Engineering Emergence in
Systems of Systems:
Software and the Growth
of Insecurity

Carol Woody, Ph.D.
Technical Manager,
Cybersecurity Engineering
Software Engineering Institute (SEI)

Carnegie Mellon University (CMU)
Pittsburgh, PA 15213

R

T

il R Y
W
//f/wx/mx/mm ||\|nmm\\ﬂ\\\\\\\\\\ 7

%

77
%y,

o / & /

g iy

101diolorolotoiotolpiotol <A\ |

CERT | === Software Engineering Institute | Carnegie Mellon University © 2017 Carnegie Mellon University

Notices

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM17-0628

© 2017 Carnegie Mellon University
CERT | == Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Software in Systems of Systems -1

SoS Characteristic | Growing Insecurity Engineering Software
(Maier 1998) to be Secure

Operational Acquirers/Integrators Acquirers must identify
Independence assemble software from many and mitigate
vendors to seamlessly deliver vulnerabilities in software
end-to-end mission capability performing mission-
critical functions

Managerial Vendors build and sell Acquirers select market
Independence software for specialized niche dominants (costs more
markets (e.g. point-of-sales, widely distributed, more
printing, Cloud computing) resources for support,
more functionality
growth)
Evolutionary Vendors release new Acquirers must patch
Development functionality to capture market critical software quickly
share and drop support of to reduce the attack
older versions potential

eRY | == software Engineering Institute | Carnegie Mellon University

Software in Systems of Systems - 2

SoS Characteristic | Growing Insecurity Engineering Software
(Maier 1998) to be Secure

Emergent Behavior Vendors drive down costs Acquirers must impose
through standardized and monitor quality and
interfaces (e.g. TCP/IP), security related
reuse and push for early requirements in their
releases to dominate their vendor contracts and
niche markets; ensure vendors manage
Vendor demand licenses that their software supply
absolve them of liabilities chains effectively
Acquirer’s focus on least (increased costs and
cost and speed of delivery Increased oversight)

with extensive connectivity
results in widespread

vulnerability
Geographic Vendors deliver insecure-by- Acquirer must impose
Distribution default software (faster and secure-by-default
easier) requirements

© 2017 Carnegie Mellon University
'CERT ‘ == Software Engineering Institute ‘ Carnegie Mellon University ution Stement A Aoprove for Publc
elease ibution is Unlimited

)

Critical Software-driven
Changes in the
Technology Landscape K

%

L710 Th

el Agl
L Pl O ¥
%.‘-':-__
N . b

3o o Rl

©

(1070r0(0r0(01010101010101

N

017 Carnegie Mellon University

CERT ‘ =— Software Engineering Institute | Carnegie Mellon University istibtion Satement A Approve for Publc
Release; Distribution is Unlimited

Software Reliance is Rapidly Expanding

A Growing Reliance on Software

Operational & Support

Salftware
25,000 | 24000
|
|
| .
20,000 [~ | Growing
I Affordability
£ i and Assurance
Challenges
2 15000 [! .
E COrperational Software I
= M |
| |
§ 10,000 / |
|
|
I
c.oDo I~ |
|
I
135 236 | Graphic: Hagen'Sormrson

“Dadnspnmg Wdtary Softwars
Aordanly ~ Dafense 4 TEL
Mar-Apr 2013

F-16ABlock 1 F-16D Block 60 F-22 Raptor F-35 Lightning Il F-35 Lightning II
(1974l {1984) (YT {2006) {20123

Software as % of total system cost
1997: 45% =—p 2010: 66% —p 2024: 88%

Source: U.S. Air Force Scientific Advisory Board. Sustaining Air Force Aging Aircraft into the 21st
Century (SAB-TR-11-01). U.S. Air Force, 2011.

