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Problem/Objective

Expressiveness and nonverbal communication play a major role in the development and maintenance of
trust in human-human interaction. However, current designs of human-computer interactions for safety-
critical systems often heavily rely on information reduction/hiding rather than revealing to reduce the
cognitive load on users, and do not adapt based on user’s emotions. This approach of information hiding
and lack of consideration of user’s emotions while interacting is likely to affect trust building negatively
and instead, can foster suspicion and doubt, making it difficult to perform critical tasks with confidence.
To address these limitations, this proposal investigates the challenge of designing trust-inducing human-
computer interactions taking the trust factor and user emotions explicitly into account, and investigates
the following key research questions: (i) What information regarding system performance is relevant to
“trust” and need to be communicated? (ii) How to effectively communicate information regarding system
states to end users to promote trust in safety-critical scenarios? and (iii) How to maintain trust over time?
Our key contributions are as follows.

Results & Impact

In our work, we identified that system performance information and role (e.g., system administrator vs.
operator) affect participants’ reasoning differently depending on risk level [2]. Results further indicated
that risk level has a significant main effect on negative individualistic and negative prosocial emotions
[3]. Participants assigned to the high risk scenario anticipated more intense negative individualistic (e.qg.,
nervous) and negative prosocial (e.g., resentful, lonely) emotions and less intense positive (e.g., happy,
proud) emotions than participants assigned to the medium and low risk scenarios [3]. In our follow up
study [1, 5], we investigated how different types of trust-related information about a drone system (e.qg.,
purpose, process, performance) influence emotions anticipated as an operator. Our findings suggest that
(a) users’ risk taking tendencies influence trustworthiness perceptions of systems, (b) different types of
information about a system have varied effects on the trustworthiness dimensions, and (c) institutions
play an important role in users’ calibration of trust. We also found that propensity to trust, risk-taking
tendencies, and institutional trust influenced the intensity of anticipated emotions. These findings indicate
that contextual risk and a user’s role can influence emotions and attitudes toward safety-critical systems
differently, and should be considered explicitly while designing interactions.

Next, we pose the question—Are the people behind an automated system implicated in its mistakes? Or Is
the system itself deemed a responsible actor that can repair broken trust? While users likely correctly
understand that these machines are products of human design, evidence suggests that humans respond to
computers socially. Perhaps, then, the user is engaging in a trusting relationship with the system itself. If
S0, users may be prone to poor “trust calibration.” Our study sought to elucidate the separation of system
and developers by investigating how the attribution of blame for system errors influences users’ trust.
We recruited 147 participants on Amazon Mechanical Turk (MTurk) to play an online game (developed
by us) where they collaborated with an Automated Target Detection (ATD) system in 5 rounds of an
image classification task. In a 2 (reliability) x 3 (blame) between-group study, participants interacted with
a high or low reliability system. After each round, the system displayed a text message acknowledging its
errors in identifying images in the previous round, attributing blame either internally (“I was not able...”),
pseudo-externally (“The developers were not able...”), or externally (“A third-party algorithm that I used
was not able...”). Participants chose how many images to allocate to the automation and were
compensated based on their combined performance with the ATD system. After gameplay, participants
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responded to a survey. We found that reliability influenced both behavioral and subjective trust, while
blame influenced subjective trust. Specifically, internal blame was regarded more positively than pseudo-
external blame, suggesting that a system’s errors are not considered the same as the developers’ errors.
We found a main effect of reliability on both behavioral trust and trusting perceptions. Moreover, we
found that internal blame by the system and blame of the developers were perceived differently. These
findings suggest that, when it comes to trust, automated systems are not treated merely as reflections of
their developers, but as distinct social actors. This notion is critical for designers to ensure that users are
able to accurately gauge the trustworthiness of systems, and for fostering a future of healthy human-
machine relationships.

Finally, we focus on trust repair and investigated the effects of warning reliability and system
performance feedback on trust and emotional states using a two-way 2 (warning reliability: high/low) X 2
(feedback: present/ absent) between groups in-lab study. In this in-lab study, we recruited 57 participants
who played 4 rounds of a 7-minute long video game (implemented by us) simulating a drone operation.
The game objective was to find and neutralize parked enemy vehicles on the street of a city. Participants
received system warning messages that may help them to avoid possible system failures during the
gameplay. After each warning, half of the participants were given feedback regarding whether the
warning was true-alarm or false-alarm using audio message. Contrary to our hypothesis, results indicated
that feedback negatively affected users’ positive emotions and trust in the system, and increased negative
emotions. Moreover, results indicated that hostility and loneliness emotions were higher for the feedback
present groups. Regression analysis showed that the positive emotions were positively correlated with the
trust factors (i.e., performance, process, and purpose) and the negative emotions (i.e., hostility and
loneliness) were negatively correlated with the trust factors.

In addition to using a scale to rate emotions, we used iMotion software program to record and parse
emotions from facial expressions. This software can detect and readily output micro and macro level
expressions for seven primary emotions (i.e., anger, contempt, disgust, fear, joy, sadness, and surprise)
and two complex emotions (i.e., frustration and confusion). Facial expression analysis revealed that
feedback present groups experienced fear emotion significantly less percent of the time overall compared
to the feedback absent groups. During the warning segment, feedback present groups experienced fear
emotion significantly less percent of the time than the feedback absent groups as well. We observed a
significant main effect of reliability on experienced frustration emotion during the warning segments.
Specifically, high reliability warning groups experienced frustration emotion significantly more percent of
the time than the low reliability warning groups. Furthermore, high reliability groups experienced anger
emotion significantly more percent of the time than the low reliability groups. We argue that the observed
negative effect of feedback on emotion and trust, while unexpected, is not necessarily a “bad” thing.
Rather, it might be an effective way to nudge participants to gauge the reliability of automation systems
carefully and make decisions while mindfully processing risks. As such, feedback mechanisms can
facilitate calibration of trust in unreliable systems, preventing the possibility of “overreliance” on
automation.

To summarize, our investigation found that providing feedback regarding the system performance
decreases the level of trust in the system, which might be an effective way to counter possible misuse
(i.e., overreliance) of automation. On the other hand, not providing feedback might be an effective way to
nudge operators to trust the system more if desired. Furthermore, our findings suggest that providing
feedback is likely to reduce mental workload, calling for further research in the design of feedback
mechanisms as an effective way to calibrate emotion and trust. Finally, understanding how user’s
emotions relate to their trust in systems can not only improve system communication strategies and
design for trust calibration, but can highlight the social and emotional ways in which human responds to
computer interaction partners, impacting research in other domains such as human-robot interactions.
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ABSTRACT

Prior work notes dispositional, learned, and situational aspects of
trust in automation. However, no work has investigated the relative
role of these factors in initial trust of an automated system. More-
over, trust in automation researchers often consider trust unidimen-
sionally, whereas ability, integrity, and benevolence perceptions
(i.e., trusting beliefs) may provide a more thorough understanding
of trust dynamics. To investigate this, we recruited 163 participants
on Amazon’s Mechanical Turk (MTurk) and randomly assigned
each to one of 4 videos describing a hypothetical drone system: one
control, the others with additional system performance or process,
or both types of information. Participants reported on trusting be-
liefs in the system, propensity to trust other people, risk-taking
tendencies, and trust in the government law enforcement agency
behind the system. We found that financial risk-taking tendencies
influenced trusting beliefs. Also, those who received process infor-
mation were likely to have higher integrity and ability beliefs than
those not receiving process information, while those who received
performance information were likely to have higher ability beliefs.
Lastly, perceptions of structural assurance positively influenced
all three trusting beliefs. Our findings suggest that a) users’ risk-
taking tendencies influence trustworthiness perceptions of systems,
b) different types of information about a system have varied ef-
fects on the trustworthiness dimensions, and c) institutions play an
important role in users’ calibration of trust. Insights gained from
this study can help design training materials and interfaces that
improve user trust calibration in automated systems.
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1 INTRODUCTION

Recent advancement in computing technologies has opened up the
possibility of next-generation cyber-human systems (e.g., multi-
UAV supervisory control, remotely operated air and ground vehi-
cles, robot-assisted emergency response systems) where users will
be required to interact and cooperate with autonomous or semi-
autonomous systems to accomplish challenging and risky tasks
(e.g., surveillance, battlefield operation, navigation). Prior work has
noted that inappropriate levels of user “trust” in such safety-critical
systems, including both overtrust and undertrust, can have undesir-
able and even fatal consequences [35], calling for further research
on how to achieve appropriate “trust calibration” Characteristics
of the human operator, the environment, and the automated sys-
tem have been identified as factors that can influence trust in an
automated or autonomous trustee. Hoff and Bashir suggested a
three-layered model in which these factors contribute to disposi-
tional, situational, and learned trust, respectively [19].
Interestingly, while a significant amount of work has investigated
these aspects of trust in the context of human-machine interactions,
very little is known regarding “initial trust” in this context. Initial
trust, or trust in an unfamiliar party [30], contributes to the “risk-
taking in relationship” that defines later trust [2, 27]. Moreover, first
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impressions and system training have been found to affect later
trust and reliance in safety-critical systems [6, 13].

To complement prior efforts focusing on trust during human-
machine interactions, the present study focuses on factors that
contribute to the development of initial trust. Specifically, we aim
to observe how characteristics of the operator (i.e., dispositional),
perceptions of the institution behind a system (i.e., situational), and
information about a system (i.e., learned) influence initial trust-
worthiness perceptions of that system. Toward this, we designed
4 narrated videos with different information about a hypothetical
drone system. We recruited 163 naive participants (i.e., without
prior experience with drone systems) on Amazon MTurk, randomly
assigned each to one of the 4 video groups, and asked them to imag-
ine that they were going to operate the drone in a safety-critical
task. Given the sample’s lack of exposure to similar technologies,
we can observe how system information contributes to learned
trust, and how dispositional and situational factors simultaneously
influence trust evaluations.

After watching their video, participants rated statements on
trusting beliefs in the system’s ability, integrity, and benevolence,
and institutional trusting beliefs in situational normality and struc-
tural assurance. They also reported on demographics, propensity
to trust other people, and risk-taking tendencies. We discuss the
implications of our findings for human-computer trust research
and system design.

2 RELATED WORK
2.1 Trust

The concepts of “trust” and “trustworthiness” have been extensively
studied by various research communities such as psychologists and
communication theorists in the context of human-human interac-
tions. While some refer to it as a behavioral state, an individual
disposition, a set of social expectations, or an emotion, there is
consensus that risk lies at the heart of trust [1, 5, 9, 38]. Mayer
et al’s model gives one of the most widely accepted definitions
of human-human trust: “The willingness of a party to be vulnera-
ble to the actions of another party based on the expectation that
the other will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that party” [27].

In this relationship between trustor and trustee, trust is affected
by characteristics of the trustor, the trustee, and the situational
context [27]. A trustor’s trusting beliefs contribute to their trust,
realized as risk-taking in the relationship with the trustee. These
beliefs are perceptions of a trustee’s trustworthiness, which Mayer
et al. operationalize into three characteristics: ability, integrity, and
benevolence. Ability relates to the trustee’s skills or competencies
within some domain. Integrity reflects that the trustee “adheres to a
set of principles” that is acceptable to the trustor. Benevolence relates
the extent to which a trustee will do good for the trustor [27].

2.2 “Trust” in Human-Machine Interactions

Many researchers have applied insights from the human-human
trust literature to study trust between a human and a machine, com-
puter, or automated system. This notion is motivated by work in
the “Computers are Social Actors” paradigm, which has shown that
users apply various social norms to computer interaction partners.
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These include perceptions of praise and derogation, treating dif-
ferent voices as distinct social actors, applying gender stereotypes,
and using politeness [34]. In the latter study, participants worked
with a computer and subsequently assessed its performance in one
of three ways: on the same computer, with pencil and paper, or on
a different computer [37]. Those in the same computer condition
rated the computer as more friendly and competent than those
in the other conditions, suggesting that politeness was employed
when giving a direct assessment. Despite these responses, at the
end of the experiment, participants denied acting polite toward
the computer. Reeves and Nass suggest that these social responses
occur “mindlessly” in that, even though they may think it’s nonsen-
sical, people apply the notion, “When in doubt, treat it as human,”
when interacting with computers [33, 37].

Among prior efforts that attempt to understand trust in the
human-machine context, Bonnie Muir defined trust in human-
machine interaction as a function of expectations held by a member
of a system regarding the persistence, technical competence, and
fiduciary responsibilities from another member of the system [32].
More recently, in line with Mayer et al’s human-human model, Hoff
and Bashir noted characteristics of the human operator, the envi-
ronment, and the automated system as factors influencing trust in
an automated trustee. They suggest a three-layered model in which
these factors contribute to dispositional, situational, and learned
trust, respectively [19].

Hoff and Bashir suggest that age, gender, and personality differ-
ences are components of dispositional trust [19], while prior work
has begun to investigate the factors influencing dispositional trust
in automation [20].

Prior work has further identified situational normality and struc-
tural assurance as two aspects of institutional trust, where situa-
tional normality consists of beliefs about an institution’s trustwor-
thiness in a given context [25, 29], and structural assurance relates
to a belief that guarantees or “safety nets” are in place to protect
the user if something goes wrong [25, 29]. These institutional per-
ceptions constitute one aspect of Hoff and Bashir’s situational trust.

Regarding learned trust (i.e., in a specific trustee), Lee and Moray
refer to performance, process, and purpose as the bases for trust in
automation [23]. Performance refers to the consistency and reliabil-
ity of system behavior and its history of operation. Process relates
to how the system operates and the degree to which its algorithms
are appropriate in a given context. Purpose is the extent to which
the system is being used within the “realm of the designer’s in-
tent” [23]. The lexical dissonance between Mayer et al’s perceived
trustworthiness characteristics and Lee and Moray’s terms distin-
guishes human-human from human-computer trust. In general, a
trustor is concerned with the what (ability or performance), the how
(integrity or process), and the why (benevolence or purpose) of their
interaction partner’s behavior. Trust “calibration” occurs when a
system user adjusts their perceptions of these characteristics to bet-
ter fit a system’s actual reliability [24]. While prior work on trust in
e-Commerce and online recommendation agents [2, 22, 29-31] have
operationalized perceived trustworthiness using ability, integrity,
and benevolence items adapted from Mayer’s research [26], to the
best of our knowledge this approach has not been taken in the trust
in automation literature.
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2.3 Initial Trust and the Current Study

“Initial trust,” or trust in an unfamiliar party [30] has been shown to
precede and contribute to the risk-taking in relationship that defines
later trust [2, 27]. First impressions and system training have been
found to affect later trust and reliance in safety-critical systems as
well [6, 13]. Furthermore, research on organizational information
systems and e-Commerce has found factors such as reputation
and perceived usefulness to influence initial trust [2, 22, 25, 30].
Despite the importance of initial trust, prior work on safety-critical
systems has not explored this and generally observes trust during
interaction [3, 10].

As such, to complement prior efforts, we aim to observe how
characteristics of the operator, perceptions of the law enforcement
agency behind the system, and information about a drone system
influence initial perceived trustworthiness. We expect that, in addi-
tion to general propensity to trust others [39], individual differences
in risk-taking are influential in trust evaluations of safety-critical
systems. Furthermore, by measuring “institutional trust,” we treat
the system itself as a distinct trustee, and avoid the assumption
that trust in the system is the same construct as trust in system
designers or other members of the organization.

A main goal of this study is to observe whether users perceive an
automated system to have ability, integrity, and benevolence, and
the extent to which the aforementioned dispositional, situational,
and learned factors contribute to these perceptions. The details of
our study are presented in the following sections.

3 METHODOLOGY

The purpose of this study is to observe how information about
a system’s performance and process can be communicated to in-
fluence initial beliefs in the ability, integrity, and benevolence of
a drone system, and how personal and institutional factors affect
these perceptions. More specifically, this study seeks to answer the
following research questions:

RQ1: Does a person’s propensity to trust other humans trans-
late to a computer trustee?

RQ2: Do a person’s risk-taking tendencies influence their ini-
tial trust?

RQ3: How do performance and process information influence
beliefs in a system’s ability, integrity, and benevolence?

RQ4: What role does institutional trust play in trust of a com-
puter system itself?

3.1 Design of Videos

To investigate the aforementioned research questions, we created 4
videos describing a hypothetical drone system.

We chose video as the mode of communication because there
is evidence that videos can be effective in introducing a system to
users (e.g., system training) by utilizing both visual and auditory
information processing channels, which leads to higher engage-
ment [7, 17, 28, 36, 41]. This method also allows us to isolate the
effects of information participants receive from factors such as ex-
perience and interface features that can influence trustworthiness
perceptions during use. We chose to investigate a drone system
because most individuals are familiar with their safety-critical ap-
plications.
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Label n Link to Video Length

Control 41  https://youtu.be/DuMwSsrEG5s 50 s
Performance 39  https://youtu.be/RJdwtSuGmAc 71s
Process 39 https://youtu.be/2BTbNTAG19A 70 s
Perf-Proc 44  https://youtu.be/c5]rIdQNkY4 92s
Table 1: List of the 4 videos used in the study, which can
be viewed on YouTube. The original video can be found at:
https://www.dvidshub.net/video/411919/
mgq1b-predator-gcs-broll.

Information was given in the form of narration. The content was
reviewed and revised by authors over several iterations to ensure
clarity for our naive participants and relevance to Lee and Moray’s
definitions [23] of performance and process applied to our drone
system. These two information types were defined as follows:

e Performance refers to the consistency and reliability of
system behavior. The narrated performance information in-
cluded how external/internal factors (e.g., poor network con-
nections, software glitches) can influence the reliability of
the system and what the consequences might be.

o Process details the qualities that govern system behavior,
such as its algorithms. The narrated process information
included how the system behaves to make it robust against
possible failures (e.g., sensors are used to monitor flight
stability).

Lee and Moray’s third characteristic, the purpose of the system,
was given in all videos. We determined this was necessary to give
participants sufficient information to understand the system and
their role as operator. Thus, the control group watched a video
containing only “baseline” information (i.e., describing what the
system was used for), and the three experimental groups watched
a video containing the same baseline content followed by either
performance or process information, or both. Table 2 shows the
full narration transcript.

The video’s visual content was taken from a publicly available
video of drone operation. The original audio was replaced by nar-
ration recorded by one of the researchers. To investigate the effect
of performance and process information alone, as well as their
interaction, videos were trimmed to the length of their narration.
This avoided both video playing without narration and repeated
visual content. Longer videos therefore contain visual content that
shorter videos do not. Because the video displays neutral images
of operators at a control panel, we expect that the narration de-
scribing a safety-critical drone task was more salient. However, we
acknowledge the potential effect of the visual content and refer the
reader to Table 1 to view the videos on YouTube. While participants
watched clear versions of the videos, we blurred out certain parts
in the shared links for privacy reasons.

3.2 Recruitment

We posted the study as a Human Intelligence Task (HIT) on Ama-
zon’s Mechanical Turk (MTurk) service. Using MTurk’s eligibility
criteria, the HIT was made available to users 18 years or older,
living in the United States, with at least 1000 completed HITs and
a 95% HIT approval rating. When participants accepted the HIT,
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Hello! The video you are watching presents a
hypothetical scenario where operators are using
a drone system to assist government law enforce-
ment in stopping human traffickers. The system
consists of an Unmanned Aerial Vehicle, or UAV,
and a display that the operator observes while
controlling the system. The operator is respon-
sible for navigation of the drone and reporting
locations of suspected human traffickers. Timely
and accurate identification of violent criminals is
extremely important as failures can put innocent
civilians’ and law enforcement officers’ lives in
danger. While the operators may shoot at targets
if necessary, this is used only as the last option,
as it could lead to hitting innocent civilians near
the target or causing property damage.

Baseline

While the system operates effectively most of
the time, there can be occasional errors that im-
pact video quality and drone maneuverability,
caused by factors such as poor network connec-
tions and software glitches. As a result, operators
may experience rare events such as screen black-
outs or loss of connectivity lasting at most a few
seconds.

Performance

To make the system robust against such failures,
the UAV has on-board algorithms that use sen-
sors to improve flight stability and maneuver-
ability. Information about system health is also
automatically monitored and sent back to the
operator over a network connection. This allows
the operator to monitor and override system con-
trol if needed.

Process

Table 2: Narration script for the videos. All videos contained
“baseline” information describing the purpose of the system,
while the Performance video additionally contained the per-
formance information, Process the process information, and
Perf-Proc both types of additional system information.

they were shown an information sheet and link connecting them
to the study hosted on our university’s Qualtrics server.

There were 3 pre-screening questions to prevent participants
from guessing the eligibility criterion. Participants had to answer
“No” to the question “Have you ever operated drones in the past?”.
This screened out individuals having operated recreational drones
in addition to systems like that described in our study, ensuring
that we observed initial trust. We did not disclose this eligibility
criterion to any participant.

Ineligible participants were informed that they could not partici-
pate or be compensated. Eligible participants took the survey. At
the end, these participants were given a code generated on Qualtrics
to submit to MTurk for $3 of compensation. On average, the survey
took participants 14.3 minutes (Median = 12.4 minutes, SD = 8.5
minutes).

The study was approved by our university’s Institutional Review
Board.

HAI >18, December 15-18, 2018, Southampton, United Kingdom

3.3 Survey Design

In the survey, participants first answered demographic questions
on age, gender, computer proficiency, race, education, and military
experience. Next, each viewed their randomly assigned video and
was subsequently shown the following text:

Now imagine that you are working for a law enforcement agency
as the operator of the presented drone system. Your task is to identify,
track, and neutralize the vehicles of human traffickers who could harm
civilians if not detained. Please note that failure to identify violent
criminals such as human traffickers can put innocent civilians’ and
law enforcement officers’ lives at danger. Please answer the following
questions assuming the presented operating conditions.

Participants were then asked to reiterate the scenario in their
own words to ensure that they understood their task and role as
operator.

Next, we evaluated Mayer et als trusting beliefs in the system’s
ability, integrity, and benevolence [27]. These items were adapted
from [26, 30] to refer to our drone system (see Table 3).

Subsequently, participants answered questions about situational
normality and structural assurance. These institutional trust items
were adapted from [25, 29] to refer to the government law enforce-
ment agency in our hypothetical scenario.

Participants then reported on their propensity to trust other
people using a 12-item scale [12] and risk-taking tendencies in 5
domains (financial, ethical, health/safety, recreational, social) using
the 30-item domain-specific risk-taking (DOSPERT) scale [4, 18, 40,
43).

We included two questions in the survey asking for a specific
answer (e.g., “Mostly Agree”) to identify inattentive participants.
We also included two manipulation check items at the end of the
survey to validate that the system’s performance and process were
communicated in the video.

4 EVALUATION
4.1 Sample Demographics

Of the 200 participants eligible after pre-screening, we removed
the data of those who incorrectly answered at least one multiple
choice attention check question, entered an ineligible age, or mis-
understood the scenario based on their post-video reiteration. For
the latter, participants who gave an unrelated response, referred to
the “operator” in the third-person (i.e., suggesting that they were
not imagining being the operator) or mentioned something not
expressed in the video (e.g., “the military,” “drug sales,” “child sex
traffickers”) were removed from the data. Lastly, to ensure the video
was fresh in participants’ minds, we removed data of those who
waited greater than 10 minutes after their video ended to advance
to the next part of the survey. Ultimately, 163 were retained for
analysis and balanced among video groups (see Table 1).

The sample consisted of 89 (54.6%) male and 74 (45.4%) female
participants with ages ranging from 20 to 64 (Mean = 35.3, SD
= 10.0). When asked about computer proficiency, 58 (35.6%) par-
ticipants reported being “Competent,” 82 (50.3%) “Proficient,” and
23 (14.1%) “Expert” There were 123 white/Caucasian (75.5%), 18
African American (11.0%), 6 Hispanic (3.7%), 11 Asian (6.7%), 2
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Trusting Belief Items

- The drone system would be competent and effective at assisting in tracking enemy targets.

Ability

- The drone system would perform its role of neutralizing enemy targets very well.
- Overall, the drone system would be a capable and proficient means for stopping the targets.

- In general, the drone system would be very knowledgeable about stopping criminals.

- The drone system would be truthful in its communication with me.
- I would characterize the drone system as honest.

Integrity

- The drone system would keep its commitments.

- The drone system would be sincere and genuine.
- The drone system would perform as expected.

- I believe that the drone system would operate in my best interest.
- If I required help, the drone system would do its best to help me.

Benevolence

- The drone system would be concerned about my well-being, not just its own.

- The drone system would be concerned about the well-being of officers on the ground.
- The drone system would be concerned about the well-being of civilians.

Table 3: The three trusting beliefs and their subsisting items, scored on a 7-point Likert scale from 1 = “Strongly Disagree” to

7 = “Strongly Agree” These items were adapted from [26, 30].

Native American and 3 other participants. Furthermore, 82.2% of
participants reported having some post-secondary education at a
college or university and 7 (4.3%) reported having served in the
military.

Testing for demographic differences between video groups, we
found no significant differences in terms of gender (y%(3) = 2.19,
p = .53). Moreover, Fisher’s Exact Test revealed neither significant
differences in terms of race (p = .51) nor military service (p = .32).
Kruskal-Wallis tests demonstrated that groups were not signifi-
cantly different in terms of age (H(3) = 1.73, p = .63), education
level (H(3) = 0.16, p = .98), or computer proficiency (H(3) = 2.60, p
= .46). Based on these results, we concluded that the four groups
recruited were similar in terms of their demographics.

4.2 Validation of Information Types
Communicated in the Videos

First, to verify whether performance and process information were
communicated in the narration, we included two manipulation
check statements at the end of the survey:

1. I was made aware of the drone system’s performance (i.e.,
how effective the system is about accomplishing its goal).

2. I was made aware of the drone system’s process (i.e., how
the system works to accomplish its goal).

Participants rated these two items on a 7-point Likert scale from
“Strongly Disagree” to “Strongly Agree” We use Mann-Whitney
U-tests to compare between participants who received or did not
receive a given type of information. We also report the effect size
of U-tests using r = Z/VN metric [11].

Participants who received performance information in their video
(i.e., Performance and Perf-Proc groups) rated their awareness of
the drone system’s performance higher than other participants
(i.e., Control and Process groups), though this difference was only
marginally significant (U = 2841.00; p = .10; r = -.13). It may be that
because the performance information mentioned potential system
errors, these participants actually felt somewhat unaware of the
system’s performance.

Participants who received process information in their video (i.e.,
Process and Perf-Proc groups) rated their awareness of the system’s
process significantly higher than other participants (i.e., Control
and Performance groups) (U = 2667.50; p = .02; r = -.18).

4.3 Building Multiple Linear Regression
Models for Perceived Ability, Integrity, and
Benevolence

To answer our research questions, we constructed multiple linear
regression models that predict participants’ initial trustworthiness
perceptions in the system’s ability, integrity, and benevolence from
a set of input predictors.

Before building models, we verified the reliability of our inde-
pendent and dependent scales using Cronbach’s a. The 12-item
propensity to trust scale had excellent reliability (« = .95). Each
of the DOSPERT 6-item risk domain scales had at least acceptable
reliability (ethical a = .80; financial a = .81; health/safety a = .71;
recreational « = .81; social @ = .74). For institutional trust, each
3-item situational normality sub-scale had good reliability (ability
a = .88; integrity a = .94; benevolence « = .87), and the 4-item struc-
tural assurance scale had excellent reliability (a = .95). The three
trusting belief scales had good reliability (4-item, ability « = .81;
5-item, integrity & = .88; 5-item, benevolence « = .85). Overall, both
our independent and dependent variables demonstrated acceptable
reliability [14].

Next, we considered predicting each perceived trustworthiness
characteristic with a different set of independent variables. For each
model, we examined the Bayesian Information Criterion (BIC), a
goodness-of-fit metric which also takes into account the model’s
complexity. A lower relative value suggests better fit for a given
model.

We first included only the experimental manipulations as predic-
tors, using performance and process variables to indicate whether
each information type was presented in a participant’s video. For
example, the regression coefficient for the performance variable
compares trustworthiness ratings given by participants for whom
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Ability Integrity Benevolence

Predictors B SE p B SE p B SE P
Individual Differences

Trusting propensity  -0.16  0.08 0.04 -0.02  0.12 0.90 -0.15 0.13 0.27

Risk-taking:

Ethical -0.02  0.07 0.73 0.09 0.10 0.41 0.18 0.12 0.14

Financial 0.13  0.05 0.02 0.23 0.08 <0.01 0.32  0.09 <0.01

Health/safety -0.12  0.07 0.09 0.00 0.10 0.99 -0.08 0.12 0.50

Recreational -0.01  0.06 0.83 -0.13  0.09 0.12 -0.04 0.10 0.71

Social 0.05 0.06 0.35 -0.09 0.08 0.30 -0.15 0.10 0.12
System Information

Perf 0.34 0.17 0.04 0.29 0.24 0.23 0.35 0.28 0.22

Proc 037 0.17 0.03 0.55 0.25 0.03 0.57 0.29 0.05

Perf x Proc -0.36  0.23 0.13 -0.57 0.34 0.10 -0.53  0.40 0.18
Institutional Trust

Structural Assurance  0.38  0.11 <0.01 045 0.16 <0.01 042 0.19 0.03

Situational Normality:

Ability 0.12 0.12 0.32 0.20 0.18 0.26 0.20 0.21 0.33

Integrity 0.13 0.11 0.23 -0.21 0.16 0.19 -0.25 0.18 0.18

Benevolence -0.09 0.12 0.42 0.13  0.17 0.44 0.19 0.20 0.36
Constant 2.65 0.45 <0.01 1.81 0.65 <0.01 1.29 0.76 0.09
Adjusted R 0.4888 0.3254 0.2623
F-value F(13, 149) = 12.92 (p <.001)  F(13, 149) = 7.01 (p <.001)  F(13, 149) = 5.43 (p <.001)

Table 4: Results of the three separate multiple linear regressions, each predicting a trusting belief (ability, integrity, or benev-
olence) based on the various predictors. p-values which are significant at the 0.05 level are shown in bold.

performance information was present (i.e., Performance and Perf-
Proc groups) to those for whom it was absent (i.e., Control and
Process groups). The BIC value was 487.79 for the ability regression,
567.81 for integrity, and 601.51 for benevolence. Next, we added our
other independent variables to each model to observe whether there
was improvement in predicting perceived trustworthiness. Specif-
ically, each trusting belief was regressed on dispositional factors
of the participant (i.e., trusting propensity, risk-taking domains),
situational factors that captured participants’ perceptions of the
hypothetical law enforcement agency behind the system (i.e., situ-
ational normality, structural assurance), and the aforementioned
learned factors (i.e., system information provided in the videos).
The BIC value was 418.45 for ability, 543.25 for integrity, and 592.10
for benevolence, indicating that the fit of the models improved with
the addition of dispositional and situational factors. The results of
these final regressions are shown in Table 4.

4.3.1 Dispositional Trust.
Regarding RQ1, participants with a greater propensity to trust
other people were more likely to rate the system’s ability lower
(B = -0.16, p <.05). This suggests that individuals who are more
trusting of other people have less faith in the ability of the drone
system. We return to the influence of trusting propensity below
when reporting on institutional (i.e., situational) trust.

