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Prospective Analysis of Large and Complex Partially Observed Temporal Social Networks 
Final Report for DARPA GRAPHS FA9550-12-1-0406 

 

PI: Zoran Obradovic (Temple University) 
 
Project aims and tasks overview 
Our DARPA GRAPHS project developed and validated effective predictive modeling technology to achieve the 
following aims and tasks: 
 

Aim 1: GCRFs for Modeling Complex Evolving Social Networks 
Task 1: Simultaneously modeling node attributes, link properties, and multi-modal graph structure 
Task 2: Learning attribute importance and positive and negative influence/correlation 
Task 3: Inference and uncertainty analysis of GCRF 
Task 4: Prediction of node states and graph links 
Task 5: Modeling dynamical attributes and dynamical influence/correlation 
Task 6: Modeling temporal networks based on partially observed data 
Task 7: Uncertainty propagation in GCRF 
Task 8: GCRF for directed graphs 
Task 9: Continuous Conditional Dependency Network for structured regression 

 
Aim 2: Convex Optimization for Learning Large GCRFs  

Task 10: Basic formulation and solution approaches 
Task 11: Sparsity-inducing regularization 
Task 12: Fast sparse Gaussian Markov Random Fields learning based on Cholesky factorization 
Task 13: Structured regression on multi-scale networks 

 
Aim 3: Non-Stationary and Time Evolving Correlation Analysis in Social Networks 

Task 14: Regime-switching models 
Task 15: Graph-constrained stationary covariance processes 
Task 16: Ensemble-based structured regression 

 
The results of our research are published in 52 articles listed at the end of the report. Here we summarize the main 
achievements. 
 
Aim 1: GCRFs for Modeling Complex Evolving Networks 
 
Modeling complex phenomena through instances that are highly structured and interdependent is a challenging task which 
is different from traditional machine learning approaches. Many applications have such properties and they are usually 
modeled as graphical structure models. Structured models for regression on evolving networks are less developed than 
classification problems, leaving numerous applications even more difficult to solve. In our DARPA GRAPHS project we 
developed representationally powerful and computationally efficient methods to facilitate modeling complex evolving 
networks. The new methods were applied to:  

(a) Prediction of long-term precipitation across the US at the resolution on the levels of individual stations.  
(b) Citation prediction for scientific papers and patents, observed over time. 
(c) Characterizing player engagement in an online multiplayer game, based on behavior and social interactions. 
(d) Disease co-occurrence modeling in a network of hospitals across US over time. 
(e) Prediction of attributes in evolving social networks defined over friendships. 

 
Our approach to modeling evolving attributed networks is based on a Gaussian Conditional Random Field (GCRF) 
model developed at Prof. Z. Obradovic’s lab at Temple University. GCRF is a probabilistic exponential model that captures 
both the network structure of variables of interest (y) and attribute values of the nodes (x). It is a model over a general graph 
structure (not only chains or trees), and can represent the structure as both the function of time, space or any other user 
defined structure. It models the structured regression problem as estimation of a joint continuous distribution over all nodes 
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(y), , where the dependence on input measurements is modeled by 

the “association potential” , and the structure between outputs is modeled by the “interaction 

potential”: . The association potential is used to incorporate domain unstructured 

models (Rk): , and the interaction potential represents multi-modal graph structure 

that includes multiple layers of node inter-dependence: . For such choice of feature 

functions, the distribution can be expressed in the Gaussian form:  , which 

makes the inference and learning of the model more feasible. The inference problem then finds the mode of the Gaussian 
distribution: and the learning of the parameters (α, β) is done by convex optimization of the log 

likelihood:  

In our project numerous challenges with applying the GCRF model on large-scale complex real-world problems were 
addressed and solutions were developed for in the tasks related to Aim 1. 
 
Large-scale learning and inference of GCRF models 
 
To extend the GCRF models to handle very large datasets, we 
developed approaches based on partitioning a large network followed 
by distributed GCRF modeling, with an alternative of approximating 
GCRF on a single computer by a faster method (Figure 1). The results 
of the two approaches are summarized in this section. 
 
Discovery of evolving communities in big weighted networks: 
We have developed a local minimization approach for detection of 
community structure in evolving weighted networks, which scales 
well to large-scale problems. Our EGC (Evolving Graph Crawling) 
method directly optimizes the edge-cut (total weight of edges coming 
out of the communities) by local search and is able to shrink as well 
as expand a temporally observed community. In this process instead 
of relying on a single node, the entire community structure found at 
previous times is used to seed search for the next temporal adjustment. 
The algorithm computational time depends on the community size 
rather that the number of nodes in the graph. It is applicable to both 
undirected and directed graphs. The results obtained on synthetic and real networks with millions of nodes provide evidence 
that the proposed method is faster and more accurate that the state-of-the-art alternatives when applied to identification of 
communities in large weighted evolving networks (Figure 2). Also, the algorithm is applicable to large static networks, 
where it is comparable in accuracy to the alternatives. 
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Develop predictive 
models for 

temporal graphs 

Analyze node 
dynamics in 

temporal graphs 

Figure 1. Two approaches for enabling the GCRF model for 
large-scale applications 
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Learning GCRFs on discovered communities: After partitioning graphs 
into communities (“GGP”), we showed that training GCRF models to the 
obtained partitions independently and in parallel could be performed 
several orders of magnitudes faster than training GCRF on the entire graph 
(“No partitioning”) (Figure 3), without significant loss in accuracy. 
 
Experiments conducted on synthetic and two real-world evolving networks 
with up to 750 000 nodes resulted in improved accuracy, since community-
specific models were well specialized for each sub-graph. Another benefit 
of modeling each community independently is easy parallelization, which 
we utilized in a software implementation that uses the MPI parallelization 
platform.  
 
Developing fast approximations of GCRFs for efficient learning and 
inference: In the second approach for extending the GCRF model to large-
scale applications, we developed a fast algorithm for approximate GCRF 
inference and learning, since the original GCRF takes O(N3) time and O(N2) space for training on densely connected graphs. 
The first step in addressing this problem is to substitute the joint distribution P(y|X) with the distribution Q(y|X) that can 
be expressed as a product of independent marginals . Under mean field theory, the best 
approximation of P is a distribution Q which minimizes Kullback-Leiber (KL) divergence, which can also be represented 
as a Gaussian distribution, whose mean and variance are:  

 
 
 
 

 
 
 
 

In other words, the predictions (µ) and their uncertainties (σ2) can be solved directly and iteratively for a fixed number of 
iterations I << N, which reduces the computation complexity to O(I N2). Since the most intensive part in this calculation is 
the summation over kernel (kl) matrix, by using the Gaussian kernel function, we can express this computation as a 
convolution of µ vector with the Gaussian kernel.  

