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Abstract

This research program centers on the fundamental heat-transfer processes for beamed-energy
harnessing applications, such as electromagnetic heat exchangers. Of interest is to quantify the
conversion efficiency of incoming electromagnetic radiation into elevated internal energy of a
coolant. Electromagnetic-radiation absorbing materials, either porous or designed with chan-
nels through which a coolant can flow, that can withstand temperature up to 2000K, heat these
materials through the application of electromagnetic waves. Coolant runs through the mate-
rial to harness the desired energy. Since electrical conductivity of these materials depends on
temperature, multiple steady temperatures are seen at the same input power. Asymptotic mul-
tiscale methods including homogenization are used to formulate an effective medium theory to
describe the energy conservation and electric field amplitude propagation through this medium,
for incompressible and compressible coolants. We find a resonance condition under which high
temperatures can be achieved, but below the thermal and mechanical failure of the lossy medium
for a thin laminated system. The analytical results for these laminated systems are compared
favorably with direct numerical simulations. Extensions to porous media have been developed
through homogenization methods, for both the classical and resonant (high-frequency) condi-
tions. This latter work, along with a collaboration on electromagnetically-enhnance chemical
vapor infiltration applications, is the focus of our ongoing work.

Keywords: Electromagnetic heating, computational methods, homogenization.
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Accomplishments/New Findings

• In electromagnetic heat exchangers, electromagnetic energy is absorbed through a solid lossy
dielectric. However, the loss factor of the ceramic depends on temperature, and hence the
solution of the field strength and temperature must be done simultaneously. If a thin, lossy
dielectric laminate is surrounded by two thin pure dielectric materials (either fluid or solid),
electromagnetically resonant modes result in an additional branch to the power response
curve. This new steady state can be utilized for energy harnessing, since the operating
temperature is below the fracture temperature of the lossy material. In this case, spanwise
conduction takes place much faster than streamwise conduction or convection.

• Streamwise energy transport limits the existence of this new steady-state solution near critical
applied power levels.

• The transition between different steady states in this system is governed by a critical tempera-
ture. This result is supported through direct numerical simulations of a given set of physical
materials.

• Preliminary results with gas coolants demonstrate that buoyancy forces can mitigate the ap-
pearance of the new resonant steady state.

• Effective model for electromagnetic wave propagation through spatially periodic composite ma-
terial (composed of a pure dielectric and a lossy dielectric) has been derived when the spatial
period of the geometry is comparable to the wavelength of the applied field. This model has
been validated for laminated materials.

• Preliminary results show transients of the long-wave homogenization model can attain hot spots
on the exterior of the sample prior to the onset of thermal runaway. This transient is driven by
fluid flow through the medium carrying energy downstream to a locally insulated boundary.
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1 Summary

A large number of space-based applications exist for the transmission of electromagnetic energy to
a system some distance away. For example, work is being done to use a satellite to collect and
convert solar energy into microwaves that will then be beamed to earth to help contribute to US
energy production[1]. From the other direction, energy generated on earth could be transmitted to
satellites to add to the power being generated by solar panels. Additionally, a ground-based infrared
laser was used to power a UAV in early 2014 [2]. Along those lines, beamed energy propulsion has
also been proposed as a method of improving current rocket propulsion capabilities[3]. A common
thread in these technologies is the conversion of electromagnetic energy into a mechanically useful
form.

The overall goal of this work is to determine the viability of a electromagnetic heat exchanger,
where electromagnetic energy is harnessed as the power source by an absorbing material through
which a coolant is heated, through computational and mathematical modeling. Unlike traditional
microchannel heat exchangers [4, 5], a critical aspect of understanding this technology is the relation
between the properties of an applied electromagnetic wave and the net transfer in internal energy of
the coolant leaving the heat exchanger. This gain depends not only on the electric field amplitude,
but also on the material properties of the heat exchanger, the heat exchanger’s porous structure
and the upstream applied flow rate of the coolant. To understand this relationship, models need to
couple the electromagnetic heating of the heat exchanger, heat transfer from the exchanger to the
coolant, and the flow of the coolant through the porous system from the physical fundamentals.
Phenomenological relations are not appropriate in this modeling, since these expressions ignore
the coupling between all of the different physical phenomena, and depend significantly on the
experimental conditions.

