quality attributes

These are sweeping generalities

* With most architecture decisions, the real
answer is “it depends”

L

Easier in the cloud

>

Unchanged

L

Harder in the cloud

(]arnogio Mellon University Cloud Computing: An Architecture-centric View

© 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

89

Quality Attributes for Discussion

Security — we’ll cover this separately
Scalability

Performance

Availability
Maintainability/Sustainability

Carn(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View

© 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

90

Scalability '

What do we mean?
» Add capacity or deliver very high capacity
- Processing
- Storage
- Interactions

Storage scalability is easiest to achieve — essentially built-in

Processing and interaction scalability is relatively easy
 Cloud native autoscaling and load balancing services

» Does require some software architecture support to allow workload to be partitioned

- Approaches include: Stateless, limited coordination or synchronization, dynamic cluster
membership and leader election

(,:ill‘llﬂgi(‘ Mellon l,'lli\'(‘l‘sil.\ Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

91

Scalability — Assurance

Primary concern is processing/interactions

What are the scalability mechanisms used by the system?
» What are the triggers to scale up? Scale down?

* Test that scaling works correctly when it should, and doesn’t happen when it shouldn’t
(see earlier case study)

What are the scalability limits imposed by cloud service provider?

 AWS has hard limits — see
http://docs.aws.amazon.com/general/latest/gr/aws service limits.html
* E.g., default is 20 VM reserved instances, 1-20 VM spot instances

* How close is the system to the limits? How does the system handle hitting a limit? Can
separate parts of the system combine to hit a limit?

Carnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
N © 2018 Carnegie Mellon Univers 92

- . . distribution.
Software Engineering Institute

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Performance ‘2‘

(Separate from Scalability)

What do we mean?

» Throughput — ability to process a quantity incoming events (requests, messages,
targets, ...)

 Latency — time needed to respond to an event

Easy to deliver and manage very large systems
* Infrastructure as code to create and deploy VM instances
* VVery capable instance types available (see https://aws.amazon.com/ec2/instance-

types/)
 Cloud native services for coordination and integration of instances

 Cloud native services for high performance architecture models (e.g., MapReduce)

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
’ N © 2018 Carnegie Mellon University

- . . distribution.
Software Engineering Institute

93

Performance — Assurance

We'll cover testing at scale in more detail later.

Challenges:

» Usual performance testing concerns — e.g., defining the workload, defining the
background

» Executing the workload at scale
» Generating test data sets at scale (and getting that data into the cloud)
» Observing, collecting results, and verifying results at scale

(Continuous) verification of QoS of cloud provider services

 E.g., benchmark found twin-peak distribution on AWS VM performance — traced to
physical hardware was some AMD, some Intel processors*

* D. Bermbach, “Quality of Cloud Services: Expect the Unexpected,” IEEE Internet Computing, vol. 21,
no. 1, pp. 68-72, Jan 2017, doi: 10.1109/MIC.2017.1

(,]zlrnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
? ¢ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

94

Case Study* - Capacity Planning
What does “moderate” really mean?

INSTANCE TYPE TARGET MIN MAX AVG
m3.medium Moderate v pre 74 v e 74 » 0.32
m3.large Moderate =——@m—t—G—]>- () 7 ()

STDDEV

0.00

0.04

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

AWS measured network 1/0O

(Gbps)

Cﬂ[‘[l(‘,gi(’f Mellon University Cloud Computing: An Architecture-centric View
. . c. © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

95

Case Study* - Capacity Planning
What does “high” really mean?

INSTANCE TYPE TARGET MIN MAX AVG
m4.large Moderate 0.47 4.08 0.49
m4.xlarge High il Sl ()8 1
m4.2xlarge High el e O
mé4.4xlarge High me—of———>) ()5

STDDEV

0.25

0.18

0.00

0.12

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

AWS measured network 1/0O

(Gbps)

Ca[‘n(‘,gi(‘, M(‘ll()[l U[]i\'(‘[‘silv Cloud Computing: An Architecture-centric View
. . < © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

96

Availability ‘D

What do we mean?
» System can detect, isolate, and mask or recover from faults, so that service delivery is
uninterrupted
We are calling this “unchanged” for cloud-based systems, with a couple of caveats

» Not considering that Security, e.g., DOS attack, is linked to availability and performance
(this concern is better in the cloud)

» Multi-region solutions are possible, but can be challenging (see Netflix Engineering
Blog)

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 97
Software Engineering Institute

What is a cloud region?

Terminology and definition varies somewhat across cloud service providers, but most
have this construct

E.g., “An AWS Region is a geographical location with a collection of availability zones
mapped to physical data centers in that region. Every Region is physically isolated from
and independent of every other Region in terms of location, power, water supply, etc...An
Availability Zone is a logical data center in a Region available for use by any AWS
customer. Each zone in a Region has redundant and separate power, networking and
connectivity to reduce the likelihood of two zones failing simultaneously. A common
misconception is that a single zone equals a single data center. In fact, each zone is
backed by one or more physical data centers, with the largest backed by five.™

* https://blog.rackspace.com/aws-101-regions-availability-zones

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 98
Software Engineering Institute

https://blog.rackspace.com/aws-101-regions-availability-zones

Regions and Availability Zones

Example, AWS us-east-1is aregion

Note that AWS GovCloud is (currently) a single region

You must choose a region when launching a VM instance and most cloud native services
» Choosing an availability zone is usually optional

Elastic Load Balancer — Distribute requests across availability zones within a region

Route 53 DNS — use to balance across regions

Building cross-region systems is hard
* see e.g., R. Meshenberg, N. Gopalani, and L. Kosewski. Active-Active for Multi-
Regional Resiliency. http://techblog.netflix.com/2013/12/active-active-for-multi-
regional.html

[Distribution Statement A] Approved for public release and unlimited

distribution. 9 9

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
. g . c. © 2018 Carnegie Mellon University
Software Engineering Institute

Availability is about Faults —
Faults in the Cloud

Root causes of unplanned outages*:
e infrastructure or software failures
* planning mistakes
e human error
 external attacks

Cloud infrastructure does fail, e.g.,

» After AWS physical reboot, Netflix had 22 out of 218 servers fail to restart (o. Harris. Netflix lost

218 database servers during AWS reboot and stayed online [Online]. https://gigaom.com/2014/10/03/netflix-lost-218-database-servers-
during-aws-reboot-and-stayed-online/)

e Christmas Eve 2012 (https://medium.com/netflix-techblog/a-closer-look-at-the-christmas-eve-outage-d7b409a529ee)

* P, T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol. 50, no. 11,
pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
N > . 7 © 2018 Carnegie Mellon University distribution. 100
Software Engineering Institute

Mitigation Approaches*

Monitoring
* In the cloud, verification is never finished**

Geo-distributed Storage and Redundancy
» Can achieve some geo-distribution within a region
* Requires careful design and configuration (opening the door to human error)

Disaster Recovery
 Cross-region failover — note that this is not (currently) an option for government cloud
deployments

P. T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol.
50, no. 11, pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.