 
 

Based on this idea we applied to our problem a recently 
developed signal processing technique for approximate 
kernel convolution using mapping to permutohedral 
lattice. This reduces the computational complexity to 
O(N) for densely connected graphs, with memory 
requirements O(N). This approximation that we call FF-
GCRF results in a huge computational speed up (Figure 
4), and it allows modeling dense graphs with millions of 
nodes, on a single machine, with very little loss in 
accuracy, as shown in Table 1 for a fully connected 
temporal graph of N nodes corresponding to the large-
scale high impact remote-sensing application of 
predicting aerosol concentrations over the entire 
continental USA. 
 

Figure 2. Speed and accuracy of finding 
communities for our EGC method, comparing to 

two state-of-the-art method variations 

Figure 3. Speed of training GCRF on communities (GGP), 
random communities, and no communities (full network) 
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Table 1. Accuracy and speed of the FF-GCRF on the aerosol prediction problem, compared to GCRF and the knowledge-based C005 method  

 
We have also demonstrated the benefit of this approach on 
denoising images represented as fully connected graphs, 
where FF-GCRF was faster and more accurate than some of 
the state-of-the-art image processing algorithms. 
 
Extension of the fast GCRF approximation method for 
general graphs: The limitation of our FF-GCRF method is 
that it requires the use of a Gaussian kernel, which limits 
applications to problems that can represent the structure as 
features in Euclidean space. To enable the use of this method 
on general networks, we have utilized Landmark Multi-
Dimensional Scaling to map an arbitrary graph structure to a 
Euclidean space, where Gaussian kernel can be used. This 
method also has linear time complexity with respect to the 
number of nodes in the graph. The two-stage approach is currently validated by an application to a big evolving network 
containing millions of nodes describing a massive online multi-player game, where our objective was to model player 
involvement time in a social network setting, and use features that describe the user behavior.  
 
Learning partially observed graphs 
 
We explored two ways of handling missing data in the structured datasets. Our approach based on imputation of the missing 
values of the connected nodes, and an alternative based on extending the GCRF model to naturally use missing (or 
unlabeled) data are summarized in this section.  
 
Data imputation in evolving networks  
 
We developed a method that can simultaneously fill in missing links and missing attribute values of graph nodes in an 
evolving network. Our data imputation method is extending our temporal exponential random graph model, which we call 
ITERGM, and it uses an EM algorithm over two Markov Chain Monte Carlo inferences, for modeling links and attributes 
temporally. For sampling, our data imputation uses our etERGM model that was developed for modeling evolving graphs.  
In our approach the attribute prediction is modeled as: 𝑃(𝑥$|𝑥$&', 𝑁$, 𝛾) = '

-(./01,2,3)
exp{𝛾8𝜓(𝑥$, 𝑥$&', 𝑁$)}ℕ(𝑥$|𝑉=, 𝛴=), 

where we use temporal feature functions that capture the expected change between time steps, and we also regularize the 
values with normal priors. The link prediction step is modeled 
as: 𝑃(𝑁$|𝑁$&', 𝒙$, 𝜽) = '

-(./01,𝒙/,𝜽)
exp{𝜽8𝜓(𝑁$,𝑁$&', 𝒙$)}. 

Two models are optimized iteratively, until convergence. We 
compared our model to available alternative methods on 
several well-known real-world applications, including 
predicting delinquency (Figure 5) and alcohol consumption of 
teenagers. The obtained results provide evidence that the 
algorithm has good performance even when a large fraction 
(up to 60%) of data points are missing. It is also stable with 
little variance after 10,000 bootstrapping experiments, and 
has a linear scalability in a number of time steps, and 
quadratic in number of nodes in the graph.  
 

Figure 5. Accuracy of recovering missing values by imputation using 
different methods, for different amounts of missing data, and for various 

missingness mechanisms. 

Figure 4. Inference speed of FF-GCRF compared to the original GCRF. 
Part of the figure is showed zoomed. 
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Extension of the GCRF model for handling missing labels  
 
Since the GCRF model originally assumes all data for training is given, we extended the training algorithm to make use of 
the instances with missing data, which is especially beneficial in structured models, where ignoring such instances can 
damage the structure in the data. Our approach consists in marginalizing the overall joint distribution over the data with 
missing values in the training set. In general settings, this could pose a 
bigger problem, especially because in the regression problem we need to 
integrate instead of add over these data points. However, since our model 
is multivariate Gaussian, we can effectively reduce this operation to 
matrix operations, which preserve the distribution as Gaussian. Our 
experiments provide evidence that there is a significant benefit to this 
approach, even when large percent of labels is missing (regression 
results for up to 80% data missing completely at random in a graph of 
1600 nodes observed over 5 time steps are shown at  Figure 6 where 
benefits of marginalization based m-GCRF model are evident). 
 
Identifying useful similarity measures as a graph structure 
  
In many situations we can choose among several ways to represent graphs, based on how we code the graph from input 
data (e.g. spatial proximity could be calculated using different distance functions). We developed a method for pre-
emptively evaluating any given similarity measure, before using it inside the GCRF model. Following the intuition that the 
similarity is “good” if higher similarity values result in closer node state values, we used the variograms of the similarities 
to inspect the candidate similarities. We show that carefully selecting appropriate similarities this way not only saves effort 
(by discarding irrelevant similarities), but also can increase 
the accuracy of the original model (Table 2). We evaluated 
this approach on several co-citation temporal networks of 
up to 350,000 nodes, where we show which similarity 
functions (out of 40 considered) should be used for graph 
construction in that domain.  
 
Prediction of weighted links of a temporal graph  
 
Predicting weighted links in a network is 
also a challenging task, especially for 
temporal networks. Our goal was to predict 
link values in the current time step, given 
the history of the graph in previous T steps. 
We built on our etERGM model, and 
extended it to handle evolving weighted 
graphs. The model has the following form: 
𝑃(𝑊$|𝑊$&', 𝜽) =

'
-(𝑾/01,𝜽)

𝑒𝑥𝑝{𝜽8𝜓(𝑊$,𝑊$&')}ℕ(𝑊$|𝑊':F), where we use sufficient statistics ψ that capture temporal aspects such as 
stability and variance, and we use history of the graph in previous timesteps 1:T as a prior in a distribution. We applied our 
method on the problem of disease co-occurrence, using the admission data at over 4000 hospitals from 2007-2009, and 
evaluated it with other methods (Table 3).  
 
