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Preface 

The U.S. Air Force spends considerable funds to operate and support its aircraft. Between 
fiscal years (FYs) 1996 and 2011, such spending increased by more than 6 percent a year, 
limiting what could be spent on other priorities. One way to reduce operation and support costs is 
to improve the accuracy of demand forecasts. The Air Force spends about $4 billion annually to 
buy and repair spare parts for aircraft. Demand that runs lower than forecast levels results in 
excess parts; demand that runs higher results in shortages and reduced readiness. One potential 
way to improve spare part demand forecasts is to reduce the difference between the number of 
flying hours that are forecast and the number that are actually flown, which is known as flying 
hour variance. The Air Force Sustainment Center asked RAND Project AIR FORCE to gauge 
the potential effect of flying hour variance on cost and readiness, identify the causes of the 
variance and quantify their effects, and identify policy options to rectify problems identified.  

The research reported here was commissioned by the Air Force Sustainment Center and 
conducted within the Resource Management Program of RAND Project AIR FORCE as part of 
an FY 2014 project Cost-Effective Readiness. This happened to be the same time that some of 
the worst effects of the budget sequester were being felt. Most of the data presented in this report 
originally spanned FYs 2008–2012 because those dates were the most-widely available in 
FY 2014 when the research was conducted. However, after the research was completed and the 
document reviewed, the project sponsor felt that part of the story was missing because the report 
essentially ignored the sequester. In the interest of telling a more complete story, more data were 
obtained, up to FY 2015, to include the more significant perturbations from such events as the 
sequester and the averted A-10 retirement. All of the analyses and figures whose conclusions 
hinge on those specific years have been updated. 

RAND Project AIR FORCE 
RAND Project AIR FORCE (PAF), a division of the RAND Corporation, is the U.S. Air 

Force’s federally funded research and development center for studies and analyses. PAF 
provides the Air Force with independent analyses of policy alternatives affecting the 
development, employment, combat readiness, and support of current and future air, space, and 
cyber forces. Research is conducted in four programs: Force Modernization and Employment; 
Manpower, Personnel, and Training; Resource Management; and Strategy and Doctrine. The 
research reported here was prepared under contract FA7014-16-D-1000. 

Additional information about PAF is available on our website: http://www.rand.org/paf. 
This report documents work originally shared with the U.S. Air Force on September 23, 

2014. The draft report, issued on February 26, 2016, was reviewed by formal peer reviewers and 
U.S. Air Force subject-matter experts.  

http://www.rand.org/paf
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Summary 

The Air Force devotes considerable resources to aircraft operating and support, and spending 
in these areas increased annually by more than 6 percent between fiscal years (FYs) 1996 and 
2011, before starting to level off. Such spending can have an outsized effect on the total budget 
and crowd out funding for other needs, such as modernization, readiness, and infrastructure. In 
response to this trend, the Air Force developed a new approach to balancing cost and 
effectiveness, which it labeled Cost-Effective Readiness (CER). CER aims to reduce the cost of 
each unit of readiness and has been adopted as one aim of the Air Force’s Enterprise Logistics 
Strategy. 

One area of emphasis for the strategy is to improve the accuracy of forecasts for spare parts. 
Several factors contribute to forecasting errors: natural uncertainty in spare part failures, flying 
hour (FH) variance, issues with phasing systems in and out of the Air Force, new items, and data 
errors. Many of these factors fall within the purview (though not necessarily the control) of the 
Air Force Materiel Command (AFMC).  

One factor that falls outside the AFMC’s purview is FH program (FHP) variance. The Air 
Force’s FHP comprises the number of hours needed to attain and maintain combat readiness and 
capability for its aircrews, to test weapon systems and tactics, and to meet collateral 
requirements, such as air shows, demonstration rides for important personnel, and ferrying 
aircraft. Operations and training personnel at the major commands (MAJCOMs) determine the 
number of hours required annually.1  

Each year, the Air Force estimates how many hours will be flown for pilot training sorties 
and then uses these estimates to forecast its demand for depot-level reparables. These forecasts 
drive a number of other logistics decisions and processes. When the actual number of hours 
flown differs from the number forecast, the difference can affect readiness or cause more 
spending than is needed (e.g., buying spare parts in excess of near-term demand), which prevents 
the money from being used for other important priorities. The Air Force Sustainment Center 
(AFSC) asked RAND Project AIR FORCE to assess the potential effect of FHP variance on cost 
and readiness. This report responds to that request.  

As part of the annual planning, programming, budgeting, and execution system process, also 
referred to as the program objective memorandum (POM) process, the air staff, with inputs from 
the MAJCOMs, determines the annual FHP. Funding for the FHP is subject to the perturbations 
of the overall POM process. Sometimes FHP funding is reduced to make room for other 
requirements. Sometimes those cuts are then restored in the year of execution as funding 

                                                
1 U.S. Air Force, Air Force Instruction 11-102, Flying Hour Program Management, August 30, 2011. 
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continues to shift, sending contradictory signals to the supply chain community.2 Nonetheless, an 
FHP is eventually established, setting off a series of further decisions and outcomes.  

Planned FHs—taken directly from the FHP—drive the demand forecast. This, in turn, drives 
decisions to buy spare parts and set depot repair capacity—essentially organic depot labor 
levels—in the form of annual contracts with unionized government civilian personnel. At some 
point, because of lead times, those decisions cannot be reversed without additional investment of 
time, trouble, money, or some combination thereof.  

The FHP recorded in the budget influences what is actually flown, but many external factors 
can influence what is actually flown in a given time period or over the entire year (e.g., fiscal 
changes, contingency operations, or safety issues, such as the grounding of a fleet). The 
operators setting the FHP in the POM process can conduct their process rigorously, but their 
product is still subject to those external factors. Then, downstream effects are subject to 
uncertainty, i.e., the stochastic relationship between flying activity and spare part breaks, 
between part breaks and spare part stock requests and repairs, and so on.3 Many external factors 
disrupt the relationship between the FHP and actual downstream effects, including actions and 
decisions on the part of managers and maintainers to solve problems that are sometimes driven 
by inaccurate forecasts upstream.  

Thus, because of the way the system is designed, the linkage between the FHP and 
downstream decisions is direct and straightforward, whereas the linkage between the FHP and 
downstream activity is more tenuous and is governed by a range of factors, each with inherent 
uncertainty.  

To better understand the dynamics of FH variance, we analyzed FH data for aircraft and 
individual spare parts. We found that, in both cases, those aircraft or parts with the highest 
numbers of actual FHs generally had low statistical error, and the highest statistical error was 
from those aircraft and parts with relatively few hours flown. We then summed up the total error 
for low- and high-error aircraft and parts. We found that, in both cases (aircraft and parts), the 
majority of total error was driven by a large number of aircraft or parts with small individual 
error. What this means is that, although high-error aircraft and parts can be big drivers in their 
individual programs, they do not significantly affect the total error in the system. Instead, it is the 
accumulation of many, many small errors that drives most of the total FH forecast error. 

