
[DISTRIBUTION STATEMENT Please copy and paste the appropriate distribution statement into
this space.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Launching and Sustaining
Agile Architecture

Ipek Ozkaya and Robert Nord

2Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM18-0568

3Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Agile Architecture?

The phrase “agile architecture” evokes two concepts:
1. An architecture that is versatile, easy to evolve, and easy to modify,

while resilient enough not to degrade after a few changes.
2. An agile way to define an architecture, using an iterative lifecycle,

allowing the architectural design to tactically evolve over time,
as the problem is better understood.

In the best of worlds, we’d like an agile process that leads to a flexible architecture. This
tutorial enables attendees to understand basic architecture concepts that developers use
to develop large-scale systems in an agile lifecycle.
Attendees who complete the tutorial should be able to understand the business case for
architecture, architecture essentials, and architecting with just enough anticipation as an
enabler for agile at scale.

4Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Topics

Motivation
Why? The roles of architecture
What? Defining architecture
How? Essential activities

• An Experience: Smart Decisions Game
When? Release planning

• Light-weight architecture analysis
Who? Necessary organic capabilities
Take away

5Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Motivation for Agile and Architecture:
Software Engineering and Acquisition

Many regulated environments,
like the DoD, NEED innovation
and NEED incremental
improvements to their systems.

Many of them are now willing
to consider changing their
approach if they can do it
without getting in trouble
with their governing statutes
and regulations. “Simply delivering what was initially required

on cost and schedule can lead to failure in
achieving our evolving national security
mission — the reason defense acquisition
exists in the first place.”

Honorable Frank Kendall
Under Secretary of Defense (AT&L)

2015 Performance of The Defense Acquisition System

6Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Agile Practice

An iterative and incremental (evolutionary) approach to software development
which is performed in a highly collaborative manner by self-organizing teams
within an effective governance framework with “just enough” ceremony
that produces high quality software in a cost effective and timely manner
which meets the changing needs of its stakeholders.
Scott Ambler 2013

7Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Organizational Agility

Agility is the ability to
• create and respond to change
• balance flexibility and structure

Core agile cycles
• Envision: product vision, project scope, release plan
• Explore: iteration plan, develop, review and adapt

Jim Highsmith 2010

8Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

How Do You Adapt Scrum?

Team selects user
stories to fill the sprint

Team builds the
stories, tracking
progress daily

Features are
potentially
shippable

Cycle is repeated until the backlog is emptied, the
budget is spent, or a deadline arrives

Product Owner
creates the backlog,
a prioritized list of
user stories

Team
Retrospective

Refactoring
Tasks

9Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Today’s Challenge Dealing with Organizational Change

Yesterday’s Agile
Teams got better at
building software
 Code quality
 Cohesion
 Velocity
 Improvement

Today’s Agile
Moving the rest of the
business
 Priorities are larger than the

development team
 Collaboration is critical
 Timelines have changed

Architecture has a role to play in supporting three aspects of
agile at scale: scope, team, and time.

Grant, T. “Navigate the Future of Agile and Lean.” Forrester, January 10, 2012.

10Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

A Closer Look at Scale: Scope

 Is the project in a new domain or
technology?

 Are there new requirements such as
standards compliance, system testing,
and integration lab environments?

 Is there a need to align systems
engineering and software
development activities?

11Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

A Closer Look at Scale: Team

 Are there multiple teams that need
to interact, both internal and external
to the organization?

 What are the dependencies
between the work products of
system and software engineers?

 Does the end-to-end delivery of
features require resources from
multiple teams?

12Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

A Closer Look at Scale: Time

 Does the work require different
schedule constraints for
releases?

 How long is the work product
expected to be in service?

 How important are
sustainability and evolution?

13Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Introductions

Introduce yourself and share something you know about agile or architecture.
Which of these challenges are you dealing with?

14Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Enhanced Agile Development

As software system size and complexity increase, development practices must adapt to
accommodate

• increased technical complexity
• interactions among software sub-systems and components
• larger teams and multiple teams
• coordinated development across multiple, competing objectives

Enhanced agile development adds practices that address these concerns.

15Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SCRUM and the Architecture Microcycle

Poort, E. Selling the Business Case for Architectural Debt Reduction,
Ninth International Workshop on Managing Technical Debt – XP 2017

16Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Scaled Agile Framework

ScopeTeam

Time

17Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Sounds Expensive!