In order for these applications to be feasible, the solid portion of the heat exchanger must be
structurally stable at large temperatures (300K to 2,000K), and capable of absorbing a significant
portion of the amplitude of the applied field. Ceramic materials such as silicon carbide and zirconia
for example, are good candidates for this application, however, their electrical conductivity increases
with temperature (see [6],[7] for two examples). Since the time-scale of the electromagnetic radiation
is on the scale of nanoseconds, while thermal process evolve on a seconds time-scale, all of the
modeling approaches prescribe the evolution of the electromagnetic electric field amplitude, at a
prescribed carrier frequency, is quasi-steady on the time-scale of energy transfer.

Without any manner to remove the energy, temperature can grow in this model without bound,
and this phenomenon is called thermal runaway in the microwave heating community. This phe-
nomenon can be observed in processing applications, where the cavity shape can induce thermal
runaway. The effect may occur regardless whether or not the sample is heated at a resonant or
non-resonant frequency (Figure 1) or whether or not the loss factor is an increasing function of
temperature (see [7]).

For sufficiently high conductivities, however, the electric field amplitude vanishes except near
the boundary. A rapid loss in the field amplitude as it enters a new medium is called the skin
effect, and this represents the conversion of the electromagnetic energy into internal energy. Power
generation is limited to the boundary regions and the resulting average steady-state temperature
in the medium is determined by the balance of net power in the boundary regions and energy losses
to the environment.

To better understand the physical processes at work, consider a symmetric application of plane
waves propagating normal to a uniform slab. Pelesko and Kriegsmann [6] observed that if traditional
heat transfer is included in the model, then the temperature saturates when a balance of the
net energy generated within the material by the applied field is balanced by energy losses to
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Figure 1: Example of time histories of maximum temperature in a cylindrical sample of zirconia
microwave heated in a cavity at different (resonant, 2.452 GHz, and non-resonant, 2.451 and 2.45
GHz) frequencies (from [7])

the environment. A critical point in this balance is that a hysteresis is observed between the
applied power and the temperature. At large temperatures, the electrical conductivity is large,
and the field strength in the material is small, resulting in the power generation localized near
the solid/environment boundary[8]. However, the temperatures of this upper branch are typically
beyond the point where the mechanical and structural integrity of the material can be ensured.

The hysteresis behavior of these materials leads to some intriguing possibilities for energy trans-
fer, provided that the lossy ceramic is not destroyed in the process. Once these materials are at suf-
ficiently high temperatures, the amount of power needed to maintain this temperature is similar to
the power needed to heat the material at a temperature along the lower branch. This suggests that
if the material can be kept at higher temperatures, the energy transfer for a electromagnetically-
driven heat exchanger might be quite efficient. However, the operating conditions of the exchanger
can significantly affect the resulting hysteresis loop, since the upper branch is the result of the
balance between the ohmic power in the energy equation and the net power removed from the
material, including the power transferred to the fluid. A fundamental investigation on how these
different physical processes interact is needed in order to determine the promise of this energy
harnessing technique.

Microwave heating of laminated materials has additional complications to better understand
the power absorption properties. In Kriegsmann and Tilley [9], a laminate structure of two solid
material slabs, repeated periodically over space, is subject to a single applied plane wave whose
incident wave vector direction is either perpendicular to the slab interfaces (the P-problem), or
tangent to these interfaces (the T -problem). In the T -problem, we can further consider two different
polarizations: the TM -case, where the electric field is applied, or the TE-case, where the magnetic
field is applied. The spatial period of these laminate pairs (called the microscale) is much smaller
in practice than the characteristic length scale of interest (called the macroscale), and through an
asymptotic approach known as homogenization, equations that represent the temperature and field
strength are derived which depend on macroscale but include the net dominant physical effects
occurring on the microscale. Through this analysis, in the T -problem, significantly more power is
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Figure 2: (a) Triple-layer laminate infinite strip domain. Regions 1 and 5 are free-space, regions 2
and 4 are a lossless dielectric, and region 3 is a lossy dielectric. Unit cell defined as two layers from
[0,λ]. Symmetric monochromatic polarized plane waves impinge the external boundaries at normal
incidence. (b) Configuration for development of effective medium theory for porous media. The
widths λ in the figure are comparative to the wavelength of the applied electromagnetic radiation.

needed in the TE-polarization than the TM -polarization. However, the final steady-state thermal
profile in the TE-polarization is elevated near the center of the material. Hence, in harnessing
beamed energy, the orientation of the wave vector to the channels, and the polarization of the
radiation can play a significant role in the effectiveness of the heat exchanger.