We group the range of causes of FHP variance into three broad categories. Simple planning 
error accounts for the basic uncertainties in predicting the FHP in a given year, including the 

                                                
2 The CER working group highlighted a number of instances of FHP changes that created significant volatility: in 
FY 2008, a 10-percent FH cut; in FY 2009, the Combat Air Forces aircraft reduction; in FY 2011, the FHP 
optimized and reduced because of overseas contingency operations; in FY 2012, a 5-percent Combat Air Forces 
FHP efficiency; and in FY 2013, the budget sequester. 
3 At a very high level, e.g., all parts for a single aircraft type, FHs tend to correlate reasonably well with spare part 
failures. At more-disaggregated levels, there is generally low correlation between the two, i.e., a statistically “noisy” 
relationship is displayed. 
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number of pilots, number and type of sorties, and sortie duration. External causes are those that 
originate outside the service and that usually affect the entire enterprise or a significant portion 
of it, such as contingency operations or congressional action. The third category is internal Air 
Force decisions, which can cause FHP variance when far-reaching decisions (about force 
structure, budgets, or FHs themselves) are made after the original FHP is set. Understanding 
these various sources is key to crafting policy solutions to address and reduce FHP variance. 

We analyzed the enterprise-level effect of FHP variance on several downstream metrics. FHP 
variance—regardless of its source—increases forecast error, the source of all other downstream 
effects. Underflying (i.e., overplanning) can incur opportunity cost, leaving money on the table 
in the budget process. It also incurs financial costs in the form of holding costs for unneeded 
inventory. Overflying (i.e., underplanning) likely contributes to readiness problems, but our 
analysis found no statistically significant relationship between FHP variance and mission 
impaired capability awaiting parts incidents, one of several important aircraft readiness metrics. 

However, each effect described above comes with caveats. Though forecast error induced by 
FHP variance for specific aircraft fleets can be enormous, in most years, the effect on enterprise-
level demand forecast accuracy (DFA) was modest. Except for one year of sequestration, we 
found the average enterprise-level increase to forecast error to be about five points, or an 
increase of about 15 percent over baseline error.  

Budget opportunity cost can be high—hundreds of millions of dollars in a single year—but 
many of the recent sources of volatility were events for which flying funding itself was cut from 
the budget after the FHP was set. Thus, the FH budget was not necessarily too large (i.e., leaving 
money on the table), even though hours were underflown from their original estimate.  

Financial costs incurred from underflying appear to be low, about $2 million to $4 million 
per year for inventory holding costs in recent years, including the years of sequestration. 

In sum, we found that, at an enterprise level, the one outcome with the most direct 
connection to FHs—budget opportunity cost—has a direct and significant link to FHP variance. 
But in recent years, the enterprise-level effect on the other three—DFA, financial cost, and 
readiness—are more tenuous. Thus, because the Air Force pursues enterprise-level 
improvements to cost-effectiveness, it might want to look beyond FHP variance. We make one 
recommendation below on how to do that. 

However, individual programs do sometimes have extremely high FH variance and thus do 
experience larger downstream effects. The AFSC’s planning processes do eventually catch large 
perturbations in FHP inputs, but that does not preclude supply chain planners and operators from 
having to respond to them. AFSC subject-matter experts (SMEs) reported that, on several 
occasions, they were caught off guard by seemingly sudden, radical changes to an aircraft’s FH 
forecast, with little or no communication from planners as to why and with little opportunity to 
communicate the downstream effects (e.g., canceled contracts, reduced or eliminated repair 
capacity). This no doubt drives a portion of the AFSC’s concern with the accuracy of FHP 
forecasts.  
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Some steps have already been taken that could address this gap in communication (at least in 
part spurred by increased scrutiny from CER). For example, the Deputy Chief of Staff for 
Operations, Plans, and Requirements (AF/A3) issued a memorandum to increase communication 
and coordination among Headquarters (HQ), Air Force, organizations involved in the FHP.4 
Besides general emphasis on synchronization and awareness, the memo states that MAJCOMs 
must explain under- or overexecution and notify HQ AFSC (among other organizations) of 
approved FH realignment actions.  

However, this apparently has not produced the desired results, and the integration of 
stakeholders involved in the FH processes has not been incorporated into efforts aimed at 
improving FH variance.5 As a result, HQ AFSC has formed an eight-step Cross Command 
Flying Hour Program Working Group to continue and intensify efforts needed to improve 
integration and communication regarding the development of FH programs. This should help 
address extreme program-level perturbations—which appear to be one of AFSC’s biggest 
concerns—that might cause undue FHP variance if supply chain planners are not kept in the 
loop.  

The air staff made several other changes to planning processes: planning FHs at the mission 
design series (MDS) level, setting improvement targets for FH variance, and including a factor 
for deployments (which had, in some cases, been excluded).6 These changes should be most 
successful at reducing the natural error in the FH planning process because they are aimed at the 
fundamental processes that produce the estimates. 

The guiding question in this analysis is how to achieve CER. Our analysis suggests that there 
are two separate issues or concerns here. The first is about opportunity cost, essentially a 
question of developing a budget. The second is about demand forecasting and its downstream 
effects.  

Significant overplanning can actually reduce budget tradespace by a significant amount that 
could be invested in other important programs. At an enterprise level, FHs are a reasonable 
predictor of spare part removals and an excellent predictor of fuel consumption.7 Thus, 
improving FH planning could contribute to the accuracy of the POM and free up badly needed 
resources in cases where the driver of overplanning was not a belated cut to the FH budget itself. 
The two HQ, Air Force actions referenced above should help address this. 

However, this progress does not necessarily influence the second issue, that of enterprise-
level forecast accuracy. Even with a more accurate planning process (i.e., the number-crunching 

                                                
4 Giovanni K. Tuck, HQ AF/A3, “FY15 Flying Hour Program Execution Guidance,” memorandum, Washington, 
D.C., October 8, 2014. 
5 Email communication with HQ AFSC personnel on December 19, 2016. 
6 Email communication with HQ AFSC personnel on October 15, 2014. 
7 FHs are not a perfect predictor of fuel consumption, even by aircraft type, because different sortie profiles can 
drive very different flying activities and thus fuel demands. 
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that informs the POM input), FHs remain subject to severe volatility—all of those features 
inherent in the U.S. Department of Defense’s current budget system and those external events 
that cannot be anticipated. Given the tenuous nature of the relationships we observed, further 
efforts to reduce FHP variance might or might not have an observable effect on long-term 
financial cost or readiness because so many other sources of error affect the system. Particular 
spare parts could be affected more by FHP variance because their removals correlate more highly 
with flying activity, but any such effects would not be observed system-wide.  