For RQ2, individuals who reported greater financial risk-taking
tendencies were likely to give higher ratings for the system’s ability
(B = 0.13, p <.05), integrity (f = 0.23, p <.01), and benevolence

(B = 0.32, p <.01). These findings support those in [20] regarding
both the role of individual differences in dispositional trust, as well
as the distinction between dispositional trust in humans and in
automation.

4.3.2 Learned Trust.
Concerning RQ3, performance and process information given to
participants appeared to influence ability and integrity beliefs.

Interestingly, despite the mention of potential system errors,
participants receiving performance information were likely to rate
the system’s ability higher than those not receiving performance
information (f = 0.34, p <.05). While this suggests that transparency
increases perceptions of trustworthiness, the fact that users knew
about errors and regarded the system as having higher ability is a
poor sign for trust calibration. System designers should be explicit
about their system’s weaknesses, not necessarily aiming to increase
trust but to promote appropriate calibration. Moreover, while our
finding suggests a connection between performance information
and increased ability beliefs, it may be that perceptions of system
ability as measured in this study do not necessarily lead to increased
behavioral trust (i.e., greater reliance on the system). Information
about system errors may actually make participants less willing to
use the system in certain situations despite higher trusting belief
ratings.

Process information appeared to lead to increased perceptions of
ability (8 = 0.37, p <.05) and integrity (8 = 0.55, p <.05). Again, this
lends to the idea that people appreciate transparency—knowledge
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about the system’s underlying technologies seems to have led par-
ticipants to more positively regard its ability and integrity.

Despite these findings, the interaction between performance and
process information did not significantly influence any of the trust-
ing beliefs. This suggests that a larger volume of information does
not necessarily contribute positively to trusting beliefs.

4.3.3  Situational Trust.

For RQ4, situational normality ratings did not have a significant
effect on perceived trustworthiness. However, participants who
gave higher structural assurance ratings were likely to give higher
ratings for the ability (8 = 0.38, p <.01), integrity (8 = 0.45, p <.01),
and benevolence (ff = 0.42, p <.01) of the drone system. This finding
demonstrates the important distinction between perceptions of the
system itself and of the institution behind the system. While we find
that positive beliefs about institutional safeguards contributed to
more positive perceptions of the system’s trustworthiness charac-
teristics, the contributions from various other factors in our model
show that institutional trust is not the full picture of trust in the
system.

To explore structural assurance more in depth, we ran a multi-
ple linear regression with structural assurance as the dependent
variable and the same set of independent variables (excluding insti-
tutional trust items). A significant regression equation was found
(F(9, 153) = 2.86, p <.01) with an Adjusted R? of 0.0936. The only
significant independent factor was propensity to trust, where more
trusting participants were likely to give higher structural assurance
ratings (8 = 0.49, p <.01). This effect on structural assurance suggests
that participants’ interpersonal trust indirectly affected trustwor-
thiness perceptions of the drone system through their perception
of the law enforcement agency.

5 DISCUSSION

Our findings suggest that users’ individual differences, informa-
tion about a system, and institutional perceptions each contribute
differently to initial beliefs about a system’s ability, integrity, and
benevolence. The key findings and limitations of our study are
discussed below.

5.1 Effect of Risk-Taking Tendencies on
Ability, Integrity, and Benevolence Beliefs

We found that individuals who reported being more likely to take
financial risks rated the system’s ability, integrity, and benevolence
more highly. Interestingly, the largest effect (i.e., greatest regression
coeflicient) was on the benevolence belief, followed by integrity
and, subsequently, ability. This finding lends support to our ap-
plication of Mayer et al’s trustworthiness characteristics to an
automated trustee, in that each was influenced differently by finan-
cial risk-taking tendencies. For instance, the fact that benevolence
beliefs were the most influenced by dispositional characteristics
suggests that users did build some idea of whether the hypothetical
drone system cared about them, based partly on their willingness
to take risks (see “Benevolence” items in Table 3), even if it may
seem inappropriate to think of a computer system as having the
quality of benevolence. While this benevolence perception may
reflect participants’ thoughts about the institution’s intentions, fur-
ther investigating this phenomenon by applying the “Computers
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are Social Actors” paradigm could elucidate the nature of human
perceptions of automated trustees. We encourage future work to
further explore this relationship between individual differences and
the trustworthiness characteristics to inform more user-centered
designs for trust calibration.

5.2 Effect of System Information on Ability
and Integrity Beliefs

Our regression also revealed that performance or process informa-
tion in the narration was likely to lead to increased ability beliefs.
Moreover, process information was likely to lead to increased in-
tegrity beliefs. We note that although our manipulation check re-
vealed that those who received performance information reported
being more aware of the system’s performance than those who did
not receive performance information, the difference was not signif-
icant. Nonetheless, the performance and process information (see
Table 2) appear to have offered transparency, casting the system
as less of a fault-prone black box. Given performance information,
the system may have appeared more competent because its short-
comings were directly acknowledged. For process information, the
description of the system’s underlying technologies (i.e., flight sta-
bility algorithms, network connection to the operator) may have
contributed to these increased perceptions of trustworthiness.

In a prior study of an autonomous driving system, Koo et al.
observed that a “how” explanation (i.e., reflecting the system’s
process) led to more drivers drifting out of their lane [21]. Their
“how” explanation, “The car is braking,” may have caused reliance
on the system in inappropriate circumstances (i.e., overtrust and
misuse [35]) by insufficiently communicating limitations of the
system to its user. While our process information also increased
participants’ perceptions of system ability and integrity, an impor-
tant question is how these perceptions ultimately impact users’
behaviors with the system, though this is outside of our focus on
initial trust. We encourage future work to investigate how initial
trust influences long-term interactions and trust calibration with
safety-critical systems.

In another similar study, drivers who were shown performance
information about an autonomous driving system were found to
have lower trust levels than those not shown the information, and
were more prepared to take over control from the automation [15].
This suggests that the information allowed for trust calibration.
Likewise, take-over requests and alerts have been found to lead
to safer usage and greater trust [16, 42]. While our information
increased users’ perceptions of system trustworthiness, a more
appropriate goal for system designers and institutions is to give
information that improves trust. In some cases, this may mean giv-
ing trust-reducing information that allows users to calibrate to a
particular system’s shortcomings. While our performance infor-
mation could be seen as trust-reducing, those who received this
information rated the system’s ability higher than those who did
not receive it. This is likely a result of ambiguity regarding the
extent to which system errors would interfere with operation of
the system in our task context.

While aforementioned prior work manipulates trust during in-
teraction with the system, we observe users’ initial impressions.
Although this makes it more difficult to compare our results to
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prior efforts, it allows us to isolate the effect of system information
on learned trust, as participants were not affected by use-related
factors such as interface design and observed system performance.
We encourage future work to explore the specific role of trusting
beliefs in users’ reliance decisions. For example, it may be that
beliefs about integrity are less critical to reliance on a system than
those about its ability.

The insignificant effect of the interaction between performance
and process information suggests that the mention of system errors
alongside a description of the system’s underlying technologies
tempered trustworthiness ratings compared to either information
type given on its own. In this way, trust calibration may essentially
be a balancing act, as suggested in de Visser et al’s model involv-
ing trust repair acts and trust dampening acts [8]. Safety-critical
systems can incorporate communication modules that relay infor-
mation to users following both system malfunctions and successful
operations, in order to mitigate large changes in a user’s perceptions
of system trustworthiness and ensure that appropriately calibrated
trust is maintained.

5.3 Effect of Institutional Trust on Ability,
Integrity, and Benevolence Beliefs

We found that participants who felt more structurally assured
were likely to have higher initial beliefs in the system’s ability,
integrity, and benevolence. We also found that trusting propen-
sity contributed to greater perceptions of structural assurance. Al-
though this implies that trusting individuals will be more trusting
of a safety-critical system, overtrust is not desirable and can lead
to use of the system in inappropriate, dangerous circumstances.
Institutions that oversee safety-critical operations must carefully
create structural assurances such that users are held appropriately
accountable for misuse of the system (i.e., to avoid overtrust), but
not necessarily for failures caused by the system itself.

5.4 Limitations

Though the present study sheds light on factors in initial trust of
safety-critical systems, the reported findings should be interpreted
with caution due to the following limitations of our study.

First, participants had to imagine being the operator without
actually interacting with a system. Because of this, their perception
of risk may have been diminished. The study also uses self-reported
trust ratings which, although indicative of users’ initial perceptions,
were not connected to a behavioral measure. Nonetheless, our study
does confirm the effect of different factors on the three perceived
trustworthiness characteristics, which was the main objective of our
work. Further research is needed to confirm our findings and mea-
sure the effect of initial trusting beliefs on actual system interaction
over time in controlled lab settings, possibly using experimental
deception to create greater perceived risk. Future work should also
look at the influence of system information on trust formation in
systems with different reliability levels, since trust has often been
found to vary with respect to system reliability [19], and appropri-
ate calibration of trust is our main goal.

Second, since this was an online survey, we could not guarantee
that participants remained attentive during the video. It is possible
that some MTurk participants were multitasking and did not pay
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attention to the narrated information. However, to minimize this
possibility, each participant had to wait at least their video duration
before proceeding and we removed data of participants whose
open-ended responses demonstrated a lack of understanding of the
task.

Finally, there are some limitations to our manipulations. Due to
differences in narrated content, the videos were not exactly the same
length. For one, this caused longer videos to contain more visual
content than the shorter videos. To minimize any possible effect of
visual content, we carefully chose the shots of the drone control
panel and operators to be relatively neutral, especially compared
to the safety-critical task described in the narration. Moreover,
receiving a greater amount of information could have contributed
to participants’ differences in perception. However, we tested for
correlation between video length and trusting belief ratings and
found no significant correlations, suggesting that informational
content is what influenced perceived trustworthiness.

We also acknowledge potential unintended effects of message
content. In particular, the performance information discussed “occa-
sional errors” and may have been perceived more negatively than
the process information. Studying the effects of valence of system
information (e.g., positive performance information vs. negative
performance information) may give further insights. Likewise, in-
terpretation of the phrase “such failures” in the process information
may have been interpreted differently depending on whether or not
a participant received performance information. Our manipulation
check did suggest that awareness of system’s performance and
process was increased by the narrated information types. However,
we encourage future research to build upon these initial findings
to better understand various informational contributors to trust-
worthiness perceptions.

6 CONCLUSION

In this study, we investigated the role of dispositional, learned,
and situational factors on initial trustworthiness perceptions. We de-
signed a control video with information about a hypothetical drone
system and three videos with either additional performance or pro-
cess information, or both, to observe how 163 naive participants
on Amazon’s MTurk formed trusting beliefs based on the video.
We found that risk-taking individual differences affected all three
beliefs. Moreover, performance and process information were likely
to increase beliefs in the system’s ability, while process information
also lead to increased integrity beliefs. We stress that increased
trust is not necessarily desirable—users should instead be able to
calibrate their trust in a system to an appropriate level. Lastly, we
found that structural assurance was associated with increased abil-
ity, integrity, and benevolence perceptions. We believe that insights
gained from this study enhance our understanding of user’s multi-
dimensional perceptions of the “trustworthiness” of safety-critical
systems, which can lead to more favorable trust-related outcomes
of human-computer collaborations.
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ABSTRACT

In safety-critical systems, it is essential to communicate relevant information to facilitate decision-
making, promote trust, and improve performance without overloading users. To explore the effect of
system performance information on rational and emotional processing by users, we performed a
between-subject experiment in which participants were asked to imagine themselves as a drone
operator or system administrator in a high-, medium-, or low-risk scenario. Then, based on their
imagined scenario and role, participants rated the relevance of four aspects of system reliability to
decision-making with the system, as well as the expected intensity of the GREAT emotions. Results
indicate that system performance information affected participants’ reasoning differently depending on
risk level. Moreover, participants had different perspectives depending on their role in the system. Those
in administrator roles indicated higher respect ratings for those with a similar role. These findings
demonstrate that contextual risk and a user’s role can influence emotions and attitudes toward safety-
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critical computer systems.

1. Introduction

Highly sophisticated and complex automated systems are
increasingly being used in various safety-critical contexts
(e.g., transportation, aerospace, defense) (Redmill & Rajan,
1996). Unfortunately, these systems are often not perfectly
reliable (Parnas, Van Schouwen, & Kwan, 1990), as a plethora
of unpredictable events can cause them to malfunction or fail
(e.g., hardware problems, software bugs, environmental fac-
tors) (Knight, 2002; Lutz & Mikulski, 2003). Thus, the human
user is an integral aspect of safety-critical systems, and effective
judgment is necessary in order to preserve the safety of people,
property or the environment (Knight, 2002). Although com-
municating information regarding various aspects of computa-
tion (e.g., execution state, input data quality, communication
delay) in a timely manner can promote trust, communicating
too much information can increase cognitive demands and
overload the user. Moreover, because of the risk in safety-
critical scenarios, users’ emotions are likely to influence their
decision-making with the system. Therefore, identifying what
information regarding system performance needs to be com-
municated, as well as the effects of system performance infor-
mation on specific kinds of rational and emotional processing,
is critical for enhancing the outcomes of safety-critical human-
computer collaborations.

Toward that, this study investigates the effect of risk, role,
and different information about the system’s reliability on
users’ emotions and attitudes. In a two-way, 3 x 2 factorial
experiment, participants were asked to imagine themselves in
a high-, medium-, or low-risk scenario as the operator or

administrator of a drone system (communication errors,
slow response time, hardware failures, software updates) to
various thoughts about the system. We also examined the role
of emotions in safety-critical human-computer interaction
(HCI) by asking participants to indicate the expected intensity
of the GREAT emotions (gratitude, respect, elevation, appre-
ciation, and trust).

We found that system performance information influenced
participants’ reasoning differently depending on risk level.
Participants in the high-risk scenario were more concerned
about “communication errors,” “slow response time,” and
“hardware failures” than those in the medium- and low-risk
scenarios. Due to the potential negative consequences of “com-
munication errors” and “slow response time,” information about
these errors was deemed the most important by a majority of
participants. Based on participants’ comments, we observed two
different views regarding the communication of system state
information. Some focused on the impact of failures, while
others considered the frequency of failures. Furthermore, parti-
cipants' roles appeared to influence their attitudes about the
system. While those in the administrator role seemed to not
want to overwhelm operators with unnecessary information
about software updates that were applied to fix bugs, those in
the operator role seemed interested to know about the limita-
tions of the system (e.g., what bugs the software update fixed,
whether those issues were successfully fixed). Finally, we found
that administrator participants gave significantly higher respect
ratings for other administrators/designers than did those in the
operator role.
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We believe these findings have important implications for
human interaction with safety-critical computer systems. By
understanding the effects of risk and role on users’ emotions
and attitudes, designers and researchers may enhance the
quality of communication about a system’s reliability. The
details of our study are presented in the following sections.

2. Related work

Today, there is a growing trend toward incorporating highly
complex automation into modern systems (Redmill & Rajan,
1996). Automated systems can reduce user workload and
improve safety (Satchell, 2016; Wiener, 1988), but they are
sometimes not perfectly reliable. In safety-critical applications
(e.g., drone operations, air traffic controllers), system reliabil-
ity is salient because of the negative consequences associated
with failure. Such accidents are well cited, prompting
researchers to look for ways to improve automated systems
used in safety-critical contexts (Knight, 2002; Parasuraman &
Riley, 1997).

One way to address this problem is by designing more
robust systems. Parnas (Parnas et al., 1990) highlights that
in safety-critical systems, software can provide flexibility by
allowing the system to handle many different inputs.
However, because of the scale and complexity of the tasks,
extensive testing, review, and documentation is needed
throughout the design process to ensure that software is reli-
able. Similarly, Lutz and Mikulski (Lutz & Mikulski, 2003)
note how insufficient design requirements can lead to system
failure, and so evolution of software requirements following
failures can make the system more robust in future situations.
However, events not anticipated during the design process
may still have irreversible consequences that can jeopardize
the safety of people, property or the environment (Knight,
2002). As a result, human users are needed to take control of
the system at times (Sheridan, 1992).

Moreover, there is evidence that increasing automation
reliability does not necessarily improve performance. Prior
work has demonstrated that high reliability automated sys-
tems may experience poor performance due to a lack of
etiquette in their communication to users (Parasuraman &
Miller, 2004) or due to “automation-induced complacency”
(Molloy & Parasuraman, 1996; Singh, Tiwari, & Singh, 2009).
Thus, designing for better reliability is not sufficient for the
success of the system - the user’s interests must also be
considered.

Freedy et al. (Freedy, DeVisser, Weltman, & Coeyman, 2007)
define this interaction between human and automated control as
a collaborative mixed initiative system. Researchers on human-
automation interaction also note that, compared to automation,
humans are more flexible and “better equipped to respond to
hanging or unpredictable conditions” (Parasuraman & Riley,
1997; Singh et al., 2009). The outcomes of such a collaboration
thus depend on effective communication of task-relevant infor-
mation between the involved parties. This includes communica-
tion of (1) system states and reliability to the user and (2) user
thoughts and feelings to the system.

2.1. Information reduction vs. information overload

To improve system usability and reduce users’ cognitive load,
current system interfaces rely heavily on information reduc-
tion and hiding, rather than revealing too much system infor-
mation to the user (Horvitz & Barry, 1995). Both lack of
transparency and information overload can compromise a
user’s understanding of system capabilities and behavior,
which can lead to misuse or disuse. Misuse entails reliance
on an automated system that is insufficient for achieving
some goal, while disuse represents a lack of reliance on a
system that could actually help (Parasuraman & Riley, 1997).

Muir (Muir, 1994) was one of the first researchers to
consider this as an issue of “trust” in an automated system.
She noted that humans cannot ever have complete knowledge
of a system’s inner workings. However, a user must be able to
predict certain system behaviors for a successful interaction
(Muir, 1994). HCI researchers have subsequently explored
this trade-off as a matter of users’ “trust” toward machines
(i.e., computers, robots, automation), applying human-human
trust concepts to these automated trustees (Lee & See, 2004).

Prior work suggests that, to improve human-machine trust,
information given to users should provide transparency, com-
prehensibility, and predictability of system actions (Beggiato
et al., 2015; Bubb-Lewis & Scerbo, 1997; Choi & Ji, 2015; Itoh
& Inagaki, 2004). Dzindolet et al. (Dzindolet, Peterson,
Pomranky, Pierce, & Beck, 2003) investigated the notion of
predictability, showing that observing system errors led study
participants to distrust the system. However, giving explana-
tions about when errors might occur increased trust and
reliance. Furthermore, Antifakos et al. (Antifakos, Kern,
Schiele, & Schwaninger, 2005) conducted a study where sys-
tem confidence information was provided to study partici-
pants at various risk levels (e.g., low, medium, and high
criticality). They found that displaying system confidence
helped users to predict the system behavior, improving their
trust in the system. In another study, Koo et al. demonstrated
that explanations of “why” a system acts in a certain way (i.e.,
“Obstacle ahead”) improved trust and driver attitudes, yet a
“how” explanation (i.e., “The car is braking”) was found to
have a negative impact on trust (Koo et al,, 2015). To the best
of our knowledge, there is no prior work that has investigated
the effect of risk and role on users’ consideration of safety-
critical system performance information.

2.2. User emotions

In situations involving risk and uncertainty, decision-making
becomes more challenging not only because of the increase in
cognitive workload, but also because of the strong effect of
emotions (Kahneman & Tversky, 1979; Loewenstein, Weber,
Hsee, & Welch, 2001). In their prominent review of trust in
automation research, Lee and See concluded that “information
that forms the basis of trust” grows out of human users’ analytic,
analogical, and affective processes, with the affective processes
tending to have a dominant influence on the others (Lee & See,
2004). Yet, limited prior work has looked into the emotions
associated with safety-critical human-automation interaction.
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We expect emotions to be particularly relevant to user behavior
with safety-critical computer systems.

Buck (Buck, 2014) has suggested that the GREAT emo-
tions, Gratitude, Respect, Elevation, Appreciation, and Trust,
are continually, albeit unconsciously, expressed and
exchanged during the course of human-human interaction.
Their function is to maintain the dignity and self-respect of
each interaction partner. Buck notes that the more each inter-
action partner gives away the GREAT emotions, the more
they tend to receive them from their partner in return.

Although the presence of the GREAT emotions in HCI has
not been studied, we believe that humans apply them to non-
human, automated interaction partners in a similar fashion.
Nass et al. have studied social responses to computers, finding
that despite denying so, users apply social norms to their
automated interaction partners (Nass, Steuer, & Tauber,
1994). For example, in one lab experiment, participants who
evaluated a computer’s performance on a different computer
gave more negative ratings than those who evaluated its per-
formance on the same computer, although they denied treating
the computer politely after the experiment. Nass et al. sug-
gested that this demonstrates humans using politeness toward
computer interaction partners (Reeves & Nass, 1996).

In the context of human-computer trust-building,
Parasuraman and Miller (Parasuraman & Miller, 2004) have
investigated the role of “etiquette” expressed by an automated
system. They define “etiquette” as a “set of prescribed and pro-
scribed behaviors that permits meaning and intent to be ascribed
to actions.” They conducted an experiment where participants
interacted with a partially-automated flight simulator and com-
pared a rude and intrusive communication style (ie., lack of
etiquette) to a more patient one. They found that good automa-
tion etiquette significantly improved system performance and
user trust, regardless of system reliability. We build upon this
work by considering the communication of system performance
information as a form of “etiquette” and exploring its influence on
user emotions.

Specifically, in this study, we investigate users’ GREAT
emotions and their thoughts about 4 aspects of a safety-
critical drone system’s reliability across 2 roles and 3 risk
levels. We aim to leverage this information to improve both
a system’s expressive communication to users about its per-
formance, as well as its ability to adapt to user emotions.

3. Methodology
3.1. Study design

The goal of this study is to better understand the effect of
safety-critical system performance information on human
users’ thoughts and feelings, which influence decision-making
and, thus, the outcomes of the human-computer collabora-
tion. Specifically, this study seeks to answer the following
questions:

o How does level of risk influence users’ attitudes about
different aspects of system performance?

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION e 3

» How does a human’s role with respect to a safety-critical
system and task influence attitudes about different
aspects of system performance?

o What information regarding system performance is
important and relevant to users to improve usability in
safety-critical systems?

o Are the GREAT emotions relevant to safety-critical

human-computer interaction?

To answer these questions, we designed six hypothetical
scenarios involving safety-critical drone operations. Among
multiple possible safety critical technologies (e.g., smart grid,
self-drive car, assisted robots, drones), this study uses drones
as an example as they are utilized for diverse applications
(e.g., purely entertainment, border patrol, war). The experi-
ment was a 3 (risk level: high/medium/low risk) x 2 (role:
drone operator/system administrator), between-subject fac-
torial design in which participants were randomly assigned
to one of the six hypothetical scenarios.

The three “risk levels” used in the study are as follows:

o High Risk: The drone is over a battlefield, and decisions
involve identifying enemy targets who may be innocent
civilians.

o Medium Risk: The drone is over a border region, and
decisions involve arresting suspected illegal immigrants
who may be innocent citizens.

o Low Risk: The drone is over the ocean, and decisions
involve identifying whale pods or non-interesting seals
for a company.

The two “roles” used in the study are as follows:

o System Administrator: The task involves managing a
drone that is used by someone else (e.g., operator), and
making sure the system is working/operating properly.

o System Operator: The task involves making decisions
with and operating a drone that is overseen by an
administrator.

3.2. Survey

We designed a survey consisting of multiple parts as follows.

First, participants were asked to answer demographic ques-
tions (e.g., age, gender, and level of education) and to report
their level of computer proficiency. They were then shown a
video providing brief information about what drones are and
how they can be used for different purposes. A screenshot
taken from this video is shown in Figure 1. Following the
video, participants were asked if they understood what drones
are, as well as whether or not they had prior experience with
drones (for either fun or professional reasons).

Subsequently, participants were randomly assigned to one
of the six scenarios and asked to provide a written explanation
about how the system is operated, how reliable the system is,
what their respective roles and tasks are in the given scenario,
and the risks associated with decisions to be made. The
descriptions of the scenarios were identical with the exception
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Figure 1. A screenshot from the video, showing how a drone system can be
used in a safety-critical scenario (e.g., monitor battlefield). Please note that this
screenshot was taken from a video that is publicly available on YouTube https://
www.youtube.com/watch?v=unv9C2t7f5c. This survey has no association with
the original video creators. We used only parts of the original video to provide
an example of how a drone system can be used in a safety-critical scenario.

of the roles and risk situations they mentioned." This was
meant to ensure that participants understood the assigned
scenario. The particular system was a drone system with
some operational instabilities that could cause negative
performance.

While considering the imagined scenario, participants were
asked to rate the relevance of 4 different aspects of system
reliability to various thoughts related to decision-making with
the system. These four system state items indicate various
aspects of the drone system’s reliability:

« Recent software updates that were applied to fix
unknown bugs

« Highly probable communication errors

o Occasional slow response time

« Low probability of hardware failures

These items were chosen because they communicate differ-
ent types of errors an automated system may have, including
failure to produce a response or message (i.e., communication
errors), technological limitations leading to low accuracy (i.e.,
hardware failures, software bugs), or failure to respond at the
right time (i.e., slow response time) (Singh et al., 2009).

We used five reasoning items adapted from the CASC
(Communication Analytic and Syncretic Cognition) scale
(Chaudhuri & Buck, 1997) to assess how system performance
information influenced users’ reasoning. The rational component
of the CASC scale was comprised of the following five items:

« Make you think of X

» Make you think of pros and cons of X

o Make you think of arguments for or against regarding X
» Make you think of facts about X

o Make you think of facts about consequences of X

In our study, X is a statement reflecting the risk level of the
participant’s situation (e.g., innocent civilians are among the

enemy target when using this system). For example, partici-
pants in the high-risk scenario were asked “Would [slow
response time] [make you think] whether [innocent civilians
are among the enemy target], when using this system?” on a
scale ranging from 1 (definitely no) to 7 (definitely yes).

As these five items were found to be significantly positively
correlated with each other, we combined them into a single,
averaged “reasoning” item for each of the 4 pieces of system
performance information. The index items were very reliable
(Cronbach’s « ranging from 0.902 to 0.918) (McKinley,
Manku-Scott, Hastings, French, & Baker, 1997).

Moreover, to determine which system reliability informa-
tion was most relevant to users, participants were asked to
rank the importance of the system state information on a scale
ranging from 1 (not at all important) to 7 (most important).
Participants were also asked to provide open-ended commen-
tary on their reasoning: “Can you please explain the reason
behind your answer to the above question in a few sentences?”

Finally, to examine the relevance of the GREAT emotions
to safety-critical human-computer interaction, participants
were asked to rate the expected intensity of the GREAT
emotions (gratitude, respect, elevation, appreciation, and
trust) on a 7-point Likert scale.

3.3. Participants

We recruited participants from Amazon’s Mechanical Turk
(i.e., MTurk) platform, restricting participants to those
18 years of age or older, currently living in the United States,
having greater than 1000 approved HIT’s (Human Intelligence
Tasks), and having HIT approval rate greater than 95%.

A total of 300 participants were recruited. However, we
removed 4 responses from participants who failed to answer
or did not provide a proper answer to the attention check
question, which was asked to ensure that participants under-
stood the scenario. Thus, a total of 296 valid responses were
included in our analysis. Table 1 shows the distributions of
participants in each risk level and role.

On average, participants took 17.7 minutes (Median= 14.8,
SD = 11.6 minutes) to complete the survey for which they
were compensated $3. The study was approved by the
University’s Institutional Review Board (IRB).

3.4. Demographics

Out of the 296 participants who completed the survey, 158
(53.4%) were male. Participants’ age ranged from 19 to 67
with an average age of 33.5 years (median = 32, std = 9.4). All
but 3 participants reported English as their native language.

Table 1. 6 hypothetical scenarios — 3 risk levels (i.e., high, medium and low risk)
and 2 roles (i.e., administrator and operator). The number of participants in each
scenario is also shown.

Number of Participants Role Risk level
Scenario-1 48 System Admin High
Scenario-2 51 System Operator
Scenario-3 49 System Admin Medium
Scenario-4 49 System Operator
Scenario-5 50 System Admin Low
Scenario-6 49 System Operator
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In terms of education level, 89.8% of participants reported
having some form of postsecondary education (e.g., college or
university), and the most frequently reported education level was
a 4-year college degree 43.2% (128). The breakdown of the other
reported education levels as follows: high school/GED (10.1%; 30),
some college (23%; 68), 2 year college (14.9%; 44), master’s degree
(6.4%; 19), doctoral or professional degree (2.4%; 7). In terms of
reported knowledge about computers in general, the majority of
participants identified themselves as “proficient” 150 (50.7%) and
“competent” 90 (30.4%), while 42 (14.2%) as “expert,” 9 (3.0%) as
“beginner,” and 5 (1.7%) as “novice.” Moreover, 7 (2.4%) partici-
pants reported that they did not know what drones are before
watching the video. After watching the video, all but one partici-
pant reported that they understood what drones are. Overall, 39
(13.2%) participants reported having had experience with drones
for either fun or professional reasons.

4. Findings
4.1. Sample statistics

To examine demographic differences among the six groups, we
performed exploratory analysis with gender, age, level of edu-
cation, knowledge about computers, and prior experience with
drones. Results revealed that there were no significant differ-
ences in gender (y*(5) = 5.79, p = 0.32), age (x*(5) = 4.93, p
= 0.42), education (y*(5) = 6.28, p = 0.27), reported computer
expertise (y*(5) = 7.86, p = 0.16) nor having prior experience
with drones (y?(5) = 5.12, p = 0.40) between the groups.

Based on our analysis, we concluded that the six sub-
groups (scenario-1 to scenario-6) recruited were very similar
in terms of demographics.

4.2. What information about system performance
influences users' reasoning?

To examine the effect of system performance information on
participants’ reasoning across different scenarios and roles, we
performed a two-way ANOVA with risk level (high, medium
or low risk) and role (administrator or operator) for each
averaged reasoning item corresponding to one of the 4 pieces
of system performance information.

There was a significant main effect for “communication
errors” with respect to risk level of the situation, F
(2,290) = 7.52, p < .001. Participants in the high-risk scenario
reported they would be more concerned about “communica-
tion errors” (Mean = 5.46, SD = 1.42) than participants in the
medium-risk scenario (Mean = 5.42, SD = 1.35) and low-risk
scenario (Mean = 4.76, SD = 1.44). A series of post hoc
pairwise comparisons using Bonferroni correction revealed a
significant difference in ratings between the high- and low-
risk scenarios (p = .002), as well as those between the med-
ium- and low-risk scenarios (p = .004). Moreover, as shown in
Figure 2, participants in the system operator role generally
gave higher ratings than those in the system administrator
role. Mean ratings for system administrators were 5.33, 5.28,
and 4.79, whereas the mean ratings for system operators were
5.59, 5.56, and 4.74 in high-, medium-, and low-risk situa-
tions, respectively.
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Figure 2. Mean ratings of the reasoning item for “communication errors” for the
3 risk levels and 2 roles. 95% confidence intervals are also included.