Effective models which capture the dominant physics in the microscale and their effect on
macroscale dynamics are an attractive choice, since the mathematical description is computationally
feasible, provides physical insight into the dominant macroscopic behaviors on the application
time scales and operational frequencies, and their limits of validity are well understood[9, 10, 11].
Classical asymptotic approaches to these problems require the material to be spatially periodic at
a fixed wavenumber[12, 13, 14]. However, materials that are influenced by many physical processes
do not conform to this modeling paradigm.

Unlike the cases for microwave-frequency excitations described above, in the case of millimeter
waves, the microscale solution to the electromagnetic-thermal problem can depend on the mi-
croscale. To understand the underlying phenomena that can be observed on the microscale, we
considered the electromagnetic-thermal response of a lossy ceramic layer surrounded on either side
by pure dielectrics. Figure 2a shows the configuration of interest. Plane waves are symmetri-
cally applied to this three-layer laminate system, and energy losses to the environment (be they
through advection or through radiation) are included. We found mathematically criteria on the
geometry by which a third steady-state solution is achieved, provided that the energy losses to the
environment are sufficiently small[15, 16, 17]. We confirmed this result through a series of COM-
SOL simulations[18]. Preliminary results are also describe for gaseous coolants and for porous
pure-dielectric/lossy dielectric laminate systems.

The second vein of our work centers on effective media. Figure 2b shows the configuration of
a series of alternating lossy ceramic layers (in grey) with pores in which contain a pure dielectric

5
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incompressible fluid. Of interest is how the energy transfer from the electromagnetic radiation is
absorbed in to the porous media. We formulated two systems of equations: long-wave homoge-
nization system, for which the applied wavelength is much longer than the spatial periodicity of
the geometry, and; high-frequency homogenization system, for which the applied wavelength is
comparable to the spatial period of the geometry. For isothermal conditions, and for the geometry
described in Figure 2b, the long-wave homogenization reduces to the classical mixture theory result,
while the high-frequency homogenization recovers the results of the acoustic problem for loss-less
materials[19]. Preliminary results are shown for the case of both models under an applied field with
a prescribed fluid velocity.

An additional research collaboration with Prof. Jon Binner’s group at the University of Birm-
ingham, UK. Mr. Matt Porter received funding from the JECS Trust Collaboration Fellowship
to visit WPI over the Spring 2018 semester. This work centered on microwave-enhanced chemical
vapor infiltration (CVI) for fabricating silicon carbide parts from SiC fibrous preforms. Porter’s
experimental work formed the basis for the modeling approaches used at WPI. One model centered
on using FDTD methods, for non-reacting materials and ignoring convection effects within the
material, to determine the power distribution profiles to be expected in the sample from the exper-
imental configuration. The second model follows the reaction chemistry used in [8], but assuming
that the reaction time scale is comparable to the thermal diffusion and advection time scales over
the macroscale variables. Both preliminary results of the modeling approaches look promising.

2 High-Frequency Resonance in Triple-Layer Laminate Heat Ex-

changers

2.1 Overview

Consider the geometry shown in Figure 2a with plane waves symmetrically impinging the material
from both sides at normal incidence. The electromagnetic waves, governed by Maxwell’s equations,
propagate through the lossy material which generates heat. In this scenario, Maxwell’s equations are
reduced to solving the one-dimensional Helmholtz equation in z. For a given constant temperature
T , this field can be calculated analytically.

