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Title: Topology Optimization, Fabrication Adaptivity, and Model-Data Assimilation of Novel Photonic
Materials

Novel materials such as photonic crystals, nanoplasmonics, and metamaterials are scientifically engi-
neered to interact with and control electromagnetic waves in ways that cannot be achieved with conventional
materials. Such materials have proven to be very important as an integrated component in many optical
devices including waveguides, fibers, lasers, optical lenses, cancer theranostics, biological and chemical
sensing, energy harvesting, etc. These and other novel applications have attracted considerable research
interest in photonic crystals, nanoplasmonics and metamaterials. However, fundamental challenges abound
about the design and fabrication of these materials in order to yield a given set of prescribed properties.
For instance, it is currently beyond the state-of-the-art to compute robust designs that exhibit prescribed
properties subject to fabricability constraints. The issue of fabrication adaptivity (adapting a given computed
design so that it is fabricable, without significantly deteriorating the design quality) is particularly important
in practical applications since the desired length scales and material distributions are often at the limit of
our fabrication capability and hence geometric design tolerances (in relative scale) need to be larger.
Another important issue to address in the design optimization is the fidelity uncertainty arising in the
mathematical model since physical phenomena can rarely be modeled with complete fidelity even under
the best of circumstances. Increasing the fidelity of the mathematical model can lead to challenges in
numerical simulations. The ability to accurately model and simulate electromagnetic wave propagation
through these advanced materials requires capabilities beyond traditional simulation techniques because
the problems of interest involve the interaction of long-wavelength light with nanometric structures, which
are characterized by the extreme confinement and tight localization of the fields.

Our goal is the development of effective systematic numerical methods and tools for the optimal design
of photonic materials with particular emphasis on novel applications which are of direct interest to the Air
Force. Towards this goal, we have been working on three research fronts: (1) robust, efficient and accurate
numerical methods for solving acoustic and electromagnetic wave equations in realistic geometries, (2)
Gaussian functional regression methods for quantifying uncertainties in the mathematical models, and (3)
efficient and robust “accelerated” first-order methods for solving large-scale PDE-constrained optimization
problems arising from mathematical formulations of the design problem. Below, we describe the main
research accomplishments during this past year.



I. RESEARCH RESULTS

A. Nanophotonic modeling and simulation

The interaction of light with metallic nanostructures produces a collective excitation of electrons at the
metal surface, also known as surface plasmons. These collective excitations lead to resonances that enable
the confinement of light in deep-subwavelength regions, thereby leading to large near-field enhancements.
Because of the enormous mismatch in length scales between long waves and nanostructures, conven-
tional modeling techniques cannot readily be used for analysis. We developed Hybridizable Discontinuous
Galerkin (HDG) method for full three-dimensional modeling of the resonant transmission of THz waves
through an annular gap that is 2 nm in width and 32 µm in diameter [1]. Our simulation and atomic layer
lithography enable a series of new investigations in THz nanophotonics that has not been possible before.
Our recent work [2] demonstrates our method on practical applications simulating ectromagnetic waves in
metamaterials with extreme subwavelength features such as single-digit-nanometer gaps.

In a recent paper [5], we develop the hybridizable discontinuous Galerkin (HDG) method to solve
Maxwells equations augmented with the hydrodynamic model for the conduction-band electrons in noble
metals. This method enables the efficient simulation of plasmonic nanostructures while accounting for the
nonlocal interactions between electrons and the incident light. We introduce a novel postprocessing scheme
to recover superconvergent solutions and demonstrate the convergence of the proposed HDG method for
the simulation of a 2D gold nanowire and a 3D periodic annular nanogap structure. The results of the
hydrodynamic model are compared to those of a simplified local response model, showing that differences
between them can be significant at the nanoscale.

The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations
of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements
of the incident field and to the confinement of light to small regions, typically several orders of magnitude
smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges.
Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic
field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the
nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then
becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts
for fabrication tolerances and measurement uncertainties. In [3], we develop a reduced order modeling
framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures
for a wide range of geometry and material parameters. The main ingredients of the proposed method
are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing
electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation
of the time-harmonic Maxwells equations to account for arbitrary geometry variations; and (iii) proper
orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model.
To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore
optimal designs of a 3D periodic coaxial nanogap structure as shown in Figure 1.

