
Automatic Generation of Cyber Architectures
Optimized for Security, Cost, and Mission
Performance: A Nature-inspired Approach

Neal Wagner, Cem Ş. Şahin, Jaime Pena, and William W. Streilein
MIT Lincoln Laboratory

Lexington, MA, USA
Email: {neal.wagner, cem.sahin, jdpena, wws}@ll.mit.edu

Abstract—Network segmentation refers to the practice of
partitioning a computer network into multiple segments and
restricting communications between segments to inhibit a cyber
attacker’s ability to move and spread infection. While segmen-
tation is widely recommended by cyber security experts, there is
no clear guidance on what segmentation architectures are best to
maximize a network’s security posture. Additionally, the security
gained by segmentation does not come without cost. Segmentation
architectures require resources to implement and may also cause
degradation of mission performance. Network administrators
currently rely on judgment to construct segmentation archi-
tectures that maximize security while minimizing resource cost
and mission degradation. This paper proposes an automated
method for generating segmentation architectures optimized for
security, cost, and mission performance. The method employs
a hybrid approach that combines nature-inspired optimization
with cyber risk modeling and simulation to construct candidate
architectures, evaluate them, and intelligently search the space of
possible architectures to hone in on effective ones. We implement
the method in a prototype decision system and demonstrate the
system via a case study on a representative network environment
under cyber attack.

I. INTRODUCTION

Network segmentation (NS) is a defensive mitigation tech-
nique designed to reduce the damage due to cyber attack. Its
goal is to limit attacker access to and movement within a
network by partitioning the network into multiple segments
or enclaves and restricting communications between enclaves
and between enclaves and the Internet. This partitioning is
typically implemented by the use of firewalls, network egress
and ingress filters, application-level filters, and/or physical
(hardware) infrastructure [1]. NS is widely regarded as critical
for network security [2]–[5] but is poorly understood with
only vague guidance (e.g., [3], [6]) on how to apply it.
For even small networks many different NS architectures are
possible and the number of possibilities grows exponentially
with network size.

The problem is compounded by the fact that security does
not come without cost. Segmentation architectures require

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

resources to implement and maintain and also may cause
degradation of mission performance. Network administrators
must select architectures that maximize security posture while
minimizing resource cost and mission degradation. Currently,
administrators are forced to rely on judgment to balance trade-
offs between security, cost, and mission performance. A fur-
ther compounding factor is that for many enterprise networks
the problem of mission mapping has not been solved [7], [8].
Mission mapping refers to the mapping of an organization’s
mission onto the cyber assets (e.g. devices/servers, software
applications, communication protocols, etc.) used to execute it.
Because many organizations do not know exactly what cyber
assets are being used to support their mission and how they
are being used, they cannot reasonably estimate the mission
degradation that may result due to a given NS architecture.

This paper proposes an automated method for constructing
ns architectures that are optimized for security, cost, and
mission performance. The method employs a hybrid approach
that combines nature-inspired optimization with cyber risk
modeling and simulation to construct candidate architectures,
evaluate them, and intelligently search the space of possi-
ble architectures to generate efficacious ones. The proposed
method is implemented in a prototype decision system and
demonstrated via a case study on a representative network
environment under cyber attack. Our work addresses an impor-
tant gap in the area of cyber security decision support (CSDS):
the need for systems that leverage data-driven methods to
generate optimal/near-optimal security decisions.

The field of CSDS is still quite young with only a handful of
studies to date. Two recent studies seek to aggregate input from
subject matter experts (SMEs) to address cyber threats: in [9]
SME assessments are used to forecast threats and recommend
security measures while in [10] SME rankings of cyber attacks
and relevant security components are aggregated to provide
security assessments of computer systems during the system
design phase.

Another study details a cyber infrastructure to facilitate
and secure individual-based decision making and negotiation
for Internet-of-Things devices with respect to applications
in health care [11]. In [12], a Bayesian Belief Network,
cyber vulnerability assessment, and expected loss compu-
tation are combined to compute appropriate premiums for

Distribution Statement A: Approved for public release - distribution is unlimited

cyber insurance products while [13] utilizes game theory and
combinatorial optimization to evaluate cyber security invest-
ment strategies. Finally, in [14] a decision support system
to assist cyber defenders protecting mobile ad-hoc networks
(MANETs) is developed to remediate malicious intrusions and
reduce network energy costs.

In this paper, we build upon the work of [15] to develop
an automated decision system to generate NS architectures
optimized for multiple objectives. In [15] a semi-automated
system for the NS decision problem is developed that optimizes
for one objective only, namely security risk. Here, we present
a fully-automated implementation of the system that includes
optimization with respect to the three critical, and often con-
flicting, objectives: security, cost, and mission performance.
The contributions of this paper are the following.
• We provide a method to automatically generate effective

NS architectures and realize this method in a fully-
automated decision system. The system utilizes a novel
hybrid algorithm that combines nature-inspired optimiza-
tion with cyber risk modeling and simulation.

• The system outputs NS architectures that are optimized
for security, cost, and mission performance.

• We provide a mission performance model that allows for
approximated measurement of mission degradation due to
a given segmentation architecture when the mapping of
cyber assets onto organizational mission is not available.

The rest of this paper is organized as follows: Section II
provides an overview of the network segmentation defensive
mitigation, Section III describes the decision system’s overall
design, Section IV details the security, cost, and mission
performance models used to evaluate candidate architectures,
Section V presents a case study that demonstrates the system
for a representative network environment under cyber attack,
and Section VI concludes.

II. NETWORK SEGMENTATION DEFENSIVE MITIGATION

Network segmentation (NS), as described above, is a cyber
defensive mitigation meant to inhibit an attacker’s ability
to move and spread infection throughout the network. NS
accomplishes this by partitioning the network into multiple
enclaves and restricting communications between enclaves and
between enclaves and the Internet. Figs. 1(a) and (b) provide
example NS architectures.

Fig. 1(a) gives an example architecture in which no par-
titioning is utilized. Here, the entire network (i.e. network
devices, servers, routers, switches, etc.) is contained within a
single enclave in which all network devices are allowed direct
communication with all other network devices. Additionally,
the enclave is connected to the Internet, that is it allows direct
communication to the Internet where cyber attackers preside.
Communications between the network enclave and the Internet
occur via one or more software services (e.g. web browsers,
email, ssh, etc.) running on the enclave. In the figure, X
software services allow this communication.