Node degree prediction for evolving social networks 

Figure 6. Accuracy (R2) for GCRF model that integrates over 
missing labels (m-GCRF), ignores missing labels (i-GCRF) 
and the baseline unstructured method (Neural Networks). 
Accuracy is show for various percentages of missing data. 

Table 2. Accuracy (R2) for GCRF model that uses “good” VS “bad” similarity 
measure, or no similarities at all (MLR and KNN) 

Table 3. Accuracy (MAE) of various models for predicting disease occurrence in the 12th month in 
each stratum, which is defined based on region, hospital size, ownership and hospital type 
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Node degree in graphs can be very useful information, showing the importance of nodes in a (social) network that is 
evolving. Our problem was to predict the degree of nodes in the future state, given the snapshots of the social network at 
previous time steps. To tackle this problem, we built a number of features that utilize 
the network topology and describe the local structure of the graph at each node. These 
features are then used to model the influence of a node’s neighborhood on its future 
degree. Beside the concept of regular equivalence of nodes that is based on their 
attributes, we also considered the structural equivalence of nodes that is determined by 
the shared neighborhood of a pair of nodes. Using these features, we built a GCRF 
model for predicting future node degree. Evaluating this approach on the sample data 
from Facebook with about 6000 users, we show which network local topology features 
are useful for such a task (Figure 7). We are considering the possibility of applying this 
approach to a health-related social network, using the data from a “Patients like me” 
social network.  
 
Uncertainty propagation in GCRF  
 
Prof. Z. Obradovic’s team developed an efficient uncertainty propagation model for structured regression that extends 
GCRF. The model corrects estimated uncertainty by relying on modeling noisy inputs when predicting. In each iteration of 
this approach, after the prediction is performed for one step, the model updates the input distribution by considering the 
second moment of multi-dimensional Taylor expansion that approximates the distribution of the target variable expressed 
by marginalizing noisy inputs, which accounts for the uncertainty resulting from the previous predictions. To the best of 
our knowledge, this is the first approach developed for structured regression models. In challenging weather-related and 
healthcare-related applications when predicting up to 96 steps ahead in a network, our extended model greatly improved 
the uncertainty estimates compared to linear iterative regression and nonlinear iterative Gaussian process models. 
 
GCRF for directed graphs 
 
For many real-world applications, structured regression is commonly used for predicting output variables that have some 
internal structure. GCRFs are a widely used type of structured regression model that incorporate the outputs of unstructured 
predictors and the correlation between objects in order to achieve higher accuracy. However, applications of this model are 
limited to objects that are symmetrically correlated, while interaction between objects is asymmetric in many cases. Prof. 
Z. Obradovic and collaborators developed a new model, called Directed Gaussian conditional random fields (DirGCRF), 
which extends GCRF to allow modeling asymmetric relationships (e.g. friendship, influence, love, solidarity, etc.). The 
DirGCRF models the response variable as a function of both the outputs of unstructured predictors and the asymmetric 
structure. The effectiveness of the proposed model is characterized on six types of synthetic datasets and four real-world 
applications where DirGCRF was consistently more accurate than the standard GCRF model and baseline unstructured 
models. 
 
Continuous Conditional Dependency Network for Structured Regression 
 
Structured regression on graphs aims to predict response variables from multiple nodes by discovering and exploiting the 
dependency structure among response variables. This problem is challenging since dependencies among response variables 
are always unknown, and the associated prior knowledge is non-symmetric. In previous studies, various promising solutions 
were proposed to improve structured regression by utilizing symmetric prior knowledge, learning sparse dependency 
structure among response variables, or learning representations of attributes of multiple nodes. However, none of them are 
capable of efficiently learning dependency structure while incorporating non-symmetric prior knowledge. To achieve these 
objectives, Prof. Z. Obradovic and his team developed Continuous Conditional Dependency Network (CCDN) for 
structured regression. The intuitive idea behind this model is that each response variable is not only dependent on attributes 
from the same node, but also on response variables from all other nodes. This results in a joint modeling of local conditional 
probabilities. The parameter learning is formulated as a convex optimization problem and an effective sampling algorithm 
is proposed for inference. CCDN is flexible in absorbing non-symmetric prior knowledge. The performance of CCDN on 
multiple datasets provides evidence of its structure recoverability and superior effectiveness and efficiency as compared to 
state-of-the-art alternatives. 
 

Figure 7. Accuracy (R2) of GCRF using 
various similarity measures that capture 

the topology of the neighborhood 
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Aim 2: Convex Optimization for Learning Large GCRFs 
 
We developed efficient optimization methods for convex sparse unconstrained minimization problems of the following 
general form 

            
(1)  

where 𝐿:ℝI → ℝ  is convex and twice differentiable and λ > 0 is the regularization parameter that controls the sparsity of 
the optimal w.  
 
Problems of form (1) have been the focus of much research lately in the fields of signal processing and machine learning. 
This form encompasses a variety of machine learning models (especially, graphical models), in which feature selection is 
desirable, such as sparse logistic regression, sparse inverse covariance selection, Lasso. These settings often present 
common difficulties to optimization algorithms due to their large scale. During the past decade most optimization efforts 
aimed at these problems focused on development of efficient first-order methods. These methods enjoy low per-iteration 
complexity, but typically have low local convergence rates. Their performance is often hampered by small step sizes. Due 
to the very large size of these problems, second order methods are often not a practical alternative. In particular, constructing 
and storing a Hessian matrix, let alone inverting it, is prohibitively expensive for values of p larger than 10,000, which often 
makes the use of the Hessian in large-scale problems impractical, regardless of the benefits of fast local convergence rate.  
 
Nevertheless, several new methods were proposed recently for sparse optimization which make careful use of second order 
information. These methods exploit special properties of the sparse problems and the Hessian of L(w) for specific 
applications and efficiently apply a coordinate descent method to inexactly solve subproblems arising on each iteration. In 
our work we further improved upon these ideas to obtain efficient general schemes, which apply beyond the special cases 
of sparse logistic regression and covariance selection, and in particular, extend to the optimization problems arising in Aim 
1.  
 
