
1Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

[Distribution Statement A] Approved for public release and unlimited
distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Cloud Computing:
An Architecture-centric View

John Klein
jklein@sei.cmu.edu

2Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other manner without requesting
formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government purposes, the SEI recommends
attendance to ensure proper understanding.

DM18-0567

3Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Objectives for This Course

Explain how cloud computing is different from traditional data center deployment
Identify how the controllability and observability of cloud-based systems impacts test and
evaluation approaches
Explain how cloud computing promotes and inhibits system quality attributes (including
cybersecurity), and how this impacts test and evaluation approaches
Identify potential areas of risk in cloud-based systems

4Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Introduction

Who am I?

Who are you?

Why are you here?

5Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Instructor Introductions

John Klein
Senior Member of the Technical Staff, CMU SEI
jklein@sei.cmu.edu

https://www.sei.cmu.edu/about/people/profile.cfm?id=klein_14435

Tim Morrow

Security Solutions Engineer, CMU SEI
tbm@cert.org

https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow_16360

https://www.sei.cmu.edu/about/people/profile.cfm?id=klein_14435
https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow_16360

6Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Agenda – 1

Definitions and fundamental concepts
• essential characteristics of cloud computing, cloud

delivery service models, deployment approaches
(private, community, hybrid), government-specific cloud
offerings

Enabling technologies
• virtualization, containerization, infrastructure as code

Cloud native services
• out-of-the-box services from cloud providers for storage

and databases, application integration, monitoring,
scaling and load balancing, identity and access
management, analytics

7Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Agenda – 2

Introduction to Security
Quality attributes in the cloud

• how cloud computing promotes or inhibits qualities such
as availability, performance, scalability, testability,
modifiability/ extensibility, and cybersecurity

Distributed systems concepts
• communication/coordination limits in distributed

systems, consistency/availability/partition tolerance
tradeoffs for distributed state/data, time synchronization

Using the cloud to support test and evaluation
• how to leverage the elasticity and scalability of the cloud

to test and evaluate systems

8Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Rules of Engagement

We will be very busy today.

To complete everything and get the most from
the course, we will need to follow some
rules of engagement:

• Your participation is essential.
• Feel free to ask questions at any time.
• Discussion is good, but we might need to cut some discussions short in the interest of

time.
• Please try to limit side discussions during the lectures.
• Please turn off your cell phone ringers and computers.
• Let's try to start on time.

9Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Any Questions So Far?

10Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Definitions and Fundamental
Concepts

11Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Definitions and Fundamental Concepts

In this module, we will discuss
• What makes cloud computing different from a typical data center
• Cloud service models
• Cloud delivery models
• Cloud options available for US government systems
• Security controls
• Service level agreements

12Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Data Center Deployment

13Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing

“A model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Source: National Institute of Standards and Technology (NIST), 2011

14Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing Models and Essential Characteristics

Source: National Institute of Standards and Technology (NIST), 2011

Software as a Service
(SaaS)

Platform as a Service
(PaaS)

Infrastructure as a
Service (IaaS)

Public Private Hybrid Community

On-Demand Self Service Broad Network Access Rapid Elasticity

Measured Service Resource Pooling

Service
Models

Deployment
Models

Essential
Characteristics

15Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

NIST Cloud Model’s Five Essential Characteristics

On-demand self-service – a consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without requiring human interaction with each
service provider.

Broad network access – capabilities are available over the network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets,
laptops, and workstations)

Resource pooling – the service provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned
and reassigned according to consumer demand.

16Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

NIST Cloud Model’s Five Essential Characteristics

Rapid elasticity – capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand.

Measured service – cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage,
processing, bandwidth, and active user accounts).

17Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Deployment Models

Public
• Offered as a service, usually over an Internet connection
• Typically charge a pay-per-use fee
• Users can scale on-demand and do not need to purchase hardware
• Cloud providers manage the infrastructure and pool resources into capacity required by consumers

Private
• Deployed inside the firewall and managed by the user organization
• User organization owns the software and hardware running in the cloud
• User organization manages the cloud and provides cloud resources
• Resources typically not shared outside the organization and full control is retained by the organization

Hybrid
• Combination of public and private cloud and/or community

Community
• Cloud that contains functionality tailored for the industry that it serves

18Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Service Delivery Models

Infrastructure as a Service (IaaS)
• CPUs
• Disk drives
• Networks
• Data centers

Platform as a Service (PaaS)
• Development and runtime tools and environment

Software as a Service (SaaS)
• Enterprise apps
• Desktop apps
• Mobile apps

19Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Shared Responsibilities Model

20Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Drivers for Cloud Computing Adoption

Availability 24x7 access to data and applications from anywhere

Big Data Public clouds have significantly reduced the cost of entry into big data, machine learning, and
artificial intelligence systems

Elasticity and
Scalability

Organizations can request, use, and release as many resources as needed based on
changing needs and user demand

Lower Infrastructure
Costs

The pay-per-use model allows an organization to only pay for the resources they need with
basically no investment in the physical resources available in the cloud — there are no
infrastructure maintenance or upgrade costs

Reduced
Development Times

• Available tools and platforms, in addition to DevOps procedures, can reduce amount of
code to write and deployment times

• Multi-organizational projects can work simultaneously on common data and information

Reliability In order to support SLAs (service-level agreements), cloud providers have reliability
mechanisms that are much more robust than those that could be cost-effectively provided by a
single organization

Risk Reduction Organizations can use the cloud to test ideas and concepts before making major investments
in technology

21Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Challenges for Cloud Computing Adoption

Interoperability A universal set of standards and/or interfaces has not yet been defined, resulting in a
significant risk of vendor lock-in

Latency All access to the cloud is done via the internet, introducing latency into every communication
between the user and the environment

Legal Issues There are concerns in the cloud computing community over jurisdiction, data protection, data
location, fair information practices, international data transfer, and legal access to data

Platform or Language
Constraints

Some cloud environments provide support for specific platforms and languages only

Security The key concern is data privacy: organizations typically do not have control of or know where
their data is being stored

Skills/Knowledge Different skills are needed to make use of clouds at the different services than a traditional IT
center

Compliance Satisfying NIST Special Publication 800-53 security controls and assessment procedures for
the program’s appropriate security control level

Portability Cloud service providers provide similar functionality but implement their services differently

22Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

FedRAMP

Government-wide program for unclassified cloud computing that standardizes:
• Security assessment
• Authorization
• Continuous monitoring for cloud products and services
• https://www.fedramp.gov/about-us/about/

There are three main players in the FedRAMP process:
• Agencies
• Cloud service providers (CSPs)
• Third party assessment organizations (3PAOs)

FedRamp Authorization Playbook is the starting point
• https://www.fedramp.gov/introducing-the-new-agency-authorization-playbook/

23Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Relevant Security Documentation for FedRAMP

FIPS Publication 199 Standards for Security Categorization of Federal Information and
Information Systems

FIPS Publication 200 Minimum Security Requirements for Federal Information and
Information Systems

NIST 800-53 Security Controls Catalog, revision 4

24Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

FIPS Publication 199

Defines three levels of potential impact on organizations or individuals should there be a breach of security
(i.e. a loss of confidentiality, integrity, or availability).

LOW impact if the loss of confidentiality, integrity, or availability could be expected to have a limited adverse
effect on organizational operations, organizational assets, or individuals.

MODERATE impact if the loss of confidentiality, integrity, or availability could be expected to have a serious
adverse effect on organizational operations, organizational assets, or individuals.

HIGH impact if the loss of confidentiality, integrity, or availability could be expected to have a severe or
catastrophic adverse effect on organizational operations, organizational assets, or individuals.

Security Categorization:

SC(system)={(confidentiality, impact), (integrity, impact), (availability, impact)}

25Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

FIPS Publication 200

1. access control
2. awareness and training
3. audit and accountability
4. certification, accreditation, and security

assessments
5. configuration management
6. contingency planning
7. identification and authentication
8. incident response
9. maintenance

10. media protection
11. physical and environmental protection

12. planning

13. personnel security

14. risk assessment

15. systems and services acquisition

16. system and communications protection

17. system and information integrity

Identifies seventeen security-related areas with regard to protecting the confidentiality, integrity,
and availability of federal information systems and the information processed, stored, and
transmitted by those systems.

26Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Examples of FedRAMP Cloud Service Providers (CSPs)

Provider Service Model
Supported

Impact Level Authorizations

AWS US East/West IaaS Moderate 83
AWS GovCloud IaaS Moderate 39
AWS GovCloud High IaaS, PaaS High 8
Google G Suite PaaS, SaaS Moderate 10
Google Services (Google Cloud
Platform Products)

IaaS, PaaS, SaaS Moderate 0

Microsoft Commercial Cloud IaaS, PaaS Moderate 56

Microsoft Azure Government IaaS, PaaS High 15

Microsoft 365 Multi-Tenant &
Supporting Services

SaaS Moderate 33

27Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Service-Level Agreements

A service level agreement (SLA) is a formal negotiated agreement (contract) between
service consumers and providers.
Minimal SLA outline

• Parties in the agreement
• Services provided that are covered by the SLA
• Service performance metrics
• Incident handling — procedures, response times, consequences when response times

are not met
• Records/logs to keep
• Performance review and problem management
• Termination arrangements

Each CSP has their own SLA.

28Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example: Amazon Compute SLA

https://aws.amazon.com/ec2/sla/

29Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Definitions and Fundamental Concepts

In this module, we discussed
• What makes cloud computing different from a typical data center
• Cloud service models
• Cloud delivery models
• Cloud options available for US government systems
• Security controls
• Service level agreements

30Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Enabling Technologies

31Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Enabling Technologies

In this module, we will discuss
• What is virtualization and how it enables cloud computing
• How virtual servers are different from physical servers
• What are containers and how they support cloud computing
• How virtual machines are managed using scripts

32Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Focusing our discussion

For much of the rest of this course, we are going to focus on Amazon’s IaaS technology –
Amazon Web Services or AWS
Why IaaS?

• Our experience is that IaaS is the starting point for many system migrations to the
cloud

• Understanding IaaS provides the necessary foundation to understand other cloud
services - PaaS and SaaS are built on top of IaaS

• Amazon’s IaaS is starting to bleed into PaaS and SaaS
Why Amazon?

• Market leader in commercial and government sectors
• Broad offering, covers diverse capabilities
• Other vendors map their offerings to Amazon’s

33Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

How do they do it?

How does a cloud service provider deliver Infrastructure as a Service?
How do they achieve elasticity and on-demand capacity?
How much do you need to care about it?

34Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Virtualization

NIST definition (800-125)
• Virtualization is the simulation of the software and/or hardware upon which other

software runs.
Types of virtualization:

• Application – e.g., Java Virtual Machine
• Operating system – e.g., containers like Docker
• Full – One or more operating systems (and their applications) running on top of virtual

hardware

We’ll talk about Full Virtualization first, and then come back to Containers

35Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Types of Full Virtualization

Type 1 Type 2
(mostly used on Desktop)

Source: NIST 800-125

36Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Virtualization Influences Deployment Partitioning

With physical servers:
• Deploy multiple applications on a physical server – introduces dependency

management concerns
• Efficiency → Fill the server’s capacity (while maintaining some reserve headroom)
• Physical failure may be a concern, i.e. don’t deploy the primary and backup to the

same physical server
With virtualized servers:

• Simplify dependencies – deploy one application per VM instance
• Efficiency of physical hardware utilization is the cloud provider’s concern
• Physical hardware failure is (mostly) handled by the cloud service provider – we’ll talk

later about deployment patterns to improve availability

37Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Virtualization and the Cloud

Cloud Service Providers use Type 1 virtualization
AWS used the Xen hypervisor, now moving to KVM-based implementation*
Physical reboots are a very rare event
Instance = executing guest OS + application (and middleware)
Multi-tenant – Instances on same physical server may belong to different users

Instance 1 Instance 2

* https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/

38Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Images and Instances

An instance is a deployed and executing image.
• An image can be used to create multiple instances.

How are images created?
• Start with a base image – this is a minimal bootable guest OS image
• Deploy and start the base image
• Install more software (middleware, application, etc.) on the running instance
• Configure and tune the running instance (users, firewall, application settings)
• Take a snapshot of the instance to create a new image

We’ll talk more this later – Infrastructure as Code

39Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

A VM instance is not like a traditional physical server –
Storage
The disk on a physical server retains state from one boot to the next boot

• Not necessarily the case in the cloud
Boot volume (AWS EC2):

• Instance Store-backed
- Ephemeral, data is not saved on shutdown, next boot is from clean image
- Slower to start (in EC2)

• EBS Store-backed
- Persistent, behaves like physical server boot disk
- Faster to start (in EC2)
- Incurs storage charges even when instance is not running

We don’t back up virtual servers – the image is the backup

40Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

A VM instance is not like a traditional physical server –
Networking, Configuration, Access
Networking

• VM instances are assigned dynamic hostnames and IP addresses – there are no static
IP addresses in the cloud

• Architectures must use discovery instead of static configuration

We can pass configuration variables to an instance when we start it.
• E.g., role=master or role=slave

Your only access is via ssh - you get the instance’s key when you launch it. Don’t Lose
That Key!

41Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Instances and Physical Hardware

The cloud service provider manages allocation of instance to physical nodes
Most cloud service providers offer several types of instance profiles

• CPU and memory capabilities
• Hypervisor tuning
• Network and storage

Each profile has a different pay-per-use cost
Profiles change over time as technology evolves

42Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Survey of Instance Types* in
Amazon Elastic Compute Cloud (EC2)
General Purpose

• 4 subtypes, various sizes (23 total)
• Balance CPU, Memory, I/O

Compute Optimized
• 3 subtypes, 1 w/ SSD (16 total)
• High-end CPUs, variable memory sizes

Memory Optimized
• 4 subtypes, 3 w/ SSD (19 total)
• Up to 3,905GiB memory

Accelerated Computing
• 4 subtypes (11 total)
• GPU and FPGA

Storage Optimized
• 3 subtypes, HDD and SSD (15 total)
• High instance storage for replicated databases

*As of 1 Dec 2017

43Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Containers

A VM image contains a full guest operating system
• May take 30-45 seconds to start, possibly longer depending on the time to copy the

image from storage
What if my application doesn’t need all of the services that the OS provides? E.g.,
Microservices or a Function-as-a-Service
An Application Container* is a construct designed to package and run an application or its
components running on a shared Operating System.
Containers are “lightweight” - <50 msec startup time, small enough to cache locally

• Based on Linux kernel namespaces and cgroups
• Less robust isolation than VM provides, but enough for most use cases

Some similarities to VMs - boot from image, storage is ephemeral
Some differences – Images can be composed, networking is bridged through host’s IP
address
*From NIST 800-180 Draft

44Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Container Compared to Full Virtualization

And, of course, you can run
your container daemon on a
guest OS in a VM

E.g., Docker

Source: NIST 800-180 Draft

45Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Container Technology

This technology space can be confusing, because containers are being applied for both
desktop and server use cases
Docker was emerging as the leading container engine (docker.org) for both cases,
although recent business decisions have created some concerns
Desktop Use Case

• Don’t install applications or runtimes, instead run software in a container
• Especially useful if you need multiple versions of a runtime

Server Use Case
• Small, fast deployable units
• Fine-grained scalability

46Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Containers on the Desktop
(This is not directly related to cloud computing)
Install Docker Engine
$ sudo apt-get install docker.io

Cache base images*
$ docker pull python:2.7
$ docker pull python:3.3
$ docker pull python:3.4

Execute for each Python version
$ docker run -i -t --rm python:2.7 python -m timeit "[i for i in range(1000)]"
10000 loops, best of 3: 82.2 usec per loop

$ docker run -i -t --rm python:3.3 python -m timeit "[i for i in range(1000)]"
10000 loops, best of 3: 83 usec per loop

$ docker run -i -t --rm python:3.4 python -m timeit "[i for i in range(1000)]"
10000 loops, best of 3: 87.7 usec per loop

Example from http://tiborsimko.org/docker-for-python-applications.html

* Optimization – Docker will automatically pull on first use of an image if it is not
cached locally

47Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Server-side Containers

Driven by microservices (a small, cohesive, independently deployable distributed service
developed by a single team)
Applications have many (i.e. 10s) of microservices, with some executing multiple
instances
Concerns

• Packaging dependencies
• Deployment efficiency (100s of instances)

Enter containers and container orchestration technology
• Docker container engine
• Kubernetes (“K8s”*) container management

Containers enable the function as a service, AKA serverless architecture style
* But only if you are a rock star full stack ninja developer

48Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Creating VM Instances

Amazon Web Service (AWS) homepage has 10-minute Tutorial: Launch a Linux Virtual
Machine using Amazon EC2

• Uses the AWS Management Console
• Wizard-driven VM instance creation – step through a few screens to configure and

launch the instance
• Console shows the status of your running instances
• Great way to get started with AWS!