© 2017 Carnegie Mellon University

=== Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Software i1s the New Hardware

Information Technology (IT) is
moving from specialized hardware
to software, virtualized as

. Servers: virtual Central
Processor Units (CPUSs)

- Storage: Storage Area
Networks (SANS)

« Switches: Soft switches

« Networks: Software defined
networks

Scalable cloud computing
environments are replacing
organization-owned data centers

Firmware, which can be updated,
provides the low-level program
control for hardware

© 2017 Carnegie Mellon University

Software Engineering Institute ‘ Carnegie Mellon University

Development is now Assembly

General
Ledger

SQL Server WebSphere

GIF library

HTTP

server Oracle DB

XML Parser

SIP servlet
container

Note: hypothetical application composition

CERT ‘ %% Software Engineering Institute | Carnegie Mellon University

Collective development —
context:

- Too large for single
organization to support

- Too much specialization

« Too little value in individual
components

- Growing shift to open source

- Each component collects,
stores, and sends data in
different file structures and
formats

Approved for Public
nlimited

Software Sources are Many, Varied, Reusable

App server

HTTP
server

XML Parser

C Libraries

C compiler

Generated
Parser

Parser

Op en Generator
Source »
EX am p | e Compiler

© 2017 Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Software Connecting and Communicating
Grows

- Cellular
« Main processor
« Graphics processor
« Base band processor (SDR)
« Secure element (SIM)

- Automotive
« Autonomous vehicles
« Vehicle to infrastructure (V2I)
« Vehicle to vehicle (V2V)
- Industrial and home automation
« 3D printing (additive manufacturing)
« Autonomous robots
+ Interconnected SCADA
- Aviation
+ Next Gen air traffic control

« Fly by wire
- Smart grid

« Smart electric meters

« Smart metering infrastructure

. Embedded medical devices

© 2017 Carnegie Mellon University

‘ :¥ SOftware E ng ! neerlng InStltUte ('"a'r nt‘#" 1€ \I[‘I lO" LI“ Iversli [“r Distribution Statement A: Approved for Public 10
Release; Distribution is Unlimited

Security Is a Lifecycle Challenge

Sustainment

Engineering and Development

)3;%///@ SNSNSHISH D

Mission thread Thread Abuse Arch itecture Coding Testing, Monitoring Breach Uncaught
(Business process) Threat Cases and Design Rules and Validation Awareness Breach
Analysis : Principles Guidelines and
: Verification
Requirements and Acquisition : Deployment and Operations
-- "

89,888 Common
Vulnerability
Enumerations (CVE)

CVE.Mitre.org

Design Coding
Weaknesses Weaknesses

705 Common Weaknesses

CWE.Mitre.org

© 2017 Carnegie Mellon University

CERT ‘ %Software Engineering Institute ‘ Carnegie Mellon University 11

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Security Vulnerabilities are Increasing

Definition: Security vulnerability is a weakness which allows
an attacker to bypass security controls

Requires three elements:
- System susceptibility or flaw,

« Millions of lines of software code handling an ever increasing amount of
functionality

- Thousands of software vulnerabilities
- Increased reliance on commercial and open source software
- Attacker access to the flaw, and

- Increased connectivity linking systems to other systems and connecting
to new types of devices (Internet of Things)

- Increased system and device remote communication capability
- Attacker capability to exploit the flaw
« Access to the same tools and techniques used to build software
- Reverse engineering capabilities for commercial and open source
- Malware and attack platforms and frameworks

tatement A: Approved for Public
s tribution is Unlimited

=
|| ',“ ‘\ 7
i I|| b .
@ (l
| ;JJL"
- ‘ﬂ.‘ II)' " &
We OF
) L]
Ne ® .
A _..,
Z 2P
Z
y.‘,-} 4
///
==
—
=
——
—
=] .
— /
= w,
— / /
e e /
Tee o 1A/
| ——
S 7
s/
=

SEl Interest in Emergence .

Y - L el* ,
g \ O\ \ Vi / /
.\ '_d—ll_ 7 AL /

1_m1‘uumu////////,, "

=

=

I;ﬁﬂdlﬂlﬂmlmﬂiﬁlﬂl 10101

/'\ = . . .) . . © 2017 Carnegie Mellon University
(CERT ‘ ——= Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Commercial Mobile Alert Service

A national service delivering relevant, timely, and geo-targeted alert messages to mobile devices.