Compared to what?

• Over-committing because there is no blueprint for the system?
• Inefficiency from inability to coordinate work?
• Late rework when defects found in test and integration?
• Delivering late and over budget?
• Developing a product that fails to meet stakeholder’s needs?

18Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Why? The roles of architecture

19Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture Practices

BUSINESS
AND MISSION

GOALS
SYSTEM

20Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture Practices

BUSINESS
AND MISSION

GOALS
SYSTEM

Changes in the business
must be reflected in the
system

21Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

BUSINESS
AND MISSION

GOALS
ARCHITECTURE SYSTEM

Architecture Practices

22Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Value Proposition for Architecture

• Sound structure analyses provide objective confidence for achieving system quality.
• Appropriate flexibility enables cost-effective system maintenance and evolution.
• Early identification and mitigation of design risks result in fewer downstream problems

and cost savings in integration, test and deployment.

Architecture practice enables the ongoing cost-effective
achievement of system-related business goals.

23Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What? Defining architecture

24Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SEI Software Architecture Axioms

SEI’s work in software architecture is guided by three foundational principles that highlight
architecture’s key role in system development and evolution.

1. Software architecture is the bridge between business and mission
goals and a software-intensive system.

2. Quality attribute requirements drive software architecture design.

3. Software architecture drives software development through the
life cycle.

25Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture – The Bridge

All design involves tradeoffs.
Lacking mission and
business drivers, the
architect has to make
assumptions about priorities.
Given well-stated mission
and business drivers, the
architect has a basis for
knowing the priorities among
tradeoffs.

A good architectural
representation has

• sufficient detail to reason
about mission and business
goal satisfaction

• sufficient abstraction to
conceptually understand
the system

• sufficient detail to
appropriately constrain
implementation.

26Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

“Every system has an architecture…

…encompassing the key abstractions and mechanisms that define that system's structure
and behavior… In every case - from idioms to mechanisms to architectures - these
patterns are either

intentional

or

accidental”

- Grady Booch in the Preface to Handbook of Software Architecture

27Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture and Strategy

An intentional architecture is the embodiment of your business strategy
• Intentional architecture links technology decisions to business goals

An accidental architecture limits strategy options
• Accidental architecture becomes your de facto strategy

28Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SEI Software Architecture Axioms

1. Software architecture is the bridge between business and mission
goals and a software-intensive system.

2. Quality attribute requirements drive software architecture design.

3. Software architecture drives software development through the
life cycle.

29Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software System Development

Functional
Software
Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

The important quality attributes and their characterizations are key.

has these qualities

analysis, design, development, maintenance and evolution

Quality
Attribute Drivers

Software
Architecture Software

Maintainability represents the degree of effectiveness and efficiency with which a product or system can be
modified to improve it, correct it or adapt it to changes in environment, and in requirements (ISO 25010).

30Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Users Need Both Functions and Qualities

Required capability
Ease of use
Predictable behavior
Dependable service
Timely response
Protection from intruders
……

Software system/mission goals should address stakeholder needs.
Stakeholder needs often translate to quality attribute requirements.
Scenarios are a powerful way to characterize quality attributes.

31Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Quality Attribute Data from SEI ATAMs
Rank Quality Attribute Concern Quality Attribute

1 Reduce coupling Modifiability
2 Latency Performance
3 Upgrade and integrate with other system components Interoperability
4 Designing for portability Modifiability
5 Ease of operation Usability
6 Detect faults Availability
7 Ease of interfacing with other systems or components Interoperability
8 Designing for extensibility Modifiability
9 Recover from faults Availability

10 Resource management Performance
11 Minimize build, test and/or release duration Deployability
12 Reusability Modifiability
13 Prevent faults Availability
14 Increased processing demands (e.g. add nodes) Scalability
15 Authorization Security
16 Resource and data sharing Interoperability
17 Resist attack Security
18 Configuration and/or dependency management Deployability
19 Configurability/compose-ability Modifiability
20 Backward compatibility and/or rollback strategy Deployability

Bellomo, S.; Kazman, R.; & Gorton, I. “Insights from 15 Years of ATAM Data: Towards Agile Architecture” IEEE Software, 2015.

32Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Discussion: Default Quality Attributes

In the absence of (and often even with) explicit quality attributes, most developers have a
(sometimes unconscious) default set of attributes that they value.