Many of the methods mentioned above share similar algorithmic features but lack general global convergence analysis. 
This is due to the use of inexact subproblem optimization and utilization of coordinate descent, which lacks convergence 
rates. We have proposed modifications to the algorithmic framework which allowed us to prove convergence results and 
also improve overall efficiency of the general approach. 
Along this route we have the following three main results.  

1. We have shown that if we replace the usual line search approach by a prox-parameter update mechanism, we can 
derive sublinear global convergence results for the above methods under mild assumptions on Hessian 
approximation matrices, which can include diagonal, quasi-Newton and limited memory quasi-Newton 
approximations. We also provide the convergence rate for the case of inexact subproblem optimization.  

2. We have used probabilistic complexity bounds of randomized coordinate descent to show that a very simple 
stopping criterion can be employed to produce inexact (but accurate enough) solutions to subproblems at each 
iteration.  This gives us the first complete global convergence rate result for the algorithmic schemes for practical 
proximal Newton-type methods.  

3. Finally, we proposed and implemented (in Matlab and C++) an efficient general purpose algorithm that uses the 
same theoretical framework which we analyze, but which does not rely on the special structure of the Hessian, and 
yet in our tests compares favorably with the state-of-the-art, specialized methods such as QUIC and GLMNET. We 
replace the exact Hessian computation by the limited memory BFGS Hessian approximations (LBFGS) and exploit 
their special structure within a coordinate descent approach to solve the subproblems.   

 
Models based on Conditional Random Fields 
 
Given data over N locations (nodes) and T time periods, the learning task described in Aim 1 is to choose α and β to 
minimize the conditional negative log-likelihood plus the L1 regularization to encourage sparse graphical model structure, 

 
Where X denote the inverse covariance matrix dependent on parameters α and β as follows 
 

 
DISTRIBUTION A: Distribution approved for public release



The gradient of 𝑓(𝛼, 𝛽) can thus be computed as follows,  

            

(2) 

 
Overcoming Computational Bottleneck 
 
We note that computation of each partial derivative element in (2) is dominated by a vector-matrix-vector product which 
takes O(N2T2) flops,  assuming X-1 and X-1b are pre-computed and stored as a separate vector; hence, to evaluate a full 
gradient vector in general takes O(N4T2) flops, which amounts to over 10000 billion flops for N = 77 and T = 480, unless 
structure is taken into account. By exploiting the special structure of the models we consider in Aim 1 and using sparse 
matrix operations, we are able to reduce the work to O(N2T). Since there are O(N2) variables, obtaining the full gradient in 
O(N2T) is close to the best complexity we can hope for on a single-core computer. 
 
We have the algorithm implemented in MATLAB using sparse algebra, however one gradient evaluation still takes hours 
with N = 77 and T = 480. We are investigating several approaches of reducing this complexity by further exploiting the 
special structure of the model.  
 
Fast Sparse Gaussian Markov Random Fields Learning Based on Cholesky Factorization 
 
Learning the sparse Gaussian Markov Random Field, or conversely, estimating the sparse inverse covariance matrix is an 
approach to uncover the underlying dependency structure in data. Most of the current methods solve the problem by 
optimizing the maximum likelihood objective with a Laplace prior L1 on entries of a precision matrix. Prof. Z. Obradovic 
and his team developed a novel objective with a regularization term which penalizes an approximate product of the 
Cholesky decomposed precision matrix. This new reparametrization of the penalty term allows efficient coordinate descent 
optimization, which in synergy with an active set approach results in a very fast and efficient method for learning the sparse 
inverse covariance matrix. We evaluated the speed and solution quality of the newly proposed SCHL method on problems 
consisting of up to 24,840 variables. Our approach was several times faster than three state-of-the-art approaches. We also 
demonstrated that SCHL can be used to discover interpretable networks, by applying it to a high impact problem from the 
health informatics domain 
 
Structured Regression on Multi-Scale Networks 
 
To support real-time decision making, an even faster and exact method was developed by Prof. Obradovic and his team by 
calculating gradients much faster than in previous GCRF. We developed the first such method for GCRF learning, which 
provides a theoretically well-structured foundation to extend the capacity of GCRF and to speed up the model without any 
approximation. This is achieved by removing matrix inversion when computing the first order derivatives and likelihood 
function for the parameters optimization. This resulted in an almost 100 times increase in computational speed on a temporal 
network learned from 35 million observations by restricting the model to a single network and formulating linear bounds 
on convexity with respect to the model’s parameters. An additional important benefit of the new model is that it extends 
optimization bounds, allowing capture of negative influences of the unstructured predictors, while maintaining the positive 
semi-definiteness of the precision matrix. We have recently shown that by using multiscale networks the exact solution for 
graph-based regression can be achieved in logarithmic time with respect to the network size allowing quick learning for 
networks with millions of nodes and trillions of links. This is achieved by modeling a multiscale network as a Kronecker 
product of networks and computing the Laplacian of a Kronecker product. 
 
Aim 3: Non-Stationary and Time Evolving Correlation Analysis in Social Networks 
 
Evolving Relational Structure Between Data Streams 
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There is growing interest in inferring network or relational structure from indirect observations rather than direct 
observations (e.g., interaction data). An objective of our work was inferring relational structures from time series data and 
emphasizing structures that can evolve. Here, we envision every time series as a node in a graph.  
 
In our foundational work, we examine methods for describing collections of time series (Approaches 1 and 2 below) where 
conditioned on the relational structure, the data streams evolve independently. In subsequent work (Approaches 3 and 4), 
we instead considered cases where the data streams evolve together in a correlated manner. In these cases, we can view the 
correlation structure itself as the description of interaction between the data streams. 
 
Approach 1: Clustering Related Time Series 
 
One description of relationships between nodes in a graph (e.g., time series) is an idea of community structure. We define 
a community as a collection of time series that each share similar dynamic behaviors. Conditioned on the community 
assignments of nodes and the parameters defining these communities, the time series evolve independently. Our goal was 
to discover both the number of communities and their memberships. In addition to interpretability of the inferred 
memberships, such community detection allows us to pool information amongst the time series within a community, leading 
to improved predictive performance in forecasting tasks. 
 
