AFRL-AFOSR-VA-TR-2019-0131

Realizing the promise of proof-based verifiable computation

Michael Walfish
NEW YORK UNIVERSITY

04/24/2019
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203
Air Force Materiel Command

DISTRIBUTION A: Distribution approved for public release.

FORM SF 298 Page 1 of 1

REPORT DOCUMENTATION PAGE oh e

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188).
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
06-05-2019 Final Performance 15 Jul 201510 14 Jan 2019
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Realizing the promise of proof-based verifiable computation

5b. GRANT NUMBER
FA9550-15-1-0302

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S) 5d. PROJECT NUMBER
Michael Walfish, Andrew Blumberg

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NEW YORK UNIVERSITY REPORT NUMBER

70 WASHINGTON SQUARE S
NEW YORK, NY 10012-1019 US

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

AF Office of Scientific Research AFRL/AFOSR RTA2

875 N. Randolph St. Room 3112

Arlington, VA 22203 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

AFRL-AFOSR-VA-TR-2019-0131

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project designed and built systems that allow people to get useful work out of computers and components without having to
frust, that is assume, that those components work properly. We have answered questions such as: how can we infegrate custom
hardware into a system, if the hardware manufacturer may be adversarial?2 How can a client outsource a computation to servers, if
the servers are not guaranteed to return the right answer2 How can we use peripheral devices with our computers, when those
devices may be malicious, given that commodity computers are designed to trust physically connected hardware?

15. SUBJECT TERMS
Probabilistic Checkable Proofs, Verifiable Computation, Trusted Distributed Computing, Verifiable Cloud Computing, Computational
Complexity

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT | c. THIS PAGE ABSTRACT OF NGUYEN, TRISTAN
PAGES
Unclassified | Unclassified | Unclassified uu 19b. TELEPHONE NUMBER (Include area code)
703-696-7796

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 739.18

DISTRIBUTION A: Distribution approved for public release.

https://livelink.ebs.afrl.af. mil/livelink/llisapi.dll 5/8/2019

Final report for
“Realizing the promise of proof-based verifiable computation”
(FA9550-15-1-0302)
Pls: Michael Walfish, Courant Institute, New York University (NYU), and
Andrew J. Blumberg, Department of Mathematics, The University of Texas at Austin

B Summary and overview of accomplishments

This project’s top-level goal is to design and build systems that allow people to get useful work out of
computers and components without having to trust, that is assume, that those components work properly.
For example, how can we integrate custom hardware into a system, if the hardware manufacturer may be
adversarial? How can a client outsource a computation to servers, if the servers are not guaranteed to return
the right answer? How can we use peripheral devices with our computers, when those devices may be
malicious, given that commodity computers are designed to trust physically connected hardware?

A central focus is systems in which one entity (a client or verifier) sends a program to another party
(a server or prover), along with input. The prover returns the purported output, along with some auxiliary
information (a certificate of correctness, or interactive answers to queries) that should allow the verifier to
check that the prover computed correctly.

The grant funded the following accomplishments and “firsts”:

* We initiated the study of “Verifiable ASICs” as an alternative to trusted foundries and produced a
prototype, Zebra [17], that represents a milestone for proof-based verifiable outsourcing: the first
hardware implementation of a probabilistic proof protocol, and the first time that the prover’s cost
was explicitly factored in, when considering whether verifiable outsourcing is worthwhile.

* The aforementioned paper received an award of “Distinguished student paper” from the IEEE Security
& Privacy (Oakland) conference.

* We developed and published (at CCS, a leading venue in computer security) Giraffe [18], the first
system for verifiable outsourcing that takes into account the actual cost of outsourcing—the verifier’s
running time, the cost of precomputation, the overhead of the prover—and demonstrates that the sum
of these costs can be lower than simply running the computation on the verifier. This is a landmark in
proof-based verifiable outsourcing.

* We formulated The Efficient Server Audit Problem, an abstract solution to the problem (called SSCO),
and a concrete instantiation (called Orochi) [14]. This is the first work that, while operating in the ver-
ifiable outsourcing framework, comprehensively verifies execution of a concurrent server and com-
prehensively verifies the execution of legacy programs (such as web applications).

* The aforementioned publication received the award of Best Paper at SOSP 2017; this is arguably the
highest recognition for a newly published systems paper.

* We developed a novel formulation of geometric distance and point-cloud matching computations as
an SDP-based optimization problem, which achieves the best performance in the literature and is
amenable to outsourcing [16].