There was a significant main effect for “slow response
time” with respect to risk level of the situation, F
(2,290) = 9.88, p < .001. Participants in the high-risk scenario
reported they would be more concerned about “slow response
time” (Mean = 5.06, SD = 1.45) than participants in the
medium-risk scenario (Mean = 4.40, SD = 1.57) and low-
risk scenario (Mean = 4.16, SD = 1.38). A series of post hoc
pairwise comparisons using Bonferroni correction revealed a
significant difference in ratings between the high- and low-
risk scenarios (p < .001), as well as between the high- and
medium-risk scenarios (p = .005). Moreover, as shown in
Figure 3, participants in the system operator role generally
gave higher ratings than those in the system administrator
role. Mean ratings for system administrators were 4.91, 4.35,
and 4.27, whereas the mean ratings for system operators were

Slow Response Time
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6.0 BHigh
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° 04
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Figure 3. Mean ratings of the reasoning item for “slow response time” for the 3
risk levels and 2 roles. 95% confidence intervals are also included.
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5.22, 4.45, and 4.06 in high-, medium-, and low-risk situa-
tions, respectively.

There was a significant main effect for “hardware failures”
with respect to risk level of the situation, F (2,290) = 5.77, p
= .003. Participants in the high-risk scenario reported they
would be more concerned about “hardware failures” (Mean
= 3.72, SD = 1.75) than those in the medium-risk scenario
(Mean = 3.13, SD = 1.65) and low-risk scenario (Mean = 2.98,
SD = 1.41). A series of post-hoc pairwise comparison using
Bonferroni corrections revealed that a significant difference in
ratings between the high- and low-risk scenarios (p = .004), as
well as between the high- and medium-risk scenarios (p
= .031). Moreover, as shown in Figure 4, participants in the
system operator role generally gave higher ratings than those
in the system administrator role. Mean ratings for system
administrators were 3.49, 2.96, and 2.92, whereas the mean
ratings for system operators were 3.95, 3.31, and 3.05 in high-,
medium-, and low-risk situations, respectively.

There were no significant main effects for “software
updates” with respect to risk level of the situation and role
(see Figure 5). Also, there were neither main nor interaction
effects for “role” for any of the system performance
information.

These results suggest that a users’ consideration of different
system performance aspects depends heavily on risk level,
such that for “communication errors,” “slow response time,”
and “hardware failures,” participants were more concerned
about the system being used in higher-risk situations.
However, level of risk did not influence the effect of informa-
tion about “software updates” on participants’ reasoning. This
could be because the statements about “communication
errors,” “slow response time,” and “hardware failures” empha-
size possible failures of the system (e.g., highly probable
communication errors, occasional slow response time and
low probability of hardware failures), while the statement
regarding “software updates” indicates that the software
updates were already applied to fix unknown bugs. Thus,

Hardware Failures
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Figure 4. Mean ratings of the reasoning item for “hardware failures” for the 3
risk levels and 2 roles. 95% confidence intervals are also included.
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Figure 5. Mean ratings of the reasoning item for “software updates” for the 3
risk levels and 2 roles. 95% confidence intervals are also included.

participants’ level of concern about “software updates” did
not vary significantly depending on the risk level of the
situation.

4.3. What information regarding system performance is
important?

To examine the importance of different system performance
information to users in different scenarios and roles, we
performed a two-way ANOVA with risk level (high, medium,
or low risk) and role (system administrator vs. system opera-
tor) for each piece of system performance information.

Results show that “risk level” has a main effect for “slow
response time” (F(2,290) = 5.64, p = .004) and “communica-
tion errors” (F(2,290) = 4.09, p = .018). Participants in the
high-risk scenario (Mean = 5.72, Med = 6) ranked the
expected severity of “slow response time” as more important
than those in the medium-risk scenario (Mean = 5.11, Med
= 5) and low-risk scenario (Mean = 5.21, Med = 5). Similarly,
the expected severity of “communication errors” was rated as
more important by participants in the high-risk scenario
(Mean = 6.12, Med = 6) than participants in the medium-
risk scenario (Mean = 6.09, Med = 6) and low-risk scenario
(Mean = 5.68, Med = 6).

Moreover, “role” has a main effect for “software
updates” (F(1,290) = 6.90, p = .009). Participants in the
role of system operator (Mean = 5.18, Med = 5) ranked
the information about recent software updates as more
important than participants in administrator role (Mean
= 4.71, Med = 5). This result shows two different perspec-
tives based on a human’s role with respect to a safety-
critical system. In particular, participants in the adminis-
trator role may not want to overwhelm system operators
with information about problems that were already fixed.
Thus, from their point of view, the information about
software updates was less important. On the other hand,
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Figure 6. The percentage of participants rated the importance of corresponding information greater than 4 or lower than 5 on a scale ranging from 1 (not at all

important) to 7 (most important).

participants in the system operator role seemed interested
to know what bugs the software update fixed and whether
or not those issues were successfully fixed. Thus, they
would know the limitations of the system and be able to
anticipate the likelihood of future problems (i.e., reliability
and predictability).

We found neither main nor two-way interaction effects
between “role” and “risk level” for the expected probability
of “hardware failures.” It is possible that participants were not
concerned about hardware failures because they were
informed that the probability of them occurring was low
(e.g., once every 6 months). Figure 6 shows the percentage
of participants who rated the importance of corresponding
information greater than 4 or lower than 5 on a scale ranging
from 1 to 7 (most important).

4.4. Correlation between reasoning and importance of
system performance information

To understand how participants’ reasoning related to the
perceived importance of different aspects of system perfor-
mance, we performed a correlation analysis between the rea-
soning item (i.e., the influence) and importance of system
performance information for each of the four pieces of system
performance information. Using Spearman’s coefficients, we
found that the reasoning items were significantly correlated
with the importance of corresponding system performance
information. Specifically, participants who rated the expected
severity of “communication errors” as more important system
performance information were likely to be more concerned
about “communication error” (p = 0.452, p < .001). Similarly,
participants who rated the expected severity of “slow response

time” as more important were likely to be more concerned
about “slow response time” (p = 0.374, p < .001). The same
was true for “hardware failures” (p = 0.216, p < .001) and
“software updates” (p = 0.353, p < .001).

4.5. GREAT emotions

To examine the relevance of the GREAT emotions to safety-
critical human-computer interaction, we first analyzed the
correlations among the GREAT emotions (i.e., Gratitude,
Respect, Elevation, Appreciation, and Trust). Using
Spearman’s coefficients, we found that all the GREAT emotions
were significantly correlated with each other. Specifically, par-
ticipants who trust the system to function correctly are more
likely to be grateful (p = 0.650, p < .001), appreciate (p = 0.610, p
<.001), have respect for the others who manage the system (p
= 0.552, p < .001) and less likely to be suspicious of the system
(p =—-0.410, p < .001), and vice versa (see Table 2).

Next, we performed a two-way ANOVA for each of the
GREAT emotions to observe the effect of different risk levels
and roles. We found a main effect for role (F(1,289) = 4.89, p
= .028) with regard to ratings of respect. Participants in the
system administrator role had higher respect ratings (Mean
= 4.54, Med = 5) than those in the system operator role
(Mean = 4.00, Med = 4). Participants in the system adminis-
trator role were asked to indicate their level of agreement with
“I would have respect for the other system administrators/
designers who work with you to manage the system,” whereas
participants in the system operator role rated their level of
agreement with “I would have respect for the system adminis-
trators/designers who manage the system.” This indicates that
participants with similar administrator responsibilities
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Table 2. Correlations among the GREAT emotions.

Trust Respect Grateful Appreciate
Respect 0.552**
Grateful 0.650%* 0.804**
Appreciate 0.610** 0.818** 0.895**
Suspicious —0.410%* —0.179* —0.257** —0.252**

*Correlation is significant at the 0.01 level.
**Correlation is significant at the 0.001 level.

Respect Rating

System Admin System Operator

Role

Figure 7. Box plot showing the median and interquartile range of rating of
participants who were assigned to system administrator and system operator roles.

indicated higher respect ratings for the system administrators/
designers than participants in the system operator role.
Figure 7 shows the distributions (the median and interquartile
range (IQR)) of ratings of participants assigned to the system
administrator and system operator roles.

5. Discussion

5.1. Effect of system performance information on users’
attitudes toward the system

Results show that information about system performance
influenced participants’ reasoning differently depending on
risk level. Specifically, participants in the high-risk sce-
nario were found to be significantly more concerned
about “communication errors,” “slow response time,” and
“hardware failures.” Concern about “software updates” was
not significantly different across risk levels. This could be
because “communication errors,” “slow response time,”
and “hardware failures” emphasize shortcomings of the
system, whereas the statement regarding “software
updates” indicates an improvement that was made to the
system. Another possible explanation is that many parti-
cipants tend to ignore “software updates” due to unclear
benefits and past negative updating experiences (Fagan,
Khan, & Buck, 2015; Vaniea & Rashidi, 2016). This was
reflected in participants’ comments such as:

“I don’t care much about software updates because I prob-
ably wouldn’t have a full understanding of what they were
saying.” (Low Risk, System Operator)

“Software updates might have resolved the known bugs but
there is no telling yet if they might have negatively affected the
system in other ways.” (Low Risk, System Operator)

“Software update is usually glossed over by most people. As
long as it works, then it works. Merely explain what it fixed.”
(High Risk, System Administrator)

This highlights the importance of transparency and feed-
back regarding system states for influencing users’ attitudes
toward computer systems, especially given their consideration
of the safety-critical risks.

It is possible that some participants overrated the risk in
our particular scenario. For example, some participants in the
low-risk condition (i.e., identifying whale pods) may have
considered the situation to be very risky, since failure would
mean they did not accomplish their only goal and could result
in “job loss.” Nevertheless, even in this artificial scenario-
based methodology, our results revealed considerably diverse
ratings depending on the group to which participants were
assigned. We believe that this work is a useful starting point
for enhancing our understanding of how contextual risk and a
user’s role with respect to a task affect emotions and attitudes
toward safety-critical computer systems.

We also acknowledge that the context of drone use may
have influenced participants’ attitudes toward the imagined
scenario. For example, the mention of a “battlefield” in the
high-risk scenario and “immigration” in the medium-risk
scenario may be contentious topics for participants in the
United States. Institutional trust, or a user’s trust in the
institution behind a computer system, can influence trust in
the system itself (Lee & See, 2004). Thus, participants’ inter-
pretations of the risk level in their scenario may have been
influenced not only by the consequences of poor performance,
but by their own opinions regarding this kind of drone use.

5.2. Perceived importance of different system
performance information

Concerns about “communication errors” and “slow
response time”

We found that each reasoning item was significantly correlated
with the corresponding importance of system performance
information. This suggests that users’ informational needs are
driven by concerns about the context-specific consequences of
system failure, a notion that is particularly relevant for
designers of safety-critical systems used for high-risk tasks.

A majority of participants considered “communication
errors” as the most important system performance information,
followed by “slow response time.” More specifically, 92% of
participants in the high-risk scenario, 89% in the medium-risk
scenario and 78% in the low-risk scenario ranked the importance
of information regarding the expected severity of “communica-
tion errors” higher than 5 on a scale ranging from 1 (not at all
important) to 7 (most important). For the importance of infor-
mation regarding the expected severity of “slow response time,”
83%, 72%, and 71% of participants in the high-, medium-, and
low-risk scenarios, respectively, ranked higher than 5.

Participants stated the reasons why they regarded “com-
munication errors” and “slow response time” as more impor-
tant system state information as follows:
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“The severity of the communication errors was my chief
concern. My second concern was slow response time. If the
drone operating system is lacking, pictures could come in a
few seconds late and innocent civilians could be hurt.” (High
Risk, System Administrator)

“Communication errors is really vital because if there is a
interruption in communication, the correct targets might not be
able to be picked. Slow response time is important because any
lag might make the drone unable to fulfill its purpose.” (High
Risk, System Administrator)

“Communication is important as well as response time in
regards to drones. You as a person are not there. Therefore, you
expect this drone to communicate the video and other things to
you.” (Medium Risk, System Operator)

“I think that the biggest problem for me, as taking the
viewpoint from the person in the scenario, would be the slow
response time. If I spot some movement in the ocean out of the
corner of my eye on the screen, and I need to quickly look over,
I need to do it ASAP. However, if there is a lag in the response
time, then I could lose the animal completely. The same goes for
the communication error, but on a much smaller scale.” (Low
Risk, System Operator)

As suggested by participants’ open-ended responses, the
potential negative consequences of communication errors or
slow response time were more salient than for other pieces of
system state information. It is possible that information about
hardware failures and software updates was less specific com-
pared to that about communication errors and slow response
time. The broad range of outcomes associated with hardware
failures and software updates may have been harder to imagine
and, thus, our findings should be interpreted with caution.

Impact vs. frequency of “hardware failures”
We observed that participants had two different views when
assessing the importance of system state information. Some
focused on the impact of failures, while others considered the
frequency of failures to be more relevant. For example, the
following comments demonstrate these two different views
about “hardware failures™

“I think the hardware failures happen less often so they
would not be a high priority. The other two errors [Slow
response time and Communication errors] happen quite often
so it would be important to tell the operator about them.” (Low
Risk, System Administrator)
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“I think recent updates to software to fix bugs is probably the
most FREQUENT thing that would happen, so I ranked it highest
because of chance of frequency. I ranked the probability of hard-
ware failures lowest in most situations because it is a low prob-
ability of happening. I would trust that this system would operate
well most of the time.” (Low Risk, System Administrator)

“I feel that the probability of hardware failure is of supreme
importance because without the hardware properly functioning,
the drone itself will not be operable. All of the other system
states would be irrelevant if the hardware was completely
down.” (Low Risk, System Administrator)

“It is not as important to know the probability of hardware
failure, because even that is only a probability so it may or may
not happen.” (High Risk, System Operator)

“I simply tried to provide a value to each [System state
information] based on what I perceived to be the level of
urgency or importance.” (High Risk, System Administrator)

Operators’ vs. administrators’ views on “software update”

information

We observed that participants in the system operator role and
those in the system administrator role had completely different
perspectives on the system. Participants’ position relative to the
other agents in the system had an effect on their attitudes about
different system performance aspects. Specifically, regardless of
the risk level, operators and administrators had different views
on the importance of “software update” information. Table 3
shows several sample comments of these participants.

These comments reflect the tradeoff between information
reduction and overload in the face of a complex system. Prior
work has pointed out that it is not uncommon for adminis-
trators to have incomplete mental models of the systems they
manage (Barrett, Maglio, Kandogan, & Bailey, 2004), and
administrators are often hesitant to apply software updates,
which can potentially alter system behavior and the experi-
ence of end-users (Zhou et al, 2007). As administrators
themselves are often not comfortable updating the system
software, it may be the case that they feel like the operators
will be overwhelmed by such information, explaining why
they may be reluctant to convey such information.

While we found that risk level and role appear to influence
participants’ consideration of system performance factors, quali-
tative results shed light on the diverse perceptions held by indivi-
duals of such a system. Past experiences with technology are likely

Table 3. Sample comments of participants in the system administrator role and those in the system operator role on the importance of software update information.

Administrator

Operator

“I would share information that would be relevant to the operation of the
drone. No need to overwhelm them with information about things they will
not effect them or things that are all ready fixed. | would rather they

High Risk

“Foremost | would like to know what problems there were with the system
that required software updates to fix and exactly what the update was
purporting to fix.” (High Risk, System Operator)

remember the things that will allow them to most effectively operate the

drone.” (High Risk, System Administrator)

“The information about software updates is less important from their
[operators’] perspective. This is important to me as | have to maintain the
systems, but typically, users are not interested in such specifics and usually

Medium Risk

they need not be.” (Medium Risk, System Administrator)

“The software update info doesn’t have much to do with the day-to-day
operations so | think that would be irrelevant to the operator.” (Low Risk,

Low Risk
System Administrator)

“The knowledge that there have been updates or fixes to solves issues
with bugs in the system is also quite important in that | can properly
assess the potential weakness and deficiency of the systems in order to
make adjustments as needed so as not to let that affect my reliance on
the system.” (Medium Risk, System Operator)

“| think that it's most important to keep the software updated so that any
known problems are fixed. It is also important to expect problems to
happen.” (Low Risk, System Operator)
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to inform users’ notions of different aspects of system performance
as well. For example, participants’ opinions about software updates
were particularly apparent, as software updates often occur in
personal computing settings. Similarly, the prevalence of mobile
devices for communication may have informed opinions of com-
munication errors and slow response time. We encourage future
work to explore the role of various individual differences and
experiences in shaping perceptions of safety-critical systems, as
this has implications for the efficacy of transparency.

5.3. Presence of the GREAT emotions

The GREAT emotions (i.e., Gratitude, Respect, Elevation,
Appreciation, and Trust) were found to be significantly cor-
related with each other, indicating the validity and reliability
of these emotions. Initially, we expected that the GREAT
emotions would be significantly different depending on risk
level as well as role in the respective scenario. As the imagined
drone system was imperfect and prone to err, participants
were expected to express lower gratitude, respect, apprecia-
tion, and trust ratings along with higher elevation ratings in
the high-risk scenario compared to the low-risk scenario.

We found that respect ratings significantly differed across
roles, with administrator participants indicating higher
respect ratings for other administrators/designers than parti-
cipants in the operator role. This suggests that the system
administrators took into account the responsibilities of a
system administrator, such as being responsible for failure of
the entire task, which led to higher respect ratings. It also
suggests that human agents in a safety-critical system more
positively regard those in roles similar to their own.

We found no significant main effects regarding risk level and
role for the gratitude, appreciation, trust or elevation emotions. A
likely cause of this is that the drone system in our study was
imagined. Participants did not interact with a clear, computer
entity beyond what they could envision in their mind. It is also
important to acknowledge that the “respect” item specifically
referred to system administrators and designers, while other
GREAT emotions were stated relative to the computer system
itself. These represent two distinct yet possibly related feelings. In
our study, it is likely that emotions toward other human agents
were more salient because descriptions of the roles gave specific
mention of those other agents. Meanwhile, the lack of results for
the other emotions is likely due to larger variability in participants’
interpretations of the system, since it was more difficult to imagine
given the lack of actual interaction. In addition, we acknowledge
that because our study was based on self-reported ratings in
response to a hypothetical human-computer interaction, the gen-
eralizability of our findings should be tested using real systems.
However, we believe that this study has identified important
aspects of communication strategies that can guide future research
to improve the design of safety-critical systems.

Because humans treat computers as if they were social actors,
even while acknowledging they are just machines (Nass et al.,
1994), we believe that the GREAT emotions are likely to be
expressed in HCI. Future work should explore the presence of
the GREAT emotions in studies involving actual human inter-
action with a computer system, rather than the imagined sce-
nario in our study.

Moreover, by addressing users’ emotions as they interact with
the system, the communication of relevant system information to
users may be considered a form of etiquette, which has been found
to influence trust and performance in safety-critical HCI
(Parasuraman & Miller, 2004). Future work should further inves-
tigate how different kinds of expressive, emotionally-aware com-
munication between a safety-critical system and its user may be
leveraged to improve the outcomes of such collaborations.

6. Conclusion

Communicating information regarding safety-critical systems’
reliability is one of the main factors that can influence the out-
comes of human-computer collaborations. This study aimed to
understand the effects of different information about the system’s
reliability on users’ rational and emotional processing. Toward
that, we executed a 3 X 2, between-subject factorial experiment in
which participants were asked to imagine themselves in a high,
medium, or low risk scenario in the role of a drone operator or
system administrator. Participants rated the relevance of 4 differ-
ent aspects of system reliability to various thoughts related to
decision-making with the system, and how they would feel the
GREAT emotions while imagining using the drone system.

Results indicate that participants’ reasoning were affected dif-
ferently depending on the risk level of the situation. Participants in
the high-risk scenario were more concerned about “communica-
tion errors,” “slow response time,” and “hardware failures.”
Participants deemed “communication errors” and “slow response
time” as the most important system performance information due
to the impact of potential negative consequences. Moreover, we
found that participant’s role with respect to task had an influence
which led to having completely different perspectives on the
system. While participants in the administrator role seemed to
not want to overwhelm system operators with unnecessary infor-
mation (e.g., already fixed bugs), participants in the system opera-
tor role appeared to seek more information about the limitations
of the system (e.g., what bugs fixed). In regard to users’ emotions,
administrator participants indicated significantly higher respect
ratings than participants in the operator role due to greater
responsibilities of a system administrator. We strongly believe
that insight gained from this study will enable researchers to
develop more effective expressive and scalable communication
strategies for safety-critical systems.

Note

1. The entire written descriptions of scenarios are outlined in the
Appendix.
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Appendix

The Descriptions of the Scenarios:

Through a two-way, 3 (risk level: high risk/medium risk/low risk) x 2 (role: system operator/system administrator) factorial design experiment, participants were assigned
one of the six hypothetical scenarios. Depending on the assigned role and risk level, participants were shown one of the phrasings separated by vertical bars (|) below.
For instance, participants assigned to the system operator role in the high-risk scenario were shown (Role,,,) and (Riskpig), while participants assigned to the system
administrator role in the low-risk scenario were shown (Rolesam) and (Riski,y), and so on. The entire written description of scenarios are outlined below.

Now, imagine that [Role,,: there are system administrators who arel | [Roleqqn: you are the system administrator who is] responsible for:

« Making sure that the software of the system that is used to operate the drone remotely is up-to-date.
+ Making sure that the hardware of the system is up-to-date.

- Troubleshooting of the system if the performance is not acceptable.

« Performing preventative maintenance of the system.

However, despite [Role,y: their] | [Roleqqm: your] best effort, the system is not perfectly reliable and the system occasionally experiences the followings due to
software bugs/hardware failures:

« The system occasionally crashes due to some unknown reasons and takes 2 minutes to reboot, making the system unavailable, and the timing/frequency of

the crash is unpredictable.
« The system occasionally becomes very slow (e.g., freezes for 10 sec at a time) due to unknown software/hardware bugs.

« The system occasionally drops video frames due to communication errors.
- Different hardware components of the system rarely fails (e.g., once every 6 months).

Now, imagine that [Role,,: you are asked to use the system to make] | [Roleqam: the drone that you are responsible for managing is going to be used by someone else
(e.g., operator) whose] decisions involve identifying:

* Risknign : enemy targets in a battlefield where there may be also innocent civilians.
+ Riskmeq : arresting or not arresting suspected illegal immigrants who may be innocent citizens in a border region.
« Riskjo,, : whale pods or non-interesting seals in the ocean for a company.
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Abstract. Users of safety-critical systems often need to make risky deci-
sions in real-time. However, current system designs do not sufficiently
take users’ emotions into account. This lack of consideration may nega-
tively influence a user’s decision-making and undermine the effectiveness
of such a “human-computer collaboration.” In a two-way, 2 (role: oper-
ator/system administrator) x 3 (risk level: high/medium/low) factorial
study, we investigated the intensity of 44 emotions anticipated by 296
Mechanical Turk users who imagined being the (1) operator or (2) admin-
istrator of a drone system identifying (a) enemies on a battlefield, (b)
illegal immigrants or (¢) whale pods. Results indicated that risk level had
a significant main effect on ratings of negative individualistic and nega-
tive prosocial emotions. Participants assigned to the high risk scenario
anticipated more intense negative individualistic (e.g., nervous) and neg-
ative prosocial (e.g., resentful, lonely) emotions and less intense positive
(e.g., happy, proud) emotions than participants assigned to the medium
and low risk scenarios. We discuss the implications of our findings for
the design of safety-critical systems.

Keywords: Emotions - Human-computer interaction
Decision-making - Risk

1 Introduction

Drone systems are increasingly being used for various purposes such as border
patrol, battlefield monitoring, target tracking, and recreational activities. These
systems can malfunction due to environmental factors, communication errors, or
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hardware and software failures, all of which may cause users to experience strong
negative emotions (e.g., anger, anxiety, frustration, regret). Although there is a
growing body of research showing that emotions strongly influence decision-
making under risk and uncertainty [1-3], current safety-critical system designs
do not consider users’ emotions. This is likely to undermine effective decision-
making, as strong emotions (e.g., regret, suspicion) can alter users’ cognitive
process [4].

While the role of emotion was long thought to be disruptive and contrary to
models of decision-making, it is now understood that considering only the ratio-
nal and cognitive is incomplete [5,6]. For instance, prior work in communication
theory and psychology suggests that risky situations involve complex strong
emotions (e.g., fear, suspicion, excitement) and that, if forewarned about what
emotions to expect (i.e., emotional education), people are less surprised by their
emotions [1,4,7]. This can allow for mindful processing of risks (e.g., emotional
inoculation) [6]. Because of the risks faced by safety-critical system users, we
argue that “emotional inoculation” is widely applicable to safety-critical human-
computer interaction, and should be explicitly considered while designing user
interfaces. A system that communicates about emotions can improve decision-
making by allowing users to process the strong negative and positive emotions
that arise in their safety-critical tasks. Before designing such systems, it is impor-
tant to identify the relevant emotions.

As a first step towards this goal, we investigated the effect of risk level and
role on users’ anticipated emotions in a two-way, 2 (role: operator/system admin-
istrator) x 3 (risk level: high/medium/low) factorial experiment. We recruited
296 participants on Amazon’s Mechanical Turk platform and provided them
with a written description of one of six hypothetical scenarios where they were
asked to imagine themselves as a drone operator or system administrator in a
high, medium, or low risk scenario. Participants rated the anticipated intensity
of 44 emotions in their scenario. Our findings show that risk level had a sig-
nificant main effect on negative individualistic emotions and negative prosocial
emotions. Participants in the high risk scenario expected more negative individu-
alistic (e.g., nervous), more negative prosocial (e.g., resentful, lonely) and fewer
positive (e.g., happy) emotions than participants in the medium and low risk
scenarios. Insights gained in this study can enhance our understanding of the
emotional aspects of decision-making in safety-critical human-computer interac-
tion. The details of our study are presented in the following sections.

2 Background

2.1 Emotions in Decision-Making

Decision-making is the process of selecting a preferred option or course of action
among a number of choices [8]. For a considerable time, decision-making was
regarded by researchers as a predominantly cognitive process. According to util-
ity theory, decision-makers evaluate the potential consequences of their options
and choose the one they believe will yield the most beneficial result (i.e., the
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“utility-maximizing” alternative) [9]. Research on decision-making in the last
couple of decades has shown that this view is incomplete. There is now a signif-
icant amount of psychological research demonstrating that emotions influence
decision-making in various ways [4,7].

In a review of these works, Loewenstein and Lerner [4] note two different
ways in which emotions enter into a decision: (1) expected emotions and (2)
immediate emotions. Expected emotions are those that a decision-maker thinks
they will experience as a consequence of some decision. Considered alongside the
utility model, the decision-maker will evaluate the consequences of their options
and choose that which they expect to maximize positive emotions and minimize
negative emotions. Immediate emotions are those experienced at the time of
decision-making.

Prior work suggests that immediate emotions and expected emotions are
interconnected: immediate emotions can impact expectations about future emo-
tions, while expected emotions that are anticipated by a decision-maker can
influence their current emotional state [4]. For instance, studies have shown that
if a decision-maker is presently experiencing positive emotions, his or her eval-
uation of certain options is likely to be more positive, while those experiencing
negative emotions are likely to make more negative evaluations [10,11]. This
is exemplified by a “hot/cold empathy gap,” in which individuals in a “hot”
emotional state (e.g., angry) have been observed to poorly predict their feelings
or behavior when in a “cold” state (e.g., not angry) [12]. Additionally, find-
ings that positive emotions broaden attentional focus while negative emotions
narrow it [13,14] suggest that the valence and nature of an individual’s imme-
diate emotions influence their cognitive processing. These dynamics have clear
implications for decision-making.

In situations involving risk and uncertainty, not only is there a potential
increase in cognitive workload, but the effects of the decision-maker’s emotions
become more pronounced [1,3]. The “risk as feelings hypothesis” explores this
notion to explain behavioral responses that differ from what individuals cog-
nitively view as the best course of action. While moderately intense emotions
tend to play an “advisory role,” and their influence on an individual’s judgment
can often be limited [4,15], strong emotions generally exert more control over
behavior. The “risk as feelings hypothesis” lends this to the role of “anticipa-
tory” emotions such as fear, worry, and anxiety as inputs in the decision-making
process. Specifically, there are a different set of determinants for cognitive evalu-
ations of risk and emotional reactions to risks. While the former is influenced by
factors such as outcome probability and severity, emotions are influenced more so
by the vividness of imagined consequences or experience with certain outcomes.
For instance, feelings about risk have been found to be insensitive to changes in
probability, contrary to cognitive evaluations of risk [1].

Use of safety-critical systems is a high-risk, decision-making context where
both moderate, advisory emotions and stronger emotions are likely to be at play.
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2.2 Emotions in Human-Computer Interaction

Safety-critical system users such as drone operators and air traffic controllers
often need to make decisions under uncertainty and time pressure. As wrong
decisions may lead to serious consequences for people, property and the envi-
ronment [16], users of such systems are likely to experience strong anticipatory
emotions. Likewise, although the probability of the computer system failing is
likely to be low, the potential negative consequences can be emotionally salient.
Therefore, it is important to understand what specific emotions may be experi-
enced by users.

Interaction with computers is often portrayed as a purely cognitive endeavor,
given that the machines literally operate based on logic. However, recent research
highlights the importance of emotional considerations in human computer inter-
action, wherein a computer that can recognize human emotion can appropriately
respond its user’s emotions, thus improving the user experience and outcomes
of the interaction [17-20]. In one application, Jones and Jonsson [21] proposed
an emotionally responsive car system that tracks the emotional state of a driver
based on their speech. This information is then used to modify the car’s navi-
gational voice, which can relax a tense driver or make them happier about the
current conditions. This can improve the driver’s concentration and improve
safety. This study reports promising results on the potential for emotions to be
actively and effectively leveraged in safety-critical human-computer interaction.

Recently, Buck et al. [22] presented the User Affective eXperience (UAX)
scale, measuring self-reported emotions that were anticipated in response to
pop-up software update messages. They reported 4 latent factors (positive affect,
anxiety, hostility and loneliness) which were found to be significantly different
between a pressured condition (imagining working on an urgent and stressful
task) and a relaxed condition (imagining surfing on the Web while relaxing).
Their findings suggest that considering only emotional valence is inadequate,
while distinguishing between individualist and pro-social emotions can paint a
more thorough picture of the dynamics of affect-influenced decision-making in
HCI.