But this approach is not viable for more than a few instances
• Manual and error-prone
• Slow

Automate all the things – treat your infrastructure as code

49Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Automate all the Things –
Infrastructure as Code

Infrastructure as code is the process and technology to manage and provision computers
and networks (physical and/or virtual) through scripts.
Scripts/code provide:

• Scale
• Automation
• Version control

50Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Technology support for infrastructure as code

AWS Command Line Interface and language-specific libraries
• Wraps the AWS API – use your favorite scripting tools (shell script, Python, Ruby, ...)
• Fine-grained and detailed control
• Can do more than just manage VM instances

• Manage images, manage storage and snapshots, ad hoc operations on services like
DynamoDB and Identity and Access Management (IAM)

DevOps tools like Chef and Puppet use higher-level abstractions, make things easier and
more efficient

51Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Chef Script Examples
(Chef scripts use Ruby)
httpd_service 'an websites' do

instance_name 'bob'
servername 'www.computers.biz'
version '2.4'
mpm 'event'
threadlimit '4096'
listen_ports ['1234']
action :create
action :start

end

mysql_service 'foo' do
port '3306'
version '5.5'
initial_root_password 'change me'
action [:create, :start]

end

Examples from https://github.com/chef-cookbooks/httpd and https://github.com/chef-cookbooks/mysql

52Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Immutable/Versioned Infrastructure

Infrastructure as code promotes an IT operations approach called immutable infrastructure
• Immutable – “write once”
• Don’t update, recreate (or replace)

Don’t patch a running system, instead
• Rework the infrastructure as code scripts that generated the image
• Create a new image
• Test instances of the new image
• Deploy the new image to production

Allows us to version our infrastructure
• Rollback – some large-scale systems can’t be tested outside of the production environment –

Infrastructure as Code and versioned infrastructure provide a safety net for testing in these
situations

• Parity – test and production environments are identical

53Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Infrastructure as Code - Takeaways

You need to be familiar with both approaches:
• Chef/Puppet/etc. – Fast, easy, default development tools
• AWS Command Line Interface – finer-grained control and visibility for T&E activities

Contractors should deliver their infrastructure as code artifacts
• Treat these like any other software deliverable
• It is code – some up-front design is usually needed to define approach and overall

structure
• It is code – some documentation is needed to describe the artifacts

Key to agility
• Versioned infrastructure provides a safety net for rapid exploration and experimentation

Repeatability reduces implementation diversity

54Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

One more thing –
Network Virtualization and Virtual Private Clouds
VMs provide isolation when sharing physical computer hardware
What about sharing the network?
A virtual private cloud or VPC uses private subnet addresses and VLAN technology to
isolate network traffic between VMs

• When a VM is launched, it is assigned to a VPC
• Some CSPs (e.g., AWS) allow you to also purchase physical hardware isolation – VMs

deployed to a VPC will not share physical hardware with VMs outside that VPC
Amazon also allows you to pay to place a VPN endpoint in the VPC

• Allows extending the enterprise network directly into the cloud for hybrid service
delivery

55Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Enabling Technologies

In this module, we discussed
• What is virtualization and how it enables cloud computing
• How virtual servers are different from physical servers
• What are containers and how they support cloud computing
• How virtual machines are managed using scripts

56Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Cloud Native Services

57Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Native Services

In this module, we will discuss
• Cloud platforms include many out-of-the-box services
• Architectures can trade off cloud native vs. portable implementations
• Impact on testing/assurance approach

58Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Lift and shift to the cloud?

<lift-and-shift>
1. Package each of your servers into a virtual machine image
2. Choose a cloud service provider
3. Select appropriate instance types
4. Deploy your VM images

</lift-and-shift>

Done? Not quite!

<remediation>
1. Persistent storage
2. Static IP addresses
3. …

</remediation>

59Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

The case for cloud native services

Scalable, secure, and highly-available distributed services are hard
• PostgreSQL has 270 configuration parameters
• Kafka message queue has 140 “top-level” configuration parameters
• How many impact security? performance? availability?

Managing distributed services is hard
• Patching and updating is harder in distributed system
• Monitoring
• Adding capacity to a running system
• …

Wouldn’t it be nice if this was somebody else’s problem?

Cloud Native Services to the rescue!

60Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services

61Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Native Services – Annotation Key

Replaces a traditional, portable component
(You could build this yourself in the cloud)

Only cloud service provider can feasibly
deliver this service

There are some judgement calls here.

Note that we don’t categorize every service offering.

62Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Compute

63Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Storage

64Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Storage – Seems like a lot of options!

Basics:
• EBS – Elastic Block Store – the virtual hard disks for your VM

- An EBS volume can be mounted by only one VM instance at a time
- Size limited to 16TB per volume
- Can be backed up/snapshot’ed in case of application crash

• EFS – Elastic File System – NFS in the cloud
- Distributed file system, can be mounted by many VMs at a time
- No size limits
- Managed by AWS

• S3 – Simple Storage Service – object (blob) storage
- Access via API or via http (can use to host static web content)
- Virtually unlimited scale (both objects and buckets/namespaces)
- Managed by AWS

65Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Storage

“Advanced”:
• Glacier – low cost cold storage
• Storage Gateway – hybrid cloud storage solution
• Snowball and Snowmobile – peta-/exa-scale transport and storage (i.e. sneakernet)

• Snowball Edge – Onboard ingest processing

66Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Database

67Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Networking

68Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Management

69Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Security

70Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Analytics

71Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

AWS Cloud Native Services – Integration

72Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Hey, what about the other CSPs?

Microsoft Azure:
http://aka.ms/awsazureguide maps from AWS services to Microsoft Azure services

Google Compute Platform (GCP):
https://cloud.google.com/free/docs/map-aws-google-cloud-platform maps from AWS
services to GCP services

73Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Function as a Service –
FaaS, a.k.a. “Serverless”

74Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Fine-grained virtualization

VM – run OS on virtualized hardware
Container – run process on virtualized OS
What if I want to just run a function?

Function as a Service, or “Serverless”
• Pack up up your function code and dependencies (i.e. libraries)
• Upload the zip file to the CSP and bind it to a REST endpoint
• When the endpoint is invoked, the CSP creates a container and runs your function,

passing the in the parameters from the REST invocation
• Pay per use, based on execution duration and memory utilization

75Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

FaaS Limitations and Options

Concurrency – Autoscaling
• Specify the number of concurrent instances when you bind to the REST endpoint
• CSP sets upper limit

Startup latency – “cold start”
• Delay in launching the container on the initial concurrent invocation
• Container is not unloaded immediately on function exit – remains for a few seconds
• Keep-alive: Send dummy invocations to keep the function “warm” – trades off cost

against lower latency

76Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

FaaS Architecture Style

Extends “stateless service” style, e.g., request context is passed in by client
Return object to client in response
Any service state and data must be stored using a cloud native service (e.g., DynamoDB
or S3)
Composition

• Client orchestrates invocations to multiple functions
• Nesting – a function synchronously invokes other services

- Need to complete within the execution time limits for the initially invoked service
- Return response to client

• Chaining – a function asynchronously invokes another service
- Avoids execution time limits
- Can’t return a response to the client

77Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cutting through some of the Serverless hype

Benefits:
• For some workloads, FaaS pay-per-use cost will be less than other approaches
• For some applications, FaaS will be simpler to develop
• Some consider this to be “DevOps as a Service” – it pushes many Site Reliability

Engineering concerns to the CSP, and may reduce full-stream development costs
• Enforces stateless architecture style, which improves scalability

Challenges:
• Can be difficult to debug
• Discontinuity in evolution if you reach the complexity or execution time limits of FaaS
• Use of cloud native services will inhibit portability (may not be a concern)

78Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

How do you choose whether to implement your own or use a
cloud native service?
Development cost

• Probably lower if you start design to use cloud native service
• Obviously higher if you have to rework to use cloud native service

Pay per use cost
• For a given scale, cloud native services are usually more expensive
• Most cloud native services offer autoscaling or easy manual scaling

Service management cost
• Cloud services need no tuning, patching, updating, …
• Harder to quantify – what does it cost to manage your own service?