J. Klein and I. Gorton, “Runtime Performance Challenges in Big Data Systems,” in Proc. Workshop on
Challenges in Performance Methods for Software Development (WOSP-C'15), Austin, TX, 2015. doi:
10.1145/2693561.2693563

(,:ill‘llﬂgi(‘ Mellon Un i\'(‘l‘sil) Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 101
Software Engineering Institute

Availability — Assurance

Certain types of faults cannot be directly induced

* E.g., you can't pull out a network cable — need to use intrusive tools like netem
(https://wiki.linuxfoundation.org/networking/netem) to simulate network failures

» Generally, cloud testing relies more on simulated faults — need to assess the quality of
the simulation — quality of the evidence

Need for practices and procedures that bridge between cloud provider’'s QoS guarantees
and evidence that you collect directly

* Intrusive Tools = Install on target system or change configuration

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 102
Software Engineering Institute

https://wiki.linuxfoundation.org/networking/netem)

Maintainability/Sustainability @

What does it mean?
* Required changes can be made to the software to keep the system secure and
operating
We’re calling this worse in the cloud for stable systems
* From a purely technical perspective, some things are better, some worse
* No real experience with long-lived static systems deployed to the cloud
» Assurance is never finished — this can be a big change in mindset, policy,
funding, ...
If you are continually evolving your system and you've embraced DevOps, then this
quality is probably better in the cloud
* Environment parity between production and development
* You are continuously testing/integrating/delivering

ic View [Distribution Statement A] Approved for public release and unlimited

(,:le‘ll(‘,gi(‘ 1\[(‘"0" l,‘ni\'(‘rsi[\ Cloud Computing: An Architecture-centr Distribut
g “ © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

103

Maintainability/Sustainability

Easier:

* Infrastructure as code practices improve
the repeatability of deployment

* Virtualization allows development
environment to be identical to production
environment

 Cloud should impose higher degree of
uniformity of deployment configurations
(laaS)

* No infrastructure patching or
management concerns at all (PaaS and
SaaS)

Harder:

* Cloud provider can change the
infrastructure in ways that impact your
system but still satisfy QoS guarantees

* Cloud provider offerings evolve over time
— Iissue for cloud native services, PaaS,
and SaaS

» Tempo difference between your system
and cloud providers — there is no
experience with long-lived static systems
deployed to the cloud

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited

distribution. 104

Case Study* — Newer may not be better

We have measured the network performance daily with the iperf3 network benchmark tool in EU

(Ireland) from November 30th to December 18th.

INSTANCE TYPE M3 FAMILY M4 FAMILY M5 FAMILY
medium 0.31 Gbit/s
[)
large 0.70 Gbit/s 0.47 Gbit/s 10.04 Gbit/s
xlarge 1.02 Gbit/s 0.81 Gbit/s 10.04 Gbit/s
. J
2xlarge 1.01 Gbit/s 1.01 Gbit/s 10.04 Gbit/s

* Andreas Wittig, https://cloudonaut.io/evolution-of-the-ec2-network-performance-m3-m4-m5/

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
‘ ' 24 © 2018 Carne gie Mellon Universit y distribution, 105
Software Engineering Institute

Maintainability/Sustainability —
Assurance

In the cloud, Test and Evaluation is never finished
» Continuous assessment that QoS guarantees are being met
- Monitoring and trending
- Within a system and across systems

» Continuous assessment that the delivered infrastructure remains compatible with your
systems

- E.g., Netflix's Chaos Engineering (more about this later)

» Working with cloud service providers to understand their roadmaps and assess impact
on systems in production AND in development

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’ . < © 2018 Carnegie Mellon University distribution. 106
Software Engineering Institute

Take-aways

The cloud makes some things better, some things worse.
Some of these impacts are intrinsic to any cloud computing (i.e. performance)

Other impacts are more specific to your system context, especially US government
systems (i.e. availability, maintainability)

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 107
Software Engineering Institute

Quality Attributes in the Cloud

In this module, we discussed
» How cloud-based architectures promote and inhibit quality attributes
* What are the test and evaluation considerations for several quality attributes

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 108
Software Engineering Institute

Cloud Computing: An Architecture-centric View

Introduction to Cloud Security

Carnegie Mellon Um'versity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 109
Software Engineering Institute

Cloud Security

In this module, we will discuss
» Threats and infection points
» Examples of different views using AWS
» Hybrid cloud example and its associated different views
 Cloud unique and cloud/on-premise threats/vulnerabilities
» Four key security practices

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 110
Software Engineering Institute

Setting the Context

Threat
Source

Attack

Initial infection vector (11V)

Asset

HA—C—> @

Action on objective (AoQ)

J

O
-\

Threat Actor

Target

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited

distribution.

111

Threat Terminology

Threat source — a method by which a vulnerability is triggered or exploited
Attack (initial infection vector) — method used to gain access to system
Asset — the object of the attack

Threat actor — an entity that is partially or wholly responsible for an incident that impacts
or has the potential to impact an organization's security.

Tool — e.qg., phishing email, remote access Trojan (RAT), SQL injection

Target — e.g., personally identifiable information (PIl) data, trade secrets, network
configuration information

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 112
Software Engineering Institute

Data Center Threats

The SEI developed a holistic approach when considering attacks on computer systems
which is based on the following two questions.

» “How did they get in?”
* “What did they do after they were in?”

To answer the first question, five ways to get into a computer system (infection points)
were identified.