Electromagnetic resonances in nanoslits of various types have been studied by many researchers. A
rectangular slit in a metal film exhibits a resonance spectrally close to the cutoff frequency determined
by the aperture geometries, such as the slit length and width. Coaxial apertures also possess such cutoff
resonances along with higher-order Fabry-Perot (FP) modes. At the cutoff resonance, the real component
of the wavevector along the length of the waveguide, is greatly diminished. Numerical simulations of
our devices were performed using the finite element method [6]. The simulation results for 10 nm wide
coaxial nanogap arrays with four different diameters (Figure 2d) agree well with the measured FTIR
spectra (Figure 2e). While we did not explore multiband SEIRA sensing in this work, these results show
that it will be possible to mix coaxial apertures with different diameters side-by-side for such applications.
Unlike nonzeroth-order FP modes, which show phase variation along the gap, this zero-mode has uniform



Fig. 1. (a) Schematic diagram of thin gold film on silica substrate patterned with periodic square array of alumina gaps under plane
wave THz illumination. (b) Frequency-transmission profiles of optimal configurations for different objective functions.

and strong electric fields inside the entire length of the coaxial nanogap. As these simulations show, by
funneling incident IR radiation through annular nanogaps at the resonance condition, it is possible to create
extended ring-shaped hot spots along each aperture and obtain a strong electric field |E| enhancement of
100 fold (Figure 2c).

B. Multiscale continuous Galerkin (MSCG) method

In a recent work [4], we develop a multiscale continuous Galerkin (MSCG) method for the fast and
accurate stochastic simulation and optimization of time-harmonic wave propagation through photonic
crystals. The MSCG method exploits repeated patterns in the geometry to drastically decrease computational
cost and incorporates the following ingredients: (1) a reference domain formulation that allows us to treat
geometric variability resulting from manufacturing uncertainties; (2) a reduced basis approximation to
solve the parametrized local subproblems; (3) a gradient computation of the objective function; and (4) a
model and variance reduction technique that enables the accelerated computation of statistical outputs by
exploiting the statistical correlation between the MSCG solution and the reduced basis approximation. The
proposed method is thus well suited for both deterministic and stochastic simulations, as well as robust
design of photonic crystals. In Fig 3 we show the electric field for a frequency in the first bandgap, a
frequency between the two bandgaps and a frequency in the second bandgap. An attractive feature of
waveguiding with photonic crystals are the low losses that occur even for sharp bends, thus enabling the
efficient manipulation of electromagnetic waves.





Fig. 2. MSCG simulation of a TM waveguide splitter of GaAs (ε=11.4) rods of radii R0 = 0.4a in air. Computational domain
with subdomain decomposition (excluding PMLs) and meshes (left). Numerical simulation at frequencies ω = 0.39, ω = 0.46, and
ω = 0.53 (left to right).

C. Hybridizable and embedded discontinuous Galerkin methods

In a recent work [9], we develop hybridizable and embedded discontinuous Galerkin (DG) methods for
wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe
the methods, discuss their main features, display numerical results to illustrate their performance, and
conclude with bibliography notes. The main ingredients in devising these DG methods are (1) a local
Galerkin projection of the underlying partial differential equations at the element level onto spaces of
polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (2) a
judicious choice of the numerical flux to provide stability and consistency; and (3) a global jump condition
that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace.
These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static
condensation) and hence to more efficient implementations. They share many common advantages of DG
methods and possess some unique features that make them well-suited to wave propagation problems.

D. Accelerated first-order methods

In a recent work [7], we develop accelerated residual methods for solving linear and nonlinear systems
of equations, which leverage both past and recent developments in accelerated gradient methods in convex
optimization. First, we propose a modification of Nesterovs accelerated gradient method to obtain an
accelerated residual scheme that can be applied to systems of equations. We show that the scheme can be
viewed as a finite difference approximation (FDA) of a second-order ordinary differential equation (ODE)
system, which turns out to coincide with the ODE system derived from Nesterovs method. In practice, our
scheme converges faster than Nesterovs method even though it requires an additional residual evaluation
per iteration. Next, we discuss stability properties of our scheme and Nesterovs method for solving linear
systems of equations. We then propose an adaptive restarting and a judicious selection of the acceleration
parameter to further improve the (empirical) convergence rate of our scheme. Last of all, we generalize the
scheme to encompass a family of accelerated residual methods, thereby providing an opportunity to devise
improved methods in future work. We demonstrate the usefulness of our scheme on systems of equations
resulting from the finite element approximation of linear and nonlinear partial differential equations (PDEs).
On a variety of test cases, our numerical results show that the proposed method outperforms pseudo-time
marching method, Nesterovs method, and Newton-Krylov methods. We consider this research very relevant



for practical applications. The Hessian-free character of these methods is ideally suited for both parallel
simulations and large-scale optimization problems considered in this project.