In Fig. 1(a), a cyber attacker may exploit vulnerabilities
present in one or more of the software services to penetrate the

network enclave. Common strategies for penetration include
sending phishing emails with infected attachments or links
to infected websites to entice a network user to open the
attachment or browse to the infected website and, thus allow
the attacker to infect her device and gain a foothold in the
network. Once inside, the attacker can easily move and spread
infection to other network devices because the infected device
is allowed to directly communicate with all other network
devices.

The example given by Fig. 1(b) is a NS architecture that
is partitioned into four enclaves, three that are allowed direct
communication with the Internet (Enclaves #1-3 in the figure)
and a fourth that is allowed direct communications to the other
three enclaves but not to the Internet (Enclave #4 in the figure).
Note also that Enclaves #1-3 do not have direct communica-
tions with each other. Communications from Enclaves #1-3 to
the Internet occur via the same set of X software services (split
up over the three enclaves) as given in Fig. 1(a). An additional
software service provides communication from these Internet-
facing enclaves to Enclave #4.

For the architecture of Fig. 1(b), an attacker may also
be able to penetrate the network and gain access to one of
Enclaves #1-3. However, upon penetration the attacker’s ability
to spread infection to other network devices is hampered by
the communication restrictions. In order for the attacker to
infect a device in Enclave #4, she must exploit an additional
software service, the one that allows communication with that
enclave. To spread to other Internet-facing enclaves, she must
also exploit additional services. The restrictions created by the
architecture serve to slow down the rate at which the attacker
can spread infection and allows the defender more time to
patch vulnerable software services and/or cleanse infected
enclave devices.

A NS architecture selected by the defender consists of the
following components.

• A set of network enclaves. An enclave is defined as a
group of devices with homogeneous reachability.

• Software services that allow communications between
enclaves and between enclaves and the Internet.

• The rate at which software services are patched.
• The rate at which enclaves are cleansed. Enclave cleans-

ing is a process by which an enclave’s devices are
cleansed to remove infection and restored to their original
state. The result of enclave cleansing is to dis-entrench
an attacker who has penetrated.

III. AUTOMATIC GENERATION OF NS ARCHITECTURES:
DECISION SYSTEM DESIGN

Extending the work presented in [15], we have designed
an automatic method for generating NS architectures that are
optimized for security, cost, and mission performance. The
proposed method is realized as a fully-automated decision
system. The system inputs parameters that characterize the
network environment and cyber threat and outputs an effective
architecture for that environment.

Internet Network
(no partitioning)

Enclave # 2

Enclave # 3

Enclave # 4

Enclave # 1

Internet

(a) Network with one enclave (b) Network with multi-enclave architecture

X total software
services

X total software
services

1 software
service

Fig. 1. Two example network segmentation architectures: (a) a network with no partitioning and (b) a network partitioned into four enclaves, three that allow
direct communications to the Internet and a fourth enclave that allows direct communications to the other three network enclaves but not to the Internet.

Network
Env. Data

NS Arch.

 C
andidate N

S A
rch. Ev

al
ua

tio
n

of
 N

S
A

rc
h.

Network Environment

Attacker

Defender

Cyber Risk Modeling & Simulation

Non-linear Optimization

Attacker
Threat

Automated Decision-making System

Fig. 2. High-level design of the decision system to automatically generate NS architectures optimized for security, cost, and mission performance.

Fig. 2 gives a graphical depiction of the decision system. In
the figure, the system is represented by the gray box. System
inputs (blue and red inflowing arrows to the left of the figure)
are used to characterize the network environment including
its security posture and existing cyber threat. System output
(blue arrow to the right of the figure) is an optimized NS
architecture for the given network environment. The decision
system is comprised of two algorithmic components, non-
linear optimization and cyber risk modeling and simulation
(mod/sim) (depicted by the yellow and green boxes inside
the gray box in the figure). The optimization component
suggests candidate NS architectures while the mod/sim compo-
nent evaluates these architectures. These two components run
iteratively: the optimization component suggests a candidate
architecture, it is evaluated via the mod/sim component, and
the evaluation is then fed back to the optimization component
where it is utilized to guide its search to construct newer, more
promising candidate architectures. Together these components
work to search the space of possible NS architectures and hone
in on effective architectures.

As discussed in Section I, the number of possible NS
architectures grows exponentially with network size and thus
deterministic search methods are intractable for all but the
smallest networks. Here, we employ soft computing algorithms
inspired by nature to execute the function of the optimization
component. The current version of the system utilizes a
Simulated Annealing (SA) algorithm to explore the space of
NS architectures.

SA is an adaptation of the Metropolis-Hastings Monte
Carlo method for approximating the global optimum of a
given function. It is inspired by the process of annealing in
metallurgy [16]. Generally, the algorithm starts with an initial
solution, generates a new solution that is a neighbor to it in the
decision problem search space, evaluates both the old and new
solutions against a given objective function, probabilistically
accepts the new solution in place of the old solution, and then
repeats these steps (using the currently accepted solution) for
some number of iterations. The algorithm mimics the anneal-
ing process by initially having a relatively higher probability
of accepting a new solution that is inferior to the currently
accepted solution and progressively lowering that probability
at each iteration. Note that if a new solution is superior to the
currently accepted solution, it is always accepted.

Alg. 1 specifies the SA algorithm for the NS decision system.
In the algorithm, the objective is to minimize the combined
risk to security, cost, and mission performance, and thus
lower values of the evaluation function eval (lines 8,9 of
the algorithm) are superior. Computation of the evaluation
function is detailed in Section IV below.