Security posture
• Cloud native services may be more secure than a self-implemented solution hosted in the cloud
• Cloud native services may already be accredited
• Again, hard to quantify

79Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Test/Assurance Implications

1. Understand where cloud native services are being used
• You need to look at the architecture/design to see this

2. Research the weaknesses, common misuse patterns, and limitations of each native
service

• Netflix engineering blog is one source for AWS
• Lots of stories in the blogosphere

3. Test autoscaling, failover, access control configuration, …
• You are more likely to find problems with application’s use of the service than the

service implementation
• We’ll talk more later about testing

4. Test carefully to avoid unintended side-effects
• See the case studies that follow here

80Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

But before the case studies, a note on terminology

“Partition” has multiple meanings in the context of cloud computing
Verb, e.g., network partition

• Cause the network to split into two or more subnetworks that cannot communicate with
each other

• This is the P in CAP
Noun, e.g., database partition

• In a distributed database, the complete data set is divided and each division may be
copied. Each of these subsets is called a partition.

• Partitions are assigned to physical nodes, where they are stored.

81Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case study* – accidentally triggering performance throttling

System used AWS DynamoDB, a key-value distributed database service
DynamoDB hashes the key to select a partition to store the value

• Hashing function balances data across storage partitions
Service pricing is based on peak I/O for a partition

• Service throttles all accesses when you hit your I/O limit in any partition
Test script:

for value = 1 to 1000000
store(”key”, value)

end

What’s wrong with that?

*A. Roussel and R. Branson. The Million Dollar Engineering Problem [Online]. https://segment.com/blog/the-
million-dollar-eng-problem

82Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case study – accidentally triggering performance throttling

Note that the key never varies
• Every write operation is hashed to the same storage partition
• Tight loop in the script quickly saturates I/O for that partition and triggers rate throttling

for all partitions
All I/O is throttled and everything slows down

Lessons learned:
1. Design your test cases to be compatible with the service’s architecture
2. If you can’t control the access pattern, then add protection against misuse (in this

case, they pre-filtered requests and discarded requests where
key=“key”|”ID”|”id”|”key_id”|…)

83Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case study*–initializing database triggers (nearly) endless
partition re-balancing
MongoDB is a document database – each record is a JSON object
Database configuration defines maximum partition size

• When a partition hits that limit, it is split
• A new partition is created, half of the data is moved to the new partition
• This does not interrupt database access

Scenario – loading a database prior to testing
• Empty database has one partition
• Write test data records until the partition size limit is hit, triggers split and re-balance
• Writing continues during re-balance, quickly hits size limit for one of the new partitions,

triggers another rebalance before the first one finished…

*J. Klein, I. Gorton, N. Ernst, et al., “Application-Specific Evaluation of NoSQL Databases,” in Proc. IEEE Big Data
Congress, New York, NY, USA, 2015, pp. 526-534. doi: 10.1109/BigDataCongress.2015.83

84Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case study – initializing database triggers (nearly) endless
partition re-balancing
Result:

• It took about 2 hours to write 10 million records
• It took the database about 24 hours to complete all the rounds of re-balancing

Work-arounds:
• Turn off rebalancing during the loading, then turn it on and let it run once
• Snapshot the storage image after the database was loaded (need to be careful with

this – data contains write timestamps that may introduce new issues when reused
later)

85Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Native Services

In this module, we discussed
• Cloud platforms include many out-of-the-box services
• Architectures can trade off cloud native vs. portable implementations
• Impact on testing/assurance approach

86Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Quality Attributes in the Cloud

87Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Quality Attributes in the Cloud

In this module, we will discuss
• How cloud-based architectures promote and inhibit quality attributes
• What are the assurance considerations for several quality attributes

88Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

What is a quality attribute?

Quality attributes are properties of work products or goods by
which stakeholders judge their quality.
Some examples of quality attributes by which stakeholders judge
the quality of software systems are

• performance
• security
• modifiability
• reliability
• usability
• calibrateability

• availability
• throughput
• configurability
• subsetability
• reusability
• scalability

89Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Quality attributes in cloud-based systems

In cloud-based systems, some quality
attributes are promoted, some are inhibited,
and some are unaffected

We’ll assess the cloud’s impact on several
quality attributes

These are sweeping generalities
• With most architecture decisions, the real

answer is “it depends”

Easier in the cloud

Unchanged

Harder in the cloud

90Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Quality Attributes for Discussion

Security – we’ll cover this separately
Scalability
Performance
Availability
Maintainability/Sustainability

91Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Scalability

What do we mean?
• Add capacity or deliver very high capacity

- Processing
- Storage
- Interactions

Storage scalability is easiest to achieve – essentially built-in
Processing and interaction scalability is relatively easy

• Cloud native autoscaling and load balancing services
• Does require some software architecture support to allow workload to be partitioned

- Approaches include: Stateless, limited coordination or synchronization, dynamic cluster
membership and leader election

92Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Scalability – Assurance

Primary concern is processing/interactions
What are the scalability mechanisms used by the system?

• What are the triggers to scale up? Scale down?
• Test that scaling works correctly when it should, and doesn’t happen when it shouldn’t

(see earlier case study)
What are the scalability limits imposed by cloud service provider?

• AWS has hard limits – see
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

• E.g., default is 20 VM reserved instances, 1-20 VM spot instances
• How close is the system to the limits? How does the system handle hitting a limit? Can

separate parts of the system combine to hit a limit?

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

93Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Performance
(Separate from Scalability)
What do we mean?

• Throughput – ability to process a quantity incoming events (requests, messages,
targets, …)

• Latency – time needed to respond to an event
Easy to deliver and manage very large systems

• Infrastructure as code to create and deploy VM instances
• Very capable instance types available (see https://aws.amazon.com/ec2/instance-

types/)
• Cloud native services for coordination and integration of instances
• Cloud native services for high performance architecture models (e.g., MapReduce)

94Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Performance – Assurance

We’ll cover testing at scale in more detail later.
Challenges:

• Usual performance testing concerns – e.g., defining the workload, defining the
background

• Executing the workload at scale
• Generating test data sets at scale (and getting that data into the cloud)
• Observing, collecting results, and verifying results at scale

(Continuous) verification of QoS of cloud provider services
• E.g., benchmark found twin-peak distribution on AWS VM performance – traced to

physical hardware was some AMD, some Intel processors*

* D. Bermbach, “Quality of Cloud Services: Expect the Unexpected,” IEEE Internet Computing, vol. 21,
no. 1, pp. 68-72, Jan 2017, doi: 10.1109/MIC.2017.1

95Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case Study* - Capacity Planning
What does “moderate” really mean?

AWS measured network I/O
(Gbps)

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

96Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case Study* - Capacity Planning
What does “high” really mean?

AWS measured network I/O
(Gbps)

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

97Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Availability

What do we mean?
• System can detect, isolate, and mask or recover from faults, so that service delivery is

uninterrupted
We are calling this “unchanged” for cloud-based systems, with a couple of caveats

• Not considering that Security, e.g., DOS attack, is linked to availability and performance
(this concern is better in the cloud)

• Multi-region solutions are possible, but can be challenging (see Netflix Engineering
Blog)

98Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

What is a cloud region?

Terminology and definition varies somewhat across cloud service providers, but most
have this construct
E.g., “An AWS Region is a geographical location with a collection of availability zones
mapped to physical data centers in that region. Every Region is physically isolated from
and independent of every other Region in terms of location, power, water supply, etc…An
Availability Zone is a logical data center in a Region available for use by any AWS
customer. Each zone in a Region has redundant and separate power, networking and
connectivity to reduce the likelihood of two zones failing simultaneously. A common
misconception is that a single zone equals a single data center. In fact, each zone is
backed by one or more physical data centers, with the largest backed by five.”*

* https://blog.rackspace.com/aws-101-regions-availability-zones

https://blog.rackspace.com/aws-101-regions-availability-zones

99Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Regions and Availability Zones

Example, AWS us-east-1 is a region
Note that AWS GovCloud is (currently) a single region
You must choose a region when launching a VM instance and most cloud native services

• Choosing an availability zone is usually optional
Elastic Load Balancer – Distribute requests across availability zones within a region

Route 53 DNS – use to balance across regions
Building cross-region systems is hard

• see e.g., R. Meshenberg, N. Gopalani, and L. Kosewski. Active-Active for Multi-
Regional Resiliency. http://techblog.netflix.com/2013/12/active-active-for-multi-
regional.html

100Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Availability is about Faults –
Faults in the Cloud
Root causes of unplanned outages*:

• infrastructure or software failures
• planning mistakes
• human error
• external attacks

Cloud infrastructure does fail, e.g.,
• After AWS physical reboot, Netflix had 22 out of 218 servers fail to restart (D. Harris. Netflix lost

218 database servers during AWS reboot and stayed online [Online]. https://gigaom.com/2014/10/03/netflix-lost-218-database-servers-
during-aws-reboot-and-stayed-online/)

• Christmas Eve 2012 (https://medium.com/netflix-techblog/a-closer-look-at-the-christmas-eve-outage-d7b409a529ee)

* P. T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol. 50, no. 11,
pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.

101Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Mitigation Approaches*

Monitoring
• In the cloud, verification is never finished**

Geo-distributed Storage and Redundancy
• Can achieve some geo-distribution within a region
• Requires careful design and configuration (opening the door to human error)

Disaster Recovery
• Cross-region failover – note that this is not (currently) an option for government cloud

deployments

P. T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol.
50, no. 11, pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.
J. Klein and I. Gorton, “Runtime Performance Challenges in Big Data Systems,” in Proc. Workshop on
Challenges in Performance Methods for Software Development (WOSP-C'15), Austin, TX, 2015. doi:
10.1145/2693561.2693563

102Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Availability – Assurance

Certain types of faults cannot be directly induced
• E.g., you can’t pull out a network cable – need to use intrusive tools like netem

(https://wiki.linuxfoundation.org/networking/netem) to simulate network failures
• Generally, cloud testing relies more on simulated faults – need to assess the quality of

the simulation → quality of the evidence
Need for practices and procedures that bridge between cloud provider’s QoS guarantees
and evidence that you collect directly

* Intrusive Tools = Install on target system or change configuration

https://wiki.linuxfoundation.org/networking/netem)

103Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Maintainability/Sustainability

What does it mean?
• Required changes can be made to the software to keep the system secure and

operating
We’re calling this worse in the cloud for stable systems

• From a purely technical perspective, some things are better, some worse
• No real experience with long-lived static systems deployed to the cloud
• Assurance is never finished – this can be a big change in mindset, policy,

funding, …
If you are continually evolving your system and you’ve embraced DevOps, then this
quality is probably better in the cloud

• Environment parity between production and development
• You are continuously testing/integrating/delivering

104Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Maintainability/Sustainability

Easier:
• Infrastructure as code practices improve

the repeatability of deployment
• Virtualization allows development

environment to be identical to production
environment

• Cloud should impose higher degree of
uniformity of deployment configurations
(IaaS)

• No infrastructure patching or
management concerns at all (PaaS and
SaaS)

Harder:
• Cloud provider can change the

infrastructure in ways that impact your
system but still satisfy QoS guarantees

• Cloud provider offerings evolve over time
– issue for cloud native services, PaaS,
and SaaS

• Tempo difference between your system
and cloud providers – there is no
experience with long-lived static systems
deployed to the cloud

105Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Case Study* – Newer may not be better

* Andreas Wittig, https://cloudonaut.io/evolution-of-the-ec2-network-performance-m3-m4-m5/

106Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Maintainability/Sustainability –
Assurance
In the cloud, Test and Evaluation is never finished

• Continuous assessment that QoS guarantees are being met
- Monitoring and trending
- Within a system and across systems

• Continuous assessment that the delivered infrastructure remains compatible with your
systems
- E.g., Netflix’s Chaos Engineering (more about this later)

• Working with cloud service providers to understand their roadmaps and assess impact
on systems in production AND in development

107Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Take-aways

The cloud makes some things better, some things worse.
Some of these impacts are intrinsic to any cloud computing (i.e. performance)
Other impacts are more specific to your system context, especially US government
systems (i.e. availability, maintainability)

108Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Quality Attributes in the Cloud

In this module, we discussed
• How cloud-based architectures promote and inhibit quality attributes
• What are the test and evaluation considerations for several quality attributes

109Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Introduction to Cloud Security

110Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Security

In this module, we will discuss
• Threats and infection points
• Examples of different views using AWS
• Hybrid cloud example and its associated different views
• Cloud unique and cloud/on-premise threats/vulnerabilities
• Four key security practices

111Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Setting the Context

112Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Threat Terminology

Threat source – a method by which a vulnerability is triggered or exploited
Attack (initial infection vector) – method used to gain access to system
Asset – the object of the attack
Threat actor – an entity that is partially or wholly responsible for an incident that impacts
or has the potential to impact an organization's security.
Tool – e.g., phishing email, remote access Trojan (RAT), SQL injection
Target – e.g., personally identifiable information (PII) data, trade secrets, network
configuration information

113Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Data Center Threats

The SEI developed a holistic approach when considering attacks on computer systems
which is based on the following two questions.

• “How did they get in?”
• “What did they do after they were in?”

To answer the first question, five ways to get into a computer system (infection points)
were identified.

114Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Five Infection Points

115Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Incidents Examples Associated with Infection Points

Social engineering – “How Apple and Amazon Security Flaws Led to my Epic Hacking”,
“In the space of one hour, my entire digital life was destroyed.”,
(http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/)

Client exploit – AWS OpenSSL Security Advisory - May 2016; “AWS will appropriately update
OpenSSL to improve security for AWS customers who are utilizing outdated web browsers that
cannot negotiate the AWS preferred and recommended AES-GCM TLS/SSL cipher suites when
interacting with the AWS Management Console.”, (https://aws.amazon.com/security/security-
bulletins/openssl-security-advisory-may-2016/)

Misconfiguration – Amazon ELB Service Event in the US-East Region on December 24,
2012, portion of ELB state data was logically deleted which is used and maintained by the ELB
control plane to manage the configuration of the ELB load balancers in the region.
(https://aws.amazon.com/message/680587/);

https://aws.amazon.com/message/680587/

116Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Incidents Examples Associated with Infection
Points
Server exploit – AWS CVE-2015-7547 Advisory - ”We have reviewed the issues
described in CVE-2015-7547 and have determined that AWS Services are largely not
affected. The only exception is customers using Amazon EC2 who’ve modified their
configurations to use non-AWS DNS infrastructure should update their Linux
environments immediately following directions provided by their Linux distribution. EC2
customers using the AWS DNS infrastructure are unaffected and don’t need to take any
action. A fix for CVE-2015-7547 has been pushed to the Amazon Linux AMI repositories,
with a severity rating of Critical. Instances launched with the default Amazon Linux
configuration on or after 2016/02/16 will automatically include the required fix for this
CVE.” (https://aws.amazon.com/security/security-bulletins/cve-2015-7547-advisory/)

Physical access/theft – AWS service event in the Sydney region due to loss of power on
June 6, 2016. Unusually long voltage sag caused the loss of both primary and secondary
power. (https://aws.amazon.com/message/4372T8/).

https://aws.amazon.com/message/4372T8/

117Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

So What Else Do We Need to Understand?

We now have a good grasp of the threat picture which can be applied to data centers, a
cell phone, refrigerator, and clouds.

But how do I apply it to do analysis, testing, risk identification, and risk mitigation?

You will need architecture documentation to support these efforts.

Architecture documentation will need to be developed that provides multiple views of the
system to satisfy different stakeholders.

118Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Cloud Deployment View of a Web Application
Which Supports NIST Compliance

https://aws.amazon.com/quickstart/architecture/accelerator-nist/

119Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Identity and Access Management (IAM) Service
View for Modeling Threat Events

120Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Virtual Private Cloud (VPC) View for Modeling
Threat Events

121Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Hybrid Cloud

122Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example – Customer’s Administrator’s View
AWS IaaS

123Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Vulnerabilities/Threats

Cloud Unique
1. Reduced Visibility & Control
2. Ability to Self Provision Resources &

Services
3. Management API Compromise
4. Multi-Tenancy Security
5. Secure Data Deletion

Cloud & On-Premise
6. Stealing Credentials
7. Vendor Lock-in
8. Increased Complexity Strains IT Staff
9. Insider Threat
10. Data Recovery
11. Supply Chain

124Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#1 Reduced Visibility & Control

When transitioning assets/operations to the cloud, agencies will lose some visibility and
control over the assets/operations because the CSP is now handling aspects via its
infrastructure and policies. Paradigm shift is needed by agencies to focus on attaining
monitoring and logging information about applications, services, data and users, rather than
the network focus of on-premise IT.

IaaS PaaS SaaS

Vulnerability
Probability

• As the CSP assumes more
responsibilities, an agency
will need to find different
ways to attain the
information to successfully
monitor IT operations and
satisfy security and
compliance requirements.