(,:ilr‘ll(‘,g‘i(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
“ © 2018 Carnegie Mellon University distribution. 113

Software Engineering Institute

Five Infection Points

Cloud Security Alliance (CSA)
Top Threats for 2016

NIST Guide for Conducting Risk
Assessment (NIST Special Pub.
. 800-30, rev1)

{ Infection Points }

Carncgic Mellon Un.iV(:I‘Sity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X K X © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

114

Cloud Incidents Examples Associated with Infection Points

Social engineering — “How Apple and Amazon Security Flaws Led to my Epic Hacking”,
“In the space of one hour, my entire digital life was destroyed.”,
(http://lwww.wired.com/2012/08/apple-amazon-mat-honan-hacking/)

Client exploit — AWS OpenSSL Security Advisory - May 2016; “AWS will appropriately update
OpenSSL to improve security for AWS customers who are utilizing outdated web browsers that
cannot negotiate the AWS preferred and recommended AES-GCM TLS/SSL cipher suites when
interacting with the AWS Management Console.”, (https://aws.amazon.com/security/security-
bulletins/openssl-security-advisory-may-2016/)

Misconfiguration — Amazon ELB Service Event in the US-East Region on December 24,
2012, portion of ELB state data was logically deleted which is used and maintained by the ELB
control plane to manage the configuration of the ELB load balancers in the region.
(https://aws.amazon.com/message/680587/);

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. l 15
Software Engineering Institute

https://aws.amazon.com/message/680587/

Cloud Incidents Examples Associated with Infection
Points

Server exploit — AWS CVE-2015-7547 Advisory - "We have reviewed the issues
described in CVE-2015-7547 and have determined that AWS Services are largely not
affected. The only exception is customers using Amazon EC2 who’ve modified their
configurations to use non-AWS DNS infrastructure should update their Linux
environments immediately following directions provided by their Linux distribution. EC2
customers using the AWS DNS infrastructure are unaffected and don’t need to take any
action. A fix for CVE-2015-7547 has been pushed to the Amazon Linux AMI repositories,
with a severity rating of Critical. Instances launched with the default Amazon Linux
configuration on or after 2016/02/16 will automatically include the required fix for this
CVE.” (https://aws.amazon.com/security/security-bulletins/cve-2015-7547-advisory/)

Physical access/theft — AWS service event in the Sydney region due to loss of power on
June 6, 2016. Unusually long voltage sag caused the loss of both primary and secondary
power. (https://aws.amazon.com/message/4372T8]).

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) v © 2018 Carnegie Mellon University distribution. 116

- . . istribution
Software Engineering Institute

https://aws.amazon.com/message/4372T8/

So What Else Do We Need to Understand?

We now have a good grasp of the threat picture which can be applied to data centers, a
cell phone, refrigerator, and clouds.

But how do | apply it to do analysis, testing, risk identification, and risk mitigation?
You will need architecture documentation to support these efforts.

Architecture documentation will need to be developed that provides multiple views of the
system to satisfy different stakeholders.

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
> v © 2018 Carnegie Mellon University 117

- . . distribution.
Software Engineering Institute

Example — Cloud Deployment View of a Web Application
Which Supports NIST Compliance

s

\=L] .
Archive 53 Lifecycle

Logs Bucket Policies to
Glacier

)€

8|
n,,.!).(

.
&

10.12.00/16 __Management

AWS Config Cloudtrail CloudWatch

K Rules Alarms

https://aws.amazon.com/quickstart/architecture/accelerator-nist/

Carnegic Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X i . © 2018 Carnegie Mellon University distribution. 1 18
Software Engineering Institute

Example — Identity and Access Management (IAM) Service
View for Modeling Threat Events

Browser or
- Application

.

Carnegic Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X i < © 2018 Carnegie Mellon University distribution. 1 19
Software Engineering Institute

Example — Virtual Private Cloud (VPC) View for Modeling

Threat Events

Y
Customer
Gateway

Customer Data Center

.|

Customer Regional Office

,‘.ﬂ

internet

W =
Amazon S3 Amazon SES DynamoDB
AWS Region

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

120

Example — Hybrid Cloud

On-Premise

/ - Data centers

« Private clouds
+ Cryptographic key
management system
« Windows Server AD
Domain Controller
* AD FS Server
* Cyber Protection
Systems

Microsoft
ExpressRoute

ISP
(Einstein
Services)

+ CDM sensors

\ - Analysis tools /

Key

A Threat Actor ~ User

AWS Direct

Web o/
User [,]

Microsoft East US
Office365
Analysis tools
TIC Overlay
SaaS

T AWS US West

AWS US East

Customer Interface (Web Apps)
(Production/Development/Test)

Analysis tools

A TIC Overlay
laaS/PaaS

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

121

Example — Customer’s Administrator’s View

AWS laaS

Customer ISP

————— e e e e e e e e e e ——— — — — — — —— — — ——————————— —

us-east-la

us-east-1b

availabili

[

availabjlity zone zone
/alla one

N —

o e

1

|
—
2

- i G £ O
1
! Rout Auto EIastiCach EC2
! es3 scalin
’ 0 o
1
: . ‘
! RD CloudFormation
s
i bala
= v % i wl & ‘
1
i
i | Direct A CloudTrail Cloudwatc Truste i
\ | connec EM v d Glacie
M e Alarms . Adviso __________-
r

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

122

Cloud Vulnerabilities/Threats

Cloud Unique Cloud & On-Premise
1. Reduced Visibility & Control

2. Ability to Self Provision Resources &
Services

Stealing Credentials
Vendor Lock-in

Increased Complexity Strains IT Staff

© © N O

Management APl Compromise Insider Threat

Multi-Tenancy Security 10. Data Recovery

Secure Data Deletion 11. Supply Chain

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’ . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

123

#1 Reduced Visibility & Control

When transitioning assets/operations to the cloud, agencies will lose some visibility and
control over the assets/operations because the CSP is now handling aspects via its
infrastructure and policies. Paradigm shift is needed by agencies to focus on attaining

monitoring and logging information about applications, services, data and users, rather than
the network focus of on-premise IT.

* Asthe CSP assumes more
responsibilities, an agency
will need to find different
ways to attain the

information to successfully
Vulnerability monitor IT operations and :’“'"eftab“itv
ili . . mpac »
Probability satisfy security and P —

> compliance requirements. >
laaS PaaS SaaS » Agency must work jointly laaS PaaS SaaS
(can’t direct) with CSP via

their service level agreement

(SLA).