In Alg. 1, the function Generate-Neighbor (line 7 of the
algorithm) is used to generate a new candidate solution archi-
tecture that is a “neighbor” to the currently accepted solution
architecture. Recall from Section II that a NS architecture
includes a set of enclaves, the software services that allow
communications, and the rates at which software patching and
enclave cleansing occur. A new architecture is generated by

Algorithm 1 Optimize-NS-Architecture(s0, kmax)
1: {s0: initial segmentation architecture, kmax: max. no. of iterations}
2: s← s0 {Accept s0 as current solution}
3: sbest ← s {Save the best solution found so far}
4: k ← kmax

5: repeat
6: T ← k

kmax
{Set temperature T }

7: snew ← Generate-Neighbor(s)
8: eval(s) {Evaluate s, snew}
9: eval(snew)

10: if eval(snew) < eval(s) then
11: s← snew {Accept snew if superior to s (lower risk)}
12: if eval(snew) < eval(sbest) then
13: sbest ← snew {Save the best solution found so far}
14: end if
15: else
16: r ← random value ∈ [0, 1] {Probabilistically accept inferior snew}

17: if r ≤ e
(1−eval(snew)−eval(s))

T

e(1/T)−1
then

18: s← snew

19: end if
20: end if
21: k ← k − 1 {Decrement k to reduce T }
22: until k = 0
23: return sbest

www Network www

Enclave

Enclave

Enclave

Enclave

Enclave

Enclave

www

Enclave

Enclave

Enclavewww

(a) Split Enclave operation

(b) Merge Enclaves operation

Fig. 3. Generating a new NS architecture by changing the number of enclaves:
(a) the Split Enclaves operation to increase the number of enclaves and (b)
the Merge Enclaves operation to decrease the number of enclaves.

altering the current architecture in one of the following ways.

• Increasing or decreasing the number of enclaves.
• Adding or removing software services allowing com-

munication between two enclaves or altering a software
service to change one of its endpoints (i.e. change its
source or destination enclave).

• Changing the software patching rate or the enclave
cleansing rate.

Figs. 3(a) and (b) illustrate operations that increase/decrease
the number of enclaves. Fig. 3(a) depicts the Split Enclaves
operation. Here, the number of enclaves is increased by split-
ting an existing enclave into two or more enclaves. Fig. 3(b)
depicts the Merge Enclaves operation: the number of enclaves
is decreased by merging two or more enclaves into a single
enclave.

The operations described above are used to generate new
NS architectures that are then evaluated by the mod/sim
component. This combination of generation and evaluation
serves to drive the decision system to explore promising

Fig. 4. Screen capture of the user interface of the prototype decision system.

areas of the search space and automatically construct effective
architectures. The decision system is implemented using a
combination of Scala X.X, Python Y.Y, and JavaScript Z.Z.

Fig. 4 shows a screen capture of the user interface of the
prototype system. The plot to the left of the figure gives
the fitness value of the current solution architecture over
several iterations of the SA algorithm and the three graphs
to the right of the figure give graphical representations of the
starting, current, and best-so-far architectures generated during
the run. Note that Fig. 4 provides an illustrative example of the
prototype system interface; results shown do not correspond to
experiments discussed in this paper. Section IV below details
the system’s fitness function while Section V describes archi-
tectures generated during experimentation and their graphical
representations.

IV. NS ARCHITECTURE EVALUATION MODEL

The decision system described in the previous section
requires an evaluation function to measure the effectiveness of
generated solution architectures. As discussed in Section I, we
wish to generate architectures that are optimized for security,
cost, and mission performance. The following sections detail
the security, cost, and mission performance models used for
evaluation.

A. Measuring Security Risk

We utilize a continuous-time Markov chain model (CTM)
developed in [17], [18] to measure the security inherent
to a NS architecture. The CTM characterizes security risk
for a given network environment under threat from external
attackers whose goal is to penetrate and spread throughout
the network. The model captures changes in network state
due to the arrival of new software vulnerabilities, patches,
exploits, and the communications allowed within a given NS
architecture. Arrivals of these security-related events are mod-
eled as Poisson processes, and thus transitions between states
are characterized by sampling rates in which intervals between
event samples are exponentially distributed with a given mean.
Here, we use Poisson processes to capture attackers arriving
to exploit vulnerabilities and defenders arriving to remediate

vulnerabilities and/or cleanse infected enclaves as used in [19].
We will refer to these sampling rates as simply Poisson rates.

The model consists of three entities: (i) a network envi-
ronment, (ii) one or more network enclaves (i.e. groups of
devices with homogeneous reachability), and (iii) one or more
software services. A network environment is characterized by
a set of enclaves and communication pathways that connect
these enclaves. Communication pathways represent functional
information flows (FIF) which include physical connections
(i.e. by a physical line), transitive connections (e.g., a server
enclave being able to communicate with the Internet even
though no direct line exists), and more complex flows (e.g., an
email is sent from the Internet that arrives at a DMZ enclave,
is pulled by an exchange server and is finally downloaded
and read by a user in a LAN enclave). A FIF is modeled
only as a communication pathway from a source enclave to a
destination enclave. Intermediate enclaves between the source
and destination are not modeled. Note that the Internet is also
modeled as a single enclave in which we assume the attacker
presides and, thus is always compromised.

A FIF connecting two enclaves is enabled by one or more
services (i.e. software applications) running on the destination
enclave that are subject to vulnerabilities that may be exploited
by an attacker and patches that remediate these vulnerabilities.
Figs. 5 (a) and (b) depict the Markov process states for an
individual service and enclave, respectively.

As given in Fig. 5(a), a service is characterized by states
reflecting its current number of vulnerabilities (0, 1, 2, · · ·)
and whether or not attackers have developed an exploit for
one or more of these vulnerabilities. To capture transitions
between states we utilize three Poisson rates: the vulnerability
arrival rate ∆−1vuln, the exploit development rate ∆−1dev , and the
patch rate ∆−1patch. A service starts out in the 0-vulnerability
state, transitions to higher-vulnerability states with the arrival
of vulnerabilities, transitions to the exploit developed state
upon the development of 1 or more exploits for its existing vul-
nerabilities, and finally, transitions back to the 0-vulnerability
state upon a patching event. While the service is in the exploit
developed state, it can be exploited by the attacker. Exploit
events are captured by the exploit deployment rate ∆−1exploit.

Fig. 5(b) shows the Markov states for an enclave. An
enclave is characterized by two states, a clean state and a
compromised state. An enclave starts out in the clean state,
transitions to a compromised state with the arrival of exploit
events for one or more of its software services, and then
transitions back to a clean state upon the arrival of an enclave
cleansing event.