• Modularity
• Reusability
• Analyzability
• Modifiability
• Testability
• Readability/understandability
• Efficiency
• Elegance (cleverness?)
• …many possibilities

What are YOUR default quality attributes?

33Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SEI Software Architecture Axioms

1. Software architecture is the bridge between business and mission
goals and a software-intensive system.

2. Quality attribute requirements drive software architecture design.

3. Software architecture drives software development through the
life cycle.

34Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Typical Software Development Paradigm

Operational descriptions
High level functional requirements
Systems specifications

A specific system architecture
Software architecture emerges

Detailed software design
and implementation

a miracle occurs
Quality attributes are often
weakly articulated and
vaguely understood

How do you know if
the architecture
is fit for purpose?

another miracle occurs

35Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

BUSINESS
AND MISSION

GOALS
Arch DevARCHITECTURE SYSTEM

Design and
Analysis

Evaluation

Implementation
Details

Conformance
Review

Agile ceremonies

Architecture Practices

36Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

How? Essential activities

37Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

BUSINESS
AND MISSION GOALS

ARCHITECTUREArch

Architecture

PROCESS

Design Cycle

38Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Tension between high-priority features (vertical decomposition)
versus common reusable services (horizontal decomposition)

Applications

Services

Drivers

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

3

Horizontal decomposition
(e.g., layers)

Vertical decomposition
(e.g., subsystems, features)

Infrastructure-driven
approach

Feature-driven
approach

Services

Drivers

Hybrid approach

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

3

Align Feature and System Decomposition

39Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

How Much Support for Agile Development?

A – No support
B – Most important parts

Ready for the first feature
C – Almost ready with the support

Feature development starts

Current State

Desired State

State of agile
team support

Time
Preparation Preservation

A

B

C
D

E

D – Desired state reached
E – Sustain the state

Bachmann, B., Nord, R.L., and Ozkaya, I. "Architectural Tactics to
Support Rapid and Agile Stability," Crosstalk, May/June, 2012.

40Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Applying the Practices in Concert -1

State A – Establishing the infrastructure

Presentation Layer

Common Service

Common Service

Common Service

API

APIData Access Layer

Domain Layer

Scrum
Team A

Scrum
Team B

Scrum
Team C

41Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Applying the Practices in Concert -2

State B – Progressing architecture and feature development in parallel

Presentation Layer

APIDomain Layer

APIData Access Layer

Common
Services

Common
Services

Common
Services

Fe
at

ur
e

1

Fe
at

ur
e

1

Fe
at

ur
e

1

Scrum
Team A

Scrum
Team B

Scrum
Team C

Team member with feature responsibility

Scrum of
Scrums

42Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Applying the Practices in Concert -3

State C – Features
• different teams are

assigned to different
features,

• some team members
keep layers and
framework consistent

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Scrum of
Scrums

Team member with layer responsibility

43Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Applying the Practices in Concert -4

State D – Preservation
• different teams are

assigned to different
features,

• a temporary team
prepares layers and
frameworks for future
feature teams.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Temporary
sprint team

44Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Deployability Tactics

Tactics are design decisions
that enable quality attributes.
There are tactics for

• Availability
• Interoperability
• Modifiability
• Performance
• Security
• Testability
• Usability

Bellomo, S., Kazman, R., Ernst, N., Nord, R.: Toward Design Decisions to Enable Deployability:
Empirical Study of Three Projects Reaching for the Continuous-Delivery Holy Grail. In: First International
Workshop on Dependability and Security of System Operation, pp. 32–37. IEEE Press, New York (2014)

45Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design and Analysis

The architects ensure that the design is checked
in a periodic fashion to see if the quality attribute
scenarios are continuing to be fulfilled.

• Step 1: Select scenario to analyze
• Step 2: Elicit architecture approaches
• Step 3: Analyze architecture approaches
• Step 4: Review results

Performing scenario-based peer reviews every second week was never seen as a burden
by the architects. They were actually looking forward to the next review because the reviews
provided them with valuable input and they could see progress when the list of risks and the
to-do list became smaller and smaller over time.
Bachmann, F. Give Stakeholders What They Want: Design Peer Reviews the ATAM Style, CrossTalk, Nov/Dec 2011.

46Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Let’s Have An Experience
Smart Decisions Game

47Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Game Inventory1

1. Playing
cards

3. Game board

2. Game scenario

1http://smartdecisionsgame.com

4. Dice and markers 5. Scorecard

48Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Concepts Catalog1

1http://smartdecisionsgame.com

49Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Game Rules1

ADD Step 1: Review Inputs

Let’s start by
reviewing the
inputs to the
design
process…

1

1http://smartdecisionsgame.com

50Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Input Requirements: Functional 1

1 http://smartdecisionsgame.com

51Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Input Requirements: Constraints

52Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Input Requirements: QAs

53Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Game Rules1

The game is played in rounds
that represent the iterations.

For each round the game
provides
- Iteration goal (i.e., selected

drivers)
- Element to refine

ADD Step 2: Establish iteration goal by selecting drivers
ADD Step 3: Choose one or more elements of the system to refine

1http://smartdecisionsgame.com

54Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Let’s Start!1

1http://smartdecisionsgame.com

55Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 1 Goal: Logically Structure the System

Drivers for the iteration:
- Ad-hoc analysis
- Real-time analysis
- Unstructured data processing
- Scalability
- Cost Economy

Big Data System

Element to refine:

Primary use cases

QA

Constraint

56Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Game Rules1

You will make decisions
selecting design concepts:
- Patterns:

- Reference
architectures

- Technology families
- Technologies

ADD Step 4: Choose one or more design concepts that satisfy the selected
drivers

1http://smartdecisionsgame.com

57Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Game Rules: Design Concepts Cards1

Name and type of design
concept

Influence on drivers

Technologies Patterns
1http://smartdecisionsgame.com

58Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 1 Goal: Logically Structure the System

Select 1 Reference Architecture Card1

Alternatives:
• Extended Relational
• Pure Non-Relational
• Data Refinery
• Lambda Architecture

Drivers for the iteration:
- Ad-hoc analysis
- Real-time analysis
- Unstructured data processing
- Scalability
- Cost economy

Big Data System

Element to refine:

1http://smartdecisionsgame.com

59Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Big Data Analytics Reference Architectures Trade-Offs

Data Refinery

Extended
Relational

Pure
Non-

relational

Traditional
Relational

Lambda
Architecture

Sc
al

ab
ili

ty

Ad-hoc analysis

Legend

Unstructured data processing
capabilities (the larger the better)

Real-time analysis capabilities
(more saturated the better)

60Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Fill in the Scorecard1

Fill in (b) by adding the points for the drivers
considered for the iteration, in this case:
- Ad-hoc analysis (2.5)
- Real-time analysis (3)
- Unstructured data processing (3)
- Scalability (3)
- Cost economy (3)

= 1 Point

2.5+3+3
+3+3=14.5

Lambda
Architecture

Record design
decisions in (a)

Some iterations require you to draw two cards. For these
iterations you will need to

- Record the name of both design concepts
- Add the points for both of the cards

Please note that some drivers may not be associated with
both cards, for example:
- Performance (for Family and Technology)
- Compatibility (for Family)
- Reliability (for Technology)

In these cases, you only count points for the drivers that are
associated with the card.

1http://smartdecisionsgame.com

61Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Next Steps1

ADD Step 5: Instantiate elements, allocate responsibilities, define interfaces
ADD Step 6: Sketch views and record design decisions

You will:
- Record the design decision
- Throw two dice to simulate both

market uncertainty and how well
you instantiate your selected
design concepts

1http://smartdecisionsgame.com

62Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Fill in the Scorecard1

Roll two dice once and add or subtract points according to the
following table, and fill in (c).

2.5+3+3
+3+3=14.5

Lambda
Architecture

+2

1http://smartdecisionsgame.com

63Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Next Step1

We will review the
decisions together. The
first iteration will be
reviewed now, and the
rest will be reviewed at
the end of the game.

ADD Step 7: Perform analysis of current design and review iteration goal
and design purpose

1http://smartdecisionsgame.com

64Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 1 Review1

Design decision Driver points Bonus points Comments

Extended Relational 3+2+2+2+1=10 -4 This reference architecture is less appropriate for this solution mostly
because of cost and real-time analysis limitation.

Pure Non-Relational 2+2.5+3+3+3=13.5 This reference architecture is closer to the goal than the others except
Lambda Architecture.