E. Reduced basis methods for solving linear systems

In [8], we present a class of reduced basis (RB) methods for the iterative solution of parametrized
symmetric positive-definite (SPD) linear systems. The essential ingredients are a Galerkin projection of
the underlying parametrized system onto a reduced basis space to obtain a reduced system; an adaptive
greedy algorithm to efficiently determine sampling parameters and associated basis vectors; an offline-
online computational procedure and a multi-fidelity approach to decouple the construction and application
phases of the reduced basis method; and solution procedures to employ the reduced basis approximation
as a stand-alone iterative solver or as a preconditioner in the conjugate gradient method. We present
numerical examples to demonstrate the performance of the proposed methods in comparison with multigrid
methods. Numerical results show that, when applied to solve linear systems resulting from discretizing the
Poissons equations, the speed of convergence of our methods matches or surpasses that of the multigrid-
preconditioned conjugate gradient method, while their computational cost per iteration is significantly
smaller providing a feasible alternative when the multigrid approach is out of reach due to timing or
memory constraints for large systems. Moreover, numerical results verify that this new class of reduced
basis methods, when applied as a stand-alone solver or as a preconditioner, is capable of achieving the
accuracy at the level of the truth approximation which is far beyond the RB level.

F. Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solu-
tion Methods

The elementary probabilistic model underlying logistic regression implies that it is most natural to
consider logistic regression when the data is not (linearly) separable. Building on this basic intuition, in
[10] we introduce a pair of condition numbers that measure the degree of non-separability or separability
of a given dataset in the setting of binary classification. When the training data is not separable, we show
that the degree of non-separability naturally enters the analysis and informs the properties and convergence
guarantees of two standard first-order methods: steepest descent (for any given norm) and stochastic gradient
descent. Expanding on the work of Bach, we also show how the degree of non-separability enters into
the analysis of linear convergence of steepest descent (without needing strong convexity), as well as
the adaptive convergence of stochastic gradient descent. When the training data is separable – in which
case many properties of logistic regression essentially break down – we demonstrate how the degree of
separability enters into the analysis of `2 steepest descent and stochastic gradient descent for delivering
approximate-maximum-margin solutions with associated computational guarantees as well.

G. A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives

In [16] we analyze boosting algorithms in linear regression from a new perspective: that of modern
first-order methods in convex optimization. We show that classic boosting algorithms in linear regression,
namely the incremental forward stagewise algorithm (FSε) and least squares boosting (LS-BOOST(ε)),
can be viewed as subgradient descent to minimize the loss function defined as the maximum absolute
correlation between the features and residuals. We also propose a minor modification of FSε that yields an
algorithm for the LASSO, and that may be easily extended to an algorithm that computes the LASSO path
for different values of the regularization parameter. Furthermore, we show that these new algorithms for the
LASSO may also be interpreted as the same master algorithm (subgradient descent), applied to a regularized
version of the maximum absolute correlation loss function. We derive novel, comprehensive computational
guarantees for several boosting algorithms in linear regression (including LS-BOOST(ε) and FSε) by using
techniques of first-order methods in convex optimization. Our computational guarantees inform us about
the statistical properties of boosting algorithms. In particular they provide, for the first time, a precise



theoretical description of the amount of data-fidelity and regularization imparted by running a boosting
algorithm with a prespecified learning rate for a fixed but arbitrary number of iterations, for any dataset.

H. An Extended Frank-Wolfe Method with “In-Face” Directions, and its Application to Low-Rank Matrix
Completion

Motivated principally by the low-rank matrix completion problem, we present in [15] an extension of
the Frank-Wolfe Method that is designed to induce near-optimal solutions on low-dimensional faces of the
feasible region. This is accomplished by a new approach to generating “in-face” directions at each iteration,
as well as through new choice rules for selecting between in-face and “regular” Frank-Wolfe steps. Our
framework for generating in-face directions generalizes the notion of away-steps introduced by Wolfe. In
particular, the in-face directions always keep the next iterate within the minimal face containing the current
iterate. We present computational guarantees for the new method that trade off efficiency in computing
near-optimal solutions with upper bounds on the dimension of minimal faces of iterates. We apply the new
method to the matrix completion problem, where low-dimensional faces correspond to low-rank matrices.
We present computational results that demonstrate the effectiveness of our methodological approach at
producing nearly-optimal solutions of very low rank. On both artificial and real datasets, we demonstrate
significant speed-ups in computing very low-rank nearly-optimal solutions as compared to the Frank-Wolfe
Method (as well as several of its significant variants).