The enclave cleansing rate ∆−1clean is a directly-specified pa-
rameter while the enclave compromise rate ∆−1comp is specified
as a function of the Markov processes governing the states of
one or more services running on the enclave. Services running
on an enclave are independent and ∆−1comp is computed as

∆−1comp =

N∑
i=1

∆−1comp(si) (1)

0	Vulnerabili,es	 1	Vulnerabili,es	 2	Vulnerabili,es	 …

Exploit	Developed	

Δvuln
-1

Δvuln
-1

Δvuln
-1

Δpatch
-1

Δpatch
-1

Δpatch
-1 Δpatch

-1

Δexploit
-1

Δdev
-1

2Δdev
-1

Compromised	 Clean	

Δcomp
-1

Δclean
-1

(a)

(b)

Software Service Markov States

Enclave Markov States

Fig. 5. (a) Markov process states for a software service represent how many
vulnerabilities are present and whether an exploit for any of the vulnerabilities
has been developed since it was last patched. (b) Markov states for an enclave
represent whether or not the enclave has been penetrated by an attacker since
it was last cleansed.

where si represents ith service, i ∈ [1, N], running on a given
enclave E, N is the total number of available services on E
and ∆−1comp(si) is the compromise rate of service si. Note that
the compromise rate for a single service ∆−1comp(si) is captured
via the Markov process model depicted in Fig. 5(a).

An event-based simulation is used to compute the security
risk for a given NS architecture. The simulation computes, for
each enclave in a given architecture, the expected probability
that the enclave is compromised (i.e. penetrated by the at-
tacker) at any moment. A simulation run is executed by the
following steps. (1) A given NS architecture is instantiated with
its enclaves, their services, and the communications topology
that specifies which services allow communication between
enclaves and between enclaves and the Internet. (2) Events
are generated via the above-described Poisson rates. A run is
terminated when it reaches a specified maximum number of
simulated time units.

The security risk for a NS architecture as a whole is
measured as the expected probability of enclave penetration
by the attacker over all enclaves,

Sec(env, s) =
1

|encls(s)|
∑

e∈encls(s)

Ppenetrate(e) (2)

where env is a network environment under cyber threat,
s is a segmentation architecture, encls(s) is the set of all
enclaves in s, e represents a single enclave and varies over
all enclaves of encls(s), Ppenetrate(e) is the probability of
attacker penetration for enclave e, and Sec(env, s) is the
expected probability of enclave penetration by the attacker
for environment env and segmentation architecture s. This
measure is normalized to [0, 1] where lower values mean lower
security risk.

B. Measuring Cost

Cost is characterized as an information technology (IT)
maintenance cost: greater segmentation (i.e. more enclaves)

k=1
k=2
k=3
k=4
k=5
k=6
k=7

C
os

t F
un

ct
io

n,
 C

(e
nv

,s
)

Number of Enclaves

Fig. 6. IT maintenance cost function (Eq. 3) for M = 100 and k = 1, · · · , 7.

incurs a higher IT cost to maintain. We utilize a normalized
exponential function to capture the cost increase as the number
of enclaves increases. The cost function is given by

C(env, s) =
e(N×k)/M − 1

ek − 1
(3)

where env is a network environment under cyber threat, s is a
segmentation architecture, N is the total number of enclaves
in s, M is the maximum number of enclaves that can be
supported by the IT maintenance process, k is a steepness
constant, and C(env, s) is the IT maintenance cost for a
given environment env and segmentation architecture s. This
function is normalized to [0, 1] where lower values mean lower
cost.

Fig. 6 gives a graphical depiction of the cost function for
maximum number of enclaves, M = 100 and several values of
the steepness constant k. The cost function of eq. 3 is designed
to be flexible: it can characterize a linear increase in cost with
increases in the total number of enclaves, N (as shown by the
blue line in the plot when k = 1) and it can also characterize
an exponential increase in cost with increases in N (shown by
the black line in the plot when k = 7).

C. Measuring Mission Performance

As discussed in Section I, the security gained by deploying
a NS architecture may have detrimental impacts on mission
performance. Because many organizations have not solved the
mission mapping problem, that is they do not know exactly
what cyber assets are being used to execute the mission and
how they are being used, they cannot easily measure and
predict the negative effects to mission performance that a
given NS architecture can cause. Administrators and network
architects are thus put in the difficult position of having to use
subjective judgment to select a NS architecture that maximizes
security posture but does not degrade mission performance to
an unacceptable level.

Our goal is to construct a model to measure the mission
degradation, the fraction of mission performance that is neg-
atively impacted, due to a given NS architecture. The model
should provide viable estimation of mission degradation for
networks environments in which knowledge of mission depen-
dencies to cyber assets is incomplete or unavailable. Towards
this goal, we focus on two components of NS architecture that

the defender must select: the software patching and enclave
cleansing rates.

The idea is to capture mission degradation when complete
knowledge of mission execution is not known. Here, we
assume cleansing devices in a enclave or patching software
services results in a cost to mission performance, that is
the mission is degraded to some fraction of its optimum
performance. When an enclave is cleansed, its devices are
unavailable for some amount of time and this lack of availabil-
ity negatively impacts the mission. When a software service
is patched, it is unavailable for some amount of time which
can also negatively impact the mission, albeit potentially to a
lesser degree as patching usually takes less time than cleansing
and does not necessarily require devices to be completely
unavailable during the patching process. However, there exists
another form of mission degradation due to software patching:
that of software disfunctionality. New versions of software
may not function exactly as older versions due to upgrades,
new features, or new software bugs introduced. The altered
functionality of a software application after it has been patched
can cause mission operations that depend on it to execute less
quickly, less accurately, and/or less completely. Regardless of
what mission is being executed or whether or not that mission
has been mapped to the cyber assets that support it, the base
assumption is that more frequent enclave cleansing and/or
software patching by the defender results in more mission
degradation.