It is fairly obvious that the stress associated with risky, safety-critical system
use may cause a user to experience individualistic emotions such as anger or
confusion. It is less clear for prosocial emotions, such as guilt and shame, which
are those associated with adherence to social norms and group cooperation [23].
First, these are relevant in the drone context because of the presence of other
people: system use can have direct consequences for people on the ground, while
human operators and administrators work together on tasks with the system. Yet
further, a substantial amount of research showing that humans respond socially
to computer interaction partners [24,25] suggests that prosocial emotions may
arise in the “group cooperation” between human members of the team and
the computer system itself. Whereas Freedy et al. [26] sought to define better
performance metrics for the unique “interaction of two cognitive systems” (i.e.,
the human and the computer), we argue that human emotions play an equally
important role in the dynamics of such a “collaborative mixed initiative system”.
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For example, user emotions may contribute to their “trust” in an automated
system, which has been found to influence reliance decisions [27]. Problems of
automation disuse, in which operators do not use a system when it may help,
and misuse, in which operators use a system when it is insufficient for some
task, are well cited and have been linked to poor “calibration” of trust by the
user (“undertrust” and “overtrust,” respectively) [28]. Thus, several researchers
have investigated the factors that influence a trust in automation, often varying
system reliability and measuring trust with self-reports [29]. While it has been
noted that there may be affective components of trust in addition to analogical
ones, the role of emotions in trust decisions has not been sufficiently studied.
Given that the consequences to poor trust calibration may be particularly severe
with safety-critical systems, we argue that affective trust is highly influential on
users’ decision-making.

While some research efforts have investigated the influence of emotions in
human-computer interaction (HCI), to the best of our knowledge, we are the
first to investigate the effects of risk and role on users’ anticipated emotions in
the context of safety-critical drone applications. Specifically, this study expands
upon Buck et al.’s work [22] and explores the anticipated intensity of 44 discrete
emotions across various roles and risk levels with respect to a safety-critical
drone system.

3 Methodology

3.1 Study Design

This study investigates how a safety-critical system users’ anticipated emotions
vary depending on their role and the criticality of the situation. Toward that, we
designed six hypothetical scenarios involving drone operations. Among multiple
possible safety critical technologies (e.g., smart grid, self-driving car, assisted
robots, drones), this study uses drone because they are utilized for diverse appli-
cations (e.g., purely entertainment, border patrol, war).

The experiment was a 2 (role: operator/system administrator) x 3 (risk
level: high/medium/low), between-subject factorial design where participants
were randomly assigned to one of six hypothetical scenarios. Participants were
asked to rate the anticipated intensity of 44 emotions while imagining themselves
in their “risk level” and “role.”

The two “roles” used in the study are as follows:

— System Administrator: The task involves managing a drone that is used
by someone else (e.g., operator), and making sure the system is work-
ing/operating properly.

— System Operator: The task involves making decisions with and operating
a drone that is overseen by system administrators.
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The three “risk levels” used in the study are as follows:

— High Risk: The drone was over a battlefield, and the decisions involve iden-
tifying enemy targets who may be innocent civilians.

— Medium Risk: The drone was over a border region, and the decisions involve
arresting suspected illegal immigrants who may be innocent citizens.

— Low Risk: The drone was over the ocean, and the decisions involve identi-
fying whale pods or non-interesting seals for a company.

The written descriptions of the scenarios were identical with the exception
of the roles and risk level they mentioned, and are outlined in the Appendix.
In particular, the hypothetical drone system had some operational instabilities
that could cause negative performance. This information was intended to stim-
ulate participants’ emotional responses as they imagined making decisions in a
safety-critical situation (i.e., with potentially dangerous consequences) with this
imperfect system.

3.2 Survey

We designed a survey consisting of multiple parts as follows.

First, participants were asked to answer demographic questions (e.g., age,
gender, and level of education) and report their level of computer proficiency.
They were then shown a video about drones and their various applications.
Following the video, participants were asked if they understood what drones are,
and whether they had prior experience with drones (for either fun or professional
reasons).

Subsequently, participants were randomly assigned to one of the six scenarios
and, as an attention check, were asked to provide a written explanation of how
the drone system is operated, how reliable it is, what their role and task was in
the given scenario, and the risks associated with decisions they would have to
make.

Finally, participants were asked to rate the expected intensity of 44 different
emotions on a scale ranging from 1 (the least amount of intensity) to 7 (the
greatest amount of intensity). The emotions were presented in the format “I
would feel [Emotion]” and shown to participants in random order to avoid
biasing them. These emotions were chosen to cover the broad range of emotional
responses one could have while using a computer system [22,30,31]. The list of
the 44 emotions can be seen in Table 3 in the Appendix.

We expected participants in the high risk scenario (i.e., identifying enemies on
a battlefield) to report higher levels of negative emotions (e.g., nervous, anxious)
than those in the medium risk (i.e., identifying illegal immigrants) and low risk
(i.e., identifying whale pods) scenarios. Additionally, we expected the intensity
of negative and positive emotions to vary between operator and administrator
roles in the same scenario due to different responsibilities.

Moreover, prior work has found distinction between individualistic and pro-
social emotions in response to pop-up software update warning messages [22]. In
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our hypothetical context, the distinction between individualistic and prosocial
emotions may also be salient, given that (1) system failure could lead to negative
consequences for other people and (2) the task involves collaboration with other
people and the computer system itself. Thus, we expected to find differences in
individualistic and prosocial emotions across risk levels and roles.

3.3 Participants

We recruited participants from Amazon’s Mechanical Turk (MTurk) platform.
We restricted participants to those 18 or older, currently living in the United
States, having greater than 1000 approved HIT’s (Human Intelligence Tasks),
and having a HIT approval rate greater than 95%.

A total of 300 participants were recruited. We removed the responses of 4
participants who failed to properly answer the attention check question. Thus,
a total of 296 valid responses were included in our analysis. Table1 shows the
distributions of participants among the six groups.

Table 1. 6 hypothetical scenarios: 2 roles (i.e., administrator and operator) and 3 risk
levels (i.e., high, medium and low risk). The number of participants in each group is
also shown.

Number of participants | Role Risk level
Scenario-1 48 System admin | High risk
Scenario-2 51 System operator
Scenario-3 49 System admin | Medium risk
Scenario-4 49 System operator
Scenario-5 50 System admin | Low risk
Scenario-6 49 System operator

Participants took an average of 17.7min (Median=14.8, SD=11.6 min) to
complete the survey and were compensated with $3. The study was approved
by the University’s Institutional Review Board (IRB).

3.4 Demographics

Out of 296 participants who completed the survey, 158 (53.4%) were male. Par-
ticipants’ age ranged from 19 to 67 with an average of 33.5 years (median = 32,
std = 9.4). All but 3 participants reported English as their native language.

In terms of education level, 89.8% of participants reported having some form
of postsecondary education (e.g., college or university) while the most frequent
reported education level was a 4-year college degree 43.2% (128). The breakdown
of the other reported education levels is as follows: high school/GED (10.1%; 30),
some college (23%; 68), 2 year college (14.9%; 44), master’s degree (6.4%; 19),
and doctoral or professional degree (2.4%; 7).
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In terms of reported knowledge about computers in general, 9 (3.0%) partic-
ipants identified themselves as “beginner,” 5 (1.7%) as “novice,” 90 (30.4%) as
“competent,” 150 (50.7%) as “proficient,” and 42 (14.2%) as “expert.” Moreover,
7 (2.4%) participants reported that they did not know what drones were before
watching the video, while only one participant reported not knowing after watch-
ing the video. Overall, 39 (13.2%) participants reported having had experience
with drones for either fun or professional reasons.

To examine demographic differences among the six groups, we performed
an exploratory analysis with gender, age, level of education, knowledge about
computers, and prior experience with drones. The results of the analysis revealed
no significant differences in gender (x2(5) = 5.79, p = 0.32), age (x2(5) = 4.93, p
= 0.42), education (x2(5) = 6.28, p = 0.27), reported computer expertise (x2(5)
= 7.86, p = 0.16) or prior experience with drones (x?(5) = 5.12, p = 0.40) across
the six groups.

Based on our analysis, we concluded that the groups recruited were similar
in terms of demographics.

4 Findings

We first performed an exploratory Principal Component Analysis (PCA) on the
ratings of the 44 anticipated emotions. This analysis allowed us to cluster the
emotions into groups (i.e., factors) and determine the characteristics of each.
Subsequently, for each factor extracted, we performed a 2-way, 2 x 3 (role x risk
level) Analysis of Variance (ANOVA). The details are presented below.

4.1 Factor Analysis

To assess the appropriateness of the collected emotion data for factor analysis,
we first conducted several diagnostic tests using well-known sampling adequacy
measures. Bartlett’s test of sphericity measure is (x?(946) = 8725.2, p < 0.0001)
and the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is 0.934.
According to the Kaiser criterion, 0.9 and above reveals marvelous value [32],
suggesting that our data was correlated and that the variability can be explained
by common factors.

Subsequently, we conducted an exploratory PCA on the ratings of the 44
emotions and extracted 6 emotion factors based on the Kaiser criterion (i.e.,
K1 rule: retain factors if eigenvalue is greater than 1). However, as the Kaiser
criterion often leads to substantial overfactoring [33], we also performed parallel
analysis and determined the optimal coordinates. Briefly, parallel analysis cal-
culates eigenvalues based on the same sample size and number of variables using
sets of random data. Then, each ith eigenvalue obtained from the random data
is compared with the ith eigenvalue produced by the actual data. Based on this
comparison, the eigenvalue is retained if the eigenvalue expected from random
data is greater than the eigenvalue calculated by the factor analysis. The optimal
coordinate method uses linear regression to determine the coordinates where an
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eigenvalue diverges [34]. These two methods (i.e., parallel analysis and optimal
coordinates) are widely used for determining the appropriate number of factors.

As shown in Fig. 1, both parallel analysis and optimal coordinates suggest
extracting three factors for our data. Based on the aforementioned methods,
we extracted three factors. These three factors predicted a cumulative total of
55.78% of the variance where factors 1, 2 and 3 explain 29.51%, 18.97%, and
7.29% of the variance, respectively.

Parallel analysis on random uncorrelated standardized normal

2 © Eigenvalues (>mean = 6)

o4 Optimal Coordinates (n= 3)
Acceleration Factor (n= 2)

Eigenvalues

O“-AO‘ BADAANAAA AA A
oy —CDSABAMMAMAAAAA AN
Coog

00 000000000000000060660G0TToaETs

T T T T T
0 10 20 30 40

Components

Fig. 1. Scree plot showing eigenvalues from the factor analysis, parallel analysis, opti-
mal coordinates, and acceleration factor.

We used Varimax (orthogonal) as the rotation method, wherein prior work
has considered items with a loading above 0.4 to be loaded on a factor [35].
Table 2 shows the rotated factor loadings of 44 emotions as well as the emotions
belonging to each factor. Nineteen emotions such as angry, nervous and dismayed
were included in Factor-1, which was labeled as “Negative individualistic” emo-
tions. Fifteen emotions such as happy, welcomed and grateful were included in
Factor-2, which was labeled as “Positive” emotions. Lastly, ten emotions such as
scornful, disdainful and resentful were included in Factor-3, which was labeled
as “Negative prosocial” emotions. These factors support those found in Buck
et al.’s work [22] in the context of software update pop-up warnings, with our
“Negative individualistic” corresponding to their “Anxious,” our “Positive” to
that of the same label, and “Negative prosocial” to the pair of factors “Lonely”
and “Hostile.”

For our three extracted factors, we also computed reliability measures using
Cronbach’s a.. As shown in the second to last row of Table2, all Cronbach’s «
values are higher than 0.7. According to McKinley et al. [36], @ >0.6 indicates
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Table 2. Factor loadings of the 44 emotions from the factor analysis. The highest
factor loadings of each factor are highlighted in bold to facilitate visualization. The
reliability measures (Cronbach’s « and average inter-item correlation (IIC)) are also
shown in the last two rows.

Factor-1 | Factor-2 | Factor-3
Angry T75
Nervous T73
Dismayed ST71
Anxious .768
Distraught 751
Ashamed .746
Down 732
Embarrassed 731
Afraid 731
Guilty .716
Sad .697
Freaked out .664
Depressed .649
Disgusted .632
Confused .592
Dazed 587
Hostile .528 475
Isolated .514 484
Surprised .444
Happy 776
Welcomed 769
Grateful 762
Admiring .760
Proud 758
Triumphant 758
Powerful 756
Secure 746
Trusting 744
Friendly 737
Cared-for .730
Respectful 717
Confident .681
Vigorous 672
Energetic .668
Scornful .789
Disdainful 745
Resentful .729
Dishonored .716
Contemptuous .709
Humiliated .669
Arrogant .651
Lonely .602
Insulted 1493 571
Abandoned .504 515
Cronbach’s alpha («) | .946 .940 .886
I1C 479 511 .525
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satisfactory internal reliability for all sub-scales. Finally, we calculated average
inter-item correlation (IIC) values. As shown in the last row of Table2, all the
sub-scales are above 0.30, indicating “exemplary” reliability [37]. Based on our
analysis, we concluded that each of the extracted factors had high reliability.

4.2 ANOVA Analysis

As we wanted to better understand how users might feel while using the drone
system in different scenarios and roles, we performed a two-way, (2 x 3) ANOVA
for each emotion factor extracted from the factor analysis. More specifically, the
dependent variables for our three ANOVAs were negative individualistic emo-
tions (factor-1), positive emotions (factor-2), and negative prosocial emotions
(factor-3). We included risk level (high, medium, and low risk), role (system
operator and system administrator), and their interaction effects as independent
variables in each analysis. The details are presented below.

The ANOVA revealed that risk level had a significant main effect on neg-
ative individualistic emotions F'(2,290) =6.8, p=.001 and negative prosocial
emotions F'(2,290) =4.1, p=.017. Participants assigned to the high risk sce-
nario anticipated stronger negative individualistic emotions (e.g., nervous, con-
fused) and negative prosocial emotions (e.g., resentful, lonely), but weaker pos-
itive (e.g., happy, grateful) emotions than those assigned to the medium risk
and low risk scenarios. More specifically, participants in the high risk scenario
(Mean=3.54, SD=1.27) rated higher negative individualistic emotions than
participants in the medium scenario (Mean =3.11, SD =1.32) and the low risk
scenario (Mean=2.88, SD =1.26). A series of post-hoc pairwise comparisons
using Bonferroni correction revealed that the difference in ratings between the

Scenario
M High Risk
#Medium Risk
N Low Risk

Mean Factor Scores

3.07
g
e
2.57 Eodecds
poebeses
e
ssae
G550
2.07
Factor-1 Factor-2 Factor-3
Negative Positive Negative
Individualistic = Emotions Prosocial
Emotions Emotions

Fig. 2. Mean factor scores for the three risk levels (high risk/medium risk/low risk)

for each factor. 95% confidence intervals are also included.
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high risk and the low risk scenarios was significant (p < .001). Similarly, partic-
ipants in the high risk scenario (Mean =2.27, SD =1.16) rated negative proso-
cial emotions higher than participants in the medium risk scenario (Mean =1.95,
SD =1.04) and the low risk scenario (Mean =1.86, SD =0.97). A series of post-
hoc pairwise comparisons using Bonferroni correction revealed that the differ-
ence in ratings between the high risk and low risk scenarios was significant
(p<.021). Although those in the high risk scenario (Mean=3.53, SD =1.48)
rated lower levels of positive emotions than participants in the medium risk sce-
nario (Mean =3.61, SD = 1.30) and low risk scenario (Mean =3.71, SD = 1.40),
the difference in ratings among the three risk levels was not statistically signifi-
cant. The mean factor scores for the three risk levels are shown in Fig. 2.

The ANOVA also revealed that there was no significant main effect on emo-
tions due to role. The mean factor scores for the two roles (operator/system
administrator) can be seen in Fig. 3.

a0 Role
0 B Admin
2 “Operator
8 3.57
(2}
1
9 3.07
o
&
p= 2.57
@
[
= 2.0
1.5 ‘
Factor-1 Factor-2
Negative Positive Negative
Individualistic = Emotions Prosocial
Emotions Emotions

Fig. 3. Mean factor scores for the two roles (system administrator/system operator)
for each factor. 95% confidence intervals are also included.

5 Discussion

Despite a growing body of literature demonstrating the significant role of emo-
tions in the decision-making process, we have a relatively limited understanding
of the specific emotions relevant to high risk decision-making. As safety-critical
technologies such as drones and self-driving cars become more prevalent, so will
the high-risk decisions to which their users must attend. To gain insight into the
effect of risk level and role on safety-critical system users’ emotions, we asked
participants to imagine themselves as a drone operator or system administrator
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in a high, medium, or low risk scenario. They then rated the expected intensity
of 44 emotions while imagining the scenario.

We found that participants in the high risk scenario reported higher levels
of negative individualistic emotions (e.g., angry, nervous), negative prosocial
emotions (e.g., scornful, resentful) and lower levels of positive emotions (e.g.,
happy, grateful) than participants assigned to the medium and low risk scenarios.
These differences were significant between high and low risk participants for
both negative prosocial and negative individualistic emotions. These findings
suggest that, unsurprisingly, use of safety-critical systems may involve strong
negative emotions. The notion that computers are cognitive entities, with which
interaction should be non-emotional in order to be efficient and successful, may
be particularly destructive in this context. A lack of acknowledgment by the
system may not only alter a user’s decision-making, but lead to stronger negative
emotions that impact later interaction.

Developing emotion-aware communication strategies by detecting users’ emo-
tions during system operations can reduce the potentially harmful effects of nega-
tive emotions. Specifically, teaching users to recognize their emotions (emotional
education) may enable them to act more mindfully, and help to lessen the poten-
tial negative effects of strong emotions on decision-making (emotional inocula-
tion) [6]. We argue that “emotional inoculation” is particularly applicable in the
safety-critical domain, such as our hypothetical drone system. Communicating
with users about emotions they may experience while using a system can posi-
tively contribute to both their decision-making outcomes and their perceptions
of the system. Future work should test the effectiveness of safety-critical system
interfaces that incorporate emotional inoculation via different types of messages
and in various decision-making contexts. Furthermore, “emotional inoculation”
and “emotional education” can be incorporated into training materials for safety-
critical system users (e.g., drone operators). Using virtual simulators in realistic
scenarios, such training systems could inform operators about the emotions they
might experience during certain points of system use (e.g., feeling nervous and
anxious during a time-sensitive task) and the nature of the specific emotions in
such situations (e.g., prosocial vs. individualistic, or positive vs. negative). This
can help prepare operators to regulate their reactions under time pressure and
stress while performing complex safety-critical tasks [38].

These kinds of emotional communication can help to improve a user’s trust
calibration. Prior work has found that happiness, as well as “liking” a system
influence reliance [39]. These affective aspects may help to explain changes in
trust over the course of a human-computer interaction [29,39,40]. Future work
should explore how the negative individualistic and negative prosocial emo-
tions associated with safety-critical system use factor into trust evaluations and
reliance decisions, as well as how an understanding of these emotions can be
leveraged to improve system design and trust calibration.
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We also found that, at the same risk level, the intensity of emotion factors
differed (see Figs.2 and 3). Negative prosocial emotions had the lowest mean
intensity in all risk levels and roles, whereas positive emotions and negative
individualistic emotions generally had higher intensity. Though prosocial emo-
tions were not felt as strongly by participants, we observed that their anticipated
intensity differed between high and low risk level participants. It appears that
users are not just thinking about themselves with their use of the drone sys-
tem, but about the involvement of others. This result is in line with research
demonstrating the relevance of both individualistic and prosocial emotions in
the context of pop-up security messages [22]. In the drone context, prosocial
emotions could have been associated with (1) people on the ground who may
have been impacted by the drone, (2) other human collaborators, or (3) the
computer system itself. The latter is supported by research demonstrating social
responses to computers by human users [24]. Future work could shed light on
the specific effect that the computer itself has on user emotions by investigating
how factors of the system and its interface influence the intensity of prosocial
emotions, relative to differences in the context of system use.

Lastly, we found that for all the three factors, the interaction between risk
level and role was not significant. This indicates that participants’ emotions
were more likely to be influenced by the criticality of the situation rather than
their assigned role. It is possible that participants in operator and administrator
roles in the same scenario considered the level of risk the same, and thus the
role to which they were assigned did not make a strong contribution to their
overall feelings. Such a difference may be more pronounced in a lab setting where
participants interact directly with a system. If the user’s role on a task-oriented
team is more linked to their actions, then emotions may be impacted by their
level of responsibility for team success.

5.1 Limitations

While this study provides insights about the effects of risk and role on users’
emotions, there are several limitations in this work.

First, we used hypothetical (i.e., artificial) scenarios in which participants
rated how they would expect to feel as the operator or administrator of a drone
system. Given the lack of actual interaction with a computer system, it may
have been difficult for participants to anticipate the emotions they would expe-
rience. Moreover, this could contribute to misinterpretations of the degree of risk.
For example, some participants in the low risk condition (i.e., identifying whale
pods) may have considered the situation to be very risky, since failure could have
caused “job loss.” Nevertheless, even in this artificial scenario-based methodol-
ogy, our results revealed considerably diverse ratings of emotions depending on
the group to which participants were assigned.
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Second, we recruited participants from the MTurk platform. Although MTurk
allows for recruiting larger and more diverse populations in terms of age, educa-
tion level and ethnicity compared to samples from specific subpopulations (e.g.,
students enrolled in a psychology class) [41,42], it is hard to verify the atten-
tiveness of MTurk users. To filter out responses that demonstrated a lack of
understanding of the scenario, we included an attention check question in the
survey.

Lastly, since our study was survey-based, emotional states of participants
were measured via self-reports. Though our data provides insight into the role of
“anticipated emotions” in a risky human-computer interaction, it needs further
validation given that individuals may have difficulty predicting their emotional
states [43]. To develop a more thorough understanding of user’s emotions, future
studies should investigate the somatic components (e.g., facial expressions and
the heartbeat) [44] of “immediate emotions” in studies involving actual human
interaction with a computer system.

We believe that this work is a useful starting point for research on the role of
emotions in decision-making with safety-critical systems, which has important
implications for system interface design. We encourage future work to investigate
the specific factors that influence user emotions (e.g., risk and the nature of
consequences, organizational structure, system features) as well as the influence
that different types of emotions have on decision-making, behavior, and system
performance.

6 Conclusion

This study aimed to understand the role of emotions in decisions at various risk
levels and responsibilities with respect to a safety-critical system. Participants
were asked to rate the intensity with which they would feel 44 emotions while
imagining using a drone system in one of six hypothetical scenarios where they
were asked to imagine themselves as a drone operator or system administrator
in a high, medium, or low risk scenario. We found that participants assigned
to the high risk scenario anticipated more intense negative individualistic, neg-
ative prosocial and less intense positive emotions than participants assigned to
medium and low risk scenarios. We strongly believe that insights gained in this
work will enable researchers to develop more effective emotionally-aware com-
munication strategies for safety-critical systems.

Acknowledgments. This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-15-1-0490.
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Appendix

The Descriptions of the Scenarios

Through a two-way 2 (role: system operator/system administrator) x 3 (risk
level: high risk/medium risk/low risk) factorial design experiment, partici-
pants were assigned to one of the six hypothetical scenarios. Depending on
the assigned role and risk level, participants were shown one of the phrasings
separated by vertical bars (|) below. For instance, participants assigned to
the system operator role in the high risk scenario were shown (Roleoy-) and
(Riskpign), while participants assigned to the system administrator role in
the low risk scenario were shown (Rolegdm ) and (Riskiow ), and so on. The
entire written description of scenarios are outlined below.

Now, imagine that [Rolep,: there are system administrators who are| |
[Roleqdm: you are the system administrator who is] responsible for:

— Making sure that the software of the system that is used to operate the
drone remotely is up-to-date.

— Making sure that the hardware of the system is up-to-date.

— Troubleshooting of the system if the performance is not acceptable.

— Performing preventative maintenance of the system.

However, despite [Rolep,: their] | [Roleqdm: your] best effort, the system is
not perfectly reliable and the system occasionally experiences the followings
due to software bugs/hardware failures:

— The system occasionally crashes due to some unknown reasons and takes
2min to reboot, making the system unavailable, and the timing/frequency
of the crash is unpredictable.

— The system occasionally becomes very slow (e.g., freezes for 10s at a time)
due to unknown software/hardware bugs.

— The system occasionally drops video frames due to communication errors.

— Different hardware components of the system rarely fails (e.g., once every
6 months).

Now, imagine that [Role,y: you are asked to use the system to make] |
[Rolegdm: the drone that you are responsible for managing is going to be used
by someone else (e.g., operator) whose] decisions involve identifying:

— Riskpign: enemy targets in a battlefield where there may be also innocent
civilians.

— Riskpeq: arresting or not arresting suspected illegal immigrants who may
be innocent citizens in a border region.

— Riskje: whale pods or non-interesting seals in the ocean for a company.
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Table 3. Participants were asked to rate the expected intensity of these 44 emotions

on
int

a scale ranging from 1 (the least amount of intensity) to 7 (the greatest amount of
ensity).

Emotions

. I would feel TRUSTING (e.g. because the system has given an opportunity to respond)

. I would feel HAPPY (e.g., because I am informed of actual system states)

. I would feel CONFIDENT (e.g., because I am informed of actual system states)

. I would feel SECURE (e.g., because I am informed of actual system states)

. I would feel SAD (e.g., because the system is not performing as expected)

. I would feel DEPRESSED (e.g., because the system is not performing as expected)

. I would feel DOWN (e.g., because the system is not performing as expected)

. I would feel AFRAID (e.g., because the system is not performing as expected)

1
2
3
4
5
6
7
8
9

. I would feel NERVOUS (e.g., because the system is not performing as expected)

1

0. I would feel ANXIOUS (e.g., because the system is not performing as expected)

1

1. I would feel ANGRY (e.g., because the system is not performing as expected)

1

2. I would feel INSULTED (e.g., because the system is not performing as expected)

1

3. I would feel HOSTILE (e.g., because the system is not performing as expected)

1

4. T would feel SURPRISED (e.g., because one does not expect the interruption)

1

5. I would feel DAZED (e.g., because one does not expect the interruption)

1

6. I would feel CONFUSED (e.g., because one does not expect the interruption)

1

7. I would feel FREAKED OUT (e.g., because one does not expect the interruption)

1

8. I would feel DISGUSTED (e.g., because the system is not performing as expected)

1

9. I would feel DISMAYED (e.g., because the system is not performing as expected)

2

0. I would feel DISTRAUGHT (e.g., because the system is not performing as expected)

2

1. I would feel CARED-FOR (e.g., because I am informed of actual system states)

2

2. T would feel FRIENDLY (e.g., because I am informed of actual system states)

2

3. I would feel WELCOMED (e.g., because I am informed of actual system states)

2

4. I would feel POWERFUL (e.g., because I am warned and can respond)

2

5. I would feel ENERGETIC (e.g., because I am warned and can respond)

2

6. I would feel VIGOROUS (e.g., because I am warned and can respond)

2

7. 1 would feel ISOLATED (e.g., because my response may be inadequate)

2

8. I would feel LONELY (e.g., because my response may be inadequate)

2

9. I would feel ABANDONED (e.g., because my response may be inadequate)

3

0. I would feel PROUD (e.g., because I am warned and can respond)

3

1. I would feel TRIUMPHANT (e.g., because I am warned and can respond)

3

2. I would feel ARROGANT (e.g., because I am warned and can respond)

3

3. I would feel ASHAMED (e.g., because my response may be inadequate)

3

4. T would feel GUILTY (e.g., because my response may be inadequate)

3

5. I would feel EMBARRASSED (e.g., because my response may be inadequate)

3

6. I would feel SCORNFUL (e.g., because the system state is fine)

3

7. I would feel CONTEMPTUOUS (e.g., because the system state is fine)

3

8. I would feel DISDAINFUL (e.g., because the system state is fine)

3

9. I would feel HUMILIATED (e.g., because the system state is fine)

4

0. I would feel DISHONORED (e.g., because the system state is fine)

4

1. I would feel RESENTFUL (e.g., because the system state is fine)

4

2. I would feel GRATEFUL (e.g., because the system has given an opportunity to respond)

4

3. I would feel RESPECTFUL (e.g., because the system has given an opportunity to respond)

4

4. I would feel ADMIRING (e.g., because the system has given an opportunity to respond)
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Abstract

Trust in automation has been largely studied through a cognitive lens, though theo-
ries suggest that emotions play an important role. Understanding the affective aspects
of human-automation trust can inform the design of systems that garner appropriate
trust calibration. Toward this, we designed 4 videos describing a hypothetical drone
system: one control, and three with additional performance or process information, or
both. Participants reported the intensity of 19 emotions they would anticipate as sys-
tem operator, perceptions of the system’s trustworthiness, individual differences, and
perceptions of the government law enforcement agency behind the system. We found
that propensity to trust, risk-taking tendencies, and institutional trust influenced the

intensity of anticipated emotions.
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1 Introduction

Due to the increasing complexity and variety of applications of automated systems, HCI
researchers have investigated the phenomenon of a human’s “trust” in automation (J. D. Lee
& See, 2004; Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003). Inappropriate levels
of trust in such systems can lead to disuse of reliable automation or misuse of unreliable
automation, both of which have well-cited negative consequences (Parasuraman & Riley,
1997). To prevent these outcomes, calibration of trust has been suggested as a design goal—
rather than trusting more, users should be able to “calibrate” their trust to an appropriate
level given the reliability of the system (J. D. Lee & See, 2004).

Researchers have noted that human-automation trust has cognitive and affective com-
ponents (J. D. Lee & See, 2004), suggesting that the affective components may be stronger
indicators of trust (Madsen & Gregor, 2000). Despite this, studies of emotions and human-
automation trust are relatively scarce. This can be problematic given increasing use of
safety-critical automated systems (e.g., autonomous cars, medical diagnostic systems, un-
manned aerial vehicles (Carlson, Desai, Drury, Kwak, & Yanco, 2014; Freedy, DeVisser,
Weltman, & Coeyman, 2007)), where risks are likely to strongly influence users’ emotions
and decision-making (Loewenstein & Lerner, 2003). Understanding how emotions relate to
trust in this context can not only help to improve trust calibration, but reveal the emotional
effects of risky human-automation collaborations on users.

In the current study, we aimed to observe how various trust-related factors influenced
emotions anticipated in the context of drone operation. We designed 4 videos to test the
isolated and cumulative effects of performance and process information about a hypothetical
drone system used to assist law enforcement in a surveillance task. We recruited 160 partic-
ipants for an online survey, randomly assigned each to a video, and asked them to imagine
being the system operator. Participants then responded to a survey on the anticipated
intensity of 19 emotions, perceived trustworthiness of the drone system, and institutional

trusting beliefs in situational normality and structural assurance. They also reported on
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demographics, propensity to trust, and domain-specific risk-taking tendencies.

Emotions factored into hostility, positive, anxiety, and loneliness components and we
constructed multiple linear regression models predicting each with system information, in-
dividual differences, and institutional trust. We found that financial risk-taking increased
anticipated hostility emotions, while recreational risk-taking led to the anticipation of more
intense positive and less intense anxiety emotions. Propensity to trust predicted less intense
loneliness emotions. Institutional trust influenced emotions as well. Whereas greater percep-
tions of the institution’s ability led to more intense hostility emotions, greater perceptions of
the institution’s benevolence led to less intense hostility. Perceptions of institutional integrity
also appeared to increase positive and decrease anxiety emotions. Structural assurance led
to the anticipation of less intense hostility and anxiety and more intense positive emotions.
These results offer initial support for a relationship between human-automation trust and
emotions, warranting future research on how operator emotions can be addressed to improve

trust calibration.