If we assume that energy losses to the environment are comparable to conduction in the three-
layer laminate in the x-direction, then the temperature can be described as a function T = T (x, t),
independent of z to within the aspect ratio η = �/L. T (x, t) evolves according to the following
equation

ρcp
∂T

∂t
= k

∂2T

∂x2
+ Pσ3(T )‖E3‖

2

2(T )− 2L(T ), (1)

where ρcp = 1 + 2(λ − 1)K
α

is the effective heat capacity per unit volume, k = 1 + 2(λ − 1)K is
an effective thermal conductivity, and L(T ) = BiT + R[(T + 1)4 − 1] is the external energy loss
due to external convection and blackbody radiation respectively. The squared norm of the electric
field is defined as ‖E3‖

2

2
=

∫
|E3|

2 dz and |E3|
2 = E3 E

∗

3
where E∗

3
is the complex conjugate of E3.

The result of the thin domain assumption is that the evolution of temperature will depend only on
time and on x.
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2.2 Spatially-uniform steady-state solutions

Furthermore, if we assume that the electric field is uniformly applied along ∞ < x < ∞. This
implies the diffusive thermal flux, k ∂T

∂x
, is zero so the resulting equation governing the average

temperature is

ρcp
∂T

∂t
= Pσ3(T )‖E3‖

2

2(T )− 2L(T ), (2)

We now define the power response curve as the bifurcation diagram of (P, T ), where T is the
steady state temperature satisfying

P =
2L(T )

σ3(T )‖E3‖22(T )
. (3)

Many dielectric materials have been empirically found to posses effective electric conductivities
that exponentially increase in temperature, σ3 = A3e

b3T . It is under this assumption that Kriegs-
mann et al. [20] found the power response curve defined as (3) to be S-shaped as shown in Figure
4a. It was later proven by Pelesko and Kriegsmann that the positively sloped branches of the power
response curve are stable while the negatively sloped branch is unstable [6]. As power is increased
past the lower branch, thermal runaway takes over and heats the material to the temperature at
the upper branch. The only two stable states are for low temperatures, which is inefficient heating,
and high temperatures, which may damage the material.

In our work, we require that the wavelength, permittivity, and layer width to satisfy the follow-
ing: outer layer width is an odd multiple of a quarter wavelength l(λ − 1) = (2m − 1)λ2

4
and the

inner layer width is an odd multiple of a half wavelength l = (2n− 1)λ3

2
, where λ is the nondimen-

sional width of a unit cell, where n,m+ are positive integers, and λj is the wavelength in region
j. The unit cell defined by the domain [0, λ]. A commonly used term in homogenization theory it
is comprised of the lossy layer and one of the lossless layers. These conditions are comparable to
those for Bragg interference and Fabry-Pérot cavity, which establish a resonance and builds up the
electric field inside the middle layer, as shown by Figure 3b. Additionally, it is a well known fact
that this resonance is strengthened when there is high contrast between ε2 and ε3. Figure 3a shows
the electric field strength as ε3 increases, thus increasing this contrast since ε2 = π2. Resonance
states show peaks in the electric field which increases as the contrast increases.

This change in the electric field transforms the S-shaped power response curve to a Double-
S-shaped power response introducing two additional steady-state branches one of which is stable.
Figure 4a depicts an S-curve while Figure 4b shows a Double-S-curve where the stable branches
are plotted as solid lines and the unstable branches as dashed lines. The new stable branch occurs
at the desired medium range temperatures for efficient heating while avoiding the damaging effects
of thermal runaway. In addition, the power scale is reduced by two orders of magnitude. This
allows us to use thermal runaway to our advantage. Increasing to a low power just past the first
right turning point thermal runaway is induced, but comes to rest at a safe and efficient operating
temperature on the middle branch.

The previous section reviews the existence of a Double-S-curve [15]. In this section, we consider
the domain to be finite in the x-direction (vertically in Figure 2a), and relax the uniform heating
assumption by applying a Dirichlet condition at one boundary and a zero flux condition at the

7
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Figure 3: Electric field strength in middle lossy layer (region3) as a function of the outer layer
permittivity. Peaks show Bragg resonance states with increasing field strength (a). Electric field
(blue) within the triple-layer laminate boundaries (red) at a resonance state. Middle layer shows
large electric field from applied resonance.

other. The governing equation is then given by (1) with boundary conditions),

T = 0, x = 0, (4)

∂T

∂x
= 0, x = L. (5)

and a given initial condition. Physically, this models a thin three-layer laminate exposed to cold
reservoir at x = 0 and sufficiently long enough for the material to heat up at the other boundary
allowing the zero flux condition to be valid.