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 124
Software Engineering Institute

#2 Ability to Self Provision Resources & Services

Self provisioning capabilities of cloud enable agency personnel to:

 Provision extra services not originally planned for with the agency’s CSP and that don’t
have IT consent.

* Individually use SaaS products (Dropbox, iCloud, OneDrive, ...) independent of IT.

These services are unknown risks to an agency. (cloud scope creep)
A » Due to the lower

costs and ease of
Vulnerability implementing
probability PaaS and SaaS

products, the
probability
increases.

»
>

laaS PaaS SaaS

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’ . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

125

#3 Management APl Compromise

CSPs expose a set of application programming interfaces (APIs) that customers use to
manage and interact with cloud services. Agencies use these APIs via the internet to
provision, manage, orchestrate and monitor their assets and users. The vulnerability is that
these APIs have the same software vulnerabilities that an API for an operating system,
library, etc. could have.

» Threat actor is looking for
vulnerabilities in management
APIs.

« If vulnerability can be turned

into an attack, then this could
Threat be used against other Threat
opportunity customers of the CSP. Impact

> Vulnerability focus more on >
laas PaaS SaaS configuration/provisioning. laaS PaaS SaaS
(,:ill‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 126

Software Engineering Institute

#4 Multi-Tenancy Security

System and software vulnerabilities within a CSP’s infrastructure, platforms or applications
which supports multi-tenancy can lead to isolation failure where an attacker exploits the
vulnerability to access to another user’s or agency’s assets/data.

» Different than vulnerability #3
because this focuses on how
the CSP implements the
agency'’s desired capabilities.

 Examples:
Vulnerability ¢ JlaaS — VMs. OS’s
probability ,
* PaaS — app servers,

> Java VM

laa5 PaaS Saas e SaaS - databases,
business logic, workflow,
user interface

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 127

Software Engineering Institute

#5 Secure Data Deletion

CSP’s ability to securely delete and verify when an agency deletes data. This is a concern

due to the data being spread over a number of different storage devices within the CSP’s

infrastructure in a multi-tenancy environment.

Vulnerability

level /
>
>

laaS PaaS SaaS

Vulnerability
increases as an
agency uses more
CSP services.

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centr

© 2018 Carnegie Mellon University

ic View

[Distribution Statement A] Approved for public release and unlimited
distribution.

128

#6 Stealing Credentials

If an attacker gains access to your cloud credentials, the additional vulnerability in the cloud
Is that the attacker would have access to the CSP’s services to provision additional
resources, as well as target agency’s assets. The attackers could leverage cloud computing
resources to target users, organizations or other cloud providers.

e Admin roles vary between
CSP and agency.

Vulnerability * CSP admin would address
probability - more than one customer and
> probably handle all the CSP’s
laaS PaaS SaaS services offered.
Vulnerabilty . Vetting_processes for _
impact for becoming a CSP admin may

Agency normal be different than the process
user used for an agency’s admin.
| Need to be aware of the

laaS PaaS SaaS differences and assess their
impact.

»
>

Vulnerability
impact for
Agency admin
user

Vulnerability
impact for
CSP admin

4

_—

A

n

laaS PaaS SaaS

n

»

laaS PaaS SaaS

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
- >) v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited

distribution.

129

#7 Vendor lock-in

This vulnerability could occur when an agency considers moving its assets/operations from
one CSP to another CSP. The agency finds out than the cost/effort/schedule time necessary
for the transition is much higher that initially considered due to non-standard data formats,
non-standard APIs, high cost charged to remove presence with original CSP, inability to
transfer large amounts of data out of a CSP in a timely manner, reliance on one CSP’s
proprietary tools, and CSP’s unique APIs.

* Vulnerability increases as the
CSP takes more

- responsibility. As more
Vulnerability features/services/APIs are
probability ..

used, there is increased

> exposure to CSP’s unique

laaS PaaS SaaS implementations.

* If selected CSP goes out of
business, it becomes a major
problem.

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 130
Software Engineering Institute

#8 Increased Complexity Strains IT Staff

This vulnerability is concerned with an existing agency’s IT staff having the capacity and skill

level to manage, integrate and maintain the transition of assets and data to the cloud in
addition to their current responsibilities for on-premise IT. The services/techniques/tools

available to log and monitor them typically vary across CSPs, further increasing complexity.

Also, there may be emergent vulnerabilities/risks in hybrid cloud implementations due to

technology, policies, implementation methods add complexity.

* Increased potential for
coverage gaps between the

layers.
Vulnerability * Probability increases if
probability agency pursuing hybrid cloud

> implementation.

laaS PaaS SaaS

Carnegie Mellon University
Software Engineering Institute

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
© 2018 Carnegie Mellon University distribution.

131

#9 Insider Threat

A malicious insider is defined as a current or former employee, contractor, or business
partner who meets the following criteria:

 has or had authorized access to an organization’s network, system, or data

* has intentionally exceeded or intentionally used that access in a manner that negatively
affected the confidentiality, integrity, or availability of the organization’s information or
information systems

This applies to staff and administrators for both agencies and CSPs.

« Likely worse for laaS because of the ability to
provision resources or possibly perform

nefarious activities that will require forensics ,
Agency that may not be available with cloud resources heency's
o e vis-a-vis on-premise resources. threat
probability > » CSPs’ users threat impact will depend upon impact >
laaS PaaS SaaS their organization’s employee vetting process laaS PaaS SaaS

(background checks) and controls
implementation.

(,];1r[1(\,gi(‘ Mellon Un iversity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

132

#10 Data Recovery

Data stored in the cloud can be lost for reasons other than malicious attacks. An accidental
deletion by the cloud service provider or worse, a physical catastrophe such as a fire or
earthquake, can lead to the permanent loss of customer data. The burden of avoiding data
loss does not fall solely on the provider’s shoulder. If a customer encrypts his or her data
before uploading it to the cloud but loses the encryption key, the data will be lost as well.

» Vulnerability increases as an agency
uses more CSP services.