2 Related Work

Imagine a busy intersection that you pass through on your way to work, where an automated
system controls the traffic lights using sensors in the road. When the system functions
reliably, it is almost invisible. The light turns from red to green and you move on. Yet
imagine your frustration after being stuck indefinitely at a red light that won’t change—you
may curse at the incompetence of the technology and blame the system for wasted time.
Moreover, you will likely adjust your perceptions of the system’s trustworthiness, perhaps
even avoiding this intersection in the future because of your frustration. This highlights the

intersection between human-machine trust and emotions.
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2.1 Trust in HCI

Prior work has not only explored trust between humans in online settings, social media and
computer-mediated communication (Warner-Sgderholm et al., 2018; McKnight, Choudhury,
& Kacmar, 2002a; Walther & Bunz, 2005), but trust between a human and computers,
robots, and automation in general (J. D. Lee & See, 2004; Hoff & Bashir, 2015). We adopt
one of the most widely cited definitions of human-human trust, which has been employed

previously in the HCI literature, from R. C. Mayer, Davis, and Schoorman (1995):

The willingness of a party to be vulnerable to the actions of another party based
on the expectation that the other will perform a particular action important to

the trustor, irrespective of the ability to monitor or control that party.

A key part of this definition is “vulnerability.” A trustor necessarily accepts some risk
in their decision to rely on the trustee. In the above example, vulnerability stems from the
risk of wasting time at the light and the fact that the system’s actions cannot be controlled.
You may decide to avoid the intersection because you are no longer willing to rely on the
system to give a green light in a reasonable amount of time.

R. C. Mayer et al. (1995) propose that perceptions of the trustee’s ability, integrity, and
benevolence (i.e., perceived trustworthiness characteristics or trusting beliefs) influence the
trustor’s willingness to rely. Ability or competence refers to the trustee’s skills within the
relevant domain. Integrity reflects a belief that the trustee acts based on a set of predictable
principles. Benevolence relates the extent to which a trustee is motivated to do good for the
trustor. These characteristics have been adapted in the human-automation domain as the
performance, process, and purpose, respectively, of an automated trustee (J. Lee & Moray,
1992). Performance refers to the consistency and reliability of system behavior. Process
details the qualities that govern system behavior, such as its algorithms. Purpose is the
motive or goal of the system.

So, cognitively, your bad experience with the traffic light system informs your perceptions
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of its trustworthiness and, thus, your expectations of its future behavior. Yet, at the same
time, trust may be experienced emotionally. J. D. Lee and See (2004) highlight the impor-
tance of the affective aspect of trust in their influential review of the trust in automation
literature: “Ultimately trust is an affective response, but it is also influenced by analytic and
analogical processes”. Some researchers have begun to study the nature of system operators’
and administrators’ emotional experiences, as well as how information about a drone system
is regarded by individuals in these roles (Albayram, Khan, Jensen, Buck, & Coman, 2018;
Albayram, Jensen, Khan, Buck, & Coman, 2018). However, in general, the role of affect in
human-automation trust is not well understood.

According to the Computers are Social Actors (CASA) paradigm, social science theories
often extend to interactions where one person is replaced by a computer (Nass, Steuer,
& Tauber, 1994). For example, one experiment found that people demonstrate politeness
toward computers, in that they were less critical when giving a direct evaluation as opposed
to feedback on a separate machine (Reeves & Nass, 1996) (see Nass et al. (1994) for more
CASA examples). Thus, we look to the human-human trust literature for insights into the

role of emotions in trust.

2.2 Emotion in Human-Human Trust

Though we refer distinctly to “emotions” and “trust,” these words may represent constructs
that are highly interrelated. Researchers have considered the relationship between trust and
emotions in a number of ways.

Boone and Buck (2003) argue that emotional expression by humans functions as a marker
for cooperative behavior and trustworthiness, citing several studies on the dyadic prisoner’s
dilemma. In this trust-based activity, each individual must decide either to cooperate with
or defect from their partner. If both cooperate, they each serve a 2-year prison sentence.
If both defect, they each serve 5 years. If one defects and one cooperates, the defector is

free and the cooperator serves 10 years. As the act of cooperating makes you vulnerable
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to the risk of your partner not cooperating, it is useful to know whether or not to trust
your partner, wherein authors note the role of emotions: “Being more emotionally expres-
sive makes being trustworthy harder to fake and players would have greater confidence that
what they see is the true state of the person in question” (Boone & Buck, 2003). Although
computers are not emotionally expressive in the way that humans are, the aforementioned
CASA research suggests that human-computer trust too may involve “emotional” cues that
signal the computer’s trustworthiness to the human trustor, albeit differently from familiar
human cues such as facial expressions and body language.

Applying the affect-as-information (Schwarz & Clore, 1983) and affect infusion mod-
els (Forgas, 1995), W. S. Lee and Selart (2012) argue that individuals’ regulation of and
attention to affect influence the extent to which emotions influence their trust. Specifi-
cally, affect-as-information suggests that individuals use their mood to inform their trust
judgment. Affect infusion, also known as affect priming, suggests that trust judgments of
atypical or peripheral objects (e.g., an unfamiliar target of initial trust) are more likely to
be influenced by emotions than those using more direct cognitive processing. Authors point
to the fact that perception of risk, an essential condition of trust, is influenced by emo-
tions (W. S. Lee & Selart, 2012). This motivates the current investigation of the emotions
involved in risky human-computer interaction.

Dunn and Schweitzer (2005) similarly investigated the influence of incidental emotions
(i.e., those unrelated to the trustee) on trust evaluations in 5 experiments. They found
that emotions with other-person control appraisals (e.g., anger) and those with weak control
appraisals (happiness) had a greater influence on trust than emotions with personal (pride)
or situational (sadness) control appraisals. They also found that awareness of the causes of
emotions and familiarity with the trustee both lessened the impact of emotions on trust.

We focus on anticipated emotions and their relation to initial trustworthiness percep-
tions of an unfamiliar trustee. This initial trust has been also been termed “swift trust,”

distinguished from knowledge-based trust that builds based on observation of a trustee’s
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behavior (Meyerson, Weick, & Kramer, 1996). Given that this initial form of trust is not
based on a wealth of information about the trustee, and is instead a category-based, heuristic
process, it stands to reason that swift trust is influenced by emotions. Swift trust evaluations
have been found to carry over to subsequent knowledge-based trust (Robert, Denis, & Hung,
2009), lending to the importance of understanding the emotional dynamics of initial trust
evaluations.

Based on these works, the current study explores the various emotions individuals antic-
ipate as a drone system operator in order to better understand the role of affect in initial

trust in automated systems.

3 Methodology

In previous analysis of data from the current study (Jensen et al., in press), we found that
information about the performance or process of a drone system led to increased perceptions
of the its ability, while process information also increased perceptions of integrity. Also,
financial risk-taking tendencies and perceptions of structural assurance increased perceptions
of trustworthiness. The purpose of the current study is to elucidate the emotional aspects of

this initial human-automation trust, toward which we posed the following research questions:

RQ1: What types of emotions do people anticipate as the operator of a safety-critical drone

system?
RQ2: How are anticipated emotions influenced by trust-related factors?

RQ3: What is the relationship between anticipated emotions and initial perceived trustwor-

thiness?

To investigate these questions, we created 4 different videos describing a hypothetical
drone system. In a between-group study, we randomly assigned participants to watch one of

the videos and subsequently asked them to respond to a survey imagining that they were the
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operator of the drone system. By focusing on initial trust, we could observe how anticipated
emotions relate to trust evaluations of the system based on the video alone, apart from

factors such as experience with the system or its interface.

3.1 Design of Videos

We chose video as the mode of communication because it utilizes both visual and auditory
information processing channels, leading to higher engagement (Tempelman-Kluit, 2006;
Clark & Paivio, 1991; R. E. Mayer & Sims, 1994; Herron, York, Corrie, & Cole, 2006;
Podszebka, Conklin, Apple, & Windus, 1998).

Narrated informational content was reviewed by authors over several iterations to ensure
clarity and relevance to Lee and Moray’s definitions (J. Lee & Moray, 1992) of performance
and process applied to our drone system. The purpose of the system was given in all videos so
that participants had sufficient information to understand the system and their role. Thus,
the control group watched a video containing only “baseline” information (i.e., describing
what the system was used for), and the three experimental groups watched a video containing
the same baseline content followed by either performance or process information, or both.
Table 1 shows the full narration transcript.

The video’s visual content was taken from a publicly available video of drone operation.
The original audio was replaced by narration recorded by one of the researchers. Videos
were trimmed to the length of the narration to avoid video playing without narration as
well as repeated visual content. Longer videos therefore contain visual content that shorter
videos do not. Because the video displays neutral images of operators at a control panel, we
expect that the narration describing a safety-critical drone task was more salient. However,
we acknowledge the potential effect of differences in visual content and refer the reader to
Table 2 to view the videos on YouTube. While participants watched clear versions of the

videos, we blurred out certain parts in the shared links for privacy reasons.
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3.2 Survey Structure and Measures

Before viewing the video, participants answered demographic questions on age, gender, com-
puter proficiency, race, education, and military experience. After the video, they were shown

the following text:

Now imagine that you are working for a law enforcement agency as the operator of the
presented drone system. Your task is to identify, track, and neutralize the vehicles of hu-
man traffickers who could harm civilians if not detained. Please note that failure to identify
violent criminals such as human traffickers can put innocent civilians’ and law enforcement
officers’ lives at danger. Please answer the following questions assuming the presented oper-

ating conditions.

Participants were asked to reiterate the scenario in their own words to ensure that they
understood their task and role as operator.

We first evaluated trusting beliefs in the system’s ability, integrity, and benevolence (i.e.,
perceived trustworthiness characteristics) (R. C. Mayer et al., 1995). These items were
adapted from McKnight, Choudhury, and Kacmar (2002b) and R. C. Mayer and Davis
(1999) to refer to the drone system described in the video. The ability (4-item, o = 0.81),
integrity (5-item, o = 0.88), and benevolence (5-item, o« = 0.85) sub-scales demonstrated
good reliability.

Subsequently, participants answered questions about situational normality and structural
assurance. These institutional trust items were adapted from Li, Hess, and Valacich (2008)
and McKnight et al. (2002a) to refer to the government law enforcement agency in our hypo-
thetical scenario. The 4-item structural assurance scale demonstrated excellent reliability («
= 0.95), and each of the 3-item situational normality sub-scales had at least good reliability
(ability v = 0.88; integrity o = 0.94; benevolence av = 0.87). The trusting beliefs and initial

trust items were all rated on 7-point Likert scales. All adapted scales are included in the
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Appendix.

Next, participants reported on 19 emotions by answering the question, “How do you an-
ticipate you would feel operating the drone system?” where each emotion item was phrased,
“T would feel” followed by the emotion (e.g., “I would feel ashamed,” “I would feel resentful”)
on a 7-point scale from “Not at all” to “Very much.” The specific emotions were a subset of
those studied in prior work on emotion in the HCI domain (Buck, Khan, Fagan, & Coman,
2018; Albayram, Jensen, et al., 2018; Albayram, Khan, et al., 2018).

Participants lastly reported on their propensity to trust other people using a 12-item,
5-point scale adapted directly from Frazier, Johnson, and Fainshmidt (2013) and risk-taking
tendencies in 5 domains (financial, ethical, health/safety, recreational, social) using the 30-
item, 7-point domain-specific risk-taking (DOSPERT) scale (Sitkin & Pablo, 1992; Weber,
Blais, & Betz, 2002; Blais & Weber, 2006; Highhouse, Nye, Zhang, & Rada, 2017). The
trust propensity scale had excellent reliability (o« = 0.95) and each of the 6-item risk-taking
domain sub-scales had at least acceptable reliability (ethical & = 0.80; financial o = 0.81;
health /safety o = 0.71; recreational o = 0.81; social o = 0.74).

We included two manipulation check items at the end of the survey to validate that the
system’s performance and process were communicated in the videos. There were also two

attention check questions throughout the survey to ensure thoughtful responses.

3.3 Recruitment

We posted the study as a Human Intelligence Task (HIT) on Amazon’s Mechanical Turk
(MTurk) service available to users 18 years or older, living in the United States, with at least
1000 completed HITs and a 95% HIT approval rating. When participants accepted the HIT,
they were shown an information sheet and link connecting them to the study hosted on our
university’s Qualtrics server.

There were 3 pre-screening questions to prevent participants from guessing the eligibility

criterion. Participants had to answer “No” to the question “Have you ever operated drones
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in the past?”. This screened out individuals having operated recreational drones in addition
to systems like that described in our study, ensuring that the trustee was unfamiliar and that
we observed initial trust. We did not disclose this eligibility criterion to any participant.

Ineligible participants were informed that they could not participate or be compensated.
Eligible participants watched their assigned video and took the survey. At the end, these
participants were given a code generated on Qualtrics to submit to MTurk for $3 of com-
pensation. On average, the survey took participants 14.3 minutes (Median = 12.4 minutes,
SD = 8.5 minutes).

The study was approved by our university’s Institutional Review Board.

3.4 Sample Demographics

Of the 200 participants eligible after pre-screening, we removed the data of those who incor-
rectly answered at least one multiple choice attention check question, entered an ineligible
age, or misunderstood the scenario based on their post-video reiteration. For the latter,
participants who gave an unrelated response, referred to the “operator” in the third-person
(i.e., suggesting that they were not imagining being the operator) or mentioned something
not expressed in the video (e.g., “the military,” “drug sales,” “child sex traffickers”) were
removed from the data. Lastly, to ensure the video was fresh in participants’ minds, we
removed data of those who waited greater than 10 minutes after their video ended to ad-
vance to the next part of the survey. Ultimately, 163 were retained for analysis and balanced
among video groups (see Table 2).

The sample consisted of 89 (54.6%) male and 74 (45.4%) female participants with ages
ranging from 20 to 64 (Mean = 35.3, SD = 10.0). Regarding computer proficiency, 58
(35.6%) participants reported being “Competent,” 82 (50.3%) “Proficient,” and 23 (14.1%)
“Expert.” There were 123 white (75.5%), 18 African American (11.0%), 6 Hispanic (3.7%),
11 Asian (6.7%), 2 Native American and 3 other participants. Furthermore, 82.2% of par-

ticipants reported having some post-secondary education at a college or university and 7
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(4.3%) reported having served in the military.

Testing for demographic differences between video groups, we found no significant dif-
ferences in terms of gender (x*(3) = 2.19, p = .53). Moreover, Fisher’s Exact Test revealed
neither significant differences in terms of race (p = .51) nor military service (p = .32).
Kruskal-Wallis tests demonstrated that groups were not significantly different in terms of
age (H(3) = 1.73, p = .63), education level (H(3) = 0.16, p = .98), or computer proficiency
(H(3) = 2.60, p = .46). Based on these results, we concluded that the four video groups

were similar in terms of their demographics.

4 FEvaluation

In order to better understand the emotions involved in participants’ initial trust evalua-
tions, we investigated how various trust-related factors influenced the 19 emotion items, and

how these related to the perceived trustworthiness of the drone system.

4.1 Manipulation Check of Information Types Communicated in

the Videos

First, to verify whether performance and process information were communicated in the

narration, we included two manipulation check statements at the end of the survey:

1. T was made aware of the drone system’s performance (i.e., how effective the system is

about accomplishing its goal).

2. I was made aware of the drone system’s process (i.e., how the system works to accomplish

its goal).
Participants rated these two items on a 7-point Likert scale from “Strongly Disagree”

to “Strongly Agree.” We use Mann-Whitney U-tests to compare between participants who

12
DISTRIBUTION A: Distribution approved for public release.



received or did not receive a given type of information. We also report the effect size of
U-tests using r = Z/v/N metric (Field, 2013).

Participants who received performance information in their video (i.e., Performance and
Perf-Proc groups) rated their awareness of the drone system’s performance higher than other
participants (i.e., Control and Process groups), though this difference was only marginally
significant (U = 2841.00; p = .10; r = -.13). It may be that because the performance
information mentioned potential system errors, these participants actually felt somewhat
unaware of the system’s performance.

Participants who received process information in their video (i.e., Process and Perf-
Proc groups) rated their awareness of the system’s process significantly higher than other

participants (i.e., Control and Performance groups) (U = 2667.50; p = .02; r = -.18).

4.2 Factor Analysis of Emotion Items

Next, we conducted Principal Components Analysis (PCA) to observe whether the 19 emo-
tion items aligned into the same factors as in Buck et al. (2018). We first used diagnostic tests
to ensure that PCA was appropriate for the emotion survey items. The Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy was 0.906, above the 0.9 referred to as a “marvelous”
indicator of factorial simplicity (Kaiser, 1974). Bartlett’s test of sphericity was significant
(x*(171) = 2367.9, p < 0.001), while all items had Spearman’s correlations of greater than
0.5 with at least one other item. Thus, we determined that the 19 items were suited for
reduction into components.

Using orthogonal Varimax rotation, our PCA revealed 4 factors, roughly aligning with the
hostility, positive, anxiety, and loneliness factors in Buck et al. (2018). Two of the four items
from Buck et al.’s loneliness factor that we included in our survey (“I would feel ashamed,” “I
would feel humiliated”) loaded with the hostility factor, while the remaining items factored
as expected. These 4 factors accounted for 75.4% of the variance in anticipated emotion

ratings (hostility 44.3%, positive 16.6%), anxiety 8.4%, and loneliness 6.1%). Factor loadings
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for each item, as well as Cronbach’s a and the average inter-item correlations (IIC) for each
factor are shown in Table 3. Each factor score used in subsequent analyses was computed

by averaging a participants’ ratings for its subsisting emotion items.

4.3 Multiple Linear Regressions: What Trust-Related Factors in-

fluence Anticipated Emotions?

As prior work on trust in automation has suggested an affective component of trust, we
investigated how the trust-related factors we measured influenced the emotion factors.

We built a separate regression model predicting each emotion factor score based on
individual differences (trusting propensity, risk-taking domains), system information (per-
formance and process information), and institutional trust (structural assurance, as well as
situational normality perceptions of the ability, integrity and benevolence of government
law enforcement agencies). These align with the dispositional, learned, and situational di-
mensions of trust in automation proposed by Hoff and Bashir (2015). Performance and
process dummy variables respectively indicate whether performance or process information
was present in a participants’ video. Variance inflation factors were highest for the insti-
tutional trust predictors, though all were less than 7.5, indicating that collinearity was not
a major concern. Multiple linear regression models for each of the 4 emotion factors are
displayed in Table 4.

Although the experimental manipulations (i.e., system information contributing to learned
trust) did not appear to influence anticipated emotions, there were significant effects due to

dispositional and situational factors.

4.3.1 Dispositional Factors: Trusting Propensity and Risk-Taking Tendencies

Participants with a greater propensity to trust were likely to anticipate less intense loneliness
(8 = -0.28, p< 0.05), suggesting that individuals with low levels of trust may experience

feelings of isolation.
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Financial risk-takers were likely to anticipate slightly greater hostility emotions (8 =
0.14, p< 0.05). Recreational risk-takers were likely to anticipate more intense positive (5 =
0.19, p< 0.05) and less intense anxiety emotions (8 = -0.24, p< 0.01), reflecting a greater

sense of comfort with the risks in the safety-critical drone task.

4.3.2 Situational Factors: Structural Assurance and Situational Normality

Greater perceptions of law enforcement agencies’ ability were associated with more intense
hostility emotions (8 = 0.39, p< 0.05), while greater perceptions of benevolence were asso-
ciated with less intense hostility (8 = -0.32, p< 0.05). While the latter result is predictable,
as those who view the institution behind the system as benevolent are likely to anticipate
being less “scornful” or “ashamed,” the former was more surprising. This result may reflect a
distaste for the use of drones in the surveillance context, such that the perceived competence
of law enforcement agencies prompted resentment towards them.

Increased perceptions of the integrity of law enforcement agencies were associated with
the anticipation of more intense positive (8 = 0.35, p< 0.05) and less intense anxiety emotions
(8 = -0.49, p< 0.01). This finding shows that perceptions of institutional trustworthiness

and reliability may positively influence a system user’s emotional experience.

4.4 How do Emotions Relate to Trust?

Lastly, we performed non-parametric correlation analysis (Spearman’s p) to observe the
associations between anticipated emotions and the perceived trustworthiness of the drone
system. Correlations between each emotion factor and trusting belief are shown in Table 5.
The strongest correlations are those between the trusting beliefs and positive emotions—
perceived ability had the strongest association (p = 0.48, p< 0.01), followed by integrity (p
= 0.36, p< 0.01) and benevolence (p = 0.29, p< 0.01). Participants’ positive perceptions of
the drone system’s trustworthiness were associated with anticipating being more “happy” and

“secure,” while the perceived competence of the system in this task was a slightly stronger
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emotional indicator than its perceived consistency or whether it was concerned about the
well-being of the operator. Perceived ability was negatively correlated with hostility (p =
-0.26, p< 0.01), anxiety (p = -0.30, p< 0.01), and loneliness (p = -0.28, p< 0.01) emotions,
as was perceived integrity with hostility (p = -0.19, p< 0.05), anxiety (p = -0.17, p< 0.05),

and loneliness (p = -0.16, p< 0.05), but to a lesser extent.

5 Discussion

Our findings suggest that a system operator’s emotional experience is indeed related to
their trust. Although we are unable to determine whether a directed causal relationship
exists (e.g., higher perceptions of trustworthiness lead to more positive emotions), these
findings confirm the viability of an affective component to trust, whereas most prior work
on trust in automation has focused on cognitive trust evaluations.

Regarding RQ1, we found that hostility, positive, anxiety, and loneliness emotion com-
ponents explained 75.4% of the variance in anticipated emotion ratings in the current study.
“Ashamed” and “humiliated,” two items that loaded with loneliness in the study of pop-up
software update warnings (Buck et al., 2018) were associated with emotions such as “scorn-
ful” and “resentful” in this case. This suggests that hostility regarding the use of drones
in the presented surveillance context was closely associated with personal feelings of shame,
distinctly from a sense of isolation and loneliness experienced by participants.

Mean ratings of hostility (M = 1.62, SD = 1.04) and loneliness (M = 1.96, SD = 1.27)
indicate that they were not anticipated to be as intense as positive (M = 4.32, SD = 1.55) or
anxiety (M = 2.65, SD = 1.34) emotions. The high degree of anticipated positive emotions
suggests that the description of the scenario did not lead participants to anticipate feeling
overtly negative, although a degree of anxiety was present given the safety-critical nature of
the task. Nonetheless, even the mean rating for positive emotions is only slightly above the

midpoint of the scale, which may reflect a difficulty in both reporting on one’s own emotions
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and in anticipating feelings in the hypothetical scenario.

For RQ2, as in our prior regression analysis of factors influencing the perceived ability,
integrity, and benevolence of the drone system (Jensen et al., in press), we found that
dispositional and situational factors influenced the degree of anticipated emotions.

Trusting propensity (e.g., “Trusting another person is not difficult for me,” “I believe
that people usually keep their promises”) was only a significant predictor of loneliness, with
a greater propensity to trust leading to the anticipation of less intense loneliness. This
suggests that feeling isolated may be symptomatic of low trust. We encourage future work
to observe how variations in system trustworthiness affect operator loneliness, and whether
communication by the system can temper this feeling for those with a lesser propensity to
trust.

Also, while we had previously found that financial risk-taking (e.g., “Betting a day’s
income at a high-stakes poker game”) was associated with more positive trustworthiness
perceptions, it positively predicted hostility in the current analysis. Perhaps, the impersonal
nature of financial risks means financial risk-takers are more likely to report being “hostile”
or “ashamed” with respect to the other people in this context. This also contrasts with
the finding that recreational risk-takers (e.g., “Going down a ski run that is beyond your
ability”) were likely to anticipate less intense anxiety and more intense positive emotions, a
predictable result of their comfort in the safety-critical scenario. These findings support the
proposition by Lee and Selart that individual differences in regulation of affect, a construct
certainly related to risk-taking tendencies, determine the extent to which emotions influence
trust judgments (W. S. Lee & Selart, 2012).

Our previous finding that the perception of structural assurance positively influenced
perceived trustworthiness was corroborated by the current analysis, in that structural assur-
ance led to the anticipation of less intense hostility and anxiety and more intense positive
emotions. On top of this, while we had found that situational normality (i.e., perceptions

of law enforcement agencies’ trustworthiness in this context) did not appear to influence
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the perceived trustworthiness of the drone system, it did influence the degree of anticipated
emotion. Greater perceptions of the integrity of law enforcement agencies (e.g., “I am com-
fortable relying on government law enforcement agencies to meet their obligations”) were
likely to reduce the intensity of anticipated anxiety and increase that of positive emotions.
Likewise, situational normality benevolence perceptions (e.g., “If a system operator required
help, most government law enforcement agencies would do their best to help”) were likely to
decrease the anticipated intensity of hostility emotions. Somewhat surprisingly, situational
normality ability perceptions (e.g., “I feel that most government law enforcement agencies
are good at what they do”) appeared to increase the anticipated intensity of hostility emo-
tions. This speaks to the fact that, in this context, emotions may not be associated simply
with perceptions that the law enforcement agency is trustworthy, but with concerns about
the morality of drone use for surveillance. In this sense, a more capable law enforcement
agency is a more threatening one. This ethical influence is supported by the positive effect
of situational normality benevolence.

None of the factors of learned trust (i.e., system information in the video) appeared to
influence the intensity of anticipated emotions. This contrasts with our prior findings that
performance and process information influenced the perceived ability and integrity of the
drone system, and may speak to the distinction between cognitive and affective aspects of
trust. Whereas trusting beliefs are more knowledge-based, affect appears to be associated
more with the category-based processing that defines swift trust (Robert et al., 2009). This
is also supported by the role of situational normality perceptions in anticipated emotion—the
degree to which participants perceived institutions in the same category to be trustworthy
influenced emotions, but did not necessarily inform perceptions of the trustworthiness of the
system. Future work adapting Dunn and Schweitzer’s study (Dunn & Schweitzer, 2005) to
observe the influence of incidental emotions as well as institutional perceptions on initial
trust and subsequent trust development in an automated system would shed light on the

nature of swift and knowledge-based trust in HCI.
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Lastly, toward answering R3, we found that the emotion factors were moderately cor-
related with the perceived trustworthiness characteristics of the drone system. Positive
emotions demonstrated the strongest associations with the trusting beliefs. Moreover, cor-
relation coefficients were strongest for the ability belief, followed by integrity, and finally
by benevolence, where some even fell out of significance. This is in line with prior human-
human trust research finding that ability perceptions have a greater influence on trust than
integrity, which has a greater influence than benevolence (Robert et al., 2009). This also
suggests that emotional intensity could be an indicator of a system operator’s trust level, or
that a positive emotional experience increases trust.

We stress that, because appropriate trust calibration is a desirable goal, designers should
avoid attempts at simply increasing trust, even if the result is a less positive emotional
experience for system operators. Instead, knowledge of how operators’ emotions relate to
their trust can help in recognizing inappropriate fluctuations in perceived trustworthiness
of a system. This can in turn be applied to avoid the negative, potentially dangerous

consequences of both undertrust and overtrust.

6 Conclusion

This study sheds light on the emotional aspects of a human-machine trust scenario. In
order to observe how anticipated emotions relate to initial trust perceptions, participants
were introduced to a drone system with one of four narrated videos. Although information
in the videos did not appear to have an effect on emotions, we found that variation in
the anticipation of hostility, positive, anxiety, and loneliness emotions was explained by
dispositional and situational trust factors that were previously found to influence perceptions
of the drone system’s trustworthiness. Perceptions of the ability, integrity, and benevolence
of the institution behind the system also influenced the intensity of emotions anticipated

as operator. Lastly, we found moderate correlations between emotions and the perceived
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trustworthiness of the system, with positive emotions having the strongest associations with
trusting beliefs. We encourage future work to build upon this exploratory study in order
to characterize the relationship between human-machine trust and emotions in more depth.
This can improve our understanding of how human-machine trust environments emotionally
impact system operators, as well as how emotions impact their trust, which can aid the

design of systems that promote appropriate trust calibration.
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8 Appendix

8.1 Adapted Survey Items
8.1.1 Perceived Trustworthiness Characteristics (Trusting Beliefs)

Adapted from McKnight et al. (2002b), originally from R. C. Mayer and Davis (1999). Rated

on a 7-point Likert scaled from “Strongly Disagree” to “Strongly Agree.”
e Ability

— The drone system would be competent and effective at assisting in tracking enemy

targets.

— The drone system would perform its role of neutralizing enemy targets very well.

Overall, the drone system would be a capable and proficient means for stopping

the targets.

— In general, the drone system would be very knowledgeable about stopping crimi-

nals.
e Integrity

— The drone system would be truthful in its communication with me.

— I would characterize the drone system as honest.
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— The drone system would keep its commitments.
— The drone system would be sincere and genuine.

— The drone system would perform as expected.

e Benevolence

I believe that the drone system would operate in my best interest.

If T required help, the drone system would do its best to help me.
— The drone system would be concerned about my well-being, not just its own.

— The drone system would be concerned about the well-being of officers on the

ground.

— The drone system would be concerned about the well-being of civilians.

8.1.2 Institutional Trust

Adapted from Li et al. (2008) and McKnight et al. (2002a). Rated on a 7-point Likert scale

from “Strongly Disagree” to “Strongly Agree.”
e Structural Assurance
— Government law enforcement agencies have enough safeguards to make me feel

comfortable using drone systems.

— I feel assured that legal and technological structures within the government law
enforcement agencies would adequately protect me from problems while using the

drone system.

— I feel confident that technological advances within the government law enforce-

ment agencies make it safe for me to use the drone system.

— In general, government sponsored software systems are robust and safe to use.

e Situational Normality - Ability
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— In general, most government law enforcement agencies are competent at develop-

ing software.

— Most government law enforcement agencies do a capable job at meeting the needs

of their system operators.

— I feel that most government law enforcement agencies are good at what they do.
e Situational Normality - Integrity
— I am comfortable relying on government law enforcement agencies to meet their

obligations.

— I feel fine using government software systems since government law enforcement

agencies generally fulfill their agreements.
— I always feel confident that I can rely on government law enforcement agencies
when I interact with their software systems.
e Situational Normality - Benevolence
— I feel that most government law enforcement agencies would act in a system
operator’s best interest.

— If a system operator required help, most government law enforcement agencies

would do their best to help.

— Most government law enforcement agencies are interested in the well-being of

their systems’ users, not just their own well-being.
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8.2 Tables

Hello! The video you are watching presents a hypothetical scenario where
operators are using a drone system to assist government law enforcement
in stopping human traffickers. The system consists of an Unmanned Aerial
Vehicle, or UAV, and a display that the operator observes while controlling
the system. The operator is responsible for navigation of the drone and

Baseline reporting locations of suspected human traffickers. Timely and accurate
identification of violent criminals is extremely important as failures can
put innocent civilians’ and law enforcement officers’ lives in danger. While
the operators may shoot at targets if necessary, this is used only as the
last option, as it could lead to hitting innocent civilians near the target or
causing property damage.