• Agency must work jointly
(can’t direct) with CSP via
their service level agreement
(SLA).

IaaS PaaS SaaS

Vulnerability
Impact

125Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#2 Ability to Self Provision Resources & Services

Self provisioning capabilities of cloud enable agency personnel to:
• Provision extra services not originally planned for with the agency’s CSP and that don’t

have IT consent.
• Individually use SaaS products (Dropbox, iCloud, OneDrive, …) independent of IT.

These services are unknown risks to an agency. (cloud scope creep)

IaaS PaaS SaaS

Vulnerability
probability

• Due to the lower
costs and ease of
implementing
PaaS and SaaS
products, the
probability
increases.

126Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#3 Management API Compromise

CSPs expose a set of application programming interfaces (APIs) that customers use to
manage and interact with cloud services. Agencies use these APIs via the internet to
provision, manage, orchestrate and monitor their assets and users. The vulnerability is that
these APIs have the same software vulnerabilities that an API for an operating system,
library, etc. could have.

IaaS PaaS SaaS

Threat
opportunity

• Threat actor is looking for
vulnerabilities in management
APIs.

• If vulnerability can be turned
into an attack, then this could
be used against other
customers of the CSP.

• Vulnerability focus more on
configuration/provisioning. IaaS SaaS

Threat
impact

PaaS

127Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#4 Multi-Tenancy Security

System and software vulnerabilities within a CSP’s infrastructure, platforms or applications
which supports multi-tenancy can lead to isolation failure where an attacker exploits the
vulnerability to access to another user’s or agency’s assets/data.

IaaS PaaS SaaS

Vulnerability
probability

• Different than vulnerability #3
because this focuses on how
the CSP implements the
agency’s desired capabilities.

• Examples:
• IaaS – VMs, OS’s
• PaaS – app servers,

Java VM
• SaaS – databases,

business logic, workflow,
user interface

128Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#5 Secure Data Deletion

CSP’s ability to securely delete and verify when an agency deletes data. This is a concern
due to the data being spread over a number of different storage devices within the CSP’s
infrastructure in a multi-tenancy environment.

IaaS PaaS SaaS

Vulnerability
level

• Vulnerability
increases as an
agency uses more
CSP services.

129Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#6 Stealing Credentials

If an attacker gains access to your cloud credentials, the additional vulnerability in the cloud
is that the attacker would have access to the CSP’s services to provision additional
resources, as well as target agency’s assets. The attackers could leverage cloud computing
resources to target users, organizations or other cloud providers.

IaaS PaaS SaaS

Vulnerability
impact for
Agency admin
user

• Admin roles vary between
CSP and agency.

• CSP admin would address
more than one customer and
probably handle all the CSP’s
services offered.

• Vetting processes for
becoming a CSP admin may
be different than the process
used for an agency’s admin.
Need to be aware of the
differences and assess their
impact.

IaaS PaaS SaaS

Vulnerability
impact for
CSP admin

Vulnerability
probability

SaaSPaaSIaaS

IaaS PaaS SaaS

Vulnerability
impact for
Agency normal
user

130Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#7 Vendor lock-in

This vulnerability could occur when an agency considers moving its assets/operations from
one CSP to another CSP. The agency finds out than the cost/effort/schedule time necessary
for the transition is much higher that initially considered due to non-standard data formats,
non-standard APIs, high cost charged to remove presence with original CSP, inability to
transfer large amounts of data out of a CSP in a timely manner, reliance on one CSP’s
proprietary tools, and CSP’s unique APIs.

IaaS PaaS SaaS

Vulnerability
probability

• Vulnerability increases as the
CSP takes more
responsibility. As more
features/services/APIs are
used, there is increased
exposure to CSP’s unique
implementations.

• If selected CSP goes out of
business, it becomes a major
problem.

131Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#8 Increased Complexity Strains IT Staff

This vulnerability is concerned with an existing agency’s IT staff having the capacity and skill
level to manage, integrate and maintain the transition of assets and data to the cloud in
addition to their current responsibilities for on-premise IT. The services/techniques/tools
available to log and monitor them typically vary across CSPs, further increasing complexity.
Also, there may be emergent vulnerabilities/risks in hybrid cloud implementations due to
technology, policies, implementation methods add complexity.

IaaS PaaS SaaS

Vulnerability
probability

• Increased potential for
coverage gaps between the
layers.

• Probability increases if
agency pursuing hybrid cloud
implementation.

132Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#9 Insider Threat

A malicious insider is defined as a current or former employee, contractor, or business
partner who meets the following criteria:

• has or had authorized access to an organization’s network, system, or data
• has intentionally exceeded or intentionally used that access in a manner that negatively

affected the confidentiality, integrity, or availability of the organization’s information or
information systems

This applies to staff and administrators for both agencies and CSPs.

IaaS PaaS SaaS

Agency’s
users
threat
impact

• Likely worse for IaaS because of the ability to
provision resources or possibly perform
nefarious activities that will require forensics
that may not be available with cloud resources
vis-a-vis on-premise resources.

• CSPs’ users threat impact will depend upon
their organization’s employee vetting process
(background checks) and controls
implementation.

Agency
user’s
threat
probability

IaaS PaaS SaaS

133Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#10 Data Recovery

Data stored in the cloud can be lost for reasons other than malicious attacks. An accidental
deletion by the cloud service provider or worse, a physical catastrophe such as a fire or
earthquake, can lead to the permanent loss of customer data. The burden of avoiding data
loss does not fall solely on the provider’s shoulder. If a customer encrypts his or her data
before uploading it to the cloud but loses the encryption key, the data will be lost as well.

IaaS PaaS SaaS

Vulnerability
probability

• Vulnerability increases as an agency
uses more CSP services.

• Data recovery for a CSP is may be
better than that of an agency due to
SLA designating availability/uptime
percentages.

134Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

#11 Supply Chain

This vulnerability is concerned with the supply chain that a CSP uses to support its services.
If the CSP outsources parts of its supply chain, then these third parties may not
satisfy/support the requirements that the CSP is contracted to support with an agency. An
agency would need to check to see if the CSP flows its own requirements down to their third
party and see how it enforces compliance. If the requirements are not being flowed down,
then there is an increased threat to the agency.

IaaS PaaS SaaS

Vulnerabilit
y level

• Vulnerability increases as an
agency uses more CSP
services.

• This is very dependent on
individual CSPs and their
supply chain policies.

135Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Four Important Cloud Security Practices

1. Perform due diligence

2. Manage access

3. Protect data

4. Monitor and defend

136Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Security Practices

1) Perform due diligence
Encourages cloud consumers to fully understand their current network and applications to
better appreciate the functionality, resilience, and security of cloud services before
migrating to cloud-deployed application and system.

2) Manage access
Describes the different categories of users in a cloud-based IT environment and explains
the responsibilities of both CSP and cloud consumers in managing these user’s access to
resources.

137Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Security Practices

3) Protect data
Describes the two consumer challenges of preventing the accidental disclosure of data
that was supposedly deleted and ensuring continued access to critical data in the event of
errors, failures, and compromise.

4) Monitor and defend
Describes the shared responsibility of the CSP and cloud consumer in monitoring the
cloud-based system and applications to detect unauthorized access to data or
unauthorized use of resources.

138Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Conclusions

While potential cloud consumers often worry about the security risk of trusting a CSP to
perform some security functions, experience has shown that security incidents are more
often the result of consumer failing to use the security tools provided.
The need to cloud consumers to develop a deep understanding of the services they are
buying and to use the security tools provided by the CSP.
Like any new technology or approach, using it effectively and securely requires knowledge
and practice. Use of well-established, mature CSPs will help reduce risk associated with
transitioning application and data to the cloud.

139Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Vulnerabilities

In this module, we discussed
• Threats and infection points
• Examples of different views using AWS
• Hybrid cloud example and its associated different views
• Cloud unique and cloud/on-premise threats/vulnerabilities
• Four key security practices

140Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Distributed Systems Concepts

141Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Distributed Systems Concepts

In this module, we will discuss
• Clouds are distributed software systems
• The “laws of physics” that limit the visibility and capabilities of distributed software

systems
• Impact on testing approach

142Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Deutsch’s Fallacies of Distributed Computing

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

143Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Deutsch’s Fallacies of Distributed Computing

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

In this section

In other sections

144Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Communication and Coordination

The “FLP” result
• Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
1985. doi:10.1145/3149.214121.