Vulnerability » Data recovery for a CSP is may be
probability _— better than that of an agency due to
R SLA designating availability/uptime
laaS PaaS SaaS percentages'

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 133
Software Engineering Institute

#11 Supply Chain

This vulnerability is concerned with the supply chain that a CSP uses to support its services.
If the CSP outsources parts of its supply chain, then these third parties may not
satisfy/support the requirements that the CSP is contracted to support with an agency. An
agency would need to check to see if the CSP flows its own requirements down to their third

party and see how it enforces compliance. If the requirements are not being flowed down,
then there is an increased threat to the agency.

» Vulnerability increases as an
agency uses more CSP
Vulnerabilit services.
y level _—— « This is very dependent on
> individual CSPs and their
laaS PaaS SaaS supply chain policies.

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 134
Software Engineering Institute

Four Important Cloud Security Practices
1. Perform due diligence

2. Manage access

3. Protect data

4. Monitor and defend

('Iarnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
} ' © 2018 Carnegie Mellon University distribution. 135

Software Engineering Institute

Cloud Security Practices

1) Perform due diligence

Encourages cloud consumers to fully understand their current network and applications to
better appreciate the functionality, resilience, and security of cloud services before
migrating to cloud-deployed application and system.

2) Manage access

Describes the different categories of users in a cloud-based IT environment and explains
the responsibilities of both CSP and cloud consumers in managing these user’s access to
resources.

(,];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. g X < © 2018 Carnegie Mellon University distribution. 136
Software Engineering Institute

Cloud Security Practices

3) Protect data

Describes the two consumer challenges of preventing the accidental disclosure of data
that was supposedly deleted and ensuring continued access to critical data in the event of
errors, failures, and compromise.

4) Monitor and defend

Describes the shared responsibility of the CSP and cloud consumer in monitoring the
cloud-based system and applications to detect unauthorized access to data or
unauthorized use of resources.

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 137
Software Engineering Institute

Conclusions

While potential cloud consumers often worry about the security risk of trusting a CSP to
perform some security functions, experience has shown that security incidents are more
often the result of consumer failing to use the security tools provided.

The need to cloud consumers to develop a deep understanding of the services they are
buying and to use the security tools provided by the CSP.

Like any new technology or approach, using it effectively and securely requires knowledge
and practice. Use of well-established, mature CSPs will help reduce risk associated with
transitioning application and data to the cloud.

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 138
Software Engineering Institute

Cloud Vulnerabilities

In this module, we discussed
» Threats and infection points
» Examples of different views using AWS
» Hybrid cloud example and its associated different views
 Cloud unique and cloud/on-premise threats/vulnerabilities
» Four key security practices

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 139
Software Engineering Institute

Cloud Computing: An Architecture-centric View

Distributed Systems Concepts

Carnegie Mellon Um'versity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 140
Software Engineering Institute

Distributed Systems Concepts

In this module, we will discuss
* Clouds are distributed software systems

» The “laws of physics” that limit the visibility and capabilities of distributed software
systems

» Impact on testing approach

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 141
Software Engineering Institute

Deutsch’s Fallacies of Distributed Computing

The network is reliable.
Latency is zero.
Bandwidth is infinite.

The network is secure.
Topology doesn’t change.
There is one administrator.
Transport cost is zero.

© N o Ok~ WDdhRE

The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of distributed_computing

(,:ill‘llﬂgi(‘ Mellon l,'lli\'(‘l‘sil.\ Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 142
Software Engineering Institute

Deutsch’s Fallacies of Distributed Computing

The network is re|i‘amle'</|ln this section|
Latency is zero.

Bandwidth is infinite.

The network is secure.

Topology doesn’'t change. <+—

In other sections|

There is one administrator.
Transport cost is zero.

© N o Ok~ WDdhRE

The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Cﬂ[‘[l(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

. . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

143

Communication and Coordination

The “FLP” result
» Michael J. Eischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382,
1985. doi:10.1145/3149.214121.
Conclusions (in an asynchronous environment — no timeouts)
* You can’t distinguish a crashed process from a broken network link
 You can't distinguish a broken link from a really slow link

(,]arnogi(‘ Mellon University Cloud Comnumi;' An Architecture-centric View ([jl:_)ist_ribqtion Statement A] Approved for public release and unlimited
’ N © 2018 Carnegie Mellon University i ion.

- . . stribution
Software Engineering Institute

144

Communication and Coordination —
Practical Implications

Guaranteed message delivery is impossible

» Does the system impose timeouts? In one layer? Multiple layers? How long is the
timeout?

» Does the system design assume that messages are never lost?
* Does the system design assume that messages will arrive in-order?

Exactly-once delivery is tricky but possible

* What happens if a message is repeated?
Atomic broadcast (think “guaranteed one-to-many”) is impossible without application-level
cooperation

* If a system design claims this feature, it warrants some testing

[Distribution Statement A] Approved for public release and unlimited

distribution. 145

(j;u-npgi(- Mellon University Cloud Computing: An Architecture-centric View
. ’) i 2018 Carnegie Mellon University
Software Engineering Institute

Replicated State

If we have more than one copy of a data element in our system, we have to be concerned
about whether they are consistent.

» Simple state — Who is the current master? What mode are we in?
» Complex state — a distributed database or file system
» Distributed caching to improve performance

The CAP Theorem

* E. A. Brewer, “Towards robust distributed systems,” in Proc. 19th Ann. ACM Symp. on
Principles of Distributed Computing (PODC '00), 2000, pp. 7. doi:
10.1145/343477.343502

Tradeoff among Consistency, Availability, Partition-tolerance

[Distribution Statement A] Approved for public release and unlimited

distribution. 14 6

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
. g . c. © 2018 Carnegie Mellon University
Software Engineering Institute

CAP

Consistent - All requests will return the same value (note that this is different from the “C”
in SQL ACID transactions)

Available — All requests return some value

Partition-tolerant — System continues to operate when there is a network partition between
stateful nodes
Possibilities:

» CP — Sacrifice availability — e.g., most SQL implementations

* AP — Sacrifice consistency — e.g., many NoSQL data stores

» CA — Sacrifice partition-tolerance - e.g., single node or single point of failure (SPOF)
routing

(,:ill‘llﬂgi(‘ Mellon Un i\'(‘l‘sil) Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited

} K X © 2018 Carnegie Mellon University distribution. 147
Software Engineering Institute

CAP Implications

Recognize when this tradeoff is relevant — is there replicated state in a distributed
software system?

What does the design accommodate? Is that reasonable?