I. New Computational Guarantees for Solving Convex Optimization Problems with First Order Methods,
via a Function Growth Condition Measure

In [14] we present new computational methods and associated computational guarantees for solving
convex optimization problems using first-order methods. Our problem of interest is the general convex
optimization problem f∗ = minx∈Q f(x), where we presume knowledge of a strict lower bound fslb < f

∗.
[Indeed, fslb is naturally known when optimizing many loss functions in statistics and machine learning
(least-squares, logistic loss, exponential loss, total variation loss, etc.) as well as in Renegar’s transformed
version of the standard conic optimization problem; in all these cases one has fslb = 0 < f∗.] We introduce
a new functional measure called the growth constant G for f(·), that measures how quickly the level sets of
f(·) grow relative to the function value, and that plays a fundamental role in the complexity analysis. When
f(·) is non-smooth, we present new computational guarantees for the Subgradient Descent Method and
for smoothing methods, that can improve existing computational guarantees in several ways, most notably
when the initial iterate x0 is far from the optimal solution set. When f(·) is smooth, we present a scheme
for periodically restarting the Accelerated Gradient Method that can also improve existing computational
guarantees when x0 is far from the optimal solution set, and in the presence of added structure we present
a scheme using parametrically increased smoothing that further improves the associated computational
guarantees.

J. Relatively Smooth Convex Optimization by First-Order Methods, and Applications

The usual approach to developing and analyzing first-order methods for smooth convex optimization
assumes that the gradient of the objective function is uniformly smooth with some Lipschitz constant L.
However, in many settings the differentiable convex function f(·) is not uniformly smooth – for example
in D-optimal design where f(x) := − ln det(HXHT ) and X := Diag(x), or even the univariate setting
with f(x) := − ln(x) + x2. In our paper [13] we develop a notion of “relative smoothness” and relative
strong convexity that is determined relative to a user-specified “reference function” h(·) (that should be
computationally tractable for algorithms), and we show that many differentiable convex functions are
relatively smooth with respect to a correspondingly fairly-simple reference function h(·). We extend two
standard algorithms – the primal gradient scheme and the dual averaging scheme – to our new setting, with
associated computational guarantees. We apply our new approach to develop a new first-order method for
the D-optimal design problem, with associated computational complexity analysis.



K. Accelerating Greedy Coordinate Descent Methods

In [11] we study ways to accelerate greedy coordinate descent in theory and in practice, where “accel-
erate” refers either to O(1/k2) convergence in theory, in practice, or both. We introduce and study two
algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Coordinate
Descent (AGCD). While ASCD takes greedy steps in the x-updates and randomized steps in the z-updates,
AGCD is a straightforward extension of standard greedy coordinate descent that only takes greedy steps.
On the theory side, our main results are for ASCD: we show that ASCD achieves O(1/k2) convergence,
and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side,
we observe that both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on a
variety of instances. In particular, we note that AGCD significantly outperforms the other accelerated
coordinate descent methods in numerical tests, in spite of a lack of theoretical guarantees for this method.
To complement the empirical study of AGCD, we present a Lyapunov energy function argument that points
to an explanation for why a direct extension of the acceleration proof for AGCD does not work; and we
also introduce a technical condition under which AGCD is guaranteed to have accelerated convergence.
Last of all, we confirm that this technical condition holds in our empirical study.

L. Generalized Stochastic Frank-Wolfe Algorithm with Stochastic “Substitute” Gradient for Structured
Convex Optimization

The stochastic Frank-Wolfe method has recently attracted much general interest in the context of
optimization for statistical and machine learning due to its ability to work with a more general feasible
region. However, there has been a complexity gap in the guaranteed convergence rate for stochastic Frank-
Wolfe compared to its deterministic counterpart. In [12], we present a new stochastic Frank-Wolfe method
which closes this gap by introducing the notion of a “substitute” gradient that is a not-necessarily unbiased
sample of the gradient. Moreover, we show that this new approach is equivalent to a randomized coordinate
mirror descent algorithm applied to the dual problem, which in turn provides a new interpretation of dual
coordinate descent method in the primal space. When the regularizer is furthermore strongly convex, we
show that the generalized stochastic Frank-Wolfe method as well as the randomized dual coordinate descent
present linear convergence. These new results are benefited from the understanding that first-order methods
can inherently minimize the primal-dual gap.
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