DA′ = wclean ·
(

∆−1clean

∆−1cleanMax

)
+ (wpatchTime + wpatchDisf) ·

(
∆−1patch

∆−1patchMax

)
(4)

DA = max

[(
∆−1clean

∆−1cleanMax

)
,

(
∆−1patch

∆−1patchMax

)
, DA′

]
(5)

Eqs. 4 and 5 specify a mathematical model to capture the
defender’s activity with respect to cleansing and patching.
Eq. 4 characterizes a defender’s activity as a weighted average
of the ratios of the rates of cleansing and patching to their
maximum possible rates, respectively. In Eq. 4, ∆−1clean and
∆−1patch represent the defender rates for cleansing and patching,
respectively, ∆−1cleanMax and ∆−1patchMax represent the maxi-
mum possible rates of cleansing and patching, respectively,
and wclean, wpatchTime, and wpatchDisf are weights repre-
senting the relative impact that cleansing and patching have
to mission degradation, respectively. Note that there are two
weights associated with the impact of patching, wpatchTime,
and wpatchDisf . wpatchTime reflects the impact that patching
has on mission-related cyber asset availability and wpatchDisf

represents the impact that patching has on mission-related cy-
ber asset functionality. DA′ gives the measure of cleansing and
patching activity by the defender as a weighted average where
wclean + wpatchTime + wpatchDisf = 1.0 This measure is

normalized to [0, 1] where higher values mean more defender
activity, a value of 1 means the maximum amount of defender
activity, and a value of 0 means no defender activity (i.e. the
defender never cleanses or patches).

Eq. 5 computes the finalized measure of defender activity,
DA, as a maximum of the individual ratios of the cleansing
and patching rates to their respective maximum possible rates
and DA′ computed in Eq. 4. We utilize the maximum function
because it is possible that one activity (either cleansing or
patching) when executed at the maximum possible rate may
effectively cause maximum activity and thus maximum mis-
sion degradation in and of itself. For example if the maximum
possible rate of enclave cleansing is once per day and the
defender chooses that rate, she may completely shut down
mission operations regardless of what the patching rate is.

We utilize a normalized exponential function similar to
the one given in Eq. 3 to capture the increase in mission
degradation as the defender activity in cleansing and patching
increases. The mission degradation function is given by

MD(env, s) =
e(DA×k)/DAmax − 1

ek − 1
(6)

where env is a network environment under cyber threat, s
is a segmentation architecture, DA is the defender activity
component of s given by Eq. 5, k is a steepness constant
similar to that given in Eq. 3, and DAmax is the maximum
possible defender activity for cleansing and patching and
always has a value of 1.0. This function is normalized to [0, 1]
where lower values mean lower mission degradation.

D. Combined Measure of Security, Cost, and Mission Perfor-
mance

The final evaluation function computes a combined measure
that represents the overall risk to security, cost, and mission
performance and consists of the three component measures
described above. The combined risk measure is given by

R(env, s) = w1 · Sec(env, s)
+ w2 · C(env, s) + w3 ·MD(env, s) (7)

where Sec(env, s) is the security risk component (Eq. 2),
C(env, s) is the cost component (Eq. 3), MD(env, s) is the
mission degradation component (Eq. 6), and w1, w2, and w3

are weights in [0, 1] representing the relative importance of
the security, cost, mission performance component measures,
respectively, subject to the constraint w1 + w2 + w3 = 1.0.
This final risk measure is normalized to [0, 1] where lower
values mean lower combined risk. Overall, the objective of
the decision system is, for a given network environment under
cyber threat env, to generate a segmentation architecture s,
that minimizes R(env, s) of Eq. 7.

V. EXPERIMENTS

We demonstrate the system via a case study on a represen-
tative network environment under cyber attack. The aim is to
use the system to improve an initial segmentation architecture
to minimize R(env, s) of Eq. 7 for multiple scenarios in

Internet Enclave

15 software services

Fig. 7. Initial segmentation architecture to be improved by the decision
system.

which the relative importance of security, cost, and mission
performance vary.

Fig. 7 shows the initial architecture, which represents an
unsegmented network, that is a network with only a single
enclave such that all network devices can communicate di-
rectly with all other network devices. In this single enclave
network direct communications are allowed from enclave to
the Internet where cyber attackers preside. Communications
from the network to the Internet are made through 15 software
services (applications).

The network environment is specified by parameters de-
scribed in Section IV. We leverage real vulnerability, patch,
and exploit data to characterize a representative software ser-
vice and its associated expected rates of vulnerability arrival,
patching, and exploit development using the process given
in [18], [20]. Below is a summary of this process.

A. Network Environment Parameters

Within the CTM (Section IV), a software service requires
specification of multiple rate parameters including (i) vulnera-
bility arrival rate (∆−1vuln), (ii) patch arrival rate (∆−1patch), (iii)
exploit development rate (∆−1dev), and (iv) exploit occurrence
rate (∆−1exploit). Additionally, each enclave requires specifica-
tion of the enclave cleansing rate (∆−1cleanse). Here, the goal
is to characterize a representative service.

We utilize data from the National Vulnerability
Database [21] as well as results from large-scale vulnerability
studies ([22]–[25]). These studies define a vulnerability
lifecycle that captures the state of a vulnerability over
time. We use this to characterize vulnerability phases
including vulnerability disclosure (when the vulnerability
becomes known), exploit development (when an exploit
for the vulnerability is developed), exploit deployment
(when the exploit is used), and patching (when a patch
for the vulnerability becomes available). Figure 8 shows
time dependencies between these phases. From the figure,
vulnerability disclosure kicks off two processes in parallel:
exploit development and patch arrival. Once an exploit has
been developed for the vulnerability (and before a patch
has arrived), exploits that may result in compromises can
now occur for that service. Patching ends the lifecycle by
rendering its exploit(s) ineffective. We use data collected with
respect to these phases to compute rates for a representative
service.

disclosure

exploit development patch

exploit deployment

time

Fig. 8. Time dependencies between vulnerability lifecycle phases (purple
arrows represent transitions between phases).

∆−1vuln: To characterize the vulnerability arrival rate of a
representative service, we average the most common services
given in [25] as shown below:

∆−1vuln =

∑
i∈N

Vi

T

|N |
(8)

where i represents the most vulnerable application for a vendor
from the top vendor list derived by [25]. Vi is the weighted
sum of vulnerabilities for application i over time period
T where weights are given by each vulnerability’s severity
score [26]. N is a set containing the most vulnerable appli-
cations from top vendor list derived by [25] which collects
vulnerability data over a 7-year period (2000-2007) and groups
them by vendors (e.g., vulnerabilities for Microsoft products,
for Adobe products, etc.). Note that Eq. 8 considers the set of
all known vulnerabilities for a given software service s over a
given time period, T . Using Eq. 8, we compute the expected
vulnerability arrival rate, ∆−1vuln, as one every 65 days.