Testing to validate the edge cases is REALLY hard
 Kyle Kingsbury, aka Aphyr, has made a career of this
* http://jepsen.io (We'll talk about this in more detail later)
» Worth studying his approaches and results

[Distribution Statement A] Approved for public release and unlimited

Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University distribution.

Carnegie Mellon University
Software Engineering Institute

148

http://jepsen.io/

Time In Distributed Systems

Operating system-level clock synchronization is not achievable for cloud applications

Cloud Service Providers CAN provide atomic/GPS clock synchronization for some nodes
in their data centers

* E.g., Google’s Spanner distributed database relies on GPS clocks
 Applications can leverage cloud services that depend on tight time synchronization

Many distributed systems use software “clocks” (i.e. counters) to order events — this is
usually good enough

« Lamport clocks or timestamps
* Vector clocks

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 149
Software Engineering Institute

Time Synchronization Implications

Be wary of systems that get time directly from the operating system to order or
synchronize events

* E.g., comparing file timestamps across nodes

Log correlation across nodes is difficult without message IDs or similar tactics

A related issue: You can’t set the clock of a cloud server
* Testing cases like leap second handling gets tricky

» Designs that introduce a time abstraction layer to separate application time from OS
time are more testable

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 150
Software Engineering Institute

Distributed Systems Concepts

In this module, we discussed
* Clouds are distributed software systems

» The “laws of physics” that limit the visibility and capabilities of distributed software
systems

» Impact on testing approach

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 151
Software Engineering Institute

Cloud Computing: An Architecture-centric View

Testing at Scale in the Cloud

Carnegie Mellon Um'versity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X . © 2018 Carnegie Mellon University distribution. 152
Software Engineering Institute

Testing at Scale in the Cloud

In this module, we will discuss
» Challenges of testing cloud-based software
» Examples of commercial leading practices for cloud testing

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 153
Software Engineering Institute

You have to test cloud software in the cloud

“... asking to boot a cloud on a dev machine is equivalent to becoming multi-substrate,
supporting more than one cloud provider, but one of them is the worst you've ever seen”

- Fred Hébert*

* Quoted in https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 154
Software Engineering Institute

Definition of Testing

In this section, we take a broad view — testing is the collection of evidence about the
guality of a system

Encompasses both cyber assurance and operational effectiveness activities

Test activities usually involve making compromises due to constraints on controllability
and observability.

Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited 155

Carnegie Mellon University Distribu
v © 2018 Carnegie Mellon University distribution.

Software Engineering Institute

How does the cloud affect testing practices?

Controllability:

+ Easy to exactly reproduce environment
(infrastructure as code)

+ Easy and affordable to scale up workload
(requests and data sets)

- Time-consuming to transfer big test sets into
the cloud — try to generate in the cloud

- Hard/impossible to break some things for
testing (e.g., network, power, ...) — need to
simulate these

+/- “Automate all the things” — can add
complexity

Observability:

+ Easy and affordable to save everything

- Expensive and time-consuming to get big
result sets out of the cloud — need to
summarize/analyze in the cloud

+ There are cloud-based tools to help
summarize and analyze

- Cloud native services are opague black-boxes
— may need to test for longer periods or multiple
times to adequately characterize

(,:;ll'll(‘,gi(‘]\[(-"()n l,‘niv(‘rsi[\ Cloud Computing: An Architecture-centric View
) - 2018 Carnegie Mellon University

Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited

distribution. l 5 6

What have we said already about testing

Infrastructure as code, versioned environments
 For deploying the target system
 For deploying the test and data analysis environment

Cloud-based software is a distributed system
« All the principles of testing distributed systems still apply, even though the control
mechanisms may change
Consider unintended side effects during testing (e.g., triggering autoscaling)
 Impacts fidelity
» May impact testing cost

Fault simulation instead of fault creation
» Usually intrusive — impacts fidelity

(];1r[1(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’) v © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

157

Common Infrastructure —
Reuse Test and Assurance Evidence

Within a particular cloud provider environment (e.g., Amazon EC2), you can reuse some
test results and evidence related to cloud native services

* E.g., everyone is using the same S3 Simple Storage Service, so results about
performance, availability, etc. should be reusable across systems

Validate service configuration instead of runtime behavior

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [E_)ist_ribu_tion Statement A] Approved for public release and unlimited
) v © 2018 Carnegie Mellon University distribution. 158

Software Engineering Institute

Test Data Sets

It is time-consuming to get big test sets into the cloud, so if you have to upload a data set,
plan to do it only once

Avoid uploading:
» Generate and save the data set in the cloud
» Generate the data set on-the-fly (compute resources are cheap)

Strategies to save data sets
* In block storage (e.g., AWS S3), and read into VM instance (slower, cheaper, scalable)

» As snapshot’'d read-only volume attached to VM instance file system (faster, more
expensive, attach to single VM)

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- g X < © 2018 Carnegie Mellon University distribution. 159
Software Engineering Institute

Test clients/workload driver connectivity

Test
Driver/Client

Test System Under . System Under
Driver/Client L Drive(rjsélient Test
(Cloud Server) (Cloud Server)
Cloud Provider Cloud Provider
Ny AN /
Connect Within Cloud Connect through WAN
Carnegic Mellon University clgoug gggg:t&zﬁ;nﬁync;;l&\ylecture—centnc View g?sltsrtll'tl’lljjlt‘:tcl’ﬂns tttttttt Al Approved for public release and unlimited 160

Software Engineering Institute

Which client configuration should I use?

Connect Within Cloud Connect through WAN
Use for when real client will be in the same Use when the real client will access the
cloud as the system-under-test (duh!) system-under-test over the WAN (duh!)
Use to stress performance Use when it is not feasible to host the test
« Scale up clients client in the cloud (e.g., hardware-in-the-
loop)

» Optimal network capacity

Can require careful configuration if the
client is in the same cloud

» CSPs try to optimize to keep traffic off
the WAN

» Consider putting test clients in another
cloud (e.g., test AWS system using
Azure clients)

(];u'n(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- >) 8 2018 Carnegie Mellon University distribution. 16 l
Software Engineering Institute

Example of Commercial Testing Practice
“Chaos Engineering”

Chaos Engineering is the discipline of experimenting on a distributed system in order to
build confidence in the system’s capability to withstand turbulent conditions in production.