We considered this problem motivated by an application of predicting rates of violent crimes in a large set of regions, in 
particular, all census tracts in Washington, D.C. We found that spatially disjoint regions exhibit correlated crime patterns. 
It is this indeterminate inter-region correlation structure (i.e., community structure) along with the low-count, discrete nature 
of counts of serious crimes that motivates our community-structured tool. In particular, we modeled the crime counts in 
each region using an integer-valued first order autoregressive process (INAR). To flexibly discover a clustering of these 
region-specific time series in terms of their underlying INAR processes, we took a Bayesian nonparametric approach based 
on the Dirichlet process. In our analysis of weekly reported violent crimes between 2001-2008, we showed that capturing 
the underlying community structure of these time series (i.e., clustering census tracts with similar dynamics) leads to a mean 
predictive accuracy in week-ahead forecasts of 97%. These forecasts significantly outperform standard methods while 
additionally providing useful tools such as prediction intervals that naturally arise from our Bayesian approach. 
 
Approach 2: Modeling Complex Dynamics Shared Between Data Streams 
 
In contrast to the simple autoregressive (AR) dynamics of crime counts in Approach 1, many time series exhibit non-
stationarities. In many cases, the non-stationarities can be attributed to switches amongst a set of regimes, each of which 
has a locally simple description of the dynamics, such as a regime-specific AR dynamic. That is, the global non-stationarity 
of each node is modeled via switches amongst a set of AR processes.  
 
A number of open questions arise in employing such regime-switching models. First, how many regimes are present? 
Second, this model only accounts for the time series generated by a single node in the network. Instead, our goal is to relate 
multiple nodes (i.e, the collection of time series). One notion of “relatedness" is sharing dynamic regimes. We proposed a 
Bayesian nonparametric approach to the problem of discovering dynamical regimes or behaviors shared among the 
sequences and segmenting each time series into regions defined by a subset of these behaviors. As a concrete example, we 
considered time series produced by motion capture sensors on the joints of people performing exercise routines. An 
individual recording provides a multivariate time series that can be segmented into types of exercises (e.g., jumping jacks, 
arm-circles, and twists). From recordings from multiple individuals, our goal is to discover (1) the global set of exercise 
types and (2) a relational structure between the recordings based on the subset of behaviors exhibited by each individual. 
Our key modeling tool is the beta process, a Bayesian nonparametric prior that allows us to infer both the size of the 
behavior set and the sharing pattern from the data. 
 
One of our key developments for this modeling formulation is an efficient, scalable Markov chain Monte Carlo (MCMC)-
based inference procedure. In particular, our MCMC algorithm efficiently adds and removes behaviors via novel split-
merge moves as well as data-driven birth and death proposals, avoiding the need to consider a truncated model. This 
procedure allowed us to scale up our computations to jointly examine hundreds of motion capture videos. 
 
Approach 3: Adding Sparse, Switching Dependency Structures 
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In Approaches 1 and 2, conditioned on the relational structure and associated parameters, the data streams evolve 
independently. In many applications, the notion of relatedness is instead the correlation structure and—crucially—how it 
evolves. We built upon Approach 2 by modeling correlated dynamics between the data streams. For scalability to a large 
numbers of nodes, we need to define a sparse dependency structure. For this, we use graphical models which encode 
statements of conditional independence between nodes in the graph. We additionally allow the correlations between nodes 
to change with time, in particular as a function of some underlying event state. That is, we encode a sparse and changing 
set of dependencies between the nodes using a Markov-switching Gaussian graphical model for the innovation process 
driving the node dynamics (i.e., a switching AR process). 

As a motivating example, we consider an application of this methodology to intracranial electroencephalogram (iEEG) 
data, where each electrode or channel represents a node in the network. The switching AR model of Approach 2 is 
appropriate due to the nonstationary behavior of EEG signals; Approach 2 likewise allows the channels to have 
asynchronous switches between dynamic regimes. This network data also exhibits a changing dependency structure as the 
seizure event progresses. In particular, it is well-known that the correlations between EEG channels usually vary during the 
beginning, middle, and end of a seizure. These changes are captured by our evolving event state, and corresponding changes 
in the parameters of the Gaussian graphical model defining the channel correlations. We demonstrated that this model 
provides better parsing and out-of-sample predictions of iEEG data than the formulation of Approach 2 alone. We also 
showed that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable 
the comparison of sub-clinical bursts and full clinical seizures. Importantly, our graphical-model based approach allows us 
to scale to large electrode grids. Our computational burden for examining 96-electrode grids is equivalent to that of roughly 
30 electrodes under a full covariance model. Differences would be even more significant with larger numbers of electrodes 
(i.e., nodes in the graph). In particular, assuming each of N nodes has M neighbors, our per-time step likelihood 
computations are O(NM) in contrast to O(N2). 
 
Approach 4: Gradually Evolving Correlations 
 
In Approach 3, we assumed a Markov-switching formulation for the correlation structure and scaled to large numbers of 
nodes using graphical models. In some applications, instead of having abrupt changes in correlation structure, we expect 
the correlations to be gradually evolving. We focused on developing a class of Bayesian nonparametric covariance process 
models, which allow an unknown p x p covariance matrix to change flexibly with time. The proposed model harnesses a 
low-rank decomposition of the covariance matrix and introduces a set of dictionary elements to model the low-rank 
evolution over time. In particular, we consider using Gaussian processes as a flexible dictionary element, describing a 
smooth, but nonlinear dynamic. To further aid in scaling to high dimensions, we assume that the low-rank evolution can be 
described as a weighted collection of an even smaller set of basis functions. Our proposed framework leads to a highly 
flexible, but computationally tractable formulation with simple conjugate posterior updates that can readily handle missing 
data. We derived theoretical properties of the proposed covariance process. We also considered an application to analyzing 
the changing correlations in activity in 183 different regions in the United States. In simulated data, we achieved scaling on 
the order of 5,000 nodes. 

As an alternative approach, in contrast to the nonlinear dynamics above, we considered an autoregressive covariance 
process. That is, the AR process evolves on the cone of positive semidefinite (covariance) matrices. To accomplish this 
restricted multivariate AR evolution, we harnessed inverse Wishart (IW) theory to define a process that maintains inverse 
Wishart margins and, crucially, defines a nice form for the covariance transitions. We call the resulting model the IW-AR. 
We used the IW-AR to analyze multi-channel scalp EEG data recorded while a patient underwent an induced seizure. 
 