* We developed a method for dimensionality reduction adapted to the space of phylogenetic trees which
is amenable to outsourcing and supports inference algorithms on very large data sets [9, 21].

* We applied this foundational work on geometric inference in tree space to glioblastoma data, and
described our results in two publications in Nature Genetics [12, 20].

1

DISTRIBUTION A: Distribution approved for public release.

We developed very fast methods based on topological data analysis and metric geometry for recombination-
rate inference and introgression detection in genomic data [7, 11]. These methods allow new kinds of
biological inference and apply to much larger data sets than were previously tractable.

We developed a statistical framework for testing whether sample distributions on arbitrary metric
measure spaces are different [5, 8]. Our method is faster than the standard alternative (the “energy
test”) and has more power.

We developed a method for denoising single-cell genomic data which achieves the best performance
in the literature (measured on cell type inference tasks) and is amenable to outsourcing [2].

We initiated the study of the abstract homotopy theory underlying topological data analysis [6]. Our
work introduces a notion of “approximate weak equivalence” and relates it to the main structural
theorems about persistent homology.

We have developed and published (at SIGCOMM, the premier venue in computer networking) the
Pretzel system [10], which hides emails from intermediate handlers (such as Webmail providers) yet
still allows those handlers to perform functions over the email (such as spam filtering).

We have developed Cinch, which defends against untrusted peripherals (for example, storage devices
that masquerade as keyboards). Cinch is one of the first works to provide a systematic response to the
threat of malicious peripherals on commodity OSes. Cinch appeared at Usenix Security [1].

We have released a simplified version of our project’s codebase for verifiable outsourcing [13]. This is
the only released “front-end” for verifiable computation that integrates cleanly with various backends.

We released the code that implements Orochi, on github.
We released the code that implements the denoising algorithm for single-cell data, on github.

PI Walfish was invited to lead the Bar-Ilan Cryptography Winter School tutorials on verifiable compu-
tation in January, 2016. He presented 4.5 hours of tutorials over several days, together with extensive
written materials [3]. Videos are on Youtube (for example, [19]).

PI Walfish co-organized a DIMACS workshop on secure computation, which brought together theo-
rists and applied researchers for two days in July 2017, and was successful.

PI Walfish, as a co-organizer, submitted a proposal for a semester-long program to run at the Simons
Institute in the fall of 2019. The proposal was accepted.

PI Blumberg (joint with R. Rabadan) wrote a book on topological data analysis for genomic data that
incorporates some of the work on geometric inference described above.

2

DISTRIBUTION A: Distribution approved for public release.

B Activities

Verifiable ASICs [17]. The motivation for this work is that a manufacturer of custom hardware (an ASIC)
can undermine the intended execution of that hardware; high-assurance execution thus requires controlling
the manufacturing chain. However, a trusted platform might be orders of magnitude worse in performance
or price than an advanced, untrusted platform.

Our project explores an alternative: using verifiable computation (VC), an untrusted ASIC computes
proofs of correct execution, which are verified by a trusted processor or ASIC. One of the technical chal-
lenges is that, in the present setting, the prover and verifier together must impose less overhead than the
baseline alternative of running the given computation directly on the trusted platform.

We respond to this challenge by designing and implementing physically realizable, area-efficient, high
throughput ASICs (for a prover and verifier), in fully synthesizable Verilog.

The system, called Zebra, is based on the CMT interactive proof protocol (Cormode et al., ITCS 2012);
instantiating Zebra has required a blend of new observations about CMT, careful hardware design, and
attention to architectural challenges. We have carefully measured and evaluated Zebra; for a class of real
computations, it indeed poses less overhead than executing directly on the trusted platform.

Zebra is a milestone in verifiable computation, for two reasons. (1) It is the first hardware design and
implementation of a probabilistic proof system. (2) It is the first work to identify a setting in which one can
simultaneously capture the “cost” of the prover and verifier together, and to give an implementation of the
prover and verifier for which this quantity is less expensive than having the verifier compute on its own.
Zebra is also a milestone in the field of hardware Trojans: it works in a much stronger threat model than
prior defenses.

Full accounting for verifiable outsourcing [18]. Systems for verifiable outsourcing incur costs for a
prover, a verifier, and precomputation; outsourcing makes sense when the combination of these costs is
cheaper than not outsourcing. Yet, when prior works impose quantitative thresholds to analyze whether out-
sourcing is justified, they generally ignore prover costs. The Verifiable ASICs framework is the other way
around: it pays for the prover but its cost calculations assume away precomputation.