- http://principlesofchaos.org

Closed loop — develop, test, refactor...

Originated at Netflix — Chaos Monkey and the Simian Army
 Test in production
» Randomly select and crash servers
» Use robust observability framework to assess impact

(jilr"(\,gip Mellon University Cloud Comp um‘g‘] An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
’ ? © 2018 Carnegie Mellon University

- . . distribution.
Software Engineering Institute e 162

Chaos Engineering Principles*

Start by defining ‘steady state’ as some measurable output of a system that indicates
normal behavior.

 Note that this depends on having a well-instrumented system-under-test

Hypothesize that this steady state will continue in both the control group and the
experimental group.

Introduce variables that reflect real world events like servers that crash, hard drives that
malfunction, network connections that are severed, etc.

* In the cloud, we will have to simulate much of this

Try to disprove the hypothesis by looking for a difference in steady state between the
control group and the experimental group.

* http://principlesofchaos.org

(,:ill'll(‘,}.’,‘i(‘ Mellon University (;\oKuli{ fom p u{[\‘n ‘(‘j /\\‘j /\rch\\[ecme—cenn ic View [Distribution Statement A] Approved for public release and unlimited
’ i 2018 Carnegie Mellon University

_) _ distribution. 163
Software Engineering Institute

Example of Commercial Testing Practice
‘Jepsen”

Jepsen is an effort to improve the safety of distributed databases, queues, consensus systems,

etc.
- https://jepsen.io

Focused on properties of distributed storage systems
 Durability, atomic writes, replica consistency

Applies knowledge of where the edge cases are and how you get there

* E.g, faulty networks, unsynchronized clocks, and partial failure

Code at https://github.com/jepsen-io/jepsen
 Control node
* Clients that generate workload (write and read)
* “Nemesis” - inject (simulate) faults under control of Control node
» Checker

(,:le‘ll(‘,gi(‘ Mellon University Cloud Computing: An Architecture-centric View
- >) v © 2018 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited
distribution.

164

Comments on Jepsen

Included as an example
* This is how experts are testing software in the cloud

» Use the cloud to test the cloud - cost-effective elastic capacity to generate scalable
workloads

* Open source
» Applies domain knowledge of both
- cloud (what are the possible faults?) and
- system-under-test (what are the edge cases?)

We don’t expect that you would ever use the tool directly

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 165

Software Engineering Institute

And one more time...

We’'re never finished saying that testing cloud-based software is never finished
* Cloud services evolve independently of your systems
 Cloud services can evolve silently
 Cloud infrastructure evolves — networks, ingress/egress, performance

Assurance is not a one-time event

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 166
Software Engineering Institute

Testing at Scale in the Cloud

In this module, we discussed
» Challenges of testing cloud-based software
» Examples of commercial leading practices for cloud testing

(']arn(\,gi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 167
Software Engineering Institute

Cloud Computing: An Architecture-centric View

Wrap-Up

-
il
Carnegie Mellon Un_iversity Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
© 2018 Carnegie Mellon University distribution. 1 6 8

Software Engineering Institute

Perspectives on Cloud-based Systems

There are useful perspectives that can provide insights when considering cloud-based
systems
* Cloud as COTS (Commercial off the Shelf Software)

 Cloud as Common Platform
 Cloud as System of Systems

Adapting existing practices, processes, and knowledge can help us in the cloud

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 169

Software Engineering Institute

Cloud as COTS

Adopting cloud computing introduces many of the concerns that we are familiar with from
COTS

» Supply chain integrity

 Vendor lock-in

 Lack of transparency

* Mismatch between vendor’s evolution direction and system evolution direction
* Mismatch between vendor’s evolution cadence and system evolution cadence
* Need for vendor-specific skills for development and test

(,:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
_ > . 7 © 2018 Carnegie Mellon University distribution. 170
Software Engineering Institute

Cloud as Common Platform

DoD seems to view this as a benefit of cloud adoption

Common platform concerns:
» Cost/benefit of system-optimized platform vs. common platform
* Establishing and maintaining common baseline across programs
» Sharing knowledge and experience about the platform across programs

» Migration from system-unique to common platform, short-term or long-term use of
hybrid deployment

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- ’ . . © 2018 Carnegie Mellon University distribution.
Software Engineering Institute

171

Cloud as System of Systems

________ - Sources evolve
Sources :Data-lntenswe System : .
: ! % 3 independently
2 N o —— o c User workloads change over
People —Evem\s\j-\/. %—- :‘"—“’ :;Id L;d ‘-—- E :i\ tlme
Events: E Polyglot Persistence &L I ‘: ° NeW uses

Systems I r/

i . « New mix of operations

- Cloud quality of service
i ‘b“) varies

~— Shared Cloud Infrastructure

Partly inherent in any cloud-based system, but also due to
the type of data-intensive systems that we deploy to the
cloud (e.qg., situational awareness, decision support,
business analytics)

(]arnogio Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
. X < © 2018 Carnegie Mellon University distribution. 172
Software Engineering Institute

Cloud as System of Systems

Concerns:
* Definition of system boundary for design and for T&E
» Ongoing monitoring of deployed system — is it operating within its design envelope?
- Initial T&E of that monitoring
- Who is responsible for watching the deployed system?
» Coordination of evolution (similar to common platform concern)

(:ill‘llﬂgi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
- X < © 2018 Carnegie Mellon University distribution. 173
Software Engineering Institute

Final Take-aways

We covered:

« How cloud computing is different from traditional data center system deployment
 Virtualization, cloud-native services

» Controllability and observability in the cloud impacts test and evaluation

» Cloud computing improves some system qualities while inhibiting others — this affects
test and evaluation

» Cloud-based systems introduce some new cybersecurity risks

(,]arnogi(‘ Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
) ¢ © 2018 Carnegie Mellon University distribution. 174

Software Engineering Institute

Questions and Discussion

Carnegie Mellon University Cloud Computing: An Architecture-centric View [Distribution Statement A] Approved for public release and unlimited
X i < © 2018 Carnegie Mellon University distribution. 175
Software Engineering Institute