∆−1patch: [23] analyzes data on nearly 15K vulnerabilities
over a 5-year period (from 2001 to 2006) and derives vul-
nerability discovery dates and patch availability dates from
public sources. We fit their results to a Poisson distribution
and then compute a weighted average of these fitted results.
Our computation yields an expected patch availability rate of
one every 25 days (after vulnerability arrival). Recall from
Section III that one of the choices the defender must make
when specifying a segmentation architecture is the patching
rate. The defender may choose to patch at a slower or faster
rate and this choice will affect both the security posture and
the mission performance of a given network environment. The
above-computed rate represents the fastest rate at which a de-
fender may choose to patch, that is the defender cannot apply
patches to software services of a given network environment
before those patches are released to the public.

∆−1dev: [23] executes a similar process to derive exploit
availability (exploit development) dates. This study yields
exploit development rates ranging from ≈ 8 days before
disclosure to ≈ 2 days after disclosure. Additionally, [25]
reports that for ≈ 90% of vulnerabilities collected, exploits
are available within 10 days of their corresponding disclosure
dates. For our experiments we use the mid-point of these
bounds, an expected rate of exploit development as one every
5 days (after vulnerability arrival).

∆−1exploit: Incident reports are generally difficult to come
by because organizations do not like to share data on detected
compromise events within their networks. Additionally, differ-
ent kinds of exploits can be executed in varying amounts of
time. Some exploits take advantage of vulnerabilities in server
software (for example, the Shellshock vulnerability [27]) while

TABLE I
NETWORK ENVIRONMENT PARAMETER SETTINGS

Parameter Description Setting

∆−1
vuln Vulnerability Arrival Rate 1 every 65 days

∆−1
patchMax Max. Patch Rate 1 every 25 days

∆−1
patchInit Initial Patch Rate 1 every 30 days
∆−1

dev Exploit Development Rate 1 every 5 days
∆−1

exploit Exploit Deployment Rate 1 every 5 days
∆−1

cleanMax Max. Enclave Cleanse Rate 1 every 7 days
∆−1

cleanInit Initial Enclave Cleanse Rate 1 every 365 days

others utilize phishing emails to entice users to download and
open malicious file attachments. Exploits that target server
vulnerabilities can be executed at any time by the attacker,
but exploits that rely on phishing require the victim to trigger
the exploit (e.g. by opening a malicious email attachment). We
use a conservative estimation for our experiments, an expected
rate of exploit deployment as one every 5 days (after exploit
development).

The final rate to consider is the enclave cleansing rate,
∆−1cleanse. Here, we consider the maximum rate that the de-
fender may choose to cleanse. As discussed in Section IV,
enclave cleansing usually results in greater device downtime
than software patching, and thus cleansing may have greater
detrimental effects on mission performance than patching
does. For these experiments we assume that the maximum
rate of enclave cleansing is one every 7 days. For many
network environments and organizational missions, cleansing
that frequently would likely make it impossible to execute
mission operations.

The settings for network environment parameters are given
in Table I. Parameters ∆−1vuln, ∆−1dev , and ∆−1exploit represent
the vulnerability arrival, exploit development, and exploit
deployment rates, respectively, and remain static over all
experiments. Parameters ∆−1patchMax and ∆−1cleanMax represent
the maximum possible rates of patching and enclave cleans-
ing, respectively (also static over all experiments). Parameter
∆−1patchInit represents the initial setting for patching rate
selected by the defender. Note that the patching rate ∆−1patch

specified by a given architecture can vary over the course of
a single experiment as the defender may choose slower or
faster rates for patching (subject to the constraint given by
∆−1patchMax).

Parameter ∆−1cleanInit in Table I represents the initial setting
for cleansing rate selected by the defender. Note that like
the patch rate, the cleansing rate ∆−1clean can vary over the
course of a single experiment as the defender may choose
slower or faster cleansing rates subject to the constraint
given by ∆−1cleanMax. We utilize a study that sheds light on
the activities of a real cyber attacker to specify ∆−1cleanInit.
In [28] a nation-state-sponsored cyber attacker that was able
to compromise hundreds of enterprise networks across many
countries is documented. The study investigates the time that
the attacker, code-named APT1 (Advanced Persistent Threat
1), was able to persist inside an enterprise network before

being removed/cleansed from the environment. The study
reports persistence times that are up to 4 years with an average
persistence time of approximately 1 year, and we use this
average persistence time to set ∆−1cleanInit.

Recall from Section IV that the mission performance
component measure requires the setting of weights wclean,
wpatchTime, and wpatchDisf of Eq. 4 representing the relative
impact that cleansing and patching have to mission degrada-
tion, respectively. For these experiments we use wclean = 0.7,
wpatchTime = 0.15, and wpatchDisf = 0.15 to represent
a network environment in which enclave cleansing causes a
significant degradation of mission performance while patching
causes smaller performance degradation with respect to both
downtime and dis-functionality. Both the mission performance
and cost component measures (Eqs. 6 and 3, respectively)
also require setting the steepness constant k to capture the
increase in these measures as defender cleansing/patching rates
and the number of enclaves increases, respectively. For these
experiments we select k = 1.0 for the mission performance
measure, which characterizes a nearly linear rise in mission
degradation when cleansing and patching rates are increased.
For the cost measure we select k = 6.0 with maximum number
of enclaves M = 25, which characterizes an exponential rise
in cost as the number of enclaves increases to the maximum.
With this setting, there are small increases in cost when the
number of enclaves is less than 10 but quickly growing cost
when the number of enclaves is greater.

B. Search Parameters

As mentioned above, we aim to explore how varying
the relative importance of the three component objectives,
security, cost, and mission performance, affect the choice
of segmentation architecture by the defender. We execute
several experiments in which the weights of Eq. 7, w1, w2,
and w3 are varied. We vary w1, the security component
measure weight, from [0,1] in increments of 0.1. For each
value of w1, we explore all possible combinations of values
for w2 (cost component measure weight) and w3 (mission
performance component weight) at increments of 0.1 subject
to the constraint that w1 +w2 +w3 = 1.0. We thus execute 66
total experiments overall with each experiment starting with
the initial architecture given by Fig. 7 and consisting of 50
iterations of the decision engine.