Scaling Up Determinantal Point Processes 
 
In applications such as clustering (Approach 1) or segmentation across time (Approach 2 and 3), interpretability of the 
resulting clusters (i.e., communities or regime-specific dynamical models) can be improved if the clusters themselves are 
diverse from one another. In typical clustering approaches, there is nothing driving such repulsion between clusters (i.e., 
penalizing overlap). To address this, we examined a class of repulsive processes known as determinantal point processes 
(DPPs). 

In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite 
base set of N items. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the 
defining kernel matrix resulting in O(N3) complexity. However, in certain applications, N may be so large that sampling 
from a DPP becomes computationally infeasible. For DPPs on continuous spaces, as commonly encountered in mixture 
modeling applications for clustering and segmentation, existing sampling results rely on rejection sampling leading to low 
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acceptance rates in all but the simplest of scenarios. 
We addressed these issues by considering approximations to the DPP kernel that allow for efficient and closed-form 

sampling. In the large, finite N scenario, we proposed applying Nystrom approximation and derived error bounds for the 
approximated DPP in terms of variational distance (quite unlike the standard matrix norms previously established for kernel 
approximations). Random Fourier feature kernel approximations were also considered. Using such approximations, we then 
developed a closed-form method of sampling from DPPs on continuous and potentially multivariate spaces. We applied 
this continuous-DPP sampler to the task of repulsive mixture modeling and showed improved interpretability and 
classification performance for our inferred clustering. 

 
Adaptive Skip-Train Ensemble-Based Structured Regression  

 
Forecasting in temporal networks is commonly done by employing a single model in order to predict the response for 

each node in one or multiple upcoming timesteps. Issues arise when the time for prediction is limited, and the computational 
and space complexities increase when learning from multiple previous timesteps. To overcome these limitations, one can 
train quickly an unstructured learner at the current time-step to perform a one-step ahead prediction. However, this can 
lower accuracy since unstructured models are not capable of capturing between-node correlations. Structured learners such 
as GCRFs may be more accurate, but they require more time for retraining at each timestep. Moreover, they consider the 
whole network structure while learning, without taking advantage of useful substructures within the network. Driven by 
these issues, Prof. Z. Obradovic’s team proposed an adaptive ensemble-based model to automatically decide whether to 
skip the majority of unnecessary computations, which come from retraining at each time-step and make predictions in a 
timely and accurate manner (see Fig. 8). In order to achieve greater predictive performance, the proposed model 
incorporates multiple GCRFs into a single composite structured ensemble. Then, to capture the hidden network 
substructures, GCRFs are trained simultaneously on subnetworks generated by subsampling, which decreases complexity 
and increases scalability.  

 

 
 

Fig. 8. Skip-training between consecutive timesteps. 
 

Our Skip-Train structured model outperforms competitors, while learning in a more efficient, scalable, and potentially 
even more accurate manner. Our findings suggest that the model: (1) runs ~140 and ~4.5 times faster than GCRF and 
ensemble-based alternatives, respectively; (2) focuses on partial views of a network, and therefore, it is scalable as the 
network size expands; and (3) it is ~34-41% more accurate than alternatives. 

DISTRIBUTION A: Distribution approved for public release



Publications List:  
 
The results of Temple University DARPA GRAPHS project FA9550-12-1-0406 are published at the 
following 52 manuscripts: 

1. Jordanski, M, Radovic, M., Milosevic, Z., Filipovic, N., Obradovic, Z. (2018) “Machine Learning 
Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid 
Bifurcation Models,” IEEE Journal of Biomedical and Health Informatics, March 2018, Vol. 22, 
Issue 2, pp. 537-544.  

2. Vujicic, T., Glass, J., Zhou, F., Obradovic, Z. (2017) “Gaussian Conditional Random Fields 
Extended for Directed Graphs,” Machine Learning, October 2017, Vol 106, Issue 9-10, pp. 1271-
1288. 

3. Glass, J., Obradovic, Z. (2017) "Structured Regression on Multi-Scale Networks,” IEEE 
Intelligent Systems, Vol. 32, Issue 2, Mar-April, 2017, pp. 23-30. 

4. Stojkovic, I. Ghalwash, M., Obradovic, Z.  (2017) “Ranking Based Multitask Learning of Scoring 
Functions,” In: Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2017, 
pp. 721-736, 2017. 

5. Pavlovski, M., Zhou, F., Stojkovic, I., Kocarev, Lj., Obradovic, Z.  (2017) “Adaptive Skip-Train 
Structured Regression for Temporal Networks,” In: Machine Learning and Knowledge Discovery 
in Databases. ECML PKDD 2017, pp: 305-321, 2017. 

6. Roychoudhury, S. Ghalwash, M., Obradovic, Z.  (2017) “Cost Sensitive Time-Series 
Classification,” In: Machine Learning and Knowledge Discovery in Databases. ECML PKDD 
2017, pp. 495-511, 2017. 

7. Stojkovic, I., Jelisavcic, V., Milutinovic, V., Obradovic, Z. (2017) “Fast Sparse Gaussian Markov 
Random Fields Learning Based on Cholesky Factorization,” Proc. 26th International Joint 
Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, August 2017, pp. 2758-2764. 

8. Han, C, Ghalwash, M., Obradovic, Z. (2017) “Continuous Conditional Dependent Network for 
Structured Regression,” Proc. 31st AAAI Conference on Artificial Intelligence (AAAI-17), San 
Francisco, CA, February 2017, 1962-1968. 

9. Albarakati, N., Obradovic, Z. (2017) “Disease-Based Clustering of Hospital Admission: Disease 
Network of Hospital Networks Approach,” Proc. 30th IEEE Int’l Symp. Computer-Based Medical 
Systems, Thessaloniki, Greece, June, 2017. 

10. Zhou, F., Ghalwash, M., Obradovic, Z. (2016) "A Fast Structured Regression for Large 
Networks," Proc. 2016 IEEE International Conference on Big Data, Washington, DC, Dec. 2016, 
pp. 108-115. 

11. Mirowski, T., Roychoudhury, S., Zhou, F., Obradovic, Z. (2016) "Predicting Poll Trends using 
Twitter and Multivariate Time-series Classification," Proc. 8th Int'l Conf. Social Informatics 
(SocInfo), Seattle, WA, Nov. 2016, 273-289. 