With that in mind, the current forecasting system has at least two problems. First, it uses FHs 
as a direct, linear input, whereas FHs are themselves volatile.8 FHs are subject to the budget 
process, so the Air Force is pegging its prediction on an input variable that is ever-shifting based 
in part on strategy but more so on unforeseeable institutional factors beyond its control and 
subject to fiscal pressures and budget negotiations.  

The second, and maybe more important feature, is that FHs are generally poor predictors of 
actual removals and repair demands. The individual part level is what matters most for supply 
chain cost and effectiveness, but, at the part level, there is virtually no correlation with FHs.9 
Even if FHs never changed from the original POM forecast, they would still be poor predictors 
and would give poor DFA and other associated effects. In sum, the Air Force has chosen to drive 
its parts forecasts for flying depot-level reparables primarily by a single variable that is 
notoriously volatile and demonstrably unreliable.  

So, could depot-level reparable removals be better forecast without better FHP forecasts? It is 
beyond the scope of this report to describe a comprehensive approach to improve the Air Force’s 
spare part forecasting system, though we believe that such an approach is needed. However, we 
did discuss several possibilities with analysts in the 448th Supply Chain Management Wing and 
Analysis Directorate, Strategic Plans, Programs, Requirements and Assessments Division, Air 
Force Materiel Command (AFMC/A9A).  

The current forecasting system uses a calculated demand rate (removals per FH) and allows 
for human intervention when equipment specialists have additional applicable information about 
anticipated future demands (e.g., phasing in or out parts or aircraft). One possibility is, instead of 
using just a removal rate, to supplement or replace that with a time-based failure rate, such as 
demands per quarter. Separate analyses by the RAND Project AIR FORCE research team, 448th 
Supply Chain Management Wing, and AFMC/A9A have shown that DFA can improve when 

                                                
8 Manual overrides are used in cases of known or anticipated program changes, but data analysis shows that, in 
aggregate, these overrides generally increase total forecast error. 
9 Past RAND research has noted that one fundamental assumption underlying the spare part forecasting system is 
not supported by the data. In other words, the so-called “linearity assumption”: “Aircraft failures are driven by a 
known operational activity: the expected number of failures of a particular part is proportional to a known and 
measurable quantity, such as FHs or landing.” See Gordon B. Crawford, Variability in the Demands for Aircraft 
Spare Parts: Its Magnitude and Implications, Santa Monica, Calif.: RAND Corporation, R-3318, 1988. 
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historical removals are used instead of the current method of removal rates, either discounting 
FHs or ignoring them altogether.10  

Another possibility is to reduce SME intervention in the removal forecast. We found that, 
whether using time-based or FH-based failure rates, on the whole, SME input actually worsened 
forecasts and reduced DFA. Human intervention is necessary in the case of known significant 
events (e.g., time change technical order modifications), but the data suggest that they should be 
used sparingly, i.e., when they can be shown to have a measurably positive effect.  

Also, past RAND research has pointed to some potential solutions. Adams, Abell, and 
Isaacson (1993) lays out an approach to better forecasting high-demand items using a weighted 
regression technique.11 And a number of RAND studies from the mid-1960s showed that sorties 
rather than FHs drove failures.12  

Finally, HQ AFSC is working to implement a method called Peak Policy for low-demand, 
highly variable items. That methodology has been implemented by the Defense Logistics 
Agency for consumables, and AFSC is currently working to extend it to include reparables.  

In light of these findings, we make four recommendations. 
Maintain changes to the FHP planning process that appear to be essentially zero-cost to 

implement. These changes address mostly our first category of FHP variance, simple planning 
error, which, in recent years, has driven the majority of the overall volume of enterprise-level FH 
error. In addition to providing opportunity cost savings, addressing FHP variance should better 
balance cost and readiness across Air Force fleets. Resolving recent levels of FHP variance 
means that the Air Force would not overinvest in one fleet relative to another fleet.13 However, 
reliably reducing the cost per unit of readiness (the goal of CER) requires that forecast error be 
reduced much more significantly than reducing FHP variance alone can accomplish. 

Second, continue to support and extend efforts to improve integration and 
communication across commands and between the operational and supply chain communities, 
such as the Cross Command Flying Hour Program Working Group started by Logistics 

                                                
10 Some high-demand parts do actually show a reliable relationship between FHs and removals, so the D200 default 
could be retained. (D200 is a subsystem of the Air Force Requirements Management System.) A system that 
promised even better results was proposed in John L. Adams, John B. Abell, and Karen E. Isaacson, Modeling and 
Forecasting the Demand for Aircraft Recoverable Spare Parts, Santa Monica, Calif.: RAND Corporation, R-4211-
AF/OSD, 1993. 
11 Adams, Abell, and Isaacson, 1993; John B. Abell, Estimating Requirements for Aircraft Recoverable Spares and 
Depot Repair: Executive Summary, Santa Monica, Calif.: RAND Corporation, R-4215-AF, 1993. 
12 For example, RAND research by William H. McGlothlin, Theodore S. Donaldson, and A. F. Sweetland, as well 
as Peter J. Francis and Geoffrey B. Shaw, Effect of Aircraft Age on Maintenance Costs, Alexandria, Va.: Center for 
Naval Analyses, CAB D0000289.A2, March 2000. 
13 One can imagine a cynical planner deliberately overestimating FHs for a particular MDS and, in the year of 
execution, simply achieving higher mission capability rates or fuller spares kits when those FHs do not materialize, 
to the detriment of other MDS that were more conservative in their planning. 
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Directorate, Air Force Sustainment Center (AFSC/LG). This type of effort seems to be the best 
hope to address our third category of FHP variance, internal Air Force decisions.  

Third, consider management mechanisms that could dampen the downstream volatility 
caused by FHP variance. One approach to this would give supply chain managers more 
flexibility in responding to upstream changes in forecast data. There could be cases where a 
change in demands causes a downstream decision to cross a threshold (e.g., letting or canceling a 
contract). Such a decision, based on communication with upstream planners, might be delayed or 
forgone, especially if the demand forecast driving the decision departed significantly from 
historical demands. This type of thinking could be incorporated in data systems in a more 
automated way (e.g., updating demand rates and resupply times only when there has been a 
statistically supportable change in the mean value). 

Fourth, look beyond the FHP to improve spare part forecasts. Further efforts to improve 
forecasting should focus on (admittedly harder) problems, such as the forecasting algorithms 
themselves, inventory policies (such as Peak Policy), and the information systems that contain 
them. 