We constrain the search to explore architectures with at
least three software services allowing direct communication
from a network enclave to the Internet. This constraint is
used to prevent the system from generating architectures
that are disconnected from the Internet as we assume that
most enterprise networks require communication with external
networks via the Internet. The output of each experiment is
the best architecture found, that is the one with the minimum
value of R(env, s) from Eq. 7.

C. Results

Fig. 9 gives the results of the 66 experiments executed. Se-
curity and mission performance weightings are plotted against

Fig. 10. Segmentation architecture generated by the system when cost weight
is 1.0 and security and mission performance weights are both 0.0.

Fig. 11. Segmentation architecture generated by the system when mission
performance weight is 1.0 and security and cost weights are both 0.0.

the normalized fitness of the best architecture found by the
system where lower fitness values represent better solutions
(i.e. less risk) with respect to the weightings used.1 Note that
the weightings for cost are also varied as described above, but
these weights are not plotted in the figure for clarity, although
they can easily be inferred from the weight values of the other
two component measures. In the figure the surface of the result
space is colored using a spectrum from red (higher risk) to
green (lower risk).

From Fig. 9 we see that better fitness outputs occur when
the security weight is 0.0 signifying scenarios in which all
importance is placed on cost and/or mission performance and
no importance is given to security. This intuitively makes
sense as it is relatively easy to specify an architecture with
minimal cost or minimal degradation of mission performance
if security is not a concern: simply do not partition the
network at all (reduces cost to its minimum value) and/or
reduce rates of cleansing and patching (reduces degradation
of mission performance). We also see that the worst fitness
output occurs when the security weight is 1.0, meaning that
all importance is placed on security and none is given to cost or
mission performance. This makes sense as well: as discussed
in Section I, the number of possible ways to partition a
network and restrict communications between enclaves grows
exponentially with network size and, thus, it is much more
difficult to construct a partitioning that results in minimal
security risk.

The surface of the result space in Fig. 9 consists of several
peaks and valleys in the middle areas of the plot where
weightings for security, cost, and mission performance are all
greater than 0.0 and represent scenarios in which importance
is given to all three objectives. This illustrates the inherent
complexity of the tradeoffs between security, cost, and mission
performance and shows that different weightings given to these
objective measures can result in very different architectures.

Figs. 10-13 give graphical depictions of the best architec-

1Normalized fitness is computed by R/Rworst where R is the fitness
output of the experiment (Eq. 7) and Rworst is the worst fitness (i.e. largest)
outputted by any of the 66 experiments executed.

Fig. 9. Experimental results for varying weightings of security, cost, and mission performance. Security and mission performance weights are plotted against
the normalized fitnesses of the best architectures found by the decision system for each experiment (cost weights are not displayed for clarity).

Fig. 12. Segmentation architecture generated by the system when security
weight is 1.0 and cost and mission performance weights are both 0.0.

tures outputted by the system in four of the 66 experiments.
In the figures, the architecture is represented as a graph in
which each node represents an enclave. The topmost node
(labeled i0) represents the Internet and the other nodes rep-
resent the enclaves of the network (labeled e1, e2, · · ·). Lines
connecting two nodes represent software services that allow
communication between enclaves or between an enclave and
the Internet. The enclaves are color-coded to represent their
security with colors ranging from red (very insecure) to green
(secure). The Internet node is always red as that is assumed to
be compromised at all times. Also shown in the figures are the
cleansing and patching rates ∆−1clean and ∆−1patch, respectively,
associated with the architecture.

Figs. 10 and 11 show the best architectures outputted by the
system when the cost weight is 1.0 and when the mission per-
formance weight is 1.0, respectively, and represent scenarios
in which all importance is placed on either cost or mission
performance and no importance is given to security. From
the figures, these architectures do not use any partitioning
at all, that is the system chooses a single enclave in which
all network devices can communicate directly with all other

devices. This follows as partitioning does not offer any benefit
to either cost or mission performance.

When the cost weight is 1.0 (Fig. 10), the cleansing and
patching rates are unchanged from their initial settings (1/365
days and 1/30 days, respectively). However, when the mission
performance weight is 1.0 (Fig. 11), the cleansing and patching
rates are reduced from their initial settings to 1/409 days
and 1/46 days, respectively. This also follows as the cost
measure only considers the number of enclaves present and
does not consider rates of cleansing or patching while the
mission performance measure does considers these rates and,
thus, reduces these rates to improve mission performance. As
expected the security risk component measure (Eq. 2) for both
of these architectures is high: 0.670 for the architecture of
Fig. 10 and 0.810 for the architecture of Fig. 11. This means
that for those architectures a network enclave is compromised
(i.e. penetrated by the attacker) an average of 67% and 81%
of the time, respectively.

Fig. 12 shows the best architecture generated by the system
when the security weight is 1.0, representing a scenario where
all importance is given to security and no importance is given
to either cost or mission performance. Here, the system parti-
tions the network into 9 enclaves and increases the cleansing
rate ∆−1clean to 1/351 days to achieve a security risk compo-
nent measure of 0.165, a significant improvement in security
compared to the architectures of Figs. 10 and 11. As expected
the cost and mission performance component measures are not
as good (i.e. higher) with cost component measure of 0.016
(compared to 0.0 for the architecture of Fig. 10) and mission
performance degradation of 0.019 (compared to 0.013 for the
architecture of Fig. 11).

Fig. 13. Segmentation architecture generated by the system when security
weight is 0.3, cost weight is 0.4, and mission performance weight is 0.3.

In Fig. 13 the best architecture generated when the security
and mission performance weights are each set to 0.3 and the
cost weight is set to 0.4 is shown, representing a scenario
where roughly equal importance is given to all three objectives.
This architecture gives an interesting and non-intuitive solution
to satisfy the three objectives. It utilizes fewer enclaves than
the architecture of Fig. 12 which gives an improved cost
component measure of 0.004. It also uses slower cleansing and
patching rates to produce an improved mission performance
degradation component measure of 0.018. With fewer enclaves
and slower cleansing and patching rates, one might expect the
security risk component measure to be worse (i.e. higher) but
this is not the case. The architecture makes use of fewer total
software services and communication pathways that rely on
depth to actually improve the security risk component measure
to 0.130 compared to the architecture generated when the
security weighting is 1.0 (which has a security risk component
measure of 0.165).