In this work, we build a new system, called Giraffe [18] which is intended for the VA setting, and which
can “win”, even when accounting for all three costs. Giraffe is the first system to reach this landmark.

Giraffe has two high-level aspects: a back-end (a probabilistic proof protocol) and a front-end (which
transforms from high-level programs to the representation that the back-end works over). Giraffe’s back-end
is based on an existing probabilistic proof protocol [15, §7], which is geared to the data parallel context.
Giraffe improves this protocol, and achieves asymptotic optimality for the prover: the prover runs in time
linear in the number of steps in the computation. The back-end work for Giraffe includes further protocol
improvements and a design template that automatically instantiates physically realizable, efficient, high-
throughput ASIC designs for the prover and verifier. The design template employs several new hardware
structures; these structures are geared to the data flows and parallelize easily.

The front-end work consists of program analysis techniques that adapt programs to the form required by
the back-end. One of them is squashing, in which a serial program is represented as a data parallel arithmetic
circuit (by treating intermediate values that are transferred from loop to loop as “inputs” to the circuit).
Another is slicing, which takes as input an abstract cost model and a program, automatically identifies
amenable subregions of the program to outsource—even when the program as a whole is not amenable to
outsourcing—and generates glue code to sew the outsourced pieces into the rest of the program.

The Efficient Server Audit Problem [14]. The high-level goal of this project is to answer: how can we
tell if a server is executing a program consistent with the program’s source code? The setup is related to
verifiable outsourcing; here, there is an emphasis on solutions that scale to real servers and programs.

The abstract problem is as follows. The actors and components are depicted in Figure 1. A principal
chooses or develops a program, and deploys that program on a powerful but untrusted executor. Clients
(the outside world) issue requests (inputs) to the executor, and receive responses (outputs). A response is

3

DISTRIBUTION A: Distribution approved for public release.

online phase | audit phase

program
executor f

|
|
|
collector I verifier
— . ,
request | i +
‘ repbr ts Inputs + program
clients —> ?

Yy

]
P —
response,

outzputs
A

|
|
|
shared objects i
I
|
]
|

trace

FIGURE 1—The Efficient Server Audit Problem. The objects abstract shared state (databases, key-value stores, memory, etc.). The
technical problem is to design the verifier and the reports to enable the verifier, given a trace and a program, to efficiently validate
(or invalidate) the contents of responses.

supposed to be the output of the program, when the corresponding request is the input. But the executor is
untrusted, so the response could be anything.

A collector captures an ordered list, or trace, of requests and responses. We assume that the collec-
tor does its job accurately, meaning that the trace exactly records the requests and the (possibly wrong)
responses that actually flow into and out of the executor.

The executor maintains reports whose purpose is to assist an audit; like the responses, the reports are
untrusted.

Periodically, the principal conducts an audit; we often refer to the audit procedure as a verifier. The
verifier gets a trace (from the accurate collector) and reports (from the untrusted executor). The verifier
needs to determine whether executing the program on each input in the trace truly produces the respective
output in the trace.

Two features of our setting makes this determination challenging. First, the verifier is much weaker than
the executor, so it cannot simply re-execute all of the requests.

The second challenge arises from concurrency: the executor is permitted to handle multiple requests at
the same time (for example, by assigning each to a separate thread), and the invoked program is permitted
to issue operations to objects. An object abstracts state shared among executions, for example a database,
key-value store, or memory cells (if shared). In this setting, there is a kind of explosion: given a trace—in
particular, given the ordering of requests and responses in the trace, and given the contents of requests—the
number of valid possibilities for the contents of responses could be immense. This is because an executor’s
responses depend on the contents of shared objects; as usual in concurrent systems, those contents depend
on the operation order, which depends on the executor’s internal scheduling choices.

Somehow, the reports, though unreliable, will have to help the verifier efficiently tell the difference
between valid and invalid traces.

To address the above problems, we introduce an abstract solution, called SSCO. SSCO assumes that
there is similarity among the executions, in particular that there are a relatively small number of control flow
paths induced by requests.

SSCO introduces several novel techniques. The first is is SIMD-on-demand execution. The verifier re-
executes all requests, in an accelerated way. For a group of requests that the executor asserts have the same
control flow, the verifier executes a “superposition”: instructions with identical operands across requests are
performed once, whereas instructions with different operands are executed individually and merged into the
superposed execution.