Conclusions (in an asynchronous environment – no timeouts)
• You can’t distinguish a crashed process from a broken network link
• You can’t distinguish a broken link from a really slow link

145Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Communication and Coordination –
Practical Implications
Guaranteed message delivery is impossible

• Does the system impose timeouts? In one layer? Multiple layers? How long is the
timeout?

• Does the system design assume that messages are never lost?
• Does the system design assume that messages will arrive in-order?

Exactly-once delivery is tricky but possible
• What happens if a message is repeated?

Atomic broadcast (think “guaranteed one-to-many”) is impossible without application-level
cooperation

• If a system design claims this feature, it warrants some testing

146Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Replicated State

If we have more than one copy of a data element in our system, we have to be concerned
about whether they are consistent.

• Simple state – Who is the current master? What mode are we in?
• Complex state – a distributed database or file system
• Distributed caching to improve performance

The CAP Theorem
• E. A. Brewer, “Towards robust distributed systems,” in Proc. 19th Ann. ACM Symp. on

Principles of Distributed Computing (PODC '00), 2000, pp. 7. doi:
10.1145/343477.343502

Tradeoff among Consistency, Availability, Partition-tolerance

147Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

CAP

Consistent - All requests will return the same value (note that this is different from the “C”
in SQL ACID transactions)
Available – All requests return some value
Partition-tolerant – System continues to operate when there is a network partition between
stateful nodes
Possibilities:

• CP – Sacrifice availability – e.g., most SQL implementations
• AP – Sacrifice consistency – e.g., many NoSQL data stores
• CA – Sacrifice partition-tolerance - e.g., single node or single point of failure (SPOF)

routing

148Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

CAP Implications

Recognize when this tradeoff is relevant – is there replicated state in a distributed
software system?
What does the design accommodate? Is that reasonable?
Testing to validate the edge cases is REALLY hard

• Kyle Kingsbury, aka Aphyr, has made a career of this
• http://jepsen.io (We’ll talk about this in more detail later)
• Worth studying his approaches and results

http://jepsen.io/

149Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Time in Distributed Systems

Operating system-level clock synchronization is not achievable for cloud applications
Cloud Service Providers CAN provide atomic/GPS clock synchronization for some nodes
in their data centers

• E.g., Google’s Spanner distributed database relies on GPS clocks
• Applications can leverage cloud services that depend on tight time synchronization

Many distributed systems use software “clocks” (i.e. counters) to order events – this is
usually good enough

• Lamport clocks or timestamps
• Vector clocks

150Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Time Synchronization Implications

Be wary of systems that get time directly from the operating system to order or
synchronize events

• E.g., comparing file timestamps across nodes
Log correlation across nodes is difficult without message IDs or similar tactics

A related issue: You can’t set the clock of a cloud server
• Testing cases like leap second handling gets tricky
• Designs that introduce a time abstraction layer to separate application time from OS

time are more testable

151Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Distributed Systems Concepts

In this module, we discussed
• Clouds are distributed software systems
• The “laws of physics” that limit the visibility and capabilities of distributed software

systems
• Impact on testing approach

152Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Testing at Scale in the Cloud

153Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Testing at Scale in the Cloud

In this module, we will discuss
• Challenges of testing cloud-based software
• Examples of commercial leading practices for cloud testing

154Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

You have to test cloud software in the cloud

“… asking to boot a cloud on a dev machine is equivalent to becoming multi-substrate,
supporting more than one cloud provider, but one of them is the worst you’ve ever seen”

- Fred Hébert*

* Quoted in https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16

155Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Definition of Testing

In this section, we take a broad view – testing is the collection of evidence about the
quality of a system
Encompasses both cyber assurance and operational effectiveness activities
Test activities usually involve making compromises due to constraints on controllability
and observability.

156Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

How does the cloud affect testing practices?

Controllability:

+ Easy to exactly reproduce environment
(infrastructure as code)

+ Easy and affordable to scale up workload
(requests and data sets)

- Time-consuming to transfer big test sets into
the cloud – try to generate in the cloud

- Hard/impossible to break some things for
testing (e.g., network, power, …) – need to
simulate these

+/- “Automate all the things” – can add
complexity

Observability:

+ Easy and affordable to save everything

- Expensive and time-consuming to get big
result sets out of the cloud – need to
summarize/analyze in the cloud

+ There are cloud-based tools to help
summarize and analyze

- Cloud native services are opaque black-boxes
– may need to test for longer periods or multiple
times to adequately characterize

157Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

What have we said already about testing

Infrastructure as code, versioned environments
• For deploying the target system
• For deploying the test and data analysis environment

Cloud-based software is a distributed system
• All the principles of testing distributed systems still apply, even though the control

mechanisms may change
Consider unintended side effects during testing (e.g., triggering autoscaling)

• Impacts fidelity
• May impact testing cost

Fault simulation instead of fault creation
• Usually intrusive – impacts fidelity

158Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Common Infrastructure →
Reuse Test and Assurance Evidence
Within a particular cloud provider environment (e.g., Amazon EC2), you can reuse some
test results and evidence related to cloud native services

• E.g., everyone is using the same S3 Simple Storage Service, so results about
performance, availability, etc. should be reusable across systems

Validate service configuration instead of runtime behavior

159Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Test Data Sets

It is time-consuming to get big test sets into the cloud, so if you have to upload a data set,
plan to do it only once
Avoid uploading:

• Generate and save the data set in the cloud
• Generate the data set on-the-fly (compute resources are cheap)

Strategies to save data sets
• In block storage (e.g., AWS S3), and read into VM instance (slower, cheaper, scalable)
• As snapshot’d read-only volume attached to VM instance file system (faster, more

expensive, attach to single VM)

160Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Test clients/workload driver connectivity

161Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Which client configuration should I use?

Connect Within Cloud
Use for when real client will be in the same
cloud as the system-under-test (duh!)
Use to stress performance

• Scale up clients
• Optimal network capacity

Connect through WAN
Use when the real client will access the
system-under-test over the WAN (duh!)
Use when it is not feasible to host the test
client in the cloud (e.g., hardware-in-the-
loop)
Can require careful configuration if the
client is in the same cloud

• CSPs try to optimize to keep traffic off
the WAN

• Consider putting test clients in another
cloud (e.g., test AWS system using
Azure clients)

162Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example of Commercial Testing Practice
“Chaos Engineering”
Chaos Engineering is the discipline of experimenting on a distributed system in order to
build confidence in the system’s capability to withstand turbulent conditions in production.

- http://principlesofchaos.org

Closed loop – develop, test, refactor…
Originated at Netflix – Chaos Monkey and the Simian Army

• Test in production
• Randomly select and crash servers
• Use robust observability framework to assess impact

163Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Chaos Engineering Principles*

Start by defining ‘steady state’ as some measurable output of a system that indicates
normal behavior.

• Note that this depends on having a well-instrumented system-under-test
Hypothesize that this steady state will continue in both the control group and the
experimental group.
Introduce variables that reflect real world events like servers that crash, hard drives that
malfunction, network connections that are severed, etc.

• In the cloud, we will have to simulate much of this
Try to disprove the hypothesis by looking for a difference in steady state between the
control group and the experimental group.

* http://principlesofchaos.org

164Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Example of Commercial Testing Practice
“Jepsen”
Jepsen is an effort to improve the safety of distributed databases, queues, consensus systems,
etc.
- https://jepsen.io

Focused on properties of distributed storage systems
• Durability, atomic writes, replica consistency

Applies knowledge of where the edge cases are and how you get there
• E.g, faulty networks, unsynchronized clocks, and partial failure

Code at https://github.com/jepsen-io/jepsen
• Control node
• Clients that generate workload (write and read)
• “Nemesis” - inject (simulate) faults under control of Control node
• Checker

165Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Comments on Jepsen

Included as an example
• This is how experts are testing software in the cloud
• Use the cloud to test the cloud - cost-effective elastic capacity to generate scalable

workloads
• Open source
• Applies domain knowledge of both

- cloud (what are the possible faults?) and
- system-under-test (what are the edge cases?)