We are interested in how the power response curve changes as the diffusive transport change
the heating effects. Figure 5a shows the power response for the uniform heating case while Figure
5b shows the power response curve when diffusive effects are considered. Increasing the thermal
conductivity will produce regions where steady state solutions cease to exist. At these low power
levels, the temperature will no longer have steady states and will decrease until it reaches a lower
stable state. The existence boundaries were found analytically and were shown to agree with the
computational results [17]. Similar results are found with this system for heat exchangers using
incompressible coolants under laminar flow [16].

2.3 Direct Numerical Simulations

Direct computational simulations of this system for the full Helmholtz equation coupled to the
energy equation, and subject to plane-wave radiation as described above were performed. COMSOL
Multiphysics was used for the simulation, and the geometries used were consistent with plane
waves in the microwave regime. The materials and geometry was chosen to be consistent with
the resonant conditions where the double-S power response curve should appear. In Figure 6, we
show how the results from the direct numerical simulation compares with the mathematical model
for Bi = 0.5, Bi = 0.25, Bi = 0.0625. Radiation losses from the system were not incorporated
in the model. We see that the COMSOL results agree quantitatively with the results from the

8
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Figure 4: (left) Power response depicting S-curve where no resonance occurs for ε2 = 9π2. The three
branches are labeled with uppercase Roman numerals I, II, III. The red arrow labeled ’TR’ indicates
the thermal runaway event. (right) Power response depicting Double-S-curve where resonance is

established for ε2 =
(
7π
2

)2
. The five branches are labeled with uppercase letters A, B, C, D,

E and the four turning points are labeled first through fourth with colored symbols ���, ���, ���,
and ♦♦♦ respectively. The two red arrows labeled ’TR’ indicate the two separate thermal runaway
events. Additional parameters for both graphs include εm = π2, K = 0.5, Bi = 0.5, Q = 0,
σ3(T ) = 10−3e3T

mathematical model described above in the limit when heat losses to the environment are small.
In this limit, the temperature within the system is uniform in the spanwise direction.

Although the power level at which thermal runaway takes place between the two models can vary
significantly based on Bi, the temperature at which this transition takes place is nearly consistent
for all Bi considered. We hypothesize that the system has a critical temperature at which the
thermal runaway event is triggered.

2.4 Ongoing Work

2.4.1 Gas Coolants

The operating temperatures of these heat exchangers are expected to be on the order of 1000K.
Under these conditions, coolants are necessarily going to be gaseous. Currently, we are focusing
on how buoyancy effects in a gaseous coolant affects the thermal runaway transition found in the
lossy dielectric laminate. To consider this case, we consider the lossless dielectrics to be an ideal
gas, and the channels are now sealed on each end to ensure that the net mass flow in the gas is
zero. We note that the dielectric constant in the gas is a function of the gas density, so we set the
ambient pressure in each chamber so that the high-frequency resonance is expected to take place.

Buoyancy plays a very important role in the behavior of this system. In Figure 7, gravity is
acting in the negative Y direction, and we show the temperature, velocity amplitude, and pressure
within the gas chamber when the applied power is Pin = 5, 100W/m2 (left) and Pin = 5, 200W/m2

(right). Note that this relatively small increment in the applied power leads to thermal runaway
within the lossy dielectric, and a convection roll is set up within the gas. Gas is driven by buoyancy
vertically along the Gauss/ceramic boundary, and a return flow is driven along the gas/external
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Figure 5: Power response of (2) for uniform heating in x (a), power response of (1) for nonuniform
heating in x with k = 0.5. Nonexistence regions where steady states cease appear near the left
two turning points. Blue arrows show how temperature decreases within the nonexistence regions
(b). Other parameters used to produce these curves include εf =

(
7π
2

)2
, εm = π2, γ = 1, K = 0.5,

Bi = 0.5, Q = 0, σ3(T ) = 10−3e3T

boundary. Pressure here reflects primarily the density stratification which is driven by the thermal
gradients within the ceramic.