A second technique is simulate-and-check. To motivate this technique, we ask: how can the verifier re-
execute reads of persistent or shared state? Because it re-executes requests out of order, it cannot physically

4

DISTRIBUTION A: Distribution approved for public release.

re-invoke operations on such state, but neither can it trust reports that are allegedly the originally read values.
Instead, the executor (purportedly) logs each operation’s operands; during re-execution, the verifier simu-
lates reads, based on the most recent write entry in the logs, and checks the logged writes opportunistically.

A third technique is consistent ordering verification. The prior technique (simulate-and-check) makes
sense only if alleged operations can be ordered consistent with observed requests and responses. To this
end, the verifier builds a directed graph with a node for every external observation or alleged operation, and
checks whether the graph is acyclic. This step incorporates an efficient algorithm for converting a trace into
a time precedence graph. This algorithm may have broader applicability.

In a system called Orochi, we instantiate SSCO for PHP-based web applications; this involves modifying
the PHP interpreter and adapting simulate-and-check to databases (the verifier replays a transaction log into
a versioned database, checks that the queries generated during re-execution match the initially replayed
ones, and exploits deduplication opportunities).

For several Web applications, our implementation of Orochi achieves between 5.6-10.9 x speedup ver-
sus verification by naive replay, at the cost of roughly 10% overhead during normal execution. An additional
contribution in Orochi is a rigorous proof of correctness.

Verifying geometric inference problems. The high-level goal of this thrust is to verify geometric in-
ference problems in a variety of domains. We want to develop algorithms for such problems that are (a)
efficient enough to be applicable to real data at scale, and (b) amenable to high-performance special-purpose
verifiable outsourcing.

The metric space of phylogenetic trees [4] provides a geometric context for studying evolution. Unfor-
tunately, the geometry exhibits perverse behavior in high dimensions (i.e., large numbers of leaves). We
developed a novel dimensionality reduction technique for spaces of phylogenetic trees that decomposes a
single large tree into a forest of trees with a small number of leaves. This procedure was applied to genomic
data coming from brain cancer (glioblastomas), resulting in two publications in Nature Genetics [12, 20].
Subsequently, PI Blumberg’s student G. Grindstaff and her collaborator M. Owen studied algorithms for the
inverse problem (recovering the original tree from the projection), completely characterizing the space of
solutions to the problem [9].

Motivated by consideration of point clouds in tree space, we studied the problem of testing whether
two sample distributions on a metric measure space are different [5]. There are standard non-parametric
approaches in Euclidean space; we have developed a method that works in arbitrary metric measure spaces
and is computationally tractable. Experimental evaluation suggests that this method is substantially more
powerful than the “energy test” family of comparison techniques. PI Blumberg’s student G. Grindstaff has
characterized the group of isometries for the space of phylogenetic trees, which is a key input to the appli-
cation of this algorithm [8]. We also made progress on problems associated to statistical inference problems
in non-Euclidean metric measure spaces, notably associated to density estimation.

Another natural question that arises from the tree dimensionality reduction procedure is a metric com-
parison of point clouds in arbitrary metric spaces. We developed an semidefinite programming relaxation for
computing the Gromov-Hausdorff distance between two point clouds [16]. Although the resulting algorithm
has the best performance in the literature, it is nonetheless not truly practical for data sets larger than a few
hundred points. Subsequently, we have developed a non-convex Lagrangian approximation scheme which
substantially improves performance.

Applications to genomic inference. Genomics provides an important testbed for our efficient geometric
inference algorithms. We have developed an extremely fast verifiable algorithm for estimating recombination
rates based on computing simple geometric features of sequencing data. Our selection of topological features
is based on a coalescent theory analysis. This algorithm allows analysis of data sets that were previously too
large to study. In related work which adapts ideas from our tree dimensionality reduction procedure, we
introduced a new algorithm for detecting and estimating introgression rates in gene tree data. The algorithm
provides new kinds of estimates about introgression rates and also allows estimation in very large data sets.

5

DISTRIBUTION A: Distribution approved for public release.

This algorithm has been applied to resolve questions about ancient lineages in butterflies.