12. Stojanovic, J., Gligorijevic, Dj., Obradovic, Z. (2016) "Modeling Customer Engagement from 
Partial Observations," Proc. 25th Int’l Conf. Information and Knowledge Management (CIKM-
16), Indianapolis, IN, Oct. 2016, pp. 1403-1412. 

13. Gligorijevic, Dj., Stojanovic, J., Djuric, N., Radosavljevic, V., Grbovic, M., Kulathinal, R.J., 
Obradovic, Z. (2016) "Large-Scale Discovery of Disease-Disease and Disease-Gene 
Associations," Scientific Reports, Nature Publishing Group, 2016, Aug 31, 6:32404 doi 
10.1038/srep32404. (PDF) 

14. Feldman, K., Stiglic, G., Dasgupta, D., Kricheff, M., Obradovic, Z., Chawla, N. (2016) "Insights 
into Population Health Management Through Disease Diagnoses Networks," Scientific Reports, 
Nature Publishing Groups, 2016, July 27, 6:30465 doi: 10.1038/srep30465. (PDF) 

DISTRIBUTION A: Distribution approved for public release



15. Gligorijevic, Dj., Stojanovic, J., Obradovic, Z., (2016) "Disease Types Discovery from a Large 
Database of Inpatient Records: A Sepsis Study," Methods, Jul 28. S1046-2023(16)30232-8, doi: 
doi:10.1016/j.ymeth.2016.07.021. (PDF) 

16. Stojanovic, J., Gligorijevic, Dj., Radosavljavic, V., Djuric, N., Grbovic, M., Obradovic, Z., 
(2016) "Modeling Healthcare Quality via Compact Representations of Electronic Health 
Records," IEEE/ACM Transactions on Computational Biology and Bioinformatics, Jul 14. Vol 
14, Issue 3, pp. 545-554  doi:10.1109/TCBB.2016.2591523. (PDF) 

17. Stojkovic, I., Jelisavcic, V., Milutinovic, V., Obradovic, Z. (2016) "Distance Based Modeling of 
Interactions in Structured Regression," Proc. 25th International Joint Conference on Artificial 
Intelligence (IJCAI), New York, NY, July 2016, pp. 2032 - 2038 (PDF) 

18. Han, C, Zhang, S., Ghalwash, M., Vucetic, S, Obradovic, Z. (2016) "Joint Learning of 
Representation and Structure for Sparse Regression on Graphs," Proc. 16th SIAM Int’l Conf. 
Data Mining (SDM), 846 - 854 Miami, FL, May 2016. (PDF) 

19. Polychronopoulou, A, Obradovic, Z. (2016) "Structured Regression on Multilayer Networks," 
Proc. 16th SIAM Int’l Conf. Data Mining (SDM), 612 - 620, Miami, FL, May 2016. (PDF) 

20. Gligorijevic, Dj, Stojanovic, J., Obradovic, Z. (2016) "Uncertainty Propagation in Long-term 
Structured Regression on Evolving Networks," Proc. Thirtieth AAAI Conference on Artificial 
Intelligence (AAAI-16), 1603-1610, Phoenix, AZ, February 2016. (PDF) 

21. Glass, J., Ghalwash, M., Vukicevic, M., Obradovic, Z. (2016) "Extending the Modeling Capacity 
of Gaussian Conditional Random Fields while Learning Faster," Proc. Thirtieth AAAI Conference 
on Artificial Intelligence, (AAAI-16),1596 - 1602, 2016 Phoenix, AZ, February 2016. (PDF) 

22. Dokic, T. Dehghanian, P., Chen, P.-C, Kezunovic, M., Medina-Cetina, Z., Stojanovic, J., 
Obradovic, Z. (2016) "Risk Assessment of a Transmission Line Insulation Breakdown due to 
Lightning and Severe Weather," Proc. HICCS – Hawaii International Conference on System 
Science, Kauai, Hawaii, January 2016.pp. 2488 - 2497 (PDF) 

23. Stiglic, G., Brzan, P.P., Fijacko, N., Fei, W., Delibasic, B., Kalousis, A., Obradovic, Z. (2015) 
"Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity 
Based Features," PLOS ONE,Dec 8, 2015, DOI: 10.1371/journal.pone.0144439 (PDF)  

24. Ma, Y.A., Chen, T. and Fox, E.B.  (2015) "A Complete Recipe for Stochastic Gradient MCMC," 
submitted to Neural Information Processing Systems (NIPS), Montreal, Quebec December 2015, 
pp. 2917-2915. 

25. Vukicevic, M., Radovanovic, S., Kovacevic, A., Sliglic, G., Obradovic, Z. (2015) "Improving 
hospital readmission prediction using domain knowledge based virtual examples," Proc. the 10th 
Conf. on Knowledge Management in Organization, Maribor, Slovenia, August, 2015, pp. 695-
704. (PDF)  

26. Tank, A. , Foti, N. and Fox, E.B. (2015) "Bayesian Structure Learning of Stationary Time 
Series," Uncertainty in Artificial Intelligence (UAI), Amsterdam, Netherlands, July 2015. 

27. Radovanovic, S., Vukicevic, M., Kovacevic, A., Sliglic, G., Obradovic, Z. (2015) "Domain 
knowledge based hierarchical feature selection for 30-day hospital readmission prediction" Proc. 
AIME 2015, the 15th Conference on Artificial Intelligence in Medicine, Pavia, Italy, June, 2015, 
Artificial Intelligence in Medicine, Lecture Notes in Computer Sciences, vol. 9105, pp. 96-100. 
(PDF)  

28. Tank, A., Foti, N. and Fox, E.B. (2015) "Streaming Variational Inference for Bayesian 
Nonparametric Mixture Models," International Conference on Artificial Intelligence and 
Statistics (AISTATS), San Diego, CA May 2015. 