When the system orientation is rotated so that gravity is now acting along the positive X-
direction, we see that buoyancy significantly affects the thermal behavior of the system. In Figure
8, we consider the cases when Pin = 5, 100W/m2 (left), and Pin = 6, 000W/m2 (right). Notice
that at these applied power levels, Rayleigh-Bénard convection roles have developed within the gas
layer, with the spatial period is governed by the spanwise thickness of the gas chamber. These
convection rolls significantly enhance thermal transport from the ceramic, to the point when the
thermal runaway transition is quenched. Further study in this area focuses on how the orientation
of the system affects the transition.

2.4.2 Porous Lossless Laminates

As described above, the gas pressure can be adjusted initially to vary the permittivity. However,
the practicality of this affect is very limited, and we have begun to determine the possibility of
using lossless porous materials in the pure dielectric region shown in Figure 2a. The benefit of this
method is that we can use mixture theory in this region, since the wavelength of the field, for the
resonance conditions within the heat exchanger, are long compared to the pore scale. Preliminary
results suggest that the increase in the applied pressure drop which drives the incompressible fluid
flow can act to quench the thermal runaway transition. The mechanisms of this quenching are not
completely understood at this writing, but will be a current effort in the coming year.
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Figure 6: Comparison of the power response curves generated by the mathematical model under
resonant conditions, and a direct numerical simulation using COMSOL for a variety of Biot numbers
Bi.[21]
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Figure 7: Gas and thermal steady state for a symmetric system with a dielectric gas in a closed
cavity next to an electromagnetically lossy layer. Gravity is acting in the negative vertical direction.
Left: Lower temperature solution of power response curve. Right: Larger temperature solution
corresponding to the power response curve. Note the the transition between these states is over a
small change in the applied power.

Figure 8: Gas and thermal steady state for a symmetric system with a dielectric gas in a closed
cavity next to an electromagnetically lossy layer. Gravity is acting in the positive horizontal
direction. Left: Lower temperature solution of power response curve. Right: Similar temperature
solution corresponding to the power response curve. Note the the transition between these states is
over a small change in the applied power. Note that the development of convection roles improves
energy transfer from the lossy material, preventing thermal runaway.
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Figure 9: Comparison of High-frequency Homogenization solutions to those of the Transfer Matrix
Method (a) N = 50, ε′′ = 0.1 (b), N = 50, ε′′ = 1.

3 High-Frequency Homogenization of Maxwells Equations for Low-

loss Porous Dielectrics

Consider the configuration shown in Figure 2b. An electric field, polarized normal to the plane, is
propagating through a laminate structure with a lossy ceramic (gray) and an incompressible pure
dielectric fluid (white). The cases investigated with this award centers on laminar flows within the
liquid. We apply homogenization techniques to this system to find effective equations that govern
the temperature and the electric field within the composite medium.

In this work, we assumed that the power coefficient P in Equation (1) was small enough (or
the loss factor of the ceramic is small enough) so that a uniform temperature over the microscale
is an appropriate approximation. With this assumption, classical homogenization approaches lead
to the following energy equation over the macroscale variables (z, x, t)

∂T

∂t
+ αPeu

∂T

∂x
= ∇ (A∇T ) + Pσ3(T )‖E‖22(T ), (6)

where α is the thermal diffusivity ratio, Pe is the Péclet number, u is the average fluid velocity, A
is a thermal diffusivity tensor, which depends on the microscale geometry. This nonlinear equation
for the temperature depends on the behavior of the electric field E within the medium, which itself
depends on temperature.

For the effective equation for the electric field, we pursued two different limits. The first, and
a classical results[9, 22], focused on the case when the wavelength of the electric field is much
longer than the characteristic microscale length (λ in Figure 2b). The second approach, which is
a modification of the high-frequency homogenization approach by Craster et al.[19], we derived
a general amplitude equation of a single mode on a triply-periodic composite microscale pattern.
Figure 9 shows a comparison of our model for the geometry shown in Figure 2b to the exact solution
found using the Transfer Matrix Method. The agreement is excellent. Our method captures the
loss of the band gap in these structures when any dissipation is included [16].
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Figure 10: Maximum temperature T within an effective porous medium with α = 2, Pe = 1, plane
wave exictation along z = 0, and normal gradients zero along the other boundaries. Note that the
maximum temperature in this case increases monotonically, but with smaller changes in magnitude,
as the applied power P is increased.