SEl WEA Research 2011-2016

Wireless Emergency Alerting (WEA)

* Developed a WEA Integration Strategy
— Aid Alert Originators (AOs) in adopting and utilizing WEA

* Developed WEA Best Practices
— Develop and publish a collection of WEA Best Practices for AOs
— Develop and exercise a WEA Trust Model for AOs

» Developed a WEA Cybersecurity Risk Management (CSRM) strategy for
— Alert Originators to assist in their acquisition of wireless capabilities

— Commercial Mobile Service Providers (CMSPSs) to assess cybersecurity
risks that affect the WEA service and develop WEA cybersecurity control
guidelines for CMSPs

~
.A.Iert IPAWS-OPEN CMSPs Pfle.rt
Originators Recipients
J

WEA Alerting Pipeline

© 2017 Carnegie Mellon University

. - = Vg i N T ivarcitsr 14
Software Engineering Institute ‘ Carnegie Mellon University Disbuton Statement A: Approved for Publc
Release; Distribution is Unlimited

WEA Mission Thread (System of Systems)

Alert Onginator

=Mission Step

IPAWS

A
Federal Alert

Gateway

(18]
2022 | CMAC

WEA
Aggregator

i
IPAWS-OPEN e

Gateway

CVSP A

CMSP
Gateway

Recipients

e
MOBILE DEVICES

© 2017 Carnegie Mellon University
CERT ‘ =— Software Engineering Institute | Carnegie Mellon University 15

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Security Engineering Risk Analysis (SERA)

Outcomes

» Data disclosure (Confidentiality) Workflow / Mission Thread

o Data modification (Integrity) .
>) Adverse Mission
» Insertion of false data (Integrity) Consequences / Losses
Affects Produces
» Destruction of data (Availability)
+ Interruption of access to data (Availability) Affects
Stakeholder Interests
Produces
Mission Data
Produces
Targets
Technology Environment e SEMETERE
Consequences / Losses
Technology
Infrastructure Use Cases

Exploits
weaknesses and
vulnerabilities

@/V

Threat Actor

\
v Entity of
‘\ Interest

© 2017 Carnegie Mellon University

Al

Software Engineering Institute ‘ Carnegie Mellon University 16

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Research Objectives for
Software and Growing
Insecurity in SOSE
applications

24 r —
s

oo s

s

g

(1070r0(0r0(01010101010101

T
..!:..'i.u." -_ .

/\ = . . .) . . © 2017 Carnegie Mellon University
(CERT ‘ ——= Software Engineering Institute | Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Growing Software Insecurity Objectives

Measures needed to differentiate good from bad
software

 Reliable, quick, easy measures of application insecurity
o Static analysis tools are not readily integrated into an IDE
o Defect tracking is subjective, inconsistent, and easily skewed
o No current tools include context

 Fast and low cost measures of compositional
security/insecurity

O Inconsistencies in assumptions among components can create a
highly insecure composition from quality parts

o Trusted Computer System Evaluation Criteria (1983-1999),
better known as the Orange Book, took too long, cost too much,
and did not scale to current demand

Anyone Can Write Software

How To Raise The Next Zuckerberg: 6 Coding Apps For Kids
http://readwrite.com/2013/04/19/how-to-raise-the-next-zuck-6-coding-apps-

for-kids/

TYNKER - We Empower KIDS to Become Makers
https://www.tynker.com/

How and Why to Teach Your Kids to Code
http://lifehacker.com/how-and-why-to-teach-your-kids-to-code-510588878

From 1997 to 2012, software industry production grew from $149
billion to $425 billion

From 1990 to 2012, business investments in software grew at more
than twice the rate of all fixed business investments; and from 2010
to 2012, software accounted for 12.2 percent of all fixed investment,
compared to 3.5 percent for computers and peripherals

(CERT ‘ %% Software Engineering Institute ‘ Carnegie Mellon University

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

19

http://readwrite.com/2013/04/19/how-to-raise-the-next-zuck-6-coding-apps-for-kids/
https://www.tynker.com/
http://lifehacker.com/how-and-why-to-teach-your-kids-to-code-510588878

Measuring the Growing Defects

Where Software Flaws Are Introduced

0% 20% 1000

Component Code Unit Integration System Acceptance
Test Test

Requirements System Software

Design Architectural Software Development Test

Engineering
Design Design

Operation

3.5% 16% 50.5% 9%

Where Software Flaws Are Found

Best-in-class code: <600 defects per MLOC
Very good code: 600 to 1,000 defects per MLOC
Average quality code: 6000 defects per MLOC

Up to 5% of defects are vulnerabilities
Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

219

Software Faults: Introduction, Discovery, and
Cost

Faults account for 30-50% percent of total software project costs.
- Most faults are introduced before coding (~70%).
- Most faults are discovered at system integration or later (~80%).