We don’t expect that you would ever use the tool directly

166Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

And one more time…

We’re never finished saying that testing cloud-based software is never finished
• Cloud services evolve independently of your systems
• Cloud services can evolve silently
• Cloud infrastructure evolves – networks, ingress/egress, performance

Assurance is not a one-time event

167Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Testing at Scale in the Cloud

In this module, we discussed
• Challenges of testing cloud-based software
• Examples of commercial leading practices for cloud testing

168Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud Computing: An Architecture-centric View

Wrap-Up

169Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Perspectives on Cloud-based Systems

There are useful perspectives that can provide insights when considering cloud-based
systems

• Cloud as COTS (Commercial off the Shelf Software)
• Cloud as Common Platform
• Cloud as System of Systems

Adapting existing practices, processes, and knowledge can help us in the cloud

170Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud as COTS

Adopting cloud computing introduces many of the concerns that we are familiar with from
COTS

• Supply chain integrity
• Vendor lock-in
• Lack of transparency
• Mismatch between vendor’s evolution direction and system evolution direction
• Mismatch between vendor’s evolution cadence and system evolution cadence
• Need for vendor-specific skills for development and test

171Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud as Common Platform

DoD seems to view this as a benefit of cloud adoption
Common platform concerns:

• Cost/benefit of system-optimized platform vs. common platform
• Establishing and maintaining common baseline across programs
• Sharing knowledge and experience about the platform across programs
• Migration from system-unique to common platform, short-term or long-term use of

hybrid deployment

172Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud as System of Systems

Partly inherent in any cloud-based system, but also due to
the type of data-intensive systems that we deploy to the
cloud (e.g., situational awareness, decision support,
business analytics)

Sources evolve
independently
User workloads change over
time

• New uses
• New mix of operations

Cloud quality of service
varies

173Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Cloud as System of Systems

Concerns:
• Definition of system boundary for design and for T&E
• Ongoing monitoring of deployed system – is it operating within its design envelope?

- Initial T&E of that monitoring
- Who is responsible for watching the deployed system?

• Coordination of evolution (similar to common platform concern)

174Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Final Take-aways

We covered:
• How cloud computing is different from traditional data center system deployment

• Virtualization, cloud-native services
• Controllability and observability in the cloud impacts test and evaluation
• Cloud computing improves some system qualities while inhibiting others – this affects

test and evaluation
• Cloud-based systems introduce some new cybersecurity risks

175Cloud Computing: An Architecture-centric View
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited
distribution.

Questions and Discussion

	Cloud Computing: �An Architecture-centric View�
	Slide Number 2
	Objectives for This Course
	Introduction
	Instructor Introductions
	Agenda – 1
	Agenda – 2
	Rules of Engagement
	Any Questions So Far?
	Cloud Computing: An Architecture-centric View
	Definitions and Fundamental Concepts
	Data Center Deployment
	Cloud Computing
	Cloud Computing Models and Essential Characteristics
	NIST Cloud Model’s Five Essential Characteristics
	NIST Cloud Model’s Five Essential Characteristics
	Deployment Models
	Service Delivery Models
	Shared Responsibilities Model
	Drivers for Cloud Computing Adoption
	Challenges for Cloud Computing Adoption
	FedRAMP
	Relevant Security Documentation for FedRAMP�
	FIPS Publication 199
	FIPS Publication 200
	Examples of FedRAMP Cloud Service Providers (CSPs)
	Service-Level Agreements
	Example: Amazon Compute SLA
	Definitions and Fundamental Concepts
	Cloud Computing: An Architecture-centric View
	Enabling Technologies
	Focusing our discussion
	How do they do it?
	Virtualization
	Types of Full Virtualization
	Virtualization Influences Deployment Partitioning
	Virtualization and the Cloud
	Images and Instances
	A VM instance is not like a traditional physical server – Storage
	A VM instance is not like a traditional physical server – Networking, Configuration, Access
	Instances and Physical Hardware
	Example – Survey of Instance Types* in�Amazon Elastic Compute Cloud (EC2)
	Containers
	Container Compared to Full Virtualization
	Container Technology
	Containers on the Desktop�(This is not directly related to cloud computing)
	Server-side Containers
	Creating VM Instances
	Automate all the Things –�Infrastructure as Code
	Technology support for infrastructure as code
	Chef Script Examples�(Chef scripts use Ruby)
	Immutable/Versioned Infrastructure
	Infrastructure as Code - Takeaways
	One more thing – �Network Virtualization and Virtual Private Clouds
	Enabling Technologies
	Cloud Computing: An Architecture-centric View
	Cloud Native Services
	Lift and shift to the cloud?
	The case for cloud native services
	AWS Cloud Native Services
	Cloud Native Services – Annotation Key
	AWS Cloud Native Services – Compute
	AWS Cloud Native Services – Storage
	Storage – Seems like a lot of options!
	Storage
	AWS Cloud Native Services – Database
	AWS Cloud Native Services – Networking
	AWS Cloud Native Services – Management
	AWS Cloud Native Services – Security
	AWS Cloud Native Services – Analytics
	AWS Cloud Native Services – Integration
	Hey, what about the other CSPs?
	Function as a Service – �FaaS, a.k.a. “Serverless”
	Fine-grained virtualization
	FaaS Limitations and Options
	FaaS Architecture Style
	Cutting through some of the Serverless hype
	How do you choose whether to implement your own or use a cloud native service?
	Test/Assurance Implications
	But before the case studies, a note on terminology
	Case study* – accidentally triggering performance throttling
	Case study – accidentally triggering performance throttling
	Case study*–initializing database triggers (nearly) endless partition re-balancing
	Case study – initializing database triggers (nearly) endless partition re-balancing
	Cloud Native Services
	Cloud Computing: An Architecture-centric View
	Quality Attributes in the Cloud
	What is a quality attribute?
	Quality attributes in cloud-based systems
	Quality Attributes for Discussion
	Scalability
	Scalability – Assurance
	Performance�(Separate from Scalability)
	Performance – Assurance
	Case Study* - Capacity Planning�What does “moderate” really mean?
	Case Study* - Capacity Planning�What does “high” really mean?
	Availability
	What is a cloud region?
	Regions and Availability Zones
	Availability is about Faults –�Faults in the Cloud
	Mitigation Approaches*
	Availability – Assurance
	Maintainability/Sustainability
	Maintainability/Sustainability
	Case Study* – Newer may not be better
	Maintainability/Sustainability – �Assurance
	Take-aways
	Quality Attributes in the Cloud
	Cloud Computing: An Architecture-centric View
	Cloud Security
	Setting the Context
	Threat Terminology
	Data Center Threats
	Five Infection Points
	Cloud Incidents Examples Associated with Infection Points
	Cloud Incidents Examples Associated with Infection Points
	So What Else Do We Need to Understand?
	Example – Cloud Deployment View of a Web Application Which Supports NIST Compliance
	Example – Identity and Access Management (IAM) Service View for Modeling Threat Events
	Example – Virtual Private Cloud (VPC) View for Modeling Threat Events
	Example – Hybrid Cloud
	Example – Customer’s Administrator’s View�AWS IaaS
	Cloud Vulnerabilities/Threats
	#1 Reduced Visibility & Control
	#2 Ability to Self Provision Resources & Services
	#3 Management API Compromise
	#4 Multi-Tenancy Security
	#5 Secure Data Deletion
	#6 Stealing Credentials
	#7 Vendor lock-in
	#8 Increased Complexity Strains IT Staff
	#9 Insider Threat
	#10 Data Recovery
	#11 Supply Chain
	Four Important Cloud Security Practices
	Cloud Security Practices
	Cloud Security Practices
	Conclusions
	Cloud Vulnerabilities
	Cloud Computing: An Architecture-centric View
	Distributed Systems Concepts
	Deutsch’s Fallacies of Distributed Computing
	Deutsch’s Fallacies of Distributed Computing
	Communication and Coordination
	Communication and Coordination – �Practical Implications
	Replicated State
	CAP
	CAP Implications
	Time in Distributed Systems
	Time Synchronization Implications
	Distributed Systems Concepts
	Cloud Computing: An Architecture-centric View
	Testing at Scale in the Cloud
	You have to test cloud software in the cloud
	Definition of Testing
	How does the cloud affect testing practices?
	What have we said already about testing
	Common Infrastructure → �Reuse Test and Assurance Evidence
	Test Data Sets
	Test clients/workload driver connectivity
	Which client configuration should I use?
	Example of Commercial Testing Practice�“Chaos Engineering”
	Chaos Engineering Principles*
	Example of Commercial Testing Practice�“Jepsen”
	Comments on Jepsen
	And one more time…
	Testing at Scale in the Cloud
	Cloud Computing: An Architecture-centric View
	Perspectives on Cloud-based Systems
	Cloud as COTS
	Cloud as Common Platform
	Cloud as System of Systems
	Cloud as System of Systems
	Final Take-aways
	Questions and Discussion