We have developed a novel technique for denoising single-cell data using random matrix theory [2].
Single cell data (using current technology) is a context in which traditional dimensionality reduction tech-
niques work very badly; the ambient dimension and number of data points are commensurate and the data
tends to be very sparse. Our approach uses predictions from random matrix theory about the distribution of
singular values and the impact of sparsity to identify a low-rank signal basis. Our new technique is very fast
and achieves the best performance in the literature on known cell-type identification tasks. Additionally, we
have applied it to discover new types of human blood cells.

Computing over encrypted email [10]. Emails today are often encrypted, but only between mail servers—
the vast majority of emails are exposed in plaintext to the mail servers that handle them. While better than
no encryption, this arrangement leaves open the possibility of attacks, privacy violations, and other disclo-
sures. Publicly, email providers have stated that default end-to-end encryption would conflict with essential
functions (spam filtering, etc.), because the latter requires analyzing email text.

We have built a system, Pretzel, which demonstrates that there is no conflict.

In Pretzel, senders encrypt email using an end-to-end encryption scheme, and the intended recipients
decrypt and obtain email contents. Then, the email provider and each recipient engage in a secure two-party
computation (2PC), a family of cryptographic protocols in which one or both parties learn the output of an
agreed-upon function, without revealing the inputs to each other. For example, a provider supplies its spam
filter, a user supplies an email, and both parties learn whether the email is spam while protecting the details
of the filter and the content of the email.

The challenge in Pretzel comes from the 2PC component. There is a tension between expressive power
(the best 2PC schemes can handle any function and even hide it from one of the two parties) and cost
(those schemes remain exorbitant, despite progress in lowering the costs). Therefore, in designing Pretzel,
we decided to make certain compromises to gain even the possibility of plausible performance: baking
in specific algorithms, requiring both the algorithms’ logic and the model features to be exposed (model
parameters are hidden), and incurring per-function design work.

The work of Pretzel is refining and adapting a 2PC protocol that is geared to linear operations, as well as
attending to a number of systems issues, both to keep costs down and to defend against adversarial parties.
Our experimental evaluation of a prototype of Pretzel demonstrates that email can be encrypted end-to-end
and providers can compute over it, at tolerable cost: clients must devote some storage and processing, and
provider overhead is roughly 5x versus the s

Defending against malicious peripherals [1]. The motivation for this work is that inexpensive and pow-
erful peripherals, which attach to plug-and-play buses, have made attacks on host computers by malicious
peripherals easy to mount. Making matters worse, commodity operating systems lack coherent defenses,
and users are often unaware of the scope of the problem.

The Cinch system is a pragmatic response to this threat. Cinch uses virtualization to attach peripheral
devices to a logically separate, untrusted machine, and includes an interposition layer between the untrusted
machine and the protected one. This layer regulates interaction with devices and enforces security policies
that are easily configured and extended by users. Cinch integrates with existing OSes, enforces policies that
thwart real world attacks, and has low overhead.

Cinch is, we believe, one of the first works to attempt a systematic response to the threat of malicious
peripherals on commodity OSes (as opposed to clean slate operating systems developed in the defense
context).

B References

[1] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo, Z. Sun, A. J. Blumberg, and M. Walfish.
Defending against malicious peripherals with Cinch. In USENIX Security Symposium, Aug. 2016.

6

DISTRIBUTION A: Distribution approved for public release.

[2] L. Aparicio, M. Bordyuh, A. J. Blumberg, and R. Rabadan. Quasi-universality in single-cell
sequencing data, 2018. biorxiv, https://doi.org/10.1101/426239.

[3] Bar-Ilan Winter School on Cryptography.
http://crypto.biu.ac.il/6th-biu-winter-school, Jan. 2016.

[4] L. J. Billera, S. P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees. Advances
in Applied Mathematics, 27(4):733-767, 2001.

[5] A.J. Blumberg, P. Bhaumik, and S. G. Walker. Testing to distinguish measures on metric spaces, Feb.
2018. arXiv:1802.01152, https://arxiv.org/abs/1802.01152.

[6] A.J. Blumberg and M. Lesnick. Universality of the homotopy interleaving distance, 2017.
arXiv:1705.01690, https://arxiv.org/abs/1705.01690.

[7] N. B. Edelman, P. Frandsen, M. Miyagi, B. Clavijo, J. Davey, R. Dikow, G. Garcia-Accinelli,
N. Patterson, D. Neafsey, R. Challis, S. Kumar, G. Moreira, C. Salazar, B. Counterman, R. Papa,
A. Whibley, K. Dasmahapatra, M. Kronforst, M. Joron, C. D. Jiggins, W. O. McMillan, A. J.
Blumberg, J. Wakeley, D. Jaffe, , and J. Mallet. Genomic architecture and introgression shape a
butterfly radiation, 2018. biorxiv, http://doi.org/10.1101/466292.