Software Development Lifecycle
Where Faults are Introduced

* 70% * 20% %* 10%

Where Faults are Found

%* * * * x*
3.5% 16% 50.5% 9% 20.5%

Nominal Cost Per Fault
for Fault Removal

. =] =l - =, T, TS :
e,), Lo Ce), Ce), (8, Cu), Lli[._h"“

ElZ||||JIZE]|| ey,

[Zl’:h"EI]l , T, T,), [, m“J

J

i
;'Cijﬁl"iii N i.i;.'i.it'i.'l),

o, Oy,),),), 8y, T, O, T80 :!'_._

|] e [] L9 | e] L] . [L]

Cost Per Fault for Fault Removal 300-1000x

© 2017 Carnegie Mellon University

CERT ‘ %% Software Engineering Institute | Carnegie Mellon University _y rorodoreie | 21

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Engineering Software for Security Objectives

Quantitative software measures

 Reliably, quickly, and easily determine software
production quality (process, product, use) — many
options but no notion of what is most useful

- Measures for predicting/confirming software qualities
early in the lifecycle (e.g. security, resilience,
survivability) in evaluating “fit for use” and “best buy”
choices

Building code for building software with desired
gualities

Software supply chain evaluation mechanisms to
differentiate good and poor software suppliers (and
their supply chains)

eRY | == software Engineering Institute | Carnegie Mellon University

Sample: Software Security Requirements
Metrics

Activities/Practices Outputs Candidate Metrics

Conduct security risk Prioritized list of Number and % of
analysis (includes threat software security risks | software security risks
modeling and controlled/mitigated
abuse/misuse cases). (e.g., high and medium
risks)

Prioritized list of design
weaknesses

Prioritized list of

o Number and % of
controls/mitigations

software security risks
Mapping of accepted/transferred

controls/mitigations to

. Number and % of
design weaknesses

software security
controls/mitigations
selected for
requirements
development

i - - - AP PN . Ten 2w rongecs S dxr 23
——— SOﬂI\NaI‘e Englneerlng Instltute (arne 4""‘ 1€ \ Il‘ I IU" L niver ‘“) Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Opportunities for Security Improvement

Sustainment

19% fail to carry out security 27% do not practice ~ 30% do not use static analysis 47% do not perform
requirement definition secure design or manual code review during acceptance tests for
development third-party code

Engineering and Development

> SHSHINTHSHSH D

Mission thread Thread Abuse Architecture Coding Testing, Monitoring Breach Uncaught

(Business process)

Threat Cases : and Design Rules and Validation Awareness Breach
Analysis : Principles Guidelines and
Verification
Requirements and Acquisition : Deployment and Operations
N NN NN NN NN NN NN NN NN NN NN EEEEEENENEENEEEEEEEEEEEEEEEEEEE o

Less than 19% coordinate their security practices in
various stages of the development lifecycle.

Source: Forrester Consulting, “State of Application Security,” January 2011

© 2017 Carnegie Mellon University

—_—— H H H ‘a Harths H Y N 118 1 T <l T 24
—=— Software Engineering Institute ‘ Carnegie Mellon University Drsrbuton Sttement A Approved for Pulic
Release; Distribution is Unlimited

Contact Information

Carol Woody, Ph.D.

cwoody@cert.org

Software Engineering Institute | Carnegie Mellon University

http://www.sei.cmu.edu/

	Engineering Emergence in Systems of Systems: Software and the Growth of Insecurity���Carol Woody, Ph.D.�Technical Manager, �Cybersecurity Engineering
	Notices
	Software in Systems of Systems - 1
	Software in Systems of Systems - 2
	Slide Number 5
	Software Reliance is Rapidly Expanding
	Software is the New Hardware
	Development is now Assembly
	Software Sources are Many, Varied, Reusable
	Software Connecting and Communicating Grows
	Security Is a Lifecycle Challenge
	Security Vulnerabilities are Increasing
	Slide Number 13
	SEI WEA Research 2011-2016
	WEA Mission Thread (System of Systems)
	Security Engineering Risk Analysis (SERA)
	Slide Number 17
	Growing Software Insecurity Objectives
	Anyone Can Write Software
	Measuring the Growing Defects�
	Software Faults: Introduction, Discovery, and Cost
	Engineering Software for Security Objectives
	Sample: Software Security Requirements Metrics
	Opportunities for Security Improvement
	Contact Information