Lambda Architecture
(Hybrid)

2.5+3+3+3+3=14.5 +2

This is the most appropriate reference architecture for this solution!
From the provided reference architectures Lambda Architecture promises
the largest number of benefits, such as access to real-time and historical
data at the same time.

Data Refinery (Hybrid) 3+1+3+2+1=10 -4 This reference architecture is less appropriate for this solution mostly
because of cost and real-time analysis limitation.

Score ad-hoc analysis, real-time analysis, unstructured data processing, scalability, and cost
economy.

1http://smartdecisionsgame.com

http://lambda-architecture.net/

65Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Fill in the Scorecard1

2.5+3+3
+3+3=14.5

Lambda
Architecture

+2

Add bonus points, if any
and fill in (d)

+2

Sum the points and calculate the
total for the iteration in (e)

18.5

1http://smartdecisionsgame.com

66Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 2 Goal: Refine the Data Stream
Element

Select 2 cards: 1 Family card and 1 associated Technology card1

Tip:
• Look for an option that can be

deployed on-premise and on-cloud

Alternatives:

Drivers for the iteration:
• Performance (for Family

and Technology)
• Compatibility (for Family)
• Reliability (for Technology)

Batch Layer Serving Layer

Speed Layer

Master
Dataset

Real-time
Views

Batch
Views

Query &
Reporting

Element to
refine: Pre-

Computing

Data
Stream

1http://smartdecisionsgame.com

67Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 3 Goal: Refine Master Dataset
Element

Select 1 Family card1

Possible alternatives: Tip:
• Look for an option with better

extensibility (easy
storing of new data formats)

Batch Layer Serving Layer

Speed Layer

Master
Dataset

Real-time
Views

Pre-
Computing Batch Views

Query &
Reporting

Drivers for the iteration:
• Scalability
• Availability

Element to
refine:

Data
Stream

1http://smartdecisionsgame.com

68Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 4 Goal: Refine Batch Views
Element

Select 2 cards: 1 Family and 1 associated Technology card1

Tip:
• Look for an option that provides ad-

hoc analysis and still good
performance for static reports

• Impala or Hive are incompatible with
Document-Oriented NoSQL databases
in the Master Dataset

Possible alternatives:

Batch Layer Serving Layer

Speed Layer

Master
Dataset

Data
Stream

Real-time
Views

Pre-
Computing Batch Views

Query &
Reporting

Drivers for the iteration:
• Ad-hoc analysis (for

Family)
• Performance (for Family

and Technology)

Element to
refine:

1http://smartdecisionsgame.com

69Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Iteration 5 Goal: Refine Real-Time Views
Element

Select 2 cards: 1 Family and 1 associated Technology card1

Possible alternatives: Tip:
• Look for an option that provides full-

text search capabilities and
extensibility (new data formats and
dashboard views)

Batch Layer Serving Layer

Speed Layer

Master
Dataset

Real-time
Views

Pre-
Computing Batch Views

Query &
Reporting

Drivers for the iteration:
• Ad-hoc analysis (for the

family)
• Real-time analysis (for

the technology)

Element to
refine:

Data
Stream

1http://smartdecisionsgame.com

70Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Fill in the Scorecard1

Calculate the final score
- Add 4 to the team who finished first
- Subtract 4 from the team who finished last

2+3+3
+3+3=14

Lambda
Architecture

+2

+2

18 10 15 11 8 62.5

1http://smartdecisionsgame.com

71Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Debrief

72Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design and Analysis Inform Each Other
You do not need to—and should not—choose just one technique:

73Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Documenting During Design

74Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Tracking Progress

When designing there are three key questions to answer:
• How much design do we need to do?
• How much design has been done so far?
• Are we finished?

Agile practices such as the use of backlogs and kanban boards can help you track design
progress and answer these questions.

75Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Backlog

You should create a list of the actions that still need to be performed as part of the
architecture design process.
Initially, populate the design backlog with your drivers, but other activities such as the
following can be included:
• Creation of a prototype to test a particular technology or to address a specific quality attribute risk

• Exploration and understanding of existing assets (possibly requiring reverse engineering)

• Issues uncovered in a review of the design (recall that we analyze as we are designing)

• Review of a partial design that was performed on a previous iteration

76Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Using a Design Kanban Board

One possible tool for tracking progress is a Kanban board.

77Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Implementation Cycle

ARCHITECTURE SYSTEMDev

Development

PROCESS

78Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Implementation Details

The design cycle of architecture development led to:
• solution organized around quality attribute scenarios
• detail sufficient to provide the required evidence

Additional information is needed to begin implementation:
• more details for module interfaces and responsibilities
• documentation organized around work packages
• feedback between developers and architects

An active design review is used to:
• effectively communicate the designed solution to developers
• get feedback about the documentation and areas for improving it

79Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Conformance Review

For the implementation to exhibit the quality attributes engineered
at the architectural level, it must conform to the architecture.
There will be discrepancies between the architecture and the
implementation; also known as “architectural drift.”

Architecture

Implementation

Mapping Functions

Guidelines for transforming architecture
elements into implementation

Evidence that implementation
conforms to the architecture

?
Drift

80Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

When? Release planning

81Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Results from over 1800 developers from two large
industry and one government software development

Results from over 1800 developers
from two large industry and one
government software development
organization.
“Measure it? Manage it? Ignore it? Software Practitioners and
Technical Debt” N. Ernst, S. Bellomo, I. Ozkaya, R. Nord, I. Gorton,
Int. Symp on Foundations of Software Engineering 2015.

Software Architecture and Design Trade-offs Matter

82Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Roadmap and Architecture

Roadmapping
• Enables making short-term decisions in a long-term context
• Balances global and local optimization

Everything is always changing – why should I plan for the future?
• Make everything equally hard to respond to, or…
• Use architecture to enable anticipated changes to be made more efficiently
• Pay special attention to technical debt that may accumulate due to architecture

decisions
• Incorporate light-weight analysis techniques into sprint and release planning

83Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The Zipper Metaphor

3
Requirements

Functional requirements

Architectural requirements

4 156 2

Feature iterations

Architecture iteration

Nord, R.L., Ozkaya, I. and Kruchten, P. Agile in Distress: Architecture to the Rescue. T. Dingsøyr et al. (Eds.):
XP 2014 Workshops, LNBIP 199, pp. 43–57, 2014. Springer International Publishing Switzerland 2014

84Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Essential Software Artifacts

New features
and added

functionality

Architectural,
structural
features

Defects Technical
Debt

85Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Discussion of backlog items should include an
explicit focus on architecture and any technical
debt items in addition to new features and defects.
Architecture stories and technical debt should be
explicitly recorded, similar to new user stories,
defects, and the like.

Next sprint
stories

New story

Break-down
epic

Delete obsolete
items

Epic (tbd in the future)

Product backlog grooming
To

p
pr

io
rit

y
ite

m
s

=
fin

er
 g

ra
nu

la
rit

y

TD item

Incorporate Technical Debt Management to Release
Planning

86Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software Development
Artifacts on the Backlog
and Dependencies

87Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Impact on Product Development

Impact forces choices that bring into focus issues of cost and value, current needs, and
future potential.

Release 1 Release 2 Release 3

88Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The Cost of Accepting Technical Debt

For each instance of technical debt
• Understand range of consequences
• Measure what you can
• Qualitatively assess what you can’t
• Reconcile data with assessments

Make informed trade-off decisions
about remediation.

Expected CoC

Actual CoC

Time

Co
st

 o
f C

ha
ng

e
(C

oC
)

Accumulating
technical debt

89Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

From Symptoms to Specifics

The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external

VisibleVisible

New Features
Additional Functionality

Evolution Issues: Evolvability

Defects
Low External Quality

Quality Issues: Maintainability

Mostly Invisible

Code

Low Internal Quality
Code Complexity

Code Smells
Coding Style Violations

Architecture

Architecture Smells
Pattern Violations

Structural Complexity

Other Development Artifacts
Testing and Documentation Issues

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec 2012.

90Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Light-weight Analysis Technique
Tactics-Based Questionnaires

We can employ tactics as an a guide to analysis. By turning every tactic into a question,
we create a set of QA-specific questionnaires.
These are employed as follows:
1. The reviewers determine a number of quality attributes to drive the review. These quality attributes will

determine the selection of tactics-based questionnaires to use.

2. The architect presents the portion of the architecture to be evaluated. The reviewers individually ensure
that they understand the architecture. Questions at this point are just for understanding.

3. For each question from the questionnaire, the designer walks through the architecture and explains
whether and how the tactic is addressed. The reviewers ask questions to determine how the tactic is
employed, the extent to which it is employed, and how it is realized.