We understand that the Air Force already sought to improve its spare part forecasting system 
with the failed implementation of Expeditionary Combat Support System, and the Air Force is 
again investigating information system solutions to this (and other) issues. As new systems come 
online, one key question is when FHs should be used for forecasts. Empirical analyses can be 
performed to assess which items have a strong enough correlation to be useful, or, in other cases, 
where thresholds should be set such that FHP variance beyond a certain point would trigger 
some action. To the degree that these new systems provide insights into these questions and the 
ability to better calibrate spare part decisionmaking, the Air Force can realize some long-awaited 
benefits to readiness and cost-effectiveness. 
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Chapter One 

Introduction 

Between fiscal years (FYs) 1996 and 2011, U.S. Air Force (USAF) Non–Special Operations 
Forces fixed-wing operating and support spending increased at an average rate of 6.5 percent per 
year.14 This steady rise in logistics spending crowds out other investments, such as 
modernization, unit readiness, and infrastructure. The increased spending, combined with 
decreasing budgets, prompted Air Force logistics leaders to urge the Air Force to adopt a new 
approach to balancing cost and effectiveness: Cost-Effective Readiness (CER)—which seeks to 
change the predominant mind-set from executing the budget to reducing the costs associated 
with producing readiness. 

Delivering CER is a strategic priority of the Air Force’s Enterprise Logistics Strategy 
(ELS).15 One focus area of the ELS is to improve the accuracy of spare part supply requirements, 
i.e., demand forecasts. Documentation supporting the ELS identified a range of known and 
potential causes of forecast error,16 including natural demand uncertainty, flying hour (FH) 
variance, phase-in or phase-out schedule issues, new items, and incorrect applications.  

Many of the above factors fall within the scope and influence of Air Force Materiel 
Command (AFMC), in particular Air Force Sustainment Center (AFSC), which oversees all 
organic supply chain management and operations and operates all organic depot-level 
maintenance. One potential contributor to forecast error that falls outside AFMC’s purview is 
what is known as FH program (FHP) variance. Each year, the Air Force estimates its FHP for 
pilot training and uses these estimates as a key input to forecast demand for depot-level reparable 
(DLR) spare parts. These FH forecasts drive downstream logistics decisions, in particular DLR 
spare buys and repair capacity. When the number of actual FHs (those flown during the year of 
execution) deviates from the number of planned FHs (those entered into the program objective 
memorandum [POM] process), this deviation is called FHP variance. 

The FHP accounts for about $9 billion to $10 billion per year in spending, and the Air Force 
spends about $4 billion annually on spare parts (not all spare part spending is FHP-driven). 
Accurate demand forecasts ensure efficient and effective use of limited operating and support 
dollars and repair capacity. Spare part demand that is lower than forecast can result in excess 
inventory and cost, and demand that is higher than forecast can result in shortages that could 

                                                
14 Michael Boito, Thomas Light, Patrick Mills, and Laura H. Baldwin, Managing U.S. Air Force Aircraft Operating 
and Support Costs: Insights from Recent RAND Analysis and Opportunities for the Future, Santa Monica, Calif.: 
RAND Corporation, RR-1077-AF, 2016.  
15 U.S. Air Force, 2012–2022 Air Force Enterprise Logistics Strategy, Version FY14.2, October 16, 2013b. 
16 Materials associated with CER use a range of terms to mean error: variability, variance, and volatility. In this 
report, we use the terms variance and error essentially interchangeably. 
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compromise readiness. AFSC analysts, in particular those in the 448th Supply Chain 
Management Wing (448 SCMW), more or less continually assess forecast accuracy and the root 
causes of forecast error.  

In FY 2014, the AFSC asked RAND Project AIR FORCE (PAF) to assess the potential effect 
of FHP variance on cost and readiness. This analysis targets FHP variance as one driver of 
supply chain variance and seeks to do three things: 

1. Identify the root causes of observed variance. 
2. Quantify the effects of variance. 
3. Suggest policy options to address variance and its effects. 
The next chapter provides background on the FHP and demand forecasting. Chapter Three 

explains our approach to analyzing the downstream effects of FHP variance and offers our 
findings. Chapter Four provides our conclusions and recommendations, including some that offer 
greater benefit than correcting FHP variance. 
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Chapter Two 

Background 

This chapter provides some additional details on the FHP and describes how demand is 
forecast and what can affect that forecast. Those familiar with the program and processes might 
wish to skip the sections that deal with those topics. The third section of the chapter shows the 
variance that occurs in the FHP. The last section of the chapter describes how the Air Force 
forecasts demand for spare parts. 

The Air Force Flying Hour Program 
The Air Force FHP comprises the number of hours needed to attain and maintain combat 

readiness and capability for its aircrews, to test weapon systems and tactics, and to meet 
collateral requirements, such as air shows, demonstration rides for important personnel, and 
ferrying aircraft. Operations and training personnel at the major commands (MAJCOMs) 
determine the number of hours required annually.17  

The Air Force estimates the budget for this program using a proportional cost model with 
two primary inputs: the number of FHs to be flown and a cost-per-FH factor. The product of the 
two inputs results in the expected FHP costs and estimated budget associated with each Air 
Force MDS.18  

In the 1990s, in efforts to achieve greater accuracy in FH estimates, each MAJCOM switched 
to standardized methodologies that reflected the mission of that MAJCOM. The new models 
calculate FHs based on the number of pilots required to be combat mission-ready, basic mission-
capable, or current with their training. The FH models also account for pilot experience, 
guidelines for mission types and weapon qualifications, special capability sorties, and collateral 
sorties.19 Recent CER efforts have further refined these estimates. 

                                                
17 The Joint Mission Essential Task List, the Air Force task lists, and mission design series (MDS)–specific volumes 
of the Air Force Instruction 11-2 series are the foundational requirements that link aircrew training to tasks required 
to support combatant commanders. See U.S. Air Force, Flying Hour Program Management, Air Force Instruction 
11-102, August 30, 2011. 
18 Tyler Hess, Cost Forecasting Models for the Air Force Flying Hour Program, Wright-Patterson Air Force Base, 
Ohio: Air Force Institute of Technology, March 2009. 
19 U.S. General Accounting Office, Observations on the Air Force Flying Hour Program, Washington, D.C., 
NSIAD-99-165, July 8, 1999. 
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The Forecasting and Demand Process 
The FHP and demand forecasting both happen within a much larger context of strategic 

planning and budgeting. Figure 2.1 shows a simplified schematic of that larger context. In 
Figure 2.1, this process starts with strategic guidance. The President and the U.S. Department of 
Defense (DoD) assess the geopolitical and security environments and issue various guidance 
documents that contain national objectives and priorities. Senior Air Force leaders then translate 
those objectives, priorities, and scenarios into Air Force priorities and decisions, operationalized 
in guidance documents and budget decisions.20 As part of the annual planning, programming, 
budgeting, and execution system process, also referred to as the POM process, the air staff, with 
inputs from the MAJCOMs, determines the annual FHP.  