Because of the non-zero cost and mission performance
weightings, the system is forced to explore alternative solu-
tions beyond just increasing the total number of enclaves or
increasing cleansing/patching rates to improve security. Here,
the system uses depth to position some enclaves multiple hops
away from the Internet. This makes it more difficult for an
attacker as she must wait for new vulnerabilities to appear and
utilize new exploits at each hop in order to spread to internal
enclaves.

These results show that the system can construct segmenta-
tion architectures that satisfy simple scenarios when only one
objective is given importance as well as complex scenarios
when importance is placed on three different and conflicting
objectives. The system utilizes nature-inspired search to ex-
plore effective solutions that are sometimes counter-intuitive
and, thus, can potentially generate architectures that are better
than the ones specified by human experts. These experiments

were run on a mid-range business laptop (Dell Inspiron X.X)
and took approximately 3-5 minutes to execute per experiment.
Because the system is automated, it can potentially be used
in high performance computing environments to generate so-
lution architectures for network environments at larger scales
(e.g. 102or103 enclaves).

VI. CONCLUSION

This paper presents a nature-inspired cyber security decision
system that automatically generates NS architectures optimized
for three conflicting objectives, security, cost, and mission
performance. The system is implemented and demonstrated
for a representative network environment under cyber attack.
Results show that the system can generate architectures that
satisfy both simple scenarios where only one objective is
considered and complex scenarios where multiple objectives
must be considered.

Future work is focused on testing the decision system in real
or emulated network environments to validate the effectiveness
generated architectures. Further work will consider alternative
algorithms for the optimization component of the system such
as genetic algorithms, grammatical evolution, and/or memetic
algorithms. Finally, we plan to extend the decision system to
solve new cyber security decision problems such as optimal
configuration of wireless sensor networks or software defined
perimeter defense [29].

REFERENCES

[1] R. Gezelter, Computer Security Handbook. Wiley, 1995, ch. Security
on the Internet.

[2] Google, Inc., “Google’s Approach to IT Security,” Google, Tech. Rep.,
2012.

[3] National Security Agency, “Top 10 Information Assurance Mitigation
Strategies,” Tech. Rep., 2013.

[4] Microsoft, Inc., “Enterprise Security Best Practices,” Microsoft,
Tech. Rep., 2015. [Online]. Available: https://technet.microsoft.com/en-
us/library/dd277328.aspx

[5] SANS Institute, “Critical Security Controls for Effective Cyber Defense
Version 6.0,” Tech. Rep., 2015.

[6] N. Reichenberg, “Improving Security via Proper Network Segmenta-
tion,” Security Week, March 2014.

[7] A. E. Schulz et al., “Cyber network mission dependencies,” Mas-
sachusetts Institute of Technology Lincoln Laboratory, Tech. Rep. TR-
1189, 2015.

[8] J. Guion et al., “Dynamic cyber mission mapping,” in Proc. of the
Industrial and Systems Engineering Conference, 2017.

[9] M. Grimaila and A. Badiru, “A hybrid dynamic decision making
methodology for defensive information technology contingency measure
selection in the presence of cyber threats,” Operational Research,
vol. 13, no. 1, pp. 67–88, 2013.

[10] S. Miller et al., “Modelling cyber-security experts’ decision making
processes using aggregation operators,” Computers & SecurityVolume
62, vol. 62, pp. 229–245, 2016.

[11] A. Hakansson and R. Hartung, “An infrastructure for individualised and
intelligent decision-making and negotiation in cyber-physical systems,”
Procedia Computer Science, vol. 35, pp. 822–831, 2014.

[12] A. Mukhopadhyay et al., “Cyber-risk decision models: To insure it or
not?” Decision Support Systems, vol. 56, pp. 11–26, 2013.

[13] A. Fielder et al., “Decision support approaches for cyber security
investment,” Decision Support Systems, vol. 86, pp. 13–23, 2016.

[14] C. Huber et al., “Cyber fighter associate: A decision support system
for cyber agility,” in Conference on Information Science and Systems
(CISS), 2016.

[15] N. Wagner et al., “Towards automated cyber decision support: A case
study on network segmentation for security,” in IEEE Symposium on
Computational Intelligence for Cyber Security, December 2016.

[16] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes:
Nature-inspired Programming Recipes. Lulu.com, 2011.

[17] J. Riordan et al., “A model of network porosity,” MIT Lincoln Labora-
tory, Tech. Rep., 2016.

[18] N. Wagner et al., “Capturing the security effects of network segmen-
tation via a continous-time markov chain model,” in Proc. of the ACM
Spring Simulation Multi-Conference, April 2017.

[19] R. Lippmann et al., “Continuous security metrics for prevalent network
threats: Introduction and first four metrics,” MIT Lincoln Laboratory,
Tech. Rep., 2012.

[20] N. Wagner et al., “Quantifying the mission impact of network-level cy-
ber defensive mitigations,” Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, vol. 14, no. 3, pp. 201–216,
2017.

[21] NVD. (2016) The national vulnerability database. [Online]. Available:
https://nvd.nist.gov/

[22] A. Nappa et al., “The attack of the clones: A study of the impact of

shared code on vulnerability patching,” in 2015 IEEE Symposium on
Security and Privacy, May 2015, pp. 692–708.

[23] S. Frei et al., “Large-scale vulnerability analysis,” in Proceedings of the
2006 SIGCOMM Workshop on Large-scale Attack Defense, ser. LSAD
’06. New York, NY, USA: ACM, 2006, pp. 131–138.

[24] S. Frei, “Security econometrics the dynamics of (in) security,” Ph.D.
dissertation, ETH ZURICH, 2009.

[25] S. Frei et al., Modeling the Security Ecosystem - The Dynamics of
(In)Security. Boston, MA: Springer US, 2010, pp. 79–106.

[26] CVSS. (2015) Common vulnerability scoring system v3.0. [Online].
Available: https://www.first.org/cvss/specification-document

[27] N. Perlroth, “Security Experts Expect ‘Shellshock’ Software Bug in
Bash to Be Significant,” New York Times, Sept. 2014.

[28] K. Mandia et al., “APT1: Exposing One of China’s Cyber Espionage
Units,” FireEye, Inc., Tech. Rep., 2013.

[29] B. Bilger et al., “Software Defined Perimeter,” Cloud Security Alliance,
Tech. Rep., 2013.