While the system operates effectively most of the time, there can be occa-
sional errors that impact video quality and drone maneuverability, caused

Performance by factors such as poor network connections and software glitches. As a
result, operators may experience rare events such as screen blackouts or
loss of connectivity lasting at most a few seconds.

To make the system robust against such failures, the UAV has on-board
algorithms that use sensors to improve flight stability and maneuverability.

Process Information about system health is also automatically monitored and sent
back to the operator over a network connection. This allows the operator
to monitor and override system control if needed.

Table 1: Narration script for the videos. All videos contained “baseline” information de-
scribing the purpose of the system, while the Performance video additionally contained
the performance information, Process the process information, and Perf-Proc both types of
additional system information.
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Label n Link to Video Length

Control 41 https://youtu.be/DuMwSsrEG5s 50 s
Performance 39 https://youtu.be/RIdwtSuGmAc 71s
Process 39 https://youtu.be/2BTbNTAG19A 70 s
Perf-Proc 44 https://youtu.be/c5JrIdQNkY4 92 s

Table  2: List of the 4 wvideos wused in the study, which  can
be viewed on  YouTube. The original video can be found at:
https://www.dvidshub.net/video/411919/mqlb-predator-gcs-broll.

Hostility Positive Anxiety Loneliness

Disdainful 0.884
Scornful 0.857
Contemptuous 0.851
Hostile 0.774
Resentful 0.865
Ashamed 0.740
Humiliated 0.702

Confident 0.806
Secure 0.798
Grateful 0.842
Happy 0.815
Respectful 0.843
Nervous 0.810
Anxious 0.840
Confused 0.700
Afraid 0.472 0.665
Freaked out 0.409 0.660
Lonely 0.865
Isolated 0.855
« 0.936 0.904 0.889 0.851
11C 0.677 0.656 0.619 0.744

Table 3: Factor loadings for each of the 19 emotion items. Loadings less than 0.4 are
not shown. The highest loading for each emotion is shown in bold. Scale reliability with
Cronbach’s o and the average inter-item correlations for each factor are shown in the last
two rows.
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Hostility Positive Anxiety Loneliness
Predictors B8 SE P 15} SE P B8 SE P I} SE P

Individual Differences
Trusting propensity 0.11  0.09 0.24 0.06 0.11 0.61 -0.19 0.12 0.12 -0.28 0.13 0.03
Risk-taking:

Ethical 0.11 0.08 021 -0.16 0.10 0.12 0.04 0.11 0.70 0.13 0.11  0.26
Financial 0.14 0.06 0.03 0.11 0.08 0.14 -0.04 0.08 0.67 0.14 0.09 0.12
Health/safety 0.11 0.08 0.18 0.02 0.10 083 0.16 0.11 0.12 0.02 0.11 0.88
Recreational -0.07 0.07  0.28 0.19 0.08 0.02 -0.24 0.09 0.01 0.02 009 083
Social -0.07 0.07 033 -0.06 0.08 046 -0.04 0.09 069 -0.15 0.09 0.11
System Information
Perf -0.25 0.20 0.21 0.10 0.24 066 <0.01 026 =~1.00 -0.38 027 0.16
Proc -0.01 0.20 0.95 0.13 0.24 058 0.01 026 097 -043 027 0.11
Perf x Proc 0.18 0.27 0.52 0.22 0.33 0.52 -0.35 0.36 0.33 0.39 0.38 0.31

Institutional Trust

Structural Assurance -0.29 0.13  0.03 0.39 0.15 0.01 -0.33 0.17 0.05 -0.17 0.18 0.35

Situational Normality:

Ability 039 014 0.01 008 0.17 064 035 019 006 001 019 094

Integrity 014 012 026 035 0.5 0.02 -049 016 < 0.01 -0.22 0.17 0.20

Benevolence 032 014 0.02 -001 017 095 0.13 0.8 049 019 019 0.32
Constant 285 052 <0.01 -0.39 063 054 539 069 <0.01 412 072 < 0.01
Adjusted R? 0.3109 0.5480 0.2873 0.1359
F(13,149) = 6.62 (p < .001) 16.11 (p < .001) 6.02 (p < .001) 2.96 (p < .001)

Table 4: Results of the four separate multiple linear regressions, each predicting an emotion
factor derived from PCA based on the various predictors. p-values which are significant at
the 0.05 level are shown in bold.

Hostility Positive Anxiety Loneliness

Ability -0.258 0.479 -0.296 -0.284
Integrity -0.189 0.361 -0.168 -0.155
Benevolence -0.005 0.290 -0.072 0.021

Table 5: Spearman’s p correlations between the trusting beliefs (i.e, perceived trustworthiness
of the drone system) and anticipated emotion factor scores. Coefficients significant at the
0.05 level are shown in bold.
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ABSTRACT

Safety-critical systems (e.g., UAV) are often equipped with
warning mechanisms to alert users of imminent hazards. How-
ever, they can suffer from false alarms, and affect users’ emo-
tions and trust in the system negatively. While providing
feedback could be an effective way to repair trust under such
scenarios, the effects of warning reliability and feedback on
users’ emotions, trust, and behavior is not clear. This paper
attempts to address this void by designing a 2 (warning relia-
bility) x 2 (feedback) between-group study where participants
interacted with a simulated UAV system to identify and neutral-
ize enemy targets. Results indicated that feedback negatively
affected users’ positive emotions and trust in the system, and
increased negative emotions. While emotions were found to
mediate the relationship between feedback and trust, however,
compliance behavior was not affected by trust. Implications
of our findings for designing feedback and calibration of trust
are discussed in the paper.
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INTRODUCTION

Widespread adoption of wired and wireless sensor technolo-
gies has led to the emergence of various dynamic data-driven
safety-critical decision support systems (e.g., battlefield moni-
toring, target tracking). Although such systems are designed
with great care, they can still fail due to various reasons such as
hardware/software failures, environmental factors, misconfig-
uration, and/or human errors, among other factors [2]. Unfor-
tunately, sudden exposure to such system errors can negatively
affect users’ decision-making abilities and priority assessment
of the subsequent tasks [35], limiting the capacity to process
information mindfully [67]. To minimize such negative effects
due to unexpected system malfunctions, safety-critical systems
often incorporate warning modules that alert users regarding
imminent hazards (e.g., system failures, environmental condi-
tions). However, due to the nondeterministic nature of error
probability, these warning systems are often not perfect, and
trigger false alarms [44, 50, 77].

As it has been shown that users apply social norms while inter-
acting with computers [51, 53, 54], it is likely that such false
alarms may evoke strong negative emotions, which is shown to
influence cognition, decision-making, and subsequent actions
(i.e., commonly known as ‘control precedence’ [29]) [32], and
users’ trust in the system and the decision making process
negatively [37].

As the effect of system errors is shown to be instantaneous [83],
we hypothesize that providing real-time feedback can be an
effective way to counter negative emotions caused by false
alarms and system errors, and foster positive emotions. To
better understand the effects of feedback and system reliability
on users’ emotions, trust, and response behavior, we designed
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a 2 (warning reliability) x 2 (feedback) between-group study
where participants interacted with a simulated unmanned aerial
vehicle (UAV) system in a lab-setting to identify and neutral-
ize enemy targets. We recruited and analyzed data from a
total of 57 participants (i.e., 15 in high reliability/feedback
present group, 14 in high reliability/feedback absent group,
14 in low reliability/feedback present group, and 14 in low
reliability/feedback absent group). Contrary to our hypothe-
sis, results indicated that feedback negatively affected users’
positive emotions and trust in the system, and increased nega-
tive emotions. However, emotions were found to mediate the
relationship between feedback and trust, which was expected.
Finally, trust was found not to affect the compliance rate with
warnings.

In the rest of the paper, we first review prior efforts focusing
on trust repair and present our hypotheses. Next, we describe
our study design and methodology. Finally, we present our
findings along with the implications of our result, followed by
limitations of our work to conclude the paper.

PRIOR WORK AND RESEARCH HYPOTHESES

A warning system can fail due to various reasons (e.g., un-
predictable execution conditions, nonzero probability of soft-
ware/hardware failures), and exhibit two types of errors,
namely, false alarms and misses [9]. As users often prefer
receiving false alarms instead of missing one [46], especially
when the cost of a hazard is high, one way system designers
attempt to reduce the number of misses is by setting a lower
threshold for alarm trigger. However, frequent false alarm is
shown to induce the cry-wolf syndrome, which can lead to a
reduction in subsequent compliance rate with the system [20,
21, 60], and increased response time to signals [21, 31, 60].
While occasional false alarms are often unavoidable, however,
they are likely to affect users’ trust in the system [49]. This
is supported by prior efforts investigating the effect of system
failures on trust that confirmed that experiencing even infre-
quent system errors can lead to distrust in otherwise highly
reliable systems [23]. Furthermore, degradation of trust is
shown to be immediate after observing system errors [83].
We argue that, as affective process is shown to “ultimately”
dominate trust [40], negative emotions triggered due to system
errors are likely to play a critical role in degradation of trust.
Specifically, system errors are likely to affect integral affect
which is generated while performing a task, and evolves dy-
namically with interactions with the system [37, 82]. This is in
line with several recent research efforts that acknowledged the
influence of affective states on trust [48], and suggested that
interaction of user’s emotions, moods, and attitudes towards
the system define the experience of trust [1, 2, 57, 65].

Prior research looked at various approaches to mitigate the
negative effect of automation errors on trust in the system.
Among numerous prior efforts focusing on cognitive aspect of
trust, Seong et al. demonstrated the importance of providing
cognitive feedback regarding system operation in trust cali-
bration [67]. In a more recent work, Wang et al. showed that
generating automated explanation regarding a robot’s decision-
making process helped users to calibrate trust [72]. Along the
same line, other recent studies recommended communicating

information analysis process [5] and justification behind sys-
tem’s reasoning [55] to maintain an appropriate level of trust.
Prior work looked at various approaches for providing feed-
back as well such as graphical presentation [23, 24], simple
textual feedback [7, 13, 18, 62]), and numerical feedback (e.g.,
confidence score) [67], to name a few.

Another group of work exists that looked at strategies to in-
fluence trust through incidental affect (i.e., incidental affect
refers to the affective state that influences a person’s decision-
making process of a certain task, even though the source of the
affect is unrelated to the task [82]). Various techniques such as
showing affective video clips [48], affective images [82], and
recalling and writing affective incidents [22] are tried in the
past. However, the effectiveness of affect infusion strategies
are found to be limited when a user is well familiar with a
system/task [48]. Specifically, while incidental affect is shown
to have a significant effect on initial trust formation in auto-
mated systems, however, over time the effect diminishes as
interactions with a system increases [70].

To complement prior efforts, we focus on calibration of trust by
influencing integral affect through feedback. Specifically, our
work is inspired by prior efforts that have shown that delivering
positively and negatively framed affective interventions after
a system error can improve users’ performance significantly
(e.g., “The function of the computer were suspended. Great
that the computer will soon work again.”, “The execution
of the program was interrupted. This is frustrating.”) [58].
Furthermore, providing appropriate feedback through affective
support system is shown to reduce users’ negative affect, and
increase positive feelings towards a system, even when the
computer itself was the source of the negative affect [36]. Even
simple social graces like ‘please’ and ‘thank you’ are shown
to change users’ feelings without being aware of it [59].

Informed by prior efforts, we focus on investigating the inter-
action effect of feedback and reliability on users’ emotions
and trust, and develop the following hypotheses to guide our
study and analyses.

e Hypothesis 1 (H1): Giving feedback will result in (a) higher
positive emotions, (b) lower negative emotions, (c) higher trust
rating, and (d) higher compliance rate.

e Hypothesis 2 (H2): Higher warning reliability will lead to
(a) higher positive emotions, (b) lower negative emotions, (c)
higher trust rating, and (d) higher compliance rate.

e Hypothesis 3 (H3): Higher trust rating will result in higher
compliance rate.

o Hypothesis 4 (H4): Emotions will mediate the relationship
between warning reliability, feedback and trust in the system;
and (a) positive emotions will lead to a higher trust rating and
(b) negative emotions will lead to a lower trust rating.

METHODOLOGY

Design of the Experimental Task

To investigate the aforementioned hypotheses, we designed a
2 (warning reliability: high and low) x 2 (feedback: present
and absent) between-group in-lab study where participants

DISTRIBUTION A: Distribution approved for public release.



Correct || Incorrect
Shot: 02 || Shot: 00

Figure 1: The UAV task screen

completed several rounds of a simulated UAV task to identify
and neutralize enemy vehicles in an urban setting.

During the task, participants maneuvered a UAV over a simu-
lated city environment consisting of high-rise buildings and
multiple roads. There were a total of 67 vehicles parked on
the side of the roads. Vehicles with numbers in addition to
text written on top of them were considered enemy vehicles
belonging to human traffickers. The other vehicles (i.e., with
no text or only text without numbers) were considered inno-
cent vehicles. The objective of the task was to identify and
neutralize as many enemy vehicles as possible by shooting
them (Figure 1). Participants were explicitly told that there
was no human inside the vehicles. All vehicle text consisted of
black, non-italic, non-cursive, block fonts that were readable
from a distance. We decided to use 20 enemy vehicles per
session as we observed that a person could neutralize at most
17 enemy vehicles in the given time during pilot testing the
simulation platform. As people tend to perform better when
they have a specific goal to accomplish [41, 42], we disclosed
the total number of enemy vehicles at the beginning of the
task. To further enhance intrinsic motivation, we included
the following component regarding social betterment in the
description of the task: “If you successfully neutralize enemy
vehicles, you serve your society by making it safer.”

Participants navigated the drone around the city using a Thrust-
master t16000m joystick (Figure 2). They could rotate the
drone and change the camera’s direction to scrutinize vehi-
cles from different angles. Zoom-in and zoom-out features
were provided up to a certain level to ensure that the detection
task was not too easy or difficult. The highest zoom-in level
allowed users to distinguish numbers from letters easily.

Participants could keep track of the area already explored and
plan future directions using a map displayed on the upper
right corner of the UAV task screen (Figure 1). A window in
the middle right side of the screen was used to display feed-
back messages accompanied with audio. Below the message
window there was a score window displaying the number of
correct and incorrect shots taken so far. In the middle bottom
part of the screen, a countdown timer displayed the remaining
time in the current task session. Each of the four task sessions

Figure 2: Thrustmaster t16000m joystick

was seven minutes long to allow participants develop adequate
understanding regarding the system.

Participants were shown their score at the end of each session.
In order to make participants careful while shooting, shoot-
ing an enemy vehicle was rewarded by a 10 point increase
and shooting an innocent vehicle was penalized by a 10 point
decrease in the score. At the end of each session, five points
were deducted for each enemy vehicle that they failed to neu-
tralize. This was done to create additional time pressure which
is shown to affect dependence on automation and trust [61,
71].

Simulated System Error and Warning System

Participants were told that the simulated UAV system had two
video transmitters (i.e., a primary transmitter and a secondary
transmitter) to transmit videos from the drone to the ground
station. The primary transmitter transmitted clear, high-quality
video and performed fine most of the time. However, if the
primary transmitter got overheated due to continuously trans-
mitting high-quality video, it automatically got restarted and
an audio message: “Video will be restored in 30 seconds”
was played. It took 30 seconds to cool down and automati-
cally restart the primary transmitter. During this 30 second
period, the secondary transmitter took over and transmitted
low-quality video. With low-quality video, participants were
still able to monitor the city and read texts on vehicles, al-
though it required significantly more effort.

To avoid auto restart of the primary transmitter due to overheat-
ing, five seconds prior to the hazard (overheating), an alarm
would go off with a warning message (“Transmitter overheat-
ing”’) (one-second duration) followed by a beeping tone for
four seconds. Duration of each beep tone (16 bits, 44100
Hz frequency) was 0.18s with an interval of 0.18s between
two beeps. Participants could follow the warning by enabling
the secondary transmitter before the end of the beeping tone,
which would cause low-quality video for 10 seconds and then
restore high quality video automatically.

If participants ignored a true positive alarm, the low quality
video would start at the end of the warning period (e.g., five
sec) and would last for 30 seconds. If participants ignored
a false alarm, nothing would happen and the task continued
as normal. If participants heeded to an alarm (regardless of
true or false alarm), secondary transmitter would engage, and
the low quality video would start and last for 10 seconds.
This 10 second loss was meant to introduce an element of
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High Reliability | Low Reliability
True Alarm 3 3
False Alarm 1 3
Total Warnings 4 6
Reliability 75% 50%

Table 1: Number of warnings per session across reliability
groups.

risk and vulnerability to discourage overreliance on alarms
mindlessly [19, 43].

In the current study, we ensured that all the experimental
groups experienced three true overheating incidents. Prior
efforts suggested that automation reliability below 70% is con-
sidered worse than no automation at all [74]. In the current
study we followed this general guideline and set the reliability
level at 75% (high reliability) and 50% (low reliability) by
varying the number of false alarms. Alarm types and num-
bers are reported in Table 1. All the warnings and hazards
occurred in the same order at the same moment for all the
participants within the same reliability group. To avoid con-
founding effect and minimize the number of groups, we only
used false-alarm error-bias in the current study. As informa-
tion regarding system reliability might influence participants’
trust in the system [3, 6], we did not disclose the warning
reliability to participants.

The Reliability Condition

To prevent participants from considering the system to be
100% reliable, participants were told the following: “To pre-
vent the primary transmitter from overheating, the drone sys-
tem has an automated warning module. However, as over-
heating of the primary video transmitter is related to multi-
ple factors such as the total volume of data transmitted and
weather condition, the warning module cannot always analyze
the drone system status accurately and thus occasionally pro-
vides false-alarms. In case of a true warning, the transmitter
will restart after 5 seconds of the warning. So, you will have 5
seconds to respond to a warning. You can follow the warning
and enable the secondary transmitter or ignore the warning.”
The above was communicated to ensure that participants were
aware of the possibility of false alarms and the underlying
reasons.

To operationalize the reliability condition, in addition to vary-
ing warning accuracy, low-reliability groups experienced a
total of 24 alarms over four sessions compared to 16 for high-
reliability groups. Our analyses confirmed that, irrespective
of the feedback type, low-reliability groups experienced low
quality video significantly longer (M = 69.46 sec/session) com-
pared to the high-reliability group (M = 47.80 sec/session),
F(1,53)=171.62, p < .01, ng =0.58. As such, low-reliability
condition groups experienced 50% more warnings and signifi-
cantly longer duration hazy video compared to high-reliability
condition groups. Therefore, we concluded that the game play-
ing condition was significantly different between high and low
reliability groups.

Note that our design is fundamentally different than having
the same number of warnings (e.g., 24) across groups with

different true/false ratios, which indeed could have a different
effect. Our design was essential to simulate a scenario that
would be analogous to many real-life settings where, in the
absence of feedback, a user has no way of knowing whether
an alarm is true or false. Rather, a user often has to judge
the reliability of a system based on the frequency of alarm
incidents and the resulting inconvenience, which can influence
emotions and trust in the overall system.

Message Designs

Depending on the assigned experimental groups (feedback:
absent, present) and response to each warning during the UAV
task, participants received one of the messages listed in Table 2.
In the feedback present groups, after participants’ response
to each warning, they received a feedback message informing
whether the alarm was true or not with an appropriate affective
component (e.g., sorry, thank you).

Feedback Feedback
Absent Present

Video will be | Thank you for playing it safe!
True Followed | restored in 10 | Overheating avoided! Video
Alarm seconds. will be restored in 10 seconds.
Not Video will be | Sorry! Overheating could not
F restored in 30 | be avoided! Video will be res-

ollowed ——
seconds. tored in 30 seconds.
Video will be | Sorry! It was a false alarm.
False Followed | restored in 10 | Video will be restored in 10
Alarm seconds. seconds.
Not
Followed

Alarm User
Type Action

Sorry! It was a false alarm.

Table 2: Feedback messages based on responses to warnings
across feedback groups.

Prior efforts noted that, for effective warning communication,
messages should be conspicuous and noticeable [38, 80]. Fur-
thermore, auditory warnings are found to be more noticeable
than visual warnings due to the “omni-direction nature” and
attention-grabbing capability [80], leading to higher compli-
ance rate compared to non-voice warnings [81]. For that, we
used audio messages to make the communication salient, and
ensure participants did not miss any message.

Instruments

Personality Traits. As personality traits (e.g., propensity to
trust, risk-taking tendencies) is shown to influence decision-
making and trusting behaviors when it comes to human-human
interaction [17, 47, 69], we measured participants’ propensity
to trust other people using 12 items rated on a 5-point bipolar
Likert scale (i.e., strongly disagree to strongly agree) [28].
Furthermore, we administered a shortened version of the
DOSPERT scale for measuring risk-taking tendencies along
five different dimensions: ethical, financial, health/safety,
recreational, and social [8, 73].

Emotions. To measure emotions, we adapted three emotion
items from four emotion factors proposed by Buck et al.’s
UAX (User Affective eXperience) scale, which was origi-
nally developed to measure emotions in response to pop-up
computer security warning messages [11]. The 12 emotions
included: positive emotions (i.e., happy, confident, and se-
cure), anxiety emotions (i.e., anxious, nervous, and afraid),
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loneliness emotions (i.e., lonely, isolated, and abandoned), and
hostility emotions (i.e., hostile, scornful, and resentful). The
questionnaire asked participants to rate emotions in the con-
text of “How did you feel operating the drone system in your
most recent session?” Each emotion item was phrased in the
past tense with a brief statement at the end to put the emotion
in context and specifically refer to the emotional experience
during the UAV task (e.g., “I felt happy because the system
functioned well.”) Participants rated these statements using a
7-point unipolar Likert scale (i.e., not at all to very much).

Trust. To measure the trusting beliefs toward the drone system,
we adapted the trust scale directly from Chancey et al. [15]
which uses the three modified trust factors (i.e., performance,
process, and purpose) from the Human-Computer Trust Ques-
tionnaire [45]. Here, performance (ability) relates to the ob-
servable outcome of an automation tool to achieve a user’s
goal; process (integrity) reflects the way a automation tool
works to advance towards user’s goal and understanding of
the sequential steps (algorithms) of the automation by a user;
and purpose (benevolence) describes why an automation is
necessary and a user’s knowledge of the automation tool’s
(and developers’) honest intention to maximize user’s desired
output [15, 39, 40].

In order to avoid possible confusion between the trust in the
“overall” system vs. the “warning” system, the items were
phrased to measure users’ trust in the “overall” system in
the paper (e.g., “Overall, I can rely on the drone system to
function properly.”) Sample items measuring performance
factor of trust included “Overall, the drone system performs
reliably,” process factor of trust included “I recognize how I
should use the drone system to perform well the next time [
use it,” and purpose factor of trust included “If I am not sure
about any situation, I have faith that the drone system will
operate reliably to help me perform well.” Participants rated
their agreement with each item on a 7-point bipolar Likert
scale (i.e., strongly disagree to strongly agree).

Recruitment and Study Protocol

The study was approved by our university’s Institutional Re-
view Board (IRB). To recruit participants, we posted recruit-
ment fliers containing a link to the pre-screening survey on
notice boards around the university campus. The flier was
also sent out to university students, faculty, and staff through
an online daily announcement system. We screened potential
participants based on the following criteria: (1) normal or
corrected-to-normal vision, (2) normal or corrected-to-normal
hearing, (3) ability to use both hands to control the joystick,
(4) 18 years or older of age, and (5) proficient in English.
The chosen criteria ensured that participants would be able
understand the feedback messages which were given via a
combination of audio and text, and would be able to use both
hands at the same time to navigate the UAV during game play.

The experiment was done in an isolated lab environment in
the basement of the building where lighting condition and
sound were controlled. After arriving at the lab, participants
read and signed an informed consent form before starting the
experiment. The investigator demonstrated the task and use
of the joystick before participants read a detailed description

of the task and controls. Next, each participant practiced a
5-minute session in the presence of the investigator to get
familiar with the system (e.g., recognize enemy vehicles, use
the joystick effectively). Only one participant needed to try
the practice session twice. In the practice session, participants
did not receive any hazard or warning.

Each participant then responded to the personality traits in-
struments (i.e., propensity to trust, risk-taking tendencies).
Next, they completed a 7-minute UAV task session, which was
followed by a survey instrument including emotion items fol-
lowed by trust items. As we wanted to test whether emotions
mediated the relationship between the independent variables
and trust, we measured the mediating variable (i.e., emotions)
before the outcome variable (i.e., trust) to avoid a possible
reverse causal effect [12, 16, 65].

The UAV task sessions were repeated a total of four times.
After each task session there was a 5-minute break. At the end
of the final session, there was a short interview followed by
debriefing. Each in-lab session lasted about 100 minutes and
each participant was compensated with a $30 Amazon eGift
card. The study took place during April and May of 2018
while participants’ data collection time (i.e., morning, noon,
or evening) were balanced across groups.

EVALUATION

We evaluated internal reliability of the survey scales (including
the extracted emotion factors from UAX scale) using Cron-
bach’s o before running further analyses. A Cronbach’s &
value greater than 0.8 is considered to have a good reliabil-
ity [27, 30]. The propensity to trust scale had a good reliability
(o = .85). The five risk-taking tendency domains sub-scales
did not have good reliabilities (ethical o = .52, financial o =
.61, healthy/safety o = .60, recreational o = .77, and social &
=.47). Trust in the drone system sub-scales had excellent or
good reliabilities (performance factor o = .91, process factor
a = .87, and purpose factor o = .89).

We conducted an analysis of a three-way mixed design (split-
plot) ANOVA with two between-group factors and one re-
peated measure factor to test the main effects and interactions
for each dependent variable (i.e., emotion factors extracted
from Principal Component Analysis (PCA), trust factors, com-
pliance rate, average response time, and UAV task scores).
Each particular UAV task session (i.e., of the 4 sessions) was
the repeated-measure factor while warning reliability (low,
high) and feedback (absent, present) were between-group fac-
tors. We inspected normality assumptions, Levene’s test of
equality of error variances, and consulted appropriate cor-
rective measures when necessary. Our findings along with
demographics are presented below.

Demographics

In total, 251 participants completed the pre-screening survey,
which included both demographics and screening questions.
Out of 239 eligible participants, we recruited 60 participants
for the study. After data collection, we removed the responses
of one participant who failed to complete the study because
of an electrical problem in the lab. In addition, utilizing eye
tracker data, we removed the responses of two participants
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who completed part of the survey without looking at the sur-
vey items. Thus, data from a total of 57 participants were
included in our analysis (i.e., 15 in high reliability/feedback
present group, 14 in high reliability/feedback absent group,
14 in low reliability/feedback present group, and 14 in low
reliability/feedback absent group).

Participants’ age ranged from 18 to 27 years (Mean = 20.40,
Median = 20, SD = 1.82), while 29 participants were female
(50.9%) and 28 were male (49.1%).

The breakdown of reported highest level of education were
high school/GED (12.3%; 7), some college degree (66.7%;
38), 2-year college degree (5.3%; 3), 4-year college degree
(14%; 8), and master’s degree (1.8%, 1). The majority of
the participants were undergraduate students (86%; 49), six
(10.5%) were graduate students, and two (3.5%) participants
were non-students.

Participants’ self-reported computer proficiency is as follows:
two participants (3.5%) identified themselves as ‘beginner,” 30
(52.6%) as ‘competent,” 23 (40.4%) as ‘proficient,” and two
(3.5%) as ‘expert.’

Since our study involved operating a simulated UAV with a
joystick, we asked participants about their video game playing
habits. Only four participants (7%) reported playing video
games ‘daily,” whereas 15 (26.3%) and 20 (35.1%) participants
reported playing a few times a week and a month, respectively.
Moreover, 18 participants (31.6%) ‘rarely’ played video games
or ‘did not play’ at all. We also collected participants expe-
rience level with first-person shooting (e.g., Counter Strike,
Call of Duty) and air flight combat (e.g., War Thunder, World
of Warplanes) video games, where eight participants (14%)
reported that they have ‘never played’ first-person shooting
games, 37 participants (64.9%) reported that they ‘played
before but are not experts’, and 12 participants (21.1%) re-
ported themselves as ‘expert.” Lastly, 32 participants (56.1%)
reported that they have ‘never played’ any air flight combat
game and 25 participants (43.9%) reported that they have, with
no participant reporting themselves as ‘expert’. We also asked
participants about their skill with the joystick used in our study.
Reported joystick skill levels were ‘never used’ (7, 12.3%),
‘novice’ (30, 52.6%), and ‘intermediary’ (20, 35.1%). No par-
ticipants reported being an ‘expert’ at using the joystick. All
participants were right handed. None of the participants served
in the military or had experience of operating any military or
commercial drone or UAV.

We formed the experimental groups using a randomized com-
plete block design to remove the variability between groups
from the experimental error [52]. The aforementioned demo-
graphic and game behavior questions were used to balance
the composition of experimental groups. We did not find any
significant differences across the groups in terms of gender
(12(3) = .34, p =.95), age (12(3) = 3.32, p = .35), highest
level of education (x2(3) = 1.02, p = .80), current employment
status (12(6) =4.53 , p = .61), computer proficiency ()(2(3)
= .10, p = .99), video gaming frequency (¥>(3) = .72, p =
.87), first-person shooting game experience (x>(3) = .37, p
=.95), air flight combat games ()(2(3) =2.06, p = .56), and

joystick skills (x2(6) = 7.76, p = .26). To examine individual
differences among the groups, we performed ANOVA analysis
with propensity to trust (F(3,53) = .57, p = 0.64), five domain
specific risk-taking tendencies: ethical (x> (3) =2.77, p = .43),
financial (F (3, 53) = .96, p = .42), healthy/safety (F (3, 53) =
.56, p = .65), recreational (F'(3, 53) = .57, p = .64), and social
(F(3,53)=.63, p=.60).

Based on the aforementioned analyses, we concluded that the
groups formed were similar in terms of demographics and
personality traits.

Factor Analysis: UAX Emotions Scale

We conducted an exploratory PCA analysis with orthogonal
(varimax) rotation to extract factors from the 12 emotion items.
For these emotion items, we accumulated the responses of
all four sessions together, and performed PCA on the accu-
mulated data to identify the emotion factors. According to
Kaiser Criterion, a Kaiser-Meyer-Olkin (KMO) value between
0.8 and 0.9 is “great” [27] and “meritorious” [34], indicating
that common factors can explain the variability of the emotion
ratings. Our analysis verified KMO measure of sampling ade-
quacy (KMO = .85), and Bartlett’s test of sphericity measure
was significant (y%(66) = 2005.40, p < .001), indicating that
the correlation between items was sufficiently large for PCA.
Prior work noted that, for a sample size containing less than
100 participants, all communalities above 0.6 may be “per-
fectly adequate” [27]. In our study, all communalities were at
least 0.73.

Factor

Anxiety | Positive | Loneliness | Hostility

Nervous 92
Anxious 91
Afraid .89
Secure 92
Happy .89
Confident .88
Lonely 87
Abandoned .79
Isolated 72 45
Scornful 85
Resentful .80
Hostile .55 .63

Table 3: Factor loadings of the emotion items from the factor
analysis. The highest factor loadings are in bold.