It is important to understand that the FHP, or at least the money for it, is ultimately a part of 
the POM, and it is subject to the same forces and constraints that affect the rest of the POM. The 
POM process can be unpredictable, and, when a cut is levied or funding must be found for a new 
requirement, it must come from somewhere. The FHP constitutes the largest single share of the 
Air Force’s operations and maintenance appropriation (about 20 percent), and it is sometimes a  

Figure 2.1. Strategic Context of the Flying Hour Program and Demand Forecasts 

NOTES: AF = Air Force, HAF = Headquarters, Air Force.  

       
20 For more on the Air Force’s strategic planning system, see U.S. Air Force, Strategic Planning System, Air Force 
Policy Directive 90-11, March 26, 2009.  
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target for short-term cuts when offsets must be found.21 Sometimes, those cuts are subsequently 
restored in the year of execution as funding continues to shift, thus broadcasting a flying plan 
with known deficiencies to the logistics community, only to revise it once all the downstream 
decisions have been set in motion.  

The CER working group highlighted a number of instances of FHP changes that created 
significant volatility:22 in FY 2008, a 10-percent FH cut; in FY 2009, the Combat Air Forces 
(CAF) aircraft reduction; in FY 2011, the FHP optimized and reduced because of overseas 
contingency operations; in FY 2012, a 5-percent CAF FHP efficiency; and in FY 2013, the 
budget sequester.23 Most of these were changes to the POM that occurred after initial FHP 
projections had been made, where fiscal or other external realities impinged on the FHP authors’ 
original plans. And in nearly every case, FHs were reduced after the initial program was set, to 
make room for other priorities. 

We now draw the reader’s attention to the split below the FHP box in Figure 2.1. The left set 
of arrows and boxes represent the annual plan and the decisions that flow from it. Planned FHs 
drive the demand forecast, which, in turn, drives decisions to buy spare parts and set depot repair 
capacity (essentially organic depot labor levels) in the form of annual contracts with unionized 
government civilian personnel. At some point, because of lead times, those decisions cannot be 
reversed without additional investment of time, trouble, money, or some combination thereof. 
This side of the diagram comprises a significant aspect of the experience of logisticians and 
financial managers within the AFSC.  

The right series of arrows and boxes represent the actual demands and the needs and 
activities that flow from them. The FHP recorded in the budget influences what is actually flown. 
But many other things can influence what is actually flown in a given time period or over the 
entire year—e.g., fiscal changes; contingency operations; and safety issues, such as the 
grounding of a fleet. The box on the right side labeled “External forces” depicts this influence. 
The operators setting the FHP in the POM process can conduct their process rigorously, but their 
product remains subject to many other forces. Thus, the line from the FHP to actual FHs is 
dashed. The line from actual FHs to actual demands (i.e., spare parts removed from an aircraft 
for further diagnosis and repair) is also dashed, which conveys the stochastic relationship 
between flying activity and spare part breaks (illuminated further below).  

                                                
21 For example, the FY 2013 Budget Control Act resulted in the Air Force grounding one-third of its combat fighter 
squadrons for three months. See David L. Goldfein, “Department of the Air Force Presentation to the Subcommittee 
on Readiness, United States House of Representatives Committee on Armed Services,” February 12, 2016. 
Infrastructure sustainment restoration and modernization funding is another target, at about $3 billion to $4 billion 
per year.  
22 U.S. Air Force, Cost Effective Readiness LOE #2: Flying Hour Program Inputs, briefing, 2013a. 
23 The June 2011 Budget Control Act (also known as the “sequestration” or “budget sequester”) called for 
sequestration of $1.2 trillion from the discretionary accounts of the federal budget beginning in January 2013 (which 
was later delayed to March 2013 by the American Taxpayer Relief Act of 2012).  
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Finally, the actual demands ultimately translate into actual spare part stock requests and 
repairs. This line is also dashed, to represent the probabilistic nature of that relationship. For 
example, a part that is removed might not be broken. A broken part might be repaired at unit 
level (thus not requiring depot repair). A part that is not repaired at unit level might have 
serviceable stock available. That part will, in any case, generate a demand for a depot repair. 
Then, at depot level, in addition to unit-level FH-driven demands, many other demands could 
materialize, including for depot-driven repairs, to fill stock levels, to supply other services, or to 
accommodate foreign military sales. A part coming in for repair might or might not be 
condemned. Many external factors disrupt the relationship between the FHP and actual 
downstream effects, including the actions and decisions of managers and maintainers to solve 
problems that are sometimes driven by inaccurate forecasts upstream.  

Thus, because of the way the system is designed, the linkage between the FHP and 
downstream decisions (left side) is direct and straightforward, whereas the linkage between the 
FHP and downstream activity (right side) is more tenuous and is governed by a range of factors, 
each with inherent uncertainty. In other words, supply chain plans change whenever FH plans 
do, but the demands on the supply chain resulting from that flying might not.  

Flying Hour Variance Data 
Even with the process improvements implemented in the past, significant variations in FH 

execution occur. The data and plots in this section show this FHP variance from a number of 
perspectives.  

Flying Hour Program Variance, by Aircraft Type 

Figure 2.2 shows FH data for fixed-wing aircraft types for FY 2012. We have truncated the 
y-axis at 100 percent overflying, though two MDS exceeded this: The A-10 overflew by 55 times 
its original estimate; the UH-1H more than tripled its planned hours.24 

                                                
24 The Air Force has attempted for several years to retire the A-10 fleet and has made corresponding reductions to 
the A-10 FHP. Those attempts have thus far been met with political resistance, so the Air Force has had to put back 
FHs for the A-10 after the original FHP projections were made. 
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Figure 2.2. Flying Hour Variance Versus Number of Flying Hours 

SOURCE: D200, Spares Requirements Review Board, 2012 (two-year-out forecast), provided by Headquarters (HQ) AFSC. 
NOTES: Each diamond represents one MDS, showing the executed FHs (x-axis) compared with the FH variance as 
a percentage of forecast FHs, made two years out (y-axis). The farther away a diamond is from the centerline, the 

greater the variance from what was planned. A diamond above the line indicates that the MDS flew more hours than 
were budgeted, and below the line, fewer hours. The horizontal gray band indicates FHP variances between –12 per-

cent and +10 percent; the vertical gray band indicates fewer than 6,000 FHs. We have truncated the y-axis at 100-
percent overflying, although two MDS exceeded this: The A-10 overflew by 55 times its original estimate, and the UH-
1H more than tripled its planned hours. D200 is a subsystem of the Air Force Requirements Management System. It is 

referred to hereafter in this document by its data system designator, D200. 