[8] G. Grindstaff. The isometry group of phylogenetic tree space is S,;, 2019. arxiv:1901.02982,
https://arxiv.org/abs/1901.02982.

[9] G. Grindstaff and M. Owen. Geometric comparison of phylogenetic trees with different leaf sets,
2018. arxiv:1807.04235, https://arxiv.org/abs/1807.04235.

[10] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish. Pretzel: Email encryption and provider-supplied
functions are compatible. In ACM SIGCOMM, Aug. 2017.

[11] D.P. Humphreys, M. R. McGuirl, M. Miyagi, and A. J. Blumberg. Fast estimation of recombination
rates using topological data analysis. Genetics, 211(4):1191-1204, 2019.

[12] J.-K. Lee, J. Wang, J. K. Sa, E. Ladewig, H.-O. Lee, I.-H. Lee, H. J. Kang, D. S. Rosenbloom, P. G.
Camara, Z. Liu, P. van Nieuwenhuizen, S. W. Jung, S. W. Choi, J. Kim, A. Chen, K.-T. Kim, S. Shin,
Y. J. Seo, J.-M. Oh, Y. J. Shin, C.-K. Park, D.-S. Kong, H. J. Seol, A. Blumberg, J.-I. Lee,
A. Tavarone, W.-Y. Park, R. Rabadan, and D.-H. Nam. Spatiotemporal genomic architecture informs
precision oncology in glioblastoma. Nature Genetics, 49:594-599, 2017.

[13] A system for verifying outsourced computations. Simplified release of the main Pepper codebase.
https://github.com/pepper-project/pequin.

[14] C. Tan, L. Yu, J. B. Leners, and M. Walfish. The efficient server audit problem, de-duplicated
execution, and the web. In ACM Symposium on Operating Systems Principles (SOSP), Nov. 2017.

[15] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, Aug. 2013.

[16] S. Villar, A. S. Bandeira, A. J. Blumberg, and R. Ward. A polynomial-time relaxation of the
Gromov-Hausdorff distance, 2016. arXiv:1610.05214, https://arxiv.org/abs/1610.05214.

[17] R. S. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish. Verifiable ASICs. In /EEE
Symposium on Security & Privacy (Oakland), May 2016.

[18] R. S. Wahby, Y. Ji, A. J. Blumberg, abhi shelat, J. Thaler, M. Walfish, and T. Wies. Full accounting
for verifiable outsourcing. In ACM Conference on Communication and Computing Security (CCS),
Oct. 2017.

7

DISTRIBUTION A: Distribution approved for public release.

https://doi.org/10.1101/426239
http://crypto.biu.ac.il/6th-biu-winter-school
https://arxiv.org/abs/1802.01152
https://arxiv.org/abs/1705.01690
http://doi.org/10.1101/466292
https://arxiv.org/abs/1901.02982
https://arxiv.org/abs/1807.04235
https://github.com/pepper-project/pequin
https://arxiv.org/abs/1610.05214

[19] M. Walfish. Introduction and overview of verifiable computation.
https://www.youtube.com/watch?v=qiusq9R8Wws.

[20] J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D. I. S. Rosenbloom, S. Zairis, F. Abate, Z. Liu,
O. Elliott, Y.-J. Shin, J.-K. Lee, I.-H. Lee, W.-Y. Park, M. Eoli, A. J. Blumberg, A. Lasorella, D.-H.
Nam, G. Finocchiaro, A. Iavarone, and R. Rabadan. Clonal evolution of glioblastoma under therapy.
Nature Genetics, doi:10.1038/ng.3590, June 2016.

[21] S. Zairis, H. Khiabanian, A. Blumberg, and R. Rabadan. Genomic data analysis in tree spaces, 2016.
arXiv:1607.07503, https://arxiv.org/abs/1607.07503.

8

DISTRIBUTION A: Distribution approved for public release.

https://www.youtube.com/watch?v=qiusq9R8Wws
https://arxiv.org/abs/1607.07503

	DTIC Title Page - (1)
	FA9550-15-1-0302 SF298
	FA9550-15-1-0302 FINAL REPORT
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/161-5f1eda0e49c18b10b4b62476e491b175_final.pdf