4. Potential problems are captured. Real problems must be fixed or a decision must be explicitly made to
accept the risks.

91Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Example – Availability Tactics

Recall that tactics
are design
decisions that
enable quality
attributes.

92Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Availability Tactics-Based Questions

•Does the system use ping/echo to detect a failure of a component or connection, or
network congestion?
•Does the system use a component to monitor the state of health of other parts of the
system? A system monitor can detect failure or congestion in the network or other shared
resources, such as from a denial-of-service attack.
•Does the system use a heartbeat—a periodic message exchange between a system
monitor and a process—to detect a failure of a component or connection, or network
congestion?
•Does the system use a timestamp to detect incorrect sequences of events in distributed
systems?
•Does the system employ rollback, so that it can revert to a previously saved good state
(the “rollback line”) in the event of a fault?
…

93Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Lightweight Analysis Exercise

Let’s try a lightweight analysis.

1. Form groups of 2-5 people.

One person is the architect.
One person is the scribe (and questioner).
Other group members are questioners.

2. Choose a system that the architect is intimately familiar with.

94Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Lightweight Analysis Exercise

3. Choose one of the following quality attributes:
• Availability
• Interoperability
• Modifiability
• Performance
• Security
• Testability
• Usability

4. Now turn each tactic into an interview question.

5. Record the responses to each question using the worksheet in the LAA section of the
Supplementary materials.

95Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Who? Necessary organic capabilities

96Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architects: Anchors or Accelerators to
Organizational Agility?
You can’t outsource architecture oversight

• You need the organic capabilities to own the architecture,
though you can get help and contract out tasks

• Architecture is strategy
• System outlives contracts

How can architects accelerate agility in organizations?
• Be agile
• Be architects of structure, time, and transition
• Create agile design guidelines

Jim Highsmith 2010

97Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture Quick Look

Business and development stakeholders
• investigate agile software

development and architecture
principles and practices

• identify risks and factors worthy of
attention

• set priorities in improving software
development

Why? The risks uncovered in this
analysis will guide the application of the
other architecture practices.

Ozkaya, I., Gagliardi. M., and Nord, R.L. 2013. Architecting for Large Scale Agile Software Development:
A Risk-Driven Approach, Crosstalk 26, 3 (May/June 2013): 17-22.

98Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Understanding Program Readiness for Agile

SEI Agile in Government. https://sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=21345

99Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Take away

100Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Agilely architecting …

The essence of agile architecting is to conduct these activities
concurrently with the right balance:

• requirements originating from the problem space inform architecture
and development,

• explorations originating from architecture and implementation
investigations assist in eliciting and detailing requirements.

101Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

… an agile architecture

Architecture understood as
design concepts that influence
the time and cost to implement,
test, and deploy changes:

• reference architectures
• architectural design patterns
• tactics
• design principles
• externally developed

components

Design concept
Design concept (optional)
Influences

Cervantes, H., and Kazman, R. 2016. Designing Software Architectures: A Practical Approach,
SEI Series in Software Engineering, Addison-Wesley, 2016.

102Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Agilely architecting an agile architecture

Agilely architecting an agile architecture has four key requirements:
1. Focus on key quality attributes and incorporate these into technical explorations

within prototyping and spikes
2. Understand that a successful product is a combination of customer-visible features

and the underlying infrastructure that enables those
3. Recognize that an architecture that enables ease of maintainability and evolvability

is the result of ongoing, explicit attention
4. Continuously manage dependencies between functional and architectural

requirements and ensure that the architectural foundation is put in place in a
just-in-time manner

Bellomo, S., Kruchten, P., Nord, R.L., Ozkaya, I.: How to Agilely Architect
an Agile Architecture? Cutter IT J. 27, 12–17 (2014)

103Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Ipek Ozkaya
Architecture Practices Initiative
Email: ozkaya@sei.cmu.edu

Robert Nord
Architecture Practices Initiative
Email: rn@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/architecture

Customer Relations
Email: info@sei.cmu.edu
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:ozkaya@sei.cmu.edu
mailto:rn@sei.cmu.edu

104Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Quality Attribute Scenarios (reference)

1. Stimulus - the condition that affects the system
2. Response - the activity that results from the stimulus
3. Source of Stimulus - the entity that generated the stimulus
4. Environment - the condition under which the stimulus occurred
5. Artifact - the entity that was stimulated
6. Response Measure - the measure by which the system’s response will be evaluated

105Launching and Sustaining Agile Architecture
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architecture Practices (reference)

Core Practices
Elicit and capture business and mission goals in
the form of quality attribute scenarios.