One fairly obvious characteristic of the data is that, generally, the MDS with the fewest hours 
have the largest variances, and vice versa. In fact, we identify three nonoverlapping regions of 
this plot. Of the 40 MDS with forecast FHs in FY 2012, 22 had FHP variances between –12 per-
cent and +10 percent (horizontal gray band), 13 were outside this range but had very few FHs 
(fewer than 6,000 hours, vertical gray band), and the remaining five MDS fit neither criterion 
(outside the gray bands).25 So, then, most of the MDS had fairly low variances, very few FHs 

       
25 The C-21, E-8, B-1, and C-5 each had around 20,000 to 30,000 hours and error between either –20 and –40 per-
cent or +20 and +40 percent. 

!100%%

!80%%

!60%%

!40%%

!20%%

0%%

20%%

40%%

60%%

80%%

100%%

%!%%%% %50%% %100%% %150%% %200%% %250%%

Fl
yi
ng
'H
ou

r'V
ar
ia
nc
e,
'2
2y
ea
r'o

ut
'

Actual'Flying'Hours,'Thousands'



 8 

(and thus ought to have a fairly small effect on the aggregate supply chain), or both. We looked 
at other years of data and found a similar pattern. Appendix B shows these data plots.  

MDS in these three regions of the plot ought to have different types of effects. Very large 
programs (e.g., the KC-135, with 8-percent overflying in FY 2012) drive a large proportion of 
the supply chain activity and cost, and readiness effects of this fleet have far-reaching effects. 
Very small fleets might have little effect on the overall supply chain, but large perturbations in 
FHs could have significant program-unique implications. Across the population shown in 
Figure 2.2, more than 80 percent of the total FH error (i.e., aggregate hours of error across all 
aircraft types) was driven by MDS in the lower error range. This pattern is consistent for the 
other years of data.  

Part-Level Flying Hour Program Variance 

Figure 2.2 shows the weapon-system perspective, representing the idea that a single program 
makes a plan and flies its hours. For the supply chain, however, the important unit of account is 
parts. Many parts are installed on multiple MDS, so the total FH error experienced by many parts 
is actually the product of FHs on many different programs, which could be subject to many 
different forces.  

Further, supply chain effects occur mostly at the part level. For part buys and stockage, only 
the exact part will do (setting aside suitable substitutes and the like). For repairs, part-level error 
can drive mismatches in consumable piece parts. But some depot labor is fungible because many 
personnel are cross-trained on multiple items, so some part-level error could be mitigated by this 
intrashop flexibility. For most of our analyses in Chapter Three, we perform our calculations at 
the part level, then simply aggregate effects up to higher levels.  

Figure 2.3 shows part-level FH error data taken from D200 for FY 2012, for FH-driven 
DLRs. The display is identical to that in Figure 2.2, except that here, each diamond is a single 
part. Those parts with the most FHs generally had the least error, and vice versa.  

This figure shows a similar pattern: The parts with most removals have FH error within a 
fairly tight band, and the greatest variance occurs in parts with the least removals. There are 
about 85 parts in this plot (out of about 4,500) that overflew by more than 100 percent. Only two 
MDS overflew by more than 100 percent (the A-10 and UH-1), so these outliers could be the 
result of data input problems, programmatic changes, or part phase-in or phase-out that did not 
align with expectations.  

Figure 2.4 shows aggregate part-level FH error statistics from FYs 2009 through 2015.  
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Figure 2.3. Part-Level Flying Hour Error 

 

SOURCE: D200, FH DLRs only (two-year-out forecast).  

Over this time period, except for FY 2014, over- and underflying errors were in roughly the 
same range (first and second columns for each year), about 5 to 15 percent. There is a slight 
upward trend in the absolute error. The obvious outlier here is FY 2014. Overflying skyrocketed, 
which dragged the net and absolute errors up as well. The culprit here was the budget sequester, 
which technically started in the middle of FY 2013. The significant underflying and net negative 
error for FY 2013 was largely the result of that: When the sequester hit, the FHP had long been 
set, and in fact half the fiscal year had already passed. At that point, the Air Force put the brakes 
on the FHP, fewer hours were flown, and thus there was a net underflying of the FHP.  

In FY 2014, lower FH targets had already been set to better align with the sequester. But 
funding was eventually made available during the year, and some fleets tried to make up training 
deficits, thus overflying what were originally conservative FH goals.  
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Figure 2.4. Aggregate Flying Hour Error Statistics over Time 

 

SOURCE: D200, FH DLRs only (two-years-out forecast). 
NOTE: The blue columns show volume-weighted overflying error (i.e., overflown hours divided by total FHs). 
The red columns show the same calculation but for underflying parts, the green columns the net error divided 
by total FHs, and the purple columns the volume-weighted sum of the absolute values of the errors, divided 
by total FHs (blue plus red columns). (Some numbers might not sum exactly because of rounding errors.) 

Figure 2.5 shows these same part-level data from a slightly different perspective. The three 
lines show the proportion of parts with various levels of absolute FH error (related to the last 
column for each year in Figure 2.4). The huge spike in the 50-percent-or-greater line in FY 2014 
mirrors the jump seen in Figure 2.4.  

Figure 2.6 homes in on the two years of biggest impact to FH error (thus far) from the 
sequester. For the FY 2013 line, the curve bends outward to the left, showing significantly more 
underflying than in other years. The extent of underflying is not large: The highest three points 
on the blue line are at –10 percent, 0, and –20 percent, respectively. But underflying still stands 
out here against all other years, and especially FY 2014. We see the same underflying spike in 
Figure 2.4, most clearly shown by the negative net error column, which stands out among other 
recent years. Then, in Figure 2.5, FY 2014 has two distinct features. First, it has the least 
underflying of all years; FY 2013 experienced the most underflying. Second, FY 2014 has a big 
bump at 50-percent overflying. Overflying up to 40 percent does not appear high, but both 
50 percent and 60 percent are higher than in other years. It appears that this 50- to 60-percent 
overflying bubble is what drove the jump in errors we see in Figures 2.4 and 2.5. 
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Figure 2.5. Aggregate Absolute Flying Hour Error Statistics over Time 

 

SOURCE: D200 data. 
NOTE: The blue line with diamonds shows the proportion of all DLRs in the data set with 10-percent-or-less FH error. 
These are the most accurately predicted. The red line shows the proportion of DLRs in the data set with 20-percent-

or-less FH error. We see that in FY 2009, 84 percent of DLRs had 20-percent or-less-FH error, but that steadily 
decreased to a low of 54 percent in FY 2014. The green line with triangles shows the proportion of DLRs with  

50-percent-or-greater FH error. These are the least accurately predicted. 