We extracted four factors, which were consistent with Buck et
al.’s [11] factor loadings and predicted a cumulative total of
83.33% of the variance in emotion ratings. Factor 1 (anxiety
emotions), factor 2 (positive emotions), factor 3 (loneliness
emotions), and factor 4 (hostility emotions) explained 44.50%,
21.33%, 12.80%, and 4.70% of the variance, respectively.
In addition, the diagonal elements of the anti-image correla-
tion matrix were at least 0.75, which indicated that the factor
analysis was appropriate and did not warrant removal of any
variable [27]. Furthermore, the positive emotions (& = .90),
anxiety emotions (¢ = .92), loneliness emotions (¢ = .87), and
hostility emotions (& = .89) had good reliability. Each factor’s
subsisting items and their loadings are reported in Table 3.
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Main Effects and Interactions on Emotions

Positive Emotions. The ANOVA yielded a significant main
effect of feedback on the positive emotions (i.e., happy, confi-
dent, and secure) (F(1, 53) =5.21, p < .05, n[% =.09). Feed-
back absent groups (M =4.52, SD = .25) experienced higher
level of positive emotions compared to the feedback present
groups (M = 3.72, SD = .25), which was opposite of our ex-
pectation (H1a). We did not observe main effect of warning
reliability. Hence, our hypothesis H2a was not supported as
well.

Anxiety Emotions. We did not observe any main effect or
interactions of feedback and reliability on the anxiety emotions
(i.e., anxious, nervous, and afraid). As such, our hypotheses
H1b and H2b were not supported for anxiety emotions.

Loneliness Emotions. The ANOVA yielded a significant
main effect of feedback on the loneliness emotions (i.e., lonely,
isolated, and abandoned) (F (1, 53) =4.64, p < .05, n]% =.08).
Feedback present groups (M = 2.03, SD = .16) experienced
higher level of loneliness emotions compared to the feedback
absent groups (M = 1.54, SD = .17), which is opposite of our
hypothesis H1b for loneliness emotions.

We also observed a significant main effect of reliability on the
loneliness emotions (F(1, 53) = 6.55, p < .05, 17,% =.11). Low
reliability warning groups (M = 2.08, SD = .17) experienced a
significantly higher level of loneliness emotions than high reli-
ability warning groups (M = 1.49, SD = .16), which supported
hypothesis H2b for loneliness emotions.

Hostility Emotions. The ANOVA yielded a significant main
effect of feedback on the hostility emotions (i.e., hostile, scorn-
ful, and resentful) (F (1, 53) = 8.54, p < .01, "1;% =.14). Feed-
back present groups (M =2.48, SD = .19) experienced higher
level of hostility emotions compared to the feedback absent
groups (M = 1.71, SD = .19), which is opposite of hypothesis
H1b for hostility emotions.

We also observed a significant main effect of reliability on the
hostility emotions (F (1, 53) =4.72, p < .05, n; =.08). Low
reliability warning groups (M = 2.38, SD = .19) experienced
significantly higher level of hostility emotions than high relia-
bility warning groups (M = 1.81, SD = .19), which supported
hypothesis H2b for hostility emotions.

Main Effects and Interactions on Trust Factors
Performance Factor of Trust. We observed a significant
main effect of feedback on the performance factor of trust (F (1,
53)=5.77, p< .05, 771% =.10). Regardless of the reliability of
warnings, performance ratings were higher for the feedback
absent groups (M = 5.24, SD = .24) than the feedback present
groups (M =4.45, SD = .23). We did not observe any other
main effects or interactions on performance.

Process Factor of Trust. We observed a significant main
effect of feedback on the process factor of trust (F (1, 53)
=5.18, p < .05, 17,% = .09). Regardless of the reliability of
warnings, the process factor ratings were higher for feedback
absent groups (M = 5.60, SD = .20) than feedback present
groups (M =4.95, SD = .20). We did not observe any other
main effects or interactions on process.

Purpose Factor of Trust. We observed a significant main
effect of feedback on the purpose factor of trust (F(1, 53)
=4.14, p < .05, 171% = .07). Regardless of the reliability of
warnings, the purpose factor ratings were higher for feedback
absent groups (M = 4.67, SD = .26) than feedback present
groups (M =3.93, SD = .25). We did not observe any other
main effects or interactions on purpose.

We conclude that our findings suggest the opposite of hypothe-
ses Hlc and H2c.

Warning Response Behavior

Compliance Rate. Compliance rate is calculated by divid-
ing the number of followed warnings by the total number of
warnings. Compliance rates were transformed to a scale of 0
(no compliance) to 1 (full compliance). We did not observe
any main effects or interactions on compliance rate. Average
compliance rates are reported in Table 4. We conclude that
our findings suggest the opposite of hypotheses H1d, H2d, and
H3.

Average Response Time. Warning response time is the time
a participant took to follow the warning after it went off. We
calculated the average response time of each participant by
dividing the total warning response time with the number of
followed warnings in the task session. We did not observe any
main effects or interactions on average response time. Average
response times are reported in Table 4.

. . Average

W&'lmfl}g Feedback Compliance Response Performance

Reliability Rate . Score
Time (sec)

High Present .86 (.05) | 2.72 (1.98) | 109.25 (7.56)
High Absent .87 (.05) | 2.66 (2.05) | 97.86(7.83)
Low Present .83 (.05) | 2.62 (2.05) 95.54 (7.83)
Low Absent 74 (.05) | 2.55(2.05) | 108.93 (7.83)

Table 4: Average compliance rates, response times, and UAV
task performance scores. (Numbers outside of parentheses
represent means and numbers inside of parentheses represent
standard deviations.)

UAV Task Performance Score

We did not observe any significant main effect of warning
reliability or feedback on the UAV task performance score.
Average performance scores are reported in Table 4.

Mediation Analysis

To establish a mediation, an independent variable must pre-
dict the dependent variable [4]. As warning reliability did
not predict the trust factors, mediation analysis considering
warning reliability as a predictor was not performed. However,
we performed simple mediation analyses for the relationship
between feedback and trust factors through emotions (e.g.,
positive, loneliness, and hostility) as this held the required
conditions. Mediation analysis results are reported below.

Mediating Effects of Emotions on Performance Factor of
Trust. We conducted ordinary least squares (OLS) regression
analysis to investigate whether positive emotions mediated the
effect of feedback on the performance factor of trust. We used
a bootstrap estimation approach with 10,000 samples to test
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the indirect effects [25, 68]. As the assumption of homoscedas-
ticity is critical in OLS regression, we used heteroscedasticity-
consistent HC3 (Davidson-MacKinnon) standard error estima-
tor [25, 33] to address this assumption. Results indicated that
feedback was a significant predictor of positive emotions (b
=-.79, SE = .21, p < .001) and positive emotions factor was
a significant predictor of performance (b = .65, SE = .04, p <
.001). After controlling for the positive emotions in the full
model, feedback was still a significant predictor of the perfor-
mance factor (b =-.27, SE = .12, p < .05), consistent with a
partial mediation (Figure 3). Since the 95% confidence inter-
val did not include zero, it indicated that the indirect effect was
significant (b =-.52, SE = .14, 95% CI = [-.79, -.25]). There-
fore, we conclude that positive emotions partially mediated
the relationship between feedback and the performance factor
of trust. The regression coefficients (Table 5) indicate that
positive emotions increased the performance factor of trust.
Hence, the presence of feedback decreased the performance
factor of trust by negatively affecting positive emotions.

Positive
Emotions
- .79*** .65***
a b
Feedback c©) Performance
- 79%** (-.27%) (Trust)

Figure 3: Regression coefficients for a simple mediation model
representing the relationship between feedback, positive emo-
tions, and performance factor of trust. The direct effect after
controlling for the mediating variable is reported inside the
parenthesis. *p < .05, **p < .01, ***p < .001

regression coefficients at Table 5 indicate that the presence of
feedback increased hostility emotions, which in turn decreased
the performance factor of trust.

Mediating Effects of Emotions on Process Factor of Trust.
We observed a partial mediating effect of positive emotions
on the relationship between feedback and the process factor
of trust (Figure 4). Simple mediation analysis indicated that
the indirect effect was significant (b = -.37, SE = .10, 95% CI
= [-.58, -.17]). Regression coefficients are reported in Table 6.
The regression coefficients indicated that the presence of feed-
back decreased positive emotions, which in turn decreased the
process factor of trust.

Positive
Emotions
_.79*** ‘46***
a b
c(c
Feedback ©) Process
-.B4*** (- 28%) (Trust)

Figure 4: Regression coefficients for a simple mediation model
representing the relationship between feedback, positive emo-
tions, and process factor of trust. The direct effect after con-
trolling for the mediating variable is reported inside the paren-
thesis. *p <.05, **p < .01, ***p <.001

Source Positive Loneliness Hostility
Emotions Emotions Emotions
a ST9EEE (D) | A4A8FEF ((13) | LTTF*FE(L16)
b A6FFE (L04) | -27FF (.09) | -.32%** (.07)
c -.64%%% (116) | -.64%%* ((16) | -.64%** (.16)
c -28% ((13) | -.51%* ((15) | -.40%* (.15)

Source Positive Loneliness Hostility
Emotions Emotions Emotions
a SJ9FEE (21) | A48%FE ((13) | TT7FFE(16)
b 65%%% ((04) | -.44%%% (09) | -.43%** (.07)
C S 79%EE (18) | -.79%%* ((18) | -.79%** (\18)
¢ S27% ((12) | -57FER (1T) | -.46%* ((17)

Table 5: Regression coefficients for the relationship between
feedback and performance factor as mediated by emotion
factors. Standard errors are in parentheses. *p < .05, **p
< .01, ***p < .001. (Sources a, b, ¢, and ¢’ are labeled in
Figure 3.)

Simple mediation analysis also indicated a partial mediating
effect of loneliness emotions on the relationship between feed-
back and the performance factor of trust. The indirect effect
was significant (b = -.21, SE = .07, 95% CI = [-.35, -.10]).
Regression coefficients are reported in Table 5. The regression
coefficients indicated that the presence of feedback increased
the loneliness emotions, which in turn decreased the perfor-
mance factor of trust.

Similarly, mediation analysis indicated that the hostility emo-
tions partially mediated the relationship between feedback and
the performance factor of trust. The indirect effect was sig-
nificant (b =-.33, SE = .08, 95% CI = [-.50, -.18]). Reported

Table 6: Regression coefficients for the relationship between
feedback and process factor as mediated by emotion factors.
Standard errors are in parentheses. *p < .05, **p < .01, ***p
<.001. (Sources a, b, ¢, and ¢’ are labeled in Figure 4.)

Similarly, mediation analysis indicated that the loneliness emo-
tions partially mediated the relationship between feedback and
the process factor of trust. The indirect effect was significant
(b=-.13,SE =.05,95% CI =[-.24, -.05]). Reported regression
coefficients in Table 6 indicate that the presence of feedback
increased loneliness emotions, which in turn decreased the
process factor of trust.

Simple mediation analysis indicated a mediating effect of hos-
tility emotions on the relationship between feedback and the
process factor of trust. The indirect effect was significant (b =
=24, SE = .07, 95% CI = [-.39, -.13]). Regression coefficients
are reported in Table 6. The regression coefficients indicate
that the presence of feedback increased hostility emotions,
which in turn decreased the process factor of trust.

Mediating Effects of Emotions on Purpose Factor of Trust.
Regression results indicated that the feedback was a signif-
icant predictor of positive emotions (b = -.79, SE = .21, p
< .001) and the positive emotion was a significant predictor
of the purpose factor of trust (b = .63, SE = .05, p < .001).
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After controlling for the positive emotions in the full model,
feedback was no longer a significant predictor of the process
factor of trust (b =-.23, SE = .15, p =.11), consistent with full
mediation (Figure 5). The results indicated that the indirect ef-
fect was significant (b = -.50, SE = .14, 95% CI = [-.77, -.24]).
Therefore, we conclude that positive emotions fully mediated
the relationship between feedback and the purpose factor of
trust. The regression coefficients in Table 7 indicate that the
presence of feedback decreased positive emotions, which in
turn decreased the purpose factor of trust.

Positive
Emotions
_.79*** .63***
a b
c(c
Feedback ©) Purpose
- 73%%% (-.23) (Trust)

Figure 5: Regression coefficients for a simple mediation model
representing the relationship between feedback, positive emo-
tions, and purpose factor of trust. The direct effect after con-
trolling for the mediating variable is reported inside the paren-
thesis. *p <.05, **p < .01, ***p < .001

Mediation analysis also indicated that the loneliness emotions
partially mediated the relationship between feedback and the
purpose factor of trust. The indirect effect was significant (b
=-.10, SE = .05, 95% CI = [-.20, -.01]). Reported regression
coefficients in Table 7 indicate that the presence of feedback
increased loneliness emotions, which in turn decreased the
purpose factor of trust.

Source Positive Loneliness Hostility
Emotions Emotions Emotions
a SJ9FEE (21) | A48%FE ((13) | TT7FFE(16)
b .63%%% ([05) -.20% (.09) | -.26%** (.07)
C S 73%EE ((19) | -73%%% ((19) | -.73%%* ([19)
¢ =23 (.15) | -.64%*%(19) | -.54%*(.19)

Table 7: Regression coefficients for the relationship between
feedback and purpose factor as mediated by emotion factors.
Standard errors are in parentheses. *p < .05, **p < .01, ***p
< .001. (Sources a, b, ¢, and ¢’ are labeled in Figure 5.)

Similarly, simple mediation analysis indicated a partial medi-
ating effect of hostility emotions on the relationship between
feedback and the purpose factor of trust. The indirect effect
was significant (b = -.20, SE = .07, 95% CI = [-.35, -.08]).
Regression coefficients are reported in Table 7. The regression
coefficients indicate that the presence of feedback increased
hostility emotions, which in turn decreased the purpose factor
of trust.

Based on our analyses, findings supported hypothesis H4a,
whereas hypotheses H4 and H4b received partial support.

DISCUSSION

Negative Effect of Feedback on Emotions and Trust
Contrary to our expectation, feedback present groups reported
a lower level of positive emotions compared to the feedback

absent groups (opposite of hypothesis Hla). Moreover, results
indicated that hostility and loneliness emotions were higher
for the feedback present groups. Opposite to our hypothesis
H1b, feedback components (“thank you” and “sorry”) did not
succeed in reducing negative emotions.

Regarding trust, while we found a significant effect of feed-
back on trust, the effect was opposite of our expectation (Hy-
pothesis Hlc). Specifically, participants receiving feedback
trusted the system less regardless of warning reliability.

While the effect of feedback was negative on emotions and
trust in the system, this might be explained based on prior
efforts that noted that, after experiencing a error made by an
automated system, users tend to focus more on the error [23,
24]. This is likely due to the fact that users usually have a high
reliability expectation from automated systems and expect
them to perform reliably with “near perfect” accuracy [24].
For that, even a single error by an autonomous system can
cause a significant drop in trust [63, 64]. Therefore, it is
possible that explicit feedback messages regarding system’s
failure to prevent the error (i.e., Sorry! Overheating could not
be avoided!) affected emotion and trust negatively rather than
positively in our case.

While our findings are contrary to prior efforts in human-
human interactions that have shown that apology can increase
trust [66], however, our findings are in line with other re-
search in the context of unreliable search interface [57] and
human-robot interactions [63] that have shown that apologetic
messages do not increase trust comparing to neutral messages.
Prior research also found that apology without promises of
future improvements may be in vain [66], which was true for
our message design as well.

We argue that the observed negative effect of feedback on
emotion and trust, while unexpected, is not necessarily a “bad”
thing. Rather, it might be an effective way to nudge partici-
pants to gauge the reliability of automation systems carefully
and make decisions while mindfully processing risks. As such,
feedback mechanism can facilitate calibration of trust in unre-
liable systems, preventing the possibility of “overreliance” on
automation [56].

Mediating Effect of Emotions on Trust

Regression analysis showed that the positive emotions were
positively correlated with the trust factors (i.e., performance,
process, and purpose) and the negative emotions (i.e., hostil-
ity and loneliness) were negatively correlated with the trust
factors. After controlling for the reported experienced emo-
tions, the direct effects of the feedback on trust factors were
less dominant or not effective at all. These results support hy-
pothesis H4a and partially support H4b. This result supports
the notion that users are likely to consider machines as social
actors, and apply social norms of human-human interaction
regarding trust to human-machine trust, although most likely
subconsciously, which might be exploited to calibrate users’
trust in the system. Our findings are in line with prior efforts
that have investigated the role of emotions in interpersonal
trust, and have shown that positive valance emotional state
(e.g., happiness, gratitude) leads to more trust [22]. Influence
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of trustor’s emotional state on interpersonal trust is supported
by others as well [47, 79].

Lack of Effect of Warning Reliability on Compliance Rate

The current study did not find any effect of warning reliability
on trust and compliance rate, and hypotheses H2c and H2d
were not supported. Several factors may have contributed
to this lack of effect. For instance, it is possible that even a
single error was enough to reduce trust significantly as users
tend to focus more on errors. Another possibility is that, due
to the safety-critical nature of the scenario, false alarms did
not create a “cry-wolf” effect, and did not significantly af-
fect the compliance rate across groups. This is in line with
findings from a previous study in the context of air traffic
control conflict alert systems where false alarms did not af-
fect compliance behavior [75]. It is possible that participants
might have perceived the risk of not following the warning
as higher compared to following (i.e., 30 seconds vs 10 sec-
onds of low-quality video) simulating the characteristics of
real safety-critical systems where the cost of noncompliance is
high in case of true warning. This cost difference might have
caused the high compliance rates regardless of the experimen-
tal groups, which satisfies “conditions for dependence” on the
system [15]. This finding underscores the difficulty of address-
ing the danger of “overtrust” in safety-critical autonomous
systems (e.g., engaging self-driving feature mindlessly).

Increased time pressure may have been another factor that
contributed to this behavior as well. Specifically, in the current
study, participants had five seconds to respond to the warnings,
and were in imminent threat of experiencing 30 seconds of
low-quality video. Furthermore, participants were asked to
neutralize as many enemy vehicles as possible within a given
time. These can lead to added time pressure, which is shown
to increase users’ reliance on automation [61, 71]. All these
factors might have contributed to the high compliance rate
across experimental groups.

Lack of Effect of Trust on Compliance Rate

We did not find any mediating effect of trust on compliance
rate, and hypothesis H3 was not supported. This finding is in
line with prior efforts that showed that trust measures may not
reflect compliance rates [12, 76]. It is likely that trust itself
is not the sole mediator of system dependence [16, 40, 78],
and should not be considered as the prime mediator of the
response behavior [14].

Limitations and Future Work
The study design, feedback messages, and simulation software
interfaces were finalized after multiple iterations and pilot test-
ing by the research team that included six members. However,
due to the nature of in-lab studies, our simulated scenario has
several limitations as follows.

First, we acknowledge that the nature of the simulated task is
likely to influence the results, and our findings may not gener-
alize to other domains as we focus on systems with real-time
constraints. In fact, our findings are inconsistent with behav-
iors reported in cybersecurity where users routinely ignore
system recommendations [26], underscoring the importance
of considering contexts while analyzing such behavior.

Second, as participants might have difficulty identifying emo-
tions and/or might not want to disclose their actual emotions,
self-reported emotion ratings may not be perfectly accurate.
Further studies in different settings are needed to confirm our
findings.

Third, the design of the feedback messages included both
gratitude and apology phrasing, which was informed by prior
research that demonstrated that apology and appreciation both
are necessary components for trust building in human-human
interactions [10]. It is possible that excluding these phras-
ing may cause similar or different effects on emotions, trust,
and compliance behavior. Measuring the effect of different
feedback messaging could be an interesting follow-up study.

CONCLUSION

In this paper we examined the effect of warning reliability and
feedback on users’ emotional state, trust, and response behav-
ior in a simulated target detection system. Results indicated
that presenting feedback decreased users’ trust in the system.
In addition, emotions were shown to mediate the relationship
between feedback and trust. Our reported findings can be
applied to develop executive functioning strategies for safety-
critical systems, and design systems that engender appropriate
levels of trust instead of simply maximizing it.
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ABSTRACT

Responding to automated system errors as violations of user
trust can help to promote safe and effective human-computer
interactions. Researchers have thus begun investigating mech-
anisms for “trust repair.” However, the extent to which users
distinguish between a system and the system’s developers is
unclear. This may be an important factor in the efficacy of
trust repair messages. To investigate this, we conducted a 2
(reliability) x 3 (blame) between-group, factorial study. Par-
ticipants interacted with a high or low reliability automated
system that attributed blame for errors internally (“I was not
able...”), pseudo-externally (“The developers were not able...”),
or externally (“A third-party algorithm that I used was not
able...”). We found that pseudo-external blame and internal
blame influenced subjective trust differently, suggesting that
the system and its developers represent distinct trustees. We
discuss the implications of our findings for the design and
study of human-automation trust repair.
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theory.
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INTRODUCTION

Trust has been studied in various disciplines as a funda-
mental factor in human relationships [1, 4, 34]. Addition-
ally, researchers have investigated the notion of a human’s
“trust” in machines, computers, robots, and automation in gen-
eral [11,17]. Given the growing prevalence of automated
systems in various domains (e.g., autonomous drone systems,
self-driving cars, home assistants), understanding the factors
that break and repair a user’s trust is increasingly important
for system design.

For instance, consider an autonomous drone system used in a
surveillance task. If the system misidentifies an image, leaving
you exposed to a threat, you may feel that it violated your
trust. In a comparatively low-risk scenario, if you use a home
assistant system (e.g., Amazon Echo) to manage your calendar
and end up missing an important appointment, the experience
will likely affect your willingness to rely on the automation
in the future. In both cases, the system has the opportunity to
repair trust, that is, to respond to the trust violation in an effort
to improve future outcomes. We pose the question—are the
people behind an automated system implicated in its mistakes?
Or is the system itself deemed a responsible actor that can
repair broken trust?

While users likely correctly understand that these machines
are products of human design, evidence suggests that humans
respond to computers socially [28]. Perhaps, then, the user
is engaging in a trusting relationship the system itself. If so,
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users may be prone to poor “trust calibration” [17]. Discount-
ing a fundamental design flaw or lack of functionality as a
non-repeatable offense that the system can correct may lead
to misuse of the system in unsafe circumstances [29]. On the
other hand, diagnosing a rare system malfunction as a serious
miscalculation by developers could lead to disuse of the sys-
tem when it could actually provide an advantage [29]. These
represent “overtrust” and “undertrust,” respectively.

The current study seeks to elucidate the separation of system
and developers by investigating how attribution of blame for
system errors influences users’ trust. We recruited 147 partici-
pants on Amazon Mechanical Turk (MTurk) to play an online
game where they collaborated with an Automated Target De-
tection (ATD) system in 5 rounds of an image classification
task. In a 2 (reliability) x 3 (blame) between-group study, par-
ticipants interacted with a high or low reliability system. After
each round, the system displayed a text message acknowl-
edging its errors in identifying images in the previous round,
attributing blame either internally (“I was not able...”), pseudo-
externally (“The developers were not able...”), or externally
(“A third-party algorithm that I used was not able...”). Partici-
pants chose how many images to allocate to the automation
and were compensated based on their combined performance
with the ATD system. After gameplay, participants responded
to a survey.

We found that reliability influenced both behavioral and subjec-
tive trust, while blame influenced subjective trust. Specifically,
internal blame was regarded more positively than pseudo-
external blame, suggesting that a system’s errors are not con-
sidered the same as the developers’ errors.

We first review related areas of work in both human-human
and human-computer interaction. Then, we describe our study
methodology and research hypotheses. Lastly, we present
statistical analyses on gameplay and survey data and discuss
the implications of our results.

RELATED WORK
In the broad literature on trust, Mayer et al.’s definition is one
of the most widely accepted [23]:

The willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other
will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that party.

Despite its original application to trust between humans, this
definition readily applies to interactions with automation. For
instance, if we trust the Amazon Echo, we expect that it will
maintain an accurate, updated schedule of our activities. As
we are unable to see inside the black box of the system, our
trust involves an acceptance of the risk that it may not end up
helping us. If we trust an autonomous vehicle, we expect that
it will accurately recognize and respond to obstacles in the
driving path. Again, because we cannot fully comprehend the
inner workings of the system, our trust exposes us to the vul-
nerability and potential consequences of an unreliable system.
The notion that a non-human may be “trusted” is supported by
the Computers are Social Actors (CASA) paradigm.

Computers are Social Actors & Human-Computer Trust
As its namesake suggests, CASA research has found that, in
interactions with computers, humans can “be induced to elicit
a wide range of social behaviors, even though users know
that the machines do not actually possess feelings” [28]. For
instance, experiments have shown that people use politeness
toward computers, as well as social rules regarding praise
of others and praise of self (see [28] for more examples).
Although research on trust in automation tends to tailor the
construct to the trustees’ non-human attributes [17,20], CASA
predicts that social rules of trust reserved for other humans are
extended to automation.

Yet might such an attribution of trust occur because of the
machine’s ultimately human creators? Along these lines, “in-
stitutional trust” has occasionally been measured as a way
to capture a trustor’s perceptions of the people behind a sys-
tem [12,19,24]. Similarly, Hoff and Bashir propose that the
developers are indirectly the trustees, and that trust in automa-
tion may be viewed as “a specific type of interpersonal trust
in which the trustee is one step removed from the truster” [11].
However, in CASA studies, participants have generally denied
responding socially to the computer and remarked that they
were not thinking of any human during their interaction. Thus,
researchers have suggested that social responses to computers
occur due to “mindlessness,” as an automatic response wherein
individuals “prematurely commit to overly simplistic scripts
drawn in the past” [27].

Sundar and Nass tested the mindlessness mechanism by inves-
tigating whether social responses occur because the computer
is perceived as a medium between user and developer [37].
In their experiment, one group of participants interacted with
a machine consistently referred to as “Computer” while the
other group’s machine was referred to as “Programmer.” Au-
thors predicted that, if the computer were simply considered
a medium between user and developer, there would be no
difference between experimental conditions. However, those
in the “Computer” condition perceived their interaction more
positively than those in the “Programmer” condition. Authors
suggest that mindlessness prevented participants in the com-
puter condition from considering the developers. Computers
appear to be treated as distinct sources. We extend this work
to the context of trust repair.

Trust Repair

Referring to trust as the “glue” that holds relationships to-
gether, Lewicki and Brinsfield note the importance of trust
repair following a violation of trust [18]:

...t is essential that this glue be rebonded if a broken rela-
tionship is to have any hope of returning to a productive
or fruitful state.

The authors go on to note various strategies for trust repair
that are certainly not uncommon in day-to-day human-human
interactions, such as apologies and denials [18].

Recently, de Visser et al. called for human-computer trust re-
searchers to consider systems with the capability of “building
and actively repairing trust” [7]. In their framework, failures
or errors by a system may be viewed as costly relationship
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acts, while positive interactions such as good performance
are considered beneficial relationship acts. Relationship reg-
ulation acts, which include repair acts and dampening acts,
are needed to maintain “optimal relationship equilibrium” fol-
lowing costly and beneficial relationship acts, respectively [7].
Relationship regulation by the system can help to maintain a
user’s appropriately calibrated trust.

In this vein, researchers have studied how users perceive apolo-
gies by machines. Tzeng found that, although apologies led
to more positive impressions of a computer program in a
computer-assisted guessing game, this did not reduce blame
for poor game performance [39]. Robinette et al. found that
apologies and promises made immediately after a robot’s mis-
take were less effective than the same apologies and promises
made at the time users had to make their next reliance deci-
sion [33]. Moreover, self-blame has been observed to lead to
greater perceived trustworthiness of virtual agents [3].

In an influential study of human-human trust repair, Kim et al.
found that the effectiveness of apologies varies with the type
of trust violation [15]. Internal apologies (i.e., trustee assumes
full responsibility for violation) were more effective than ex-
ternal apologies (i.e., trustee assumes partial responsibility)
when the violation was a matter of competence, that is, the
trustee’s lack of knowledge. However, the opposite was true
for an integrity violation, when the trustee knowingly violated
trust. Authors suggest that this is a result of the “diagnosticity”
of each type of violation—a highly competent individual may
demonstrate low competence in some situation, whereas an
individual with high integrity is unlikely to demonstrate low
integrity. Admitting to low integrity via an internal apology
is more diagnostic and, therefore, more hurtful to trust than
blaming someone else. Quinn et al. found tentative support
to Kim et al.’s findings in the context of human-automation
interaction [7,31].

We build upon these findings and apply attribution theory to
observe whether system developers are considered external to
the system.

Attribution Theory in Human-Computer Interaction

Attribution theory explores how, in response to a negative
event, people attempt to identify and make sense of the event’s
causes [40]. De Visser et al. suggest that the work of Tomlin-
son and Mayer [38] on the role of attributional processes in
trust repair can be applied to the human-machine context [7].

In Tomlinson and Mayer’s model, the locus of causality, con-
trollability, and stability associated with a trust-violating event
moderate how perceptions of trustworthiness are affected [38].
Locus of causality refers to whether the event was caused by
the trustee (i.e., internal) or another actor (i.e., external). Con-
trollability is the degree to which an actor had control over the
situation. Stability reflects the likelihood that the cause will
reoccur in the future [40]. Trustworthiness perceptions, also
referred to as trusting beliefs, consist of the perceived ability,
integrity, and benevolence of the trustee. Ability or compe-
tence consists of the trustee’s skills in a particular domain.
Integrity reflects that the trustee adheres to a set of principles

that are acceptable to the trustor. Benevolence is the desire of
the trustee to do good for the trustor [23].

Social accounts such as apologies and blame can repair trust
by managing the trustor’s attributions of a trust violation and,
in turn, their trustworthiness perceptions [38]. For example,
perceptions of the trustee’s ability may be less likely to be
affected if the trustee convinces the trustor that the event was
caused by some external actor or circumstance. We investi-
gate whether developers are considered an external locus of
causality following a trust violation by an automated system.

Such a proposition implies that the automation itself acts
independently from its developers’ control—that computers
have agency. In fact, in an interview-based study of 29 com-
puter science majors, Friedman found that 79% of participants
judged computers to have decision-making capabilities and
45% judged computers to have intentions, although nearly
all participants agreed that a computer’s “decision-making”
and “intentions” were different from a human’s [8]. The study
also found that participants who did not blame a computer for
errors gave reasons that diminished its agency. Those who did
blame the computer often reasoned about its participation in
the events leading up to the error.

Researchers have further investigated this idea of computers as
“scapegoats” to which blame can be attributed. For example,
a self-serving bias has been identified where people are less
willing to blame computers that are similar to themselves [26].
Moreover, the greater degree of autonomy of an agent [36] as
well as mere perceptions of a teammate as human or Al [25]
have been observed to influence the assignment of blame.
Prior work has found that minor linguistic manipulations in a
virtual driving assistant’s messages (e.g., using “you” instead
of “we”) can influence the degree to which a driver attributes
responsibility to the system, as well as their perceptions of the
system in general [14].

We build on this work by manipulating the locus of causality
for system errors in trust repair messages, in order to observe
what happens when the developers are a target of blame.

METHODOLOGY

To investigate the extent to which users distinguish between
system and developers, as well as how this varies with system
reliability, we designed a 2 (reliability: high, low) x 3 (blame:
internal, pseudo-external, external) between-group, factorial
study with the following hypotheses.