29. Ramljak, D., Davey, A., Uversky, A., Roychoudhury, S., Obradovic, Z. (2015) "Hospital Corners 
and Wrapping Patients in Markov Blankets," 4th Workshop on Data Mining for Medicine and 
Healthcare, 2015 SIAM International Conference on Data Mining, Vancouver, Canada, April 30 
- May 02, 2015 (PDF)  

30.  Gligorijevic, Dj., Stojanovic, J., Obradovic, Z. (2015) " Improving Confidence while Predicting 
Trends in Temporal Disease Networks," 4th Workshop on Data Mining for Medicine and 

DISTRIBUTION A: Distribution approved for public release



Healthcare, 2015 SIAM International Conference on Data Mining, Vancouver, Canada, April 30 
- May 02, 2015 (PDF)  

31. Stojanovic, J., Jovanovic, M., Gligorijevic, Dj., Obradovic, Z. (2015) " Semi-supervised learning 
for structured regression on partially observed attributed graphs" Proceedings of the 2015 SIAM 
International Conference on Data Mining (SDM 2015) Vancouver, Canada, April 30 - May 02, 
2015 (PDF) 

32. Uversky, A., Ramljak, D., Radosavljevic, V., Ristovski, K., Obradovic, Z. (2014) "Panning for 
Gold - Using Variograms to Select Useful Connections in a Temporal Multigraph Setting," Social 
Network Analysis and Mining, 4:211, July 2014 (PDF) 

33. Wulsin, D., Fox E.B., Litt B. (2014) “Modeling the complex dynamics and changing correlations 
of epileptic events,” Artificial Intelligence 216, 55-75, 2014.  

34. Bandeira A.S., Scheinberg K., Vicente L. N. (2014) "Convergence of trust-region methods based 
on probabilistic models," SIAM Journal on Optimization, 24(3), 1238-1264, 2014.  

35. N. Foti, J. Xu, D. Laird, and E.B. Fox, "Stochastic Variational Inference for Hidden Markov 
Models," Neural Information Processing Systems (NIPS), Montreal, Quebec December 2014, pp. 
3599-3607. 

36. Tank, A., Foti, N. and Fox, E.B. (2014) "Streaming Variational Inference for Normalized 
Random Measure Mixture Models," NIPS Workshop on Advances in Variational Inference, 
Montreal, Quebec December 2014. 

37. Polychronopoulou, A., Obradovic, Z. (2014) "Hospital Pricing Estimation by Gaussian 
Conditional Random Fields Based Regression on Graphs" Proc. 2014 IEEE International 
Conference on Bioinformatics and Biomedicine, Belfast, UK, Nov. 2014, pp. 564-567. (PDF) 

38. Stiglic, G., Wang, F., Davey, A., and Obradovic, Z. (2014) "Readmission Classification Using 
Stacked Regularized Logistic Regression Models," Proc. AMIA 2014 Annual Symposium, 
Washington, DC, Nov. 2014, pp. 1072-81. (PDF) 

39. Radosavljevic, V., Vucetic, S., Obradovic, Z. (2014) "Neural Gaussian Conditional Random 
Fields," Proc. European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases, Nancy, France, September, 2014, pp. 614-629. (PDF) 

40. Slivka, J., Nikolic, M., Ristovski, K., Radosavljevic, V., Obradovic, Z. (2014) "Distributed 
Gaussian Conditional Random Fields Based Regression for Large Evolving Graphs," Proc. 14th 
SIAM Int’l Conf. Data Mining Workshop on Mining Networks and Graphs, Philadelphia, April 
2014. (PDF) 

41. Scheinberg, K and Tang X., (2014) “Practical inexact proximal quasi-Newton method with global 
complexity analysis,” Mathematical Programming, 3, 2014. pp 1-35. 

42. Ouzienko, V., Obradovic, Z. (2013) "Imputation of Missing Links and Attributes in Longitudinal 
Social Surveys," Machine Learning Journal, vol. 95, no. 3, pp. 329-356. (PDF) 

43. Stiglic, G., Davey, A., Obradovic, Z.,(2013) "Temporal Evaluation of Risk Factors for Acute 
Myocardial Infarction Readmissions," Proc. 2013 IEEE International Conference on Healthcare 
Informatics, Workshop on Hospital Readmission Prediction and Clinical Risk Management, 
Philadelphia 2013 (PDF) 

44. Uversky, A., Ramljak, D., Radosavljevic, V., Ristovski, K., Obradovic, Z. (2013) "Which Links 
Should I Use? A Variogram Based Selection of Relationship Measures for Prediction of Node 
Attributes in Temporal Multigraphs," Proc. 2013 IEEE/ACM International Conference on 
Advances in Social Networks Analysis and Mining, Niagara Falls, Canada, Aug. 2013. (PDF)  

45. Ristovski, K., Radosavljevic, V., Vucetic, S., Obradovic, Z. (2013) "Continuous Conditional 
Random Fields for Efficient Regression in Large Fully Connected Graphs," Proc. The Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI-13), Bellevue, Washington, July 2013, 
pp. 840-846.  (PDF) 

46. Affandi R.H., Fox E.B., Taskar, B., (2013) “Approximate inference in continuous determinantal 
processes,”  Advances in Neural Information Processing Systems, vol. 26, 2013. 

DISTRIBUTION A: Distribution approved for public release



47. Affandi, R. H., Kulesza, A., Fox, E. B., Taskar, B., (2013) “Nystrom approximation for large-scale 
determinantal processes,” Proc. Int’l Conf. Artificial Intelligence and Statistics, 2013. 

48. Aldor-Noiman, S., Brown, L. D., Fox E.B., Stine R.A., (2013) “Spatio-temporal low count 
processes with application to violent crime events,” arXiv:1304.5642, 2013. 

49. Fox, E.B., Hughes M., Sudderth E.B., Jordan, M.I. (2013) “Joint modeling of multiple time series 
via the beta process with application to motion capture segmentation,” arXiv:1308.4747, 2013. 

50. Wulsin D., Fox E.B., Litt B., (2013) “Parsing epileptic events using a Markov switching process 
model for correlated time series,” Proc. Int’l Conf. Machine Learning, pages 356-364, 2013. 

51. El-Arini K., Xu M., Fox E.B., Guestrin C.E., (2013) “Representing Documents Through Their 
Readers,” Proc. Int’l Conf. on Knowledge Discovery and Data Mining (KDD), August 2013. 

52. Mathew, G., Obradovic, Z. (2012) "Distributed Privacy Preserving Decision System for 
Predicting Hospitalization Risk in Hospitals," Proc. 11th International Conference on Machine 
Learning and Applications: Machine Learning in Health Informatics Workshop, Boca Raton, 
Florida, Dec. 2012. (PDF)  
 

 

 

DISTRIBUTION A: Distribution approved for public release


	DTIC Title Page - 
	FA9550-12-1-0406 SF298
	FA9550-12-1-0406 SF 298 AND Final Report Zoran Obradovic Temple University DARPA GRAPHS FA9550-12-1-0406