Thus, in FY 2013, many fleets put on the brakes late in the year to meet the sequester funding 
ceilings. And in FY 2014, after FH targets were reduced, some limited portion of the Air Force 
fleets overflew their sequester-driven targets to make up for training deficits.  

Although disaggregated part-level data are appropriate for analysis, these aggregate metrics 
help give a general impression of what is happening. One can compare across years, populations, 
and other characteristics to see and diagnose more generally. But these aggregate statistics can 
mask the underlying character of the error, as is shown in Figures 2.2 and 2.3.  
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Figure 2.6. Frequency of Flying Hour Error Across Years 

 

SOURCE: D200 data. 
NOTE: Each line represents a single year of data. The x-axis shows the percentage FH error from –100 percent to 

+100 percent—although overflying of greater than 100 percent is possible, we truncated the display for legibility. The 
thin gray lines show data for FYs 2009–2012 and 2015. The thick blue line with circles shows FY 2013; the thick red 

line shows FY 2014.  

Summary of Flying Hour Variance Findings 

In light of the data analysis presented above and our conversations with Air Force subject-
matter experts (SMEs) about the dynamics of FHP decisionmaking, we group the range of causes 
of FHP variance into three broad categories.  

The first category, simple planning error, is a natural part of any process. Even without the 
external forces described above, forecasting the FHP exactly is impossible, given uncertainties in 
the number of pilots to train, the number of sorties they will need to or be able to fly, the 
maintenance status of their aircraft, and so on. We observed above that the majority of total FH 
error was driven by large numbers of parts with relatively small individual errors, apparently the 
result of natural uncertainty inherent in the planning process.  

External causes come from outside the service: Contingency operations (or changes to 
ongoing operations) and congressional action are the two most dominant in recent history. 
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Sequestration appears to be the main example of congressional action that registered in 
enterprise-level metrics, but contingency operations have caused disruptions for several years.  

The third category is internal Air Force decisions. These are decisions made by Air Force leaders 
regarding force structure, the budget as a whole, or the FHP specifically but that are made after the 
original FH forecast. Examples of this are the wide-scale FH cuts in FYs 2008, 2011, and 2012, and 
the CAF aircraft reduction in FY 2009. These are some of the most disruptive examples identified in 
the original CER effort and are sometimes large enough to register in enterprise-wide error metrics. 
The anticipated retirement of the A-10 could have been in this third category (and might not have 
been too disruptive to the FHP) had Congress not intervened. The reversal of the retirement decision 
(which puts this example in the second category) and uncertainty in A-10 force structure repeatedly 
led to low FH forecasts and severe overflying.  

In a later section, we discuss how policy solutions and expected outcomes might be shaped 
by the nature of these different causes.  

Thus far, we have discussed error only in FH forecasts. Now, we turn our attention to 
forecasting removals. As described above, FH error is but one contributor to error in forecasting 
removals.  

How the Air Force Forecasts Spare Part Demand 
The Air Force’s logistics system depends on a reliable supply of spare parts, and forecasting 

demands for those spare parts has a long history. Since the earliest quantitative examinations of 
demand patterns for aircraft spare parts in the Air Force, it has been observed that the supply 
chain is challenged by a demand for parts that is inherently uncertain.26 Part of this uncertainty 
arises from the stochastic nature of peacetime demands, and part arises from external fluctuations 
in demand such as those induced by contingency operations.27 To address these sources of 
uncertainty and thereby reduce supply chain risk, there is a long history of two branches of 
emphasis for mitigation. One emphasis is on improved forecasting of demand. Efforts to enhance 
the accuracy of forecasts include sophisticated models,28 extensive planning for driving factors 
                                                
26 The earliest RAND paper on the topic is Bernice B. Brown and Murray A. Geisler, Analysis of the Demand 
Patterns for B-47 Airframe Parts at Air Base Level, Santa Monica, Calif.: RAND Corporation, RM-1297, 1954. See 
also Bernice B. Brown, Characteristics of Demand for Aircraft Spare Parts, Santa Monica, Calif.: RAND 
Corporation, R-292, 1956.  
27 Called “statistical uncertainty” and “state-of-the-world uncertainty”; see James S. Hodges and Raymond A. Pyles, 
Onward Through the Fog: Uncertainty and Management Adaptation in Systems Analysis and Design, Santa Monica, 
Calif.: RAND Corporation, R-3760-AF/A/OSD, 1990. 
28 See, e.g., Craig C. Sherbrooke, METRIC: A Multi-Echelon Technique for Recoverable Item Control, Santa 
Monica, Calif: RAND Corporation, RM-5078-PR, 1966; Craig C. Sherbrooke, “METRIC: A Multi-Echelon 
Technique for Recoverable Item Control," Operations Research, Vol. 16, No. 1, 1968, pp. 122–141; Raymond A. 
Pyles, The Dyna-METRIC Readiness Assessment Model: Motivation, Capabilities, and Use, Santa Monica, Calif.: 
RAND Corporation, R-2886-AF, 1984; John L. Adams, John B. Abell, and Karen E. Isaacson, Modeling and 
Forecasting the Demand for Aircraft Recoverable Spare Parts, Santa Monica, Calif.: RAND Corporation, R-4211-
AF/OSD, 1993; John B. Abell, Estimating Requirements for Aircraft Recoverable Spares and Depot Repair: 
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such as flying hour programs, and increased data collection and assessment. The other emphasis 
is on adaptive, robust processes that provide sufficient resiliency in the supply chain to absorb 
inevitable uncertainties, especially for parts with low demand.29 After years of theoretical 
research and real-world experience, the consensus view is to predict as best as possible and 
maintain enough resiliency in the supply chain to accommodate the rest.30 This deep history of 
research into spare part demand reveals that those demands often do not adhere to the 
assumptions of the forecasting models used to predict them,31 but forecasting must be done.  

For parts that the Air Force deems to be driven primarily by flying (i.e., the key cause of 
failure is flying activity, rather than a change to an item based on a schedule), it uses a model in 
which the number of historical FHs for a part is divided by the number of historical removals for 
that part to arrive at what is referred to as the removal rate. To produce such a forecast, the 
forecasting model uses the eight most recent quarters of data for FHs and removals to forecast 
demands for future quarters.32 This relationship is described by the following:33 

 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑜𝑜𝑜𝑜	𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓	𝑓𝑓𝑛𝑛	𝑜𝑜𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛	𝑞𝑞𝑛𝑛𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

= 𝑝𝑝𝑛𝑛𝑜𝑜𝑝𝑝𝑛𝑛𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓	ℎ𝑜𝑜𝑛𝑛𝑛𝑛𝑓𝑓	 ×	
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑜𝑜𝑜𝑜	𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓	𝑓𝑓𝑛𝑛	𝑓𝑓ℎ𝑛𝑛	𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓	𝑓𝑓𝑡𝑡𝑜𝑜	𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑓𝑓

𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓	ℎ𝑜𝑜𝑛𝑛𝑛𝑛𝑓𝑓	𝑓𝑓𝑛𝑛	𝑓𝑓ℎ𝑛𝑛	𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓	𝑓𝑓𝑡𝑡𝑜𝑜	𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑓𝑓  

 
The number of failures (or removals) per FH (the term on the right side) is often called the 

removal rate. This model assumes a perfectly linear relationship between FHs and removals, 
with no other explanatory variables.  