3.1 Ongoing Work

3.1.1 Long-Wave Excitations

We have developed a computational implementation of the long-wave homogenization model in
[16]. This implementation solves the energy equation (6) subject to the long-wave homogenization
approach found in Wellander and Kristensson [22]. We have a sample on a unit square 0 < x, z < 1
of a porous material in the structure of Figure 2b, with fluid entering the domain at x = 0, and a
plane wave exiting the medium along z = 0. We assume that normal derivatives of the field and
the temperature are zero along the other boundaries, with the exception of Newton’s law of cooling
along z = 0, and symmetry conditions along z = 1.

Figure 10 shows the transient of the maximum temperature in the medium over time for several
different power levels. We note that each transient reaches a stable temperature profile quickly in
time, and that the increase in this maximum equilibrium temperature per change in the applied
power is reduced as P is increased. The physical mechanisms for this change can be observed in
Figure 11. Here, we show the steady-state profiles for |E| (a) and temperature T (b) for P = 1,
while (c) shows the field strength |E| and (d) the temperature for and P = 5. For P = 1, the
skin depth is nearly the full length of the sample, which leads to classical volumetric heating. The
presence of the fluid flow from the bottom to the top carries energy near the corner (z, x) = (1, 1).
The high temperature leads to a slightly reduces skin depth in the upper half of the sample.

For P = 5, the physical mechanisms are significantly different. In this case, the skin depth is
significantly smaller than the case for P = 1. Hence, the majority of the power is generated along
z = 0, and fluid advection carries this energy local to the corner (z, x) = (0, 1). Localized heating
in this region is mitigated by Newton’s law of cooling along z = 0 and the advection carrying
relatively cooler fluid along z = 1 through the sample. These two mechanisms limit the growth of
the hot spot within the skin layer.
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Figure 11: Examples of the long-wave homogenization response for a material with α = 2, B = 2,
and Pe = 1. (a) |E| for P = 1 at t = 10. (b) T (z, x, 10) with P = 1. (c) |E| for P = 5 at t = 10.
(d) T (z, x, 10) with P = 5.Note that the hot spot remains within the skin layer of the electric field.
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3.1.2 High-Frequency Excitation

We are developing a computational implementation of the high-frequency homogenization model
found in Gaone (2018)[16]. We shall follow with the same macroscale parameter choices as is found
in the long-wave homogenization section above. This direct comparison will consider the different
energy absorption and transport under different two-dimensional spatially-periodic modes on the
microscale. This work will be submitted for peer-review by the end of Summer 2019.
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Figure 12: Non-normalized patterns of temperature evolution in the central plane through a 55×8
mm disk of stacked SiC fabric plies heated in SAIREM Labotron (power 1.1 kW).

4 Ongoing Collaboration with Dr. Jon Binner, University of

Birmingham, UK

The ongoing cooperation with Prof. Binner’s group in the School of Metallurgy and Materials, Uni-
versity of Birmingham, U.K., is focused on computational study of microwave thermal processing
of SiC fabric. The objective is to clarify electromagnetic and thermal processes occurring in the
course of microwave-enhanced chemical vapor infiltration (CVI). The CVI is a process in which a
solid matrix is deposited into a porous preform by the thermal decomposition of a reactive gaseous
mixture. Difficulties to control microwave processing of the material demand development and ex-
ploitation of a numerical model capable of simulating microwave-induced temperature field in the
material heated in a high power microwave reactor. Initial computational results are informative
and instructive. Figure 12 shows that when the processed SiC disk is heated at a non-resonant
cavity frequency, due to low energy coupling, the heating rate is relatively slow, and sufficient uni-
formity of heating is supported by thermal conductivity of the material. In contrast, at a resonant
cavity frequency, thermal runaway occurs: after reaching 605C for the first 24 s, maximum temper-
ature increases by 425 C for the last 4 s. Moreover, the heating is characterized by development of a
strong hot spot potentially damaging to the sample. Additionally, a second long-wave homogeniza-
tion model is being developed which incorporates the reaction chemistry and the dynamic change
of the evolving pore structure and the resulting energy, species, and gas transport.
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