Iteratively and incrementally transform scenarios
into architectural structure and content.

Evaluate the architecture for risks to
achievement of the scenarios.

Transition the architecture to implementation,
build it, and verify compliance.

Supporting Methods
Quality Attribute Workshop (QAW)
Business Thread Workshop (BTW)
Architecture Roadmap

Attribute-Driven Design (ADD)
Views and Beyond (V&B)

Architecture Tradeoff Analysis Method (ATAM)
Scenario-based peer reviews

Active Design Review (ARID)
Design and implementation rules
Conformance reviews

www.sei.cmu.edu/architecture

	Launching and Sustaining �Agile Architecture
	Document Markings
	Agile Architecture?
	Topics
	Motivation for Agile and Architecture: �Software Engineering and Acquisition
	Agile Practice
	Organizational Agility
	How Do You Adapt Scrum?
	Today’s Challenge Dealing with Organizational Change
	A Closer Look at Scale: Scope
	A Closer Look at Scale: Team
	A Closer Look at Scale: Time
	Introductions
	Enhanced Agile Development
	SCRUM and the Architecture Microcycle
	Scaled Agile Framework
	Sounds Expensive!
	Slide Number 18
	Architecture Practices
	Architecture Practices
	Slide Number 21
	Value Proposition for Architecture
	Slide Number 23
	SEI Software Architecture Axioms
	Architecture – The Bridge
	“Every system has an architecture…
	Architecture and Strategy
	SEI Software Architecture Axioms
	Software System Development
	Users Need Both Functions and Qualities
	Quality Attribute Data from SEI ATAMs
	Discussion: Default Quality Attributes
	SEI Software Architecture Axioms
	Typical Software Development Paradigm
	Slide Number 35
	Slide Number 36
	Slide Number 37
	�
	How Much Support for Agile Development?
	Applying the Practices in Concert -1
	Applying the Practices in Concert -2
	Applying the Practices in Concert -3
	Applying the Practices in Concert -4
	Deployability Tactics
	Design and Analysis
	Slide Number 46
	Game Inventory1
	Design Concepts Catalog1
	Game Rules1
	Input Requirements: Functional 1
	Input Requirements: Constraints
	Input Requirements: QAs
	Game Rules1
	Let’s Start!1
	Iteration 1 Goal: Logically Structure the System
	Game Rules1
	Game Rules: Design Concepts Cards1
	Iteration 1 Goal: Logically Structure the System
	Big Data Analytics Reference Architectures Trade-Offs
	Fill in the Scorecard1
	Next Steps1
	Fill in the Scorecard1
	Next Step1
	Iteration 1 Review1
	Fill in the Scorecard1
	Iteration 2 Goal: Refine the Data Stream Element
	Iteration 3 Goal: Refine Master Dataset Element
	Iteration 4 Goal: Refine Batch Views Element
	Iteration 5 Goal: Refine Real-Time Views Element
	Fill in the Scorecard1
	Debrief
	Design and Analysis Inform Each Other
	Documenting During Design
	Tracking Progress
	Design Backlog
	Using a Design Kanban Board
	Implementation Cycle
	Implementation Details
	Conformance Review
	Slide Number 80
	Software Architecture and Design Trade-offs Matter
	Roadmap and Architecture
	The Zipper Metaphor
	Essential Software Artifacts
	Incorporate Technical Debt Management to Release Planning
	Software Development Artifacts on the Backlog and Dependencies
	Impact on Product Development
	The Cost of Accepting Technical Debt
	From Symptoms to Specifics
	Light-weight Analysis Technique�Tactics-Based Questionnaires
	Example – Availability Tactics
	Availability Tactics-Based Questions
	Lightweight Analysis Exercise
	Lightweight Analysis Exercise
	Slide Number 95
	Architects: Anchors or Accelerators to�Organizational Agility?
	Architecture Quick Look�
	Understanding Program Readiness for Agile
	Slide Number 99
	Agilely architecting …
	… an agile architecture
	Agilely architecting an agile architecture
	Contact Information
	Quality Attribute Scenarios (reference)
	Architecture Practices (reference)