First, we expected a main effect of reliability on participants’
trust:

H;: High reliability leads to greater trust in the system than
low reliability.

Moreover, in line with CASA, we anticipated that blame of
the system would have a different effect than blame of the
developers:

H,: Pseudo-external blame (i.e., blame of developers) will
influence trust differently than internal blame (i.e., blame
of the system itself).
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Internal “T am sorry that X images assigned to me
were counted as misidentifications. I was

not able to process those images.”

Pseudo-External “I am sorry that X images assigned to me
were counted as misidentifications. The
developers were not able to account for

processing those images.”

External “I am sorry that X images assigned to
me were counted as misidentifications. A
third-party algorithm that I used was not

able to process those images.”

Table 1. Feedback messages. Based on a participant’s blame condition,
these messages were identical across reliability groups. “X” represents
the number of images that the automation was unable to identify in the
previous round.

We designed an online game where participants were scored
and compensated based on their performance with an auto-
mated system of high or low reliability. After each round,
the system displayed a feedback message acknowledging er-
rors in the previous round. Feedback messages in each blame
condition are shown in Table 1. After gameplay, participants
responded to survey on their perceptions of the system. The
details of our methods follow.

Game Design

In the “Target Identification Task,” participants had to classify
20 images of vehicles as “Dangerous” or “Not Dangerous” in
each of 5, two-minute rounds with the help of the Automated
Target Detection (ATD) system.

The game represented a task where two drones (one automated,
one manually controlled) monitor a large area for criminal
activity. After clicking on a map marker, the manual drone
icon moved toward that location. Upon arriving, an image
of a vehicle was shown in the “Vehicle Identification Panel.”
Participants then used “Zoom In,” “Zoom Out,” and “Rotate”
buttons to manually inspect n images, where 0 < n < 20. Non-
dangerous vehicles had only text on top of them. Dangerous
vehicles had numbers in addition to text. Correct and incorrect
manual identifications were accompanied by a bell and buzzer
sound, respectively. A timer counting down from 2 minutes
was shown in the upper right part of the game interface, which
is shown in Figure 1.

The automation ostensibly worked in parallel on (20 - n) im-
ages (it did not actually process images, per se—it spent a
fixed amount of time and had accuracy determined by the reli-
ability condition). In the first round, n was set to 10. In later
rounds, participants were able to choose how many images to
allocate to the automation beforehand. This measure was used
to characterize behavioral trust, or reliance on the automation.

A similar drone-based monitoring game was used by Satter-
field et al. to study trust [35]. Our design differs in that the
participant and automation control only one UAV each, rather
than multiple assets. Moreover, rather than intervening during
gameplay, our participants allocate control to the automation
before a given round. Lastly, while Satterfield et al. give par-

Time remaining ©

Target Identification Task
Rowas 01:40.16

Manual Automation

Vehicle Identification

Accuracy y: 416

Figure 1. Target Identification Task interface. On the left, the map with a
marker for each image is shown. A check mark is displayed at locations
of correctly classified images, an “X” for incorrectly identified manual
images, and a “?” for automation images that could not be processed.
Accuracy for both parties is updated in real-time above the map. On the
right, the Vehicle Identification Panel shows the current manual image.
Participants answer “Is this vehicle dangerous?” with the “Yes” or ‘“No”
button after using the ‘“Zoom In,” “Zoom Out,” and “Rotate’” buttons
to inspect the image. The timer at the upper right counts down from 2
minutes.

ticipants extensive practice before their single experimental
session, we decided not to use a practice round in order to
observe participants’ trust development as they grew familiar
with the system.

Scoring

For each round, participants were given a 100-point “Round
Score” crediting their collective speed and accuracy with the
automation. Speed was ostensibly important in order to iden-
tify criminals before they could harm people; accuracy so
that resources were not inefficiently devoted to stopping inno-
cent people. The Round Score was calculated by averaging a
participant’s “Time Score” and “Accuracy Score.” The Time
Score credited those with more time remaining in the 2-minute
round. The Accuracy Score was based on the correctness of
the user’s and the automation’s combined performance. The
number of correct identifications, 7.,,ecr, fOr the automation
in a given round was calculated as follows:

Neorrect = flOOV(V*Ak)

where r was 0.6 and 0.9 for low and high reliability groups,
respectively, and Ay represents the number of images allocated
to the automation in the k”* round. For example, if 13 images
were allocated to the low reliability automation before a round,
there would be 7 correct identifications and 6 images unable
to be processed by the automation (i.e., “counted as misidenti-
fications”). As a result, the automation improved speed, but
could compromise accuracy. We pilot tested various scaling
functions for the Time and Accuracy scores in order to produce
Round Scores that discouraged full allocation to the automa-
tion or fully manual identification. The reliability condition
thus allowed us to observe how participants calibrated their
trust to an appropriate level as they grew familiar with the
system’s capabilities [17]. The accuracy in each reliability
condition was chosen based on prior work identifying 70% as
the level at which a system is considered reliable [41].
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Results of Round-4

Message &4 Results [ul

| am sorry that 4 images assigned to me were

counted as misidentifications. The developers Correctness © aD aD aD
were not able to account for processing those Time Elapsed © P secY Pl secy aD
images

Round Score

[Good}
L A
65/100

You earned $0.26 in this round.

Allocation for next Round =

In Round-5, there will be 20 images to examine. How many
images do you want to assign to the Automation in Round-5?

g one of the siiers below

Automation:

Manual: 13

7 image(s) will be allocated to the automation and 13 image(s)
will be allocated to you

Figure 2. Feedback page. The feedback message is shown at the upper
left. The upper right scoring panel contains a table with the correct-
ness and time elapsed for manual and automated identification. The
“Total” column shows the longer of the two times and combined correct-
ness, which contribute to Time Score and Accuracy Score, respectively.
The Round Score is shown with a colored gauge and its associated bonus
compensation amount (see Compensation subsection in Methodology).
In the lower panel, participants choose how many images to allocate to
the automation for the next round. Adjusting either the manual or au-
tomation slider simultaneously adjusts both values.

In order to motivate good performance and appropriate trust
calibration in the game, we compensated participants for their
cumulative Round Scores at a rate of 100 points = $0.40.

Feedback Page

After each round, participants were shown a feedback page
containing three elements shown in Figure 2: 1) feedback
message, 2) score information, and 3) allocation decision. The
feedback messages for each group are shown in Table 1. All
messages were displayed with a typewriter effect. Raw scor-
ing information about the time and accuracy of both manual
and automated identification was next displayed in a table,
underneath which a participant’s Round Score was shown. A
colored gauge indicated where the score fell out of a 100 pos-
sible points along with its associated compensation amount.
Lastly, participants were asked to choose how many images
to allocate to the automation for the following round using
a slider. A dialog box asked for confirmation of this choice
before the next round of gameplay was started. Each panel
had a time-delayed “Next” button to prevent participants from
quickly advancing through the page.

Post-Gameplay Survey

The survey was hosted on our university’s Qualtrics server.
To measure perceptions of the automation in the game, as
opposed to the overall game interface or the computer they
were using to complete the study, we explicitly noted that the
phrase “the system” throughout the survey would refer to the
ATD system that helped participants identify images during
gameplay. Participants first were required to correctly answer
a multiple choice question ensuring this understanding before
they advanced to the survey.

The survey began with demographic questions on gender, age,
race, education level, experience operating drones or UAV’s,
military service, and frequency of video game playing. Manip-
ulation check questions were also included to verify the effect
of our independent variables and framing of the messages.

We next investigated participants’ attributions of responsibility
for their performance in the game using 2 items adapted from
Moon and Nass [26]. Participants used a 10-point slider from
“You” to “Automation” indicating who was more responsible
for 1) overall performance in the game and 2) Round Scores.

To complement our behavioral measure of trust, we measured
trusting perceptions, or subjective trust, in the survey. Re-
searchers have measured trust in automation in various ways.
Jian et al.’s scale [13] is one of the most widely cited and has
been applied to the study of apology messages [30]. In gen-
eral, such instruments [5,21] incorporate dimensions similar to
Mayer et al.’s trustworthiness characteristics: ability, integrity,
and benevolence [23]. For example, Madsen and Gregor’s
scale consists of five constructs that reflect these elements: per-
ceived reliability, perceived technical competence, perceived
understandability, faith, and personal attachment [21]. Re-
searchers investigating trust in e-Commerce [24] and online
recommendation agents [2] have directly adapted the trusting
beliefs from Mayer and Davis [22]. However, such an ap-
proach has not been taken in the trust in automation literature.
For this reason, we measured perceptions of trust in the ATD
system with 1) trusting belief items from McKnight et al. [24]
(originally from Mayer and Davis [22]) and 2) Jian et al.’s
trust in automation scale [13], both rated on 7-point scales.
Subjective trust items are included in the Appendix.

We also included 4 attention check questions throughout the
survey.

Study Procedure

The study was posted as a Human Intelligence Task (HIT) on
MTurk, available to workers 18 years or older, living in the
United States, and having completed at least 1000 HIT’s with
an approval rating of 95%. When participants accepted the
job on MTurk, a link directed them to the game website. The
first page of the game displayed an information sheet, the end
of which asked participants whether or not they consented for
participation in the study.

Participants who gave consent were then brought to an in-
struction page explaining the task that the game represented,
the importance of speed and accuracy in scoring, and game
controls. At the end of this page, participants were required
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to correctly answer a series of questions to ensure their un-
derstanding of these aspects. One question ensured they were
using audio to hear the sound effects. If a participant incor-
rectly answered a question, they remained on the instruction
page until they answered all correctly. No feedback was given
as to which answer was incorrect.

Participants were then shown the following introduction mes-
sage: “Welcome! I will use these messages to communicate
with you about my performance.” After advancing, they began
the first round of the game. We told participants beforehand
that certain behaviors would prevent them from completing
the study. These included inactivity for a round where there
were manual images to identify, refreshing the webpage, or
clicking back to return to the previous webpage.

Data collected from gameplay were anonymous and linked to
survey responses with a participant’s randomized ID. Those
who completed all rounds of gameplay and the survey sub-
mitted their random, Qualtrics-generated ID into MTurk to be
compensated with $2 for completion of the HIT. We utilized
MTurk’s bonus payment feature for the aforementioned bonus
compensation based on cumulative Round Scores. The study
was approved by our university’s IRB.

EVALUATION

A total of 264 participants completed the study. We first con-
ducted a series of screening procedures to ensure that our sam-
ple consisted of attentive MTurk users. We removed data for
13 participants who incorrectly answered at least 1 attention
check question in the survey. Additionally, we removed data of
7 participants who allocated all 20 images to the automation in
each of the final 4 rounds, as this strategy indicated a clear lack
of motivation and regard for the scoring mechanism. There
were no participants who used fully manual identification in
the final 4 rounds. For the remaining participants, we next
looked to our manipulation check questions.

Manipulation Checks

Because our focus was on the locus of blame in the messages,
we wanted to ensure that participants recognized 1) that the
source of the messages was the computer itself, and 2) the
target of blame that aligned with their group.

We first asked participants what entity was communicating
with the messages, with options “The computer,” “The sys-
tem developers,” “Not sure,” and “Other.” Since all of those
who chose “Other” mentioned either the “the system,” “the
automation,” or “ATD,” they were coded as correct answers
along with those who answered “The computer.”

Next, we asked what entity was mentioned in the message
as the cause of system errors, with options “The computer,”
“The system developers,” “A third-party algorithm,” “Not sure,
and “Other.” For those who chose “Other,” who all were in an
internal blame condition, if the participant mentioned that it
was the system that was unable to process images, these were

coded as correct answers.

s

Initial group sizes, the number of participants in each group
who failed source and blame manipulation checks, and group

Ninitiar  Fail. Source  Fail. Blame  nipq
Low-Int. 38 4 (10.5%) 17 (44.7%) 21
Low-Psuedo. 42 12 (28.6%) 13 (31.0%) 19
Low-Ext. 43 10(23.3%) 5(11.6%) 29
High-Int. 41 6 (14.6%) 14 (34.1%) 25
High-Pseudo. 40 16 (40.0%) 9 (22.5%) 22
High-Ext. 40 7 (17.5%) 2 (5.0%) 31

Table 2. Group sizes and manipulation check failure rate. The percent-
ages of participants within each group who failed the source and blame
manipulation checks are shown. Some participants failed both manipu-
lation checks.

sizes after screening out incorrect answers are shown in Ta-
ble 2. The high rate of source failure in pseudo-external con-
ditions may have resulted from explicit mention of the system
developers. This may have prompted participants to think
about the developers’ role in creating the system’s messages
despite the use of “I.” Likewise, the high rate of blame failure
in internal blame conditions may have resulted from the target
of blame being given implicitly (i.e., “I was not able to...”)
rather than explicitly as in the other conditions (e.g., “The
developers were not able to...”).

All subsequent analyses are conducted on the remaining 147
participants, with group sizes shown as n;,, in the last col-
umn of Table 2.

To test the efficacy of our reliability manipulation, we asked
participants to report how many images they would expect
the automation to correctly identify out of 100 using a slider.
Those in both the low (Mean = 56.1, Median = 60.0, SD =
11.1) and high (Mean = 82.7, Median = 85.0, SD = 14.4)
reliability conditions accurately assessed the automation’s reli-
ability!. A Mann-Whitney U-test confirmed that the difference
in perceived reliability between groups was significant (U =
5,164.00, p <0.001) and that our reliability manipulation was
effective.

Sample Demographics

Of the 147 remaining participants, 83 (56.5%) were male and
64 (43.5%) female. The average age was 34.9 years (Median =
33.0, SD =9.5). There were 115 (78.2%) white/Caucasian, 12
(8.2%) African American, 10 (6.8%) Asian, 7 (4.8%) Hispanic,
and 3 other participants. Of these, 85 (57.8%) reported having
at least a 4-year college degree, 144 (98.0%) having never
operated a military or commercial drone or UAV, and 10 (6.8%)
having served in the military. Lastly, 57 (38.8%) participants
reported playing games on their computer or mobile device
daily, 57 (38.8%) a few times a week, and the remaining 33
(22.4%) a few times a month or less.

A Chi-Square test revealed that there were no significant dif-
ferences between groups in terms of gender (x2(5) =2.78, p =
0.73). Using Fisher Exact Tests to handle cells with less than
5 participants, we found no significant differences between
groups in terms of drone or UAV experience (p = 0.43), mil-
itary service (p = 0.75), or race (p = 0.48). Moreover, using

IWhile the mean of high reliability ratings is slightly below 90, this
number is relatively accurate since allocating 11 or more images to
the automation corresponded to 2 errors.
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Figure 3. Group mean allocation to ATD. Means for each group’s alloca-
tion to automation over the 5 rounds of gameplay are shown. Error bars
are excluded for ease of viewing.

Kruskal-Wallis Tests, we found no significant differences in
terms of age (y2(5) =3.31, p = 0.65), education level (x2(5) =
5.23, p = 0.39), or gaming frequency (y%(5) = 7.41, p = 0.19).
We concluded that the groups are demographically similar and
can be compared based on our manipulations.

The instruction page and 5 rounds of gameplay took an average
of 11.1 minutes (Median = 10.2, SD = 4.2) while the survey
took 9.8 minutes (Median = 9.3, SD = 3.9)2.

Gameplay Behavior

For each group, the average number of images allocated to
automation in each of the 5 rounds of gameplay is shown
in Figure 3. The first, second, and third plots show internal,
pseudo-external, and external blame conditions, respectively.
Low and high reliability groups are shown as separate lines in
each plot.

In general, Figure 3 gives an idea of how participants in each
group calibrated their trust in the ATD system over time. The
effects of reliability are immediately clear.

Blame conditions also appear to have influenced participants’
willingness to allocate to the automation, especially entering
Round 2 after initial exposure to the feedback message. For
example, in the low reliability condition, pseudo-external par-
ticipants reduced their allocation by an average of nearly 3
images (M =-2.89, SD = 2.33) prior to Round 2 while internal
(M =-0.52, SD = 3.64) and external (M =-0.72, SD = 3.70)
participants reduced their allocation by an average of less than
1 image. These results should be interpreted with caution
given the large standard deviations of the metrics.

Analysis of Variance

To investigate our hypotheses, we conducted a two-way, 2
(reliability) x 3 (blame) Analysis of Variance (ANOVA) for
various dependent variables.

ZReported survey time accounts for other items that are not mentioned
in this paper due to space constraints.

First, we combined the 2 attributional items for overall perfor-
mance and Round Scores into a single Attribution of Respon-
sibility measure because they were highly correlated (Spear-
man’s p = 0.79, p <0.001). Higher values indicate that a
participant considered the automation as more responsible
than them for outcomes in the game.

Next, behavioral trust was operationalized as Total Allocation
(TA) and First Calibration (FC):

5
TA=Y A
k=1

FC=A4,-10

where A; indicates the number of images allocated to the
automation for the k' round of gameplay. TA gives a sense
of overall trust in the system and FC gives an impression of
participants’ immediate reactions to Round 1 gameplay and
feedback messages. F'C values are negative for participants
who allocated fewer than 10 images for Round 2 and positive
for those who increased their allocation above 10.

Lastly, subjective trust measures consisted of Jian et al.’s trust
in automation scale (12 items, Cronbach’s o = 0.88) and the
perceived trustworthiness characteristics: ability (4 items, @ =
0.95), integrity (4 items, o = 0.88), and benevolence (3 items,
a = 0.71). All of the subjective trust scales demonstrated
acceptable reliability [9].

The correlations between dependent variables are shown in
Table 3. All post-hoc pairwise comparisons between blame
conditions were done using Tukey’s HSD. We report effect
size as partial eta-squared, "h%» which represents the proportion
of variance explained by a predictor relative to the error term
in a given model [6].

Since the attributional measure was the only dependent vari-
able to yield an insignificant ANOVA model, we focus on trust
measures. The details of our analyses follow.

Total Allocation

There was a significant main effect of reliability on Total Allo-
cation (F(1,141) = 30.36, p <0.001, TI,% =0.177). Participants
in the high reliability condition (M = 51.06, SD = 9.28) allo-
cated more images to the automation overall than those in the
low reliability condition (M =41.10, SD = 11.95).

First Calibration

There was also a significant main effect of reliability on First
Calibration (F (1, 141) = 57.86, p <0.001, n,z, =0.291). While
participants in the high reliability condition (M = 3.08, SD =
3.54) increased their allocation to automation following Round
1, those in the low reliability condition (M = -1.26, SD = 3.47)
decreased their allocation.

Trust in Automation

The ANOVA on Trust in Automation revealed a significant
main effect of reliability, (F(1,141) = 45.82, p <0.001, n[% =
0.245). High reliability participants (M = 5.16, SD = 0.89)
trusted the system more than low reliability participants (M =
4.13, SD = 0.86).
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1 2 3 4 5 6
1— Total Allocation —
2— First Calibration 0.71** —
3— Trust in Automation 0.45** 0.47** -
4— Ability 0.38** 047 0.79** —
5— Integrity 0.09 0.18* 0.50** 0.55** —
6— Benevolence 0.29** 0.29** 0.51** 0.53** 0.65** -
7— Attribution of Responsibility 0.44** 0.18*  0.11  0.16* 0.02 0.20*

Table 3. Correlation between dependent variables. Spearman’s p between each pair of variables are shown. **p < 0.01, *p < 0.05.

Next, we conducted a Multivariate Analysis of Variance
(MANOVA) for the perceived trustworthiness characteristics.
As this test revealed significant main effects of reliability
(F(3,139) =24.29, p <0.001, Wilks” 4 = 0.656, nz =0.344)
and blame (F(6,278) = 4.01, p =0.001, Wilks’ A = 0.847, 7712;
= 0.080), we conducted an ANOVA for each characteristic,
using a Bonferroni-adjusted significance level of @ =0.05/3 =
0.0167.

Ability

There was a significant main effect of reliability (F (1, 141) =
65.89, p <0.001, n2 = 0.318)°. High reliability participants
(M =5.20, SD = 1.03) had significantly greater perceptions of
the system’s ability than low reliability participants (M = 3.53,
SD =1.35).

Integrity

There were significant main effects of reliability (F(1,141) =
7.05, p =0.009, ng =0.048) and blame (F(2,141)=9.97, p
<0.001, n,% = 0.124) on integrity. High reliability participants
(M =4.88, SD = 1.18) had significantly greater perceptions
of the system’s integrity than low reliability participants (M
= 4.30, SD = 1.23). Moreover, post-hoc analysis revealed
that internal blame participants (M = 5.17, SD = 1.20) had
significantly greater perceptions of integrity than both pseudo-
external (M = 4.07, SD = 1.03) (p <0.001) and external partic-
ipants (M =4.55, SD = 1.23) (p = 0.016).

Benevolence
There were significant main effects of reliability (F(1,141) =
15.58, p <0.001, 11 = 0.100) and blame (F(2,141) = 5.68, p

= 0.004, n]% = 0.075) on benevolence. High reliability par-
ticipants (M = 4.51, SD = 1.14) had significantly greater
perceptions of the system’s benevolence than low reliabil-
ity participants (M = 3.69, SD = 1.25). Additionally, internal
blame participants (M = 4.57, SD = 1.17) had perceptions
of benevolence that were significantly greater than pseudo-
external participants (M = 3.75, SD = 1.12) (p = 0.003), and
marginally significantly greater than external participants (M
=4.04, SD = 1.31) (p = 0.050).

3Levene’s test revealed that the variance in ability beliefs across
groups was not equal. However, the p-value for this effect was
substantially below our threshold, suggesting that the result is robust
in the face of heterogeneous variances.

DISCUSSION

Overall, supporting H;, we found a consistent main effect of
reliability, wherein high reliability participants demonstrated
greater behavioral trust and reported greater subjective trust
than low reliability participants. Also, although blame did
not significantly affect behavior, we found partial support for
H; in that pseudo-external blame caused lower perceptions of
the system’s integrity and benevolence than internal blame,
suggesting that the system’s mistakes were not inherently
attributed to its developers. Instead, it appears that framing
errors as the developers’ responsibility led to more negative
perceptions of the system’s trustworthiness.

We discuss this apparent separation of system and developers
in the context of the Target Identification Task, as well as the
implications of this finding and possible directions for future
trust repair research.

The Target Identification Task as an Environment of

Human-Automation Collaboration and Trust

The online game we developed appears a ripe context for the
study of human-automation trust. Applying our operational
definition from Mayer et al. [23], participants were not able to
“control” the ATD system during the game. They could only
take a leap of faith before each round in deciding how many
images to allocate to it. This represented a “willingness... to be
vulnerable to the actions” of the system, with the “expectation”
that the system would assist in achieving good performance.

To create the perception of vulnerability and risk that is nec-
essary for trust, the scoring function in the game penalized
lower accuracy that could result from using the automation.
To create a need for reliance on the automation, it penalized
slow speed that could result from manual identification. The
main effect of reliability lends to the effectiveness of this scor-
ing mechanism. In support of Hj, high reliability participants
chose to allocate more images to the automation than low
reliability participants over the course of gameplay. This ef-
fect carried over into subjective reports of the system’s ability,
integrity, and benevolence.

Contextual factors of this particular study, such as MTurk
users’ incentive to quickly complete HIT’s, may influence the
validity of allocation as a behavioral measure of trust. While
we controlled for this with bonus compensation and attention
checks, and corroborated with subjective trust measures, in-lab
studies may reduce this particular bias of an MTurk sample.
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We believe our findings generalize to other instances of human
collaboration with or use of automated systems, yet recognize
that some aspects of the game may not apply to practical sys-
tems. For instance, in order to quantify behavioral trust, we
allowed participants a spectrum of control over the automation.
In practical systems, reliance may be a binary decision where a
user decides whether or not to use automation. We encourage
studies that build on our findings in contexts where reliance
takes the latter form. Also, the ATD system performed with
consist accuracy in both reliability conditions. As systems
become increasingly autonomous, future studies should con-
sider what type of relationship regulation acts can maintain
appropriately calibrated trust if system behavior and reliability
are dynamic.

Conceptual Separation of Developers and the System
The crux of our experiment lies in that internal and pseudo-
external blame have the same technical implications for the
system. The messages “I was unable to process those images”
and “The developers were not able to account for processing
those images” should theoretically have the same effect on
trust, since the system’s inability is ultimately a result of its
developers not being able to give it some functionality. Despite
this, we found support for A, in that there were differences
in trusting perceptions between internal and pseudo-external
blame conditions.

Specifically, internal blame led to significantly greater integrity
perceptions than pseudo-external and external blame. The
difference between the latter two groups was not significant.
Internal blame also led to significantly greater benevolence
perceptions than psuedo-external blame. Although we did
not find significant results in terms of behavioral trust, group
means for First Calibration indicate that these reduced integrity
and benevolence perceptions may have initially impacted allo-
cation decisions. Understanding the situations in which per-
ceived integrity and benevolence influence reliance behaviors
is a promising area of future research.

These findings coincide with those where self-blame was as-
sociated with more positive perceptions of a robot [10] and
virtual agent [3] than blame of other parties. Yet further, the
fact that mentioning developers led to differences in percep-
tion suggests that developers are actually considered an other
relative to the system. This is in line with Sundar and Nass’
finding that computers are distinct sources and not mere media
between user and developer [37], and suggests that trust in an
automated system is not exactly the same as trust in its devel-
opers. In other words, errors that are attributed to developers
appear to influence trust differently than errors attributed to the
system itself. This manifested in perceptions of the system’s
trustworthiness in our study.

The Ability, Integrity, and Benevolence of Non-Human

Trustees

The trust in automation literature generally conceptualizes
and measures subjective trust in ways specifically crafted for
such non-human trustees. For example, Lee and Moray [16]
suggested performance, process, and purpose as bases for
trust. These align roughly to Mayer et al.’s ability, integrity,

and benevolence [23]. Taking a CASA approach, we directly
applied Mayer et al.’s human-human trustworthiness charac-
teristics to the automated system in our study.

It is important to note that each trusting belief item referred
directly to “the system” as the trustee. We intentionally did not
mention the developers. While some items may have appeared
illogical (e.g., “The system is concerned about my well-being,
not just its own,” “The system is sincere and genuine”), we
found that responses in each group were approximately nor-
mally distributed and moderately correlated with Jian et al.’s
trust scale. It appears that participants were able to conceptu-
alize the automated system’s concern and sincerity.

In general, the trusting beliefs seem to paint a more thorough
picture of the trustworthiness of automated systems. Not only
did low reliability predictably reduce perceptions of ability,
integrity, and benevolence, but manipulations in message con-
tent influenced integrity and benevolence perceptions. In fact,
the effect of blame on perceived integrity (nﬁ =0.124) was

nearly three times the size of the effect of reliability (nlz, =
0.048). This effect of blame on perceptions of the system was
not captured by Jian et al.’s scale.

In some sense, blame of developers may have reduced integrity
perceptions because it seemed particularly hypocritical on the
part of the system (integrity items refer to the system being
“truthful” and “genuine”). Yet, this may also provide evidence
that the “integrity” of an automated system reflects the quali-
ties given to it by the developers, much like the integrity of a
human consists of their “set of values” [23]. Recall Kim et al.’s
findings that while internal blame was effective at repairing
trust after ability-based violations, it was not effective after
integrity-based violations. Whereas admitting to an ability
violation may be viewed as an isolated incident, authors pro-
pose that admitting to an integrity violation reflects on more
central aspects of the trustee’s character, implying that they
cannot be trusted in the future [15]. While internal blame
by the computer may signal an isolated, ability-based viola-
tion of trust, blame of the developers may reflect deep-seated
problems with the system’s integrity.

If framing errors as caused by the computer itself signals a
lack of system ability, users may regard the violation as imper-
manent, expecting that the system’s future behavior in similar
circumstances will be different. This may lead to misuse [29]
of the system in a situation where the error does repeat itself.
Systems such as the Amazon Echo that are designed for par-
ticularly anthropomorphic interactions (e.g., reference by a
human name, use of speech) may be prone to such overtrust
if users tend toward perceiving them as independent actors
rather than programmed machines.

On the other hand, if framing system errors as caused by the
developers signals a lack of system integrity, users may regard
the violation as a more permanent flaw. This may lead to
disuse [29] of the system when it can actually help. Figure 3
demonstrates this initial tendency toward undertrust, where
in the low reliability condition, pseudo-external participants
tended to decrease Round 2 allocation (i.e., First Calibration)
more than the other blame conditions. This may have been
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due to reduced integrity and benevolence perceptions associ-
ated with blame of the developers, and is in line with the idea
that trust in machines is initially based on faith, and later on
perceptions of dependability and predictability that develop
as the relationship progresses [11,20]. Roughly equal allo-
cation across blame conditions toward the end of the game
suggests that experience with the system eventually informed
participants’ expectations more than perceptions based on the
message.

Our study, observing an automated system with relatively min-
imal social cues as in previous CASA research [32], demon-
strated that a conceptual separation of the system from its
developers appears to play a role in users’ perceptions. As
systems become increasingly autonomous, understanding how
users consider them as products of human design versus inde-
pendent actors will only grow in importance. It is critical that
trust repair mechanisms consider how this separation impacts
calibration of trust.

CONCLUSION

In this study, we sought to observe whether users distinguish
between an automated system and its developers when evalu-
ating trust. We designed a game in which participants collabo-
rated with automation in an image classification task. A high
or low reliability system attributed blame for its errors inter-
nally, pseudo-externally, or externally. As expected, we found
a main effect of reliability on both behavioral trust and trusting
perceptions. Moreover, we found that internal blame by the
system and blame of the developers was perceived differently.
These findings suggest that, when it comes to trust, the ap-
ple does fall far from the tree—automated systems are not
treated merely as reflections of their developers, but as distinct
social actors. This notion is critical for designers to ensure
that users are able to accurately gauge the trustworthiness of
systems, and for fostering a future of healthy human-machine
relationships.
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APPENDIX

Survey ltems

Perceived Trustworthiness Characteristics (Trusting Beliefs)
Adapted from [22,24]. Rated on a 7-point Likert scale from
“Strongly Disagree” to “Strongly Agree.”

Ability

- The system is competent and effective in identifying vehi-

cles.

The system performs its role of identifying vehicles very

well.

- Overall, the system is a capable and proficient means for
identifying vehicles.

- In general, the system is very knowledgeable about identi-
fying vehicles.

Integrity

- The system is truthful in its dealings with me.
- I would characterize the system as honest.

- The system keeps its commitments.

- The system is sincere and genuine.

Benevolence

- I believe that the system acts in my best interest.

- When I require help, the system does its best to help me.

- The system is concerned about my well-being, not just its
own.

Trust in Automation

Adapted from [13]. Rated on a 7-point scale from “Not At
All” to “Extremely” with the prompt “Please rate intensity of
your feeling of trust, or your impression of the system while
operating it.”

- The system is deceptive

- The system behaves in an underhanded (concealed) manner

- I am suspicious of the system’s intent, action, or outputs

- I am wary of the system

- The system’s actions will have a harmful or injurious out-
come

- I am confident in the system

- The system provides security

- The system has integrity

- The system is dependable

- The system is reliable

- I can trust the system

- I am familiar with the system
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