	Cloud Computing: �An Architecture-centric View�
	Slide Number 2
	Objectives for This Course
	Introduction
	Instructor Introductions
	Agenda – 1
	Agenda – 2
	Rules of Engagement
	Any Questions So Far?
	Cloud Computing: An Architecture-centric View
	Definitions and Fundamental Concepts
	Data Center Deployment
	Cloud Computing
	Cloud Computing Models and Essential Characteristics
	NIST Cloud Model’s Five Essential Characteristics
	NIST Cloud Model’s Five Essential Characteristics
	Deployment Models
	Service Delivery Models
	Shared Responsibilities Model
	Drivers for Cloud Computing Adoption
	Challenges for Cloud Computing Adoption
	FedRAMP
	Relevant Security Documentation for FedRAMP�
	FIPS Publication 199
	FIPS Publication 200
	Examples of FedRAMP Cloud Service Providers (CSPs)
	Service-Level Agreements
	Example: Amazon Compute SLA
	Definitions and Fundamental Concepts
	Cloud Computing: An Architecture-centric View
	Enabling Technologies
	Focusing our discussion
	How do they do it?
	Virtualization
	Types of Full Virtualization
	Virtualization Influences Deployment Partitioning
	Virtualization and the Cloud
	Images and Instances
	A VM instance is not like a traditional physical server – Storage
	A VM instance is not like a traditional physical server – Networking, Configuration, Access
	Instances and Physical Hardware
	Example – Survey of Instance Types* in�Amazon Elastic Compute Cloud (EC2)
	Containers
	Container Compared to Full Virtualization
	Container Technology
	Containers on the Desktop�(This is not directly related to cloud computing)
	Server-side Containers
	Creating VM Instances
	Automate all the Things –�Infrastructure as Code
	Technology support for infrastructure as code
	Chef Script Examples�(Chef scripts use Ruby)
	Immutable/Versioned Infrastructure
	Infrastructure as Code - Takeaways
	One more thing – �Network Virtualization and Virtual Private Clouds
	Enabling Technologies
	Cloud Computing: An Architecture-centric View
	Cloud Native Services
	Lift and shift to the cloud?
	The case for cloud native services
	AWS Cloud Native Services
	Cloud Native Services – Annotation Key
	AWS Cloud Native Services – Compute
	AWS Cloud Native Services – Storage
	Storage – Seems like a lot of options!
	Storage
	AWS Cloud Native Services – Database
	AWS Cloud Native Services – Networking
	AWS Cloud Native Services – Management
	AWS Cloud Native Services – Security
	AWS Cloud Native Services – Analytics
	AWS Cloud Native Services – Integration
	Hey, what about the other CSPs?
	Function as a Service – �FaaS, a.k.a. “Serverless”
	Fine-grained virtualization
	FaaS Limitations and Options
	FaaS Architecture Style
	Cutting through some of the Serverless hype
	How do you choose whether to implement your own or use a cloud native service?
	Test/Assurance Implications
	But before the case studies, a note on terminology
	Case study* – accidentally triggering performance throttling
	Case study – accidentally triggering performance throttling
	Case study*–initializing database triggers (nearly) endless partition re-balancing
	Case study – initializing database triggers (nearly) endless partition re-balancing
	Cloud Native Services
	Cloud Computing: An Architecture-centric View
	Quality Attributes in the Cloud
	What is a quality attribute?
	Quality attributes in cloud-based systems
	Quality Attributes for Discussion
	Scalability
	Scalability – Assurance
	Performance�(Separate from Scalability)
	Performance – Assurance
	Case Study* - Capacity Planning�What does “moderate” really mean?
	Case Study* - Capacity Planning�What does “high” really mean?
	Availability
	What is a cloud region?
	Regions and Availability Zones
	Availability is about Faults –�Faults in the Cloud
	Mitigation Approaches*
	Availability – Assurance
	Maintainability/Sustainability
	Maintainability/Sustainability
	Case Study* – Newer may not be better
	Maintainability/Sustainability – �Assurance
	Take-aways
	Quality Attributes in the Cloud
	Cloud Computing: An Architecture-centric View
	Cloud Security
	Setting the Context
	Threat Terminology
	Data Center Threats
	Five Infection Points
	Cloud Incidents Examples Associated with Infection Points
	Cloud Incidents Examples Associated with Infection Points
	So What Else Do We Need to Understand?
	Example – Cloud Deployment View of a Web Application Which Supports NIST Compliance
	Example – Identity and Access Management (IAM) Service View for Modeling Threat Events
	Example – Virtual Private Cloud (VPC) View for Modeling Threat Events
	Example – Hybrid Cloud
	Example – Customer’s Administrator’s View�AWS IaaS
	Cloud Vulnerabilities/Threats
	#1 Reduced Visibility & Control
	#2 Ability to Self Provision Resources & Services
	#3 Management API Compromise
	#4 Multi-Tenancy Security
	#5 Secure Data Deletion
	#6 Stealing Credentials
	#7 Vendor lock-in
	#8 Increased Complexity Strains IT Staff
	#9 Insider Threat
	#10 Data Recovery
	#11 Supply Chain
	Four Important Cloud Security Practices
	Cloud Security Practices
	Cloud Security Practices
	Conclusions
	Cloud Vulnerabilities
	Cloud Computing: An Architecture-centric View
	Distributed Systems Concepts
	Deutsch’s Fallacies of Distributed Computing
	Deutsch’s Fallacies of Distributed Computing
	Communication and Coordination
	Communication and Coordination – �Practical Implications
	Replicated State
	CAP
	CAP Implications
	Time in Distributed Systems
	Time Synchronization Implications
	Distributed Systems Concepts
	Cloud Computing: An Architecture-centric View
	Testing at Scale in the Cloud
	You have to test cloud software in the cloud
	Definition of Testing
	How does the cloud affect testing practices?
	What have we said already about testing
	Common Infrastructure → �Reuse Test and Assurance Evidence
	Test Data Sets
	Test clients/workload driver connectivity
	Which client configuration should I use?
	Example of Commercial Testing Practice�“Chaos Engineering”
	Chaos Engineering Principles*
	Example of Commercial Testing Practice�“Jepsen”
	Comments on Jepsen
	And one more time…
	Testing at Scale in the Cloud
	Cloud Computing: An Architecture-centric View
	Perspectives on Cloud-based Systems
	Cloud as COTS
	Cloud as Common Platform
	Cloud as System of Systems
	Cloud as System of Systems
	Final Take-aways
	Questions and Discussion