Figure 2.7 shows D200 data with actual FHs and removals for two example items (by 
National Item Identification Number [NIIN]). The left panel shows NIIN 001249409 from the F-
15 head-up displays (HUDs) and air navigation multiple indicators (ANMIS) shop; the right 
panel NIIN 001095725 from the KC-135 boom shop. Each diamond represents a single quarter 
of data for all items within that shop. Each plot displays 41 quarters of data, shown with blue 
                                                                                                                                                       
Executive Summary, Santa Monica, Calif.: RAND Corporation, R-4215-AF, 1993; F. Michael Slay, Tovey C. 
Bachman, Robert C. Kline, T. J. O’Malley, Frank L. Eichorn, and Randall M. King, Optimizing Spares Support: The 
Aircraft Sustainability Model, McLean, Va.: Logistics Management Institute, AF501MR1, 1996; and John A. 
Muckstadt, Analysis and Algorithms for Service Parts Supply Chains, New York: Springer, 2005. 
29 See, for example, Gordon B. Crawford, Variability in the Demands for Aircraft Spare Parts: Its Magnitude and 
Implications, Santa Monica, Calif.: RAND Corporation, R-3318-AF, 1988; Hodges and Pyles (1990); Irv K. Cohen, 
John B. Abell, and Thomas F. Lippiatt, Coupling Logistics to Operations to Meet Uncertainty and the Threat 
(CLOUT): An Overview, Santa Monica, Calif.: RAND Corporation, R-3979-AF, 1991. 
30 See especially Hodges and Pyles (1990). 
31 See Crawford (1988). 
32 These calculations for reparable spares requirements are computed in D200A.  
33 The eight-quarter moving average is one of multiple options within D200. D200 also has the ability to compute 
requirements using a four-quarter moving average, exponential smoothing, and a predictive logistics model that 
utilizes a regression technique. We appreciate RAND colleagues Don Snyder, Sarah Nowak, and Kristin F. Lynch 
for sharing their unpublished research with us.  

. 
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diamonds, spanning FYs 2002–2012. The red squares show the eight most recent quarters of 
data, which would be used in a D200 forecast.  

Figure 2.7. Example Part with Flying Hours and Removals 

SOURCE: D200. 

The lines on each plot show the computed removal rate using the equation above and the red 
data points. One can see how much variance occurs between this computed relationship and the 
relationship in any given quarter. For the F-15 part, the computed removal rate using the past 
eight quarters of data would be 13.6 per 100 FHs, with a range of 6.4 to 25.8 removals per 100 
FHs over that time period. For the KC-135 part, the computed removal rate using the past eight 
quarters of data would be 3.56 per 100 FHs, with a range of 2.7 to 6.1 removals per 100 FHs 
over that time period. 

For both eight-quarter data sets, there is no discernible relationship between FHs and 
removals. The forecast relationship bears literally no relationship to the data. In the left panel, 
there is some correlation if all data points are included. But in that case, the y-intercept is 
nonzero. Thus, the D200 relationship greatly overstates the effect of FHs alone on removals. 
Most NIINs look something like these two plots.  

The part-level relationship is the only one appropriate for informing part buys. This suggests 
that D200’s presumed relationship between FHs and removals is simply not very useful in many, 
if not most, cases. 

The relationship between FHs and removals sometimes improves at higher levels of 
aggregation. For example, the shop for the part on the left of Figure 2.7 shows fairly strong 
correlation with an easily visible pattern, whereas the shop for the part on the right does not. 
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Because of the flexibility of labor, shop-level correlation suggests that FHs could be a useful 
input for setting shop capacity in some cases. 

However, we highlight the fact that many more factors contribute to error in the chain of 
events between the number of removals and the number of parts actually arriving for repair at a 
depot. These include not-reparable-this-station (NRTS) rates,34 condemnation rates, Execution 
and Prioritization of Repair Support System (EXPRESS) prioritization, depot-generated 
demands, and other sources of demand (e.g., other service, foreign military sales).  

Consider the effect of this tenuous or nonexistent part-level relationship between FHs and 
removals on the overall chain of events in Figure 2.1. The left side of the diagram depicts a direct 
relationship between FHs and downstream actions, but we see now that this relationship, at the 
disaggregated level at which it matters, is virtually nonexistent. 

With that backdrop, we now shift our attention to assessing the accuracy of these parts 
forecasts. 

How the Air Force Currently Assesses Forecast Accuracy 
The Air Force (through the 448 SCMW) assesses its forecast accuracy to identify and 

analyze problems, track progress toward goals, and report performance to HQ Air Force and 
DoD. It does so with several metrics. Demand forecast accuracy (DFA) assesses the total volume 
of error in parts removals. There are two versions of this metric: one called demand volume–
weighted DFA and one called dollar demand–weighted DFA.  

The equation for the demand volume–weighted DFA is shown here: 
 

DFA	(Vol.)=	1 −
∑ |actual	demand	–	predicted	demand|NIIN

∑ actual	demandNIIN
	 .	

 
Note the absolute value in the numerator. This means that demand volume–weighted DFA 

takes the total error, not the net error. Note also that the numerator and denominator are summed 
separately. This means that the metric is volume-weighted, so a part with 1,000 demands per 
year counts toward the metric more than a part with ten demands. This emphasizes supply chain 
effects, not merely forecast process accuracy. 

The dollar demand–weighted equation simply multiplies the demands by the dollar value of 
the part:  

 

DFA	(Dol.)=	1 −
∑ (|actual	demand	–	predicted	demand	|	×	value)NIIN

∑ (actual	demand	NIIN × 	value) 	.	

                                                
34 “Not reparable this station” is a category that is applied to an inoperable part when repair of the part is not 
authorized at the installation or cannot be accomplished because authorized equipment, tools, facilities, or qualified 
personnel are not available. 



 17 

This calculation increases the influence of high-dollar parts. This metric is DoD-mandated 
and is the default metric used by the Air Force. Its purpose, in the words of the U.S. Government 
Accountability Office, is to assist “in better understanding effects on business outcomes.”35  

The third metric is bias. Below is the equation used to calculate bias:36  
 

Bias	(Dol.)=	
∑ [predicted	demand	–	actual	demand	)	×	value]NIIN

∑ (actual	demand	NIIN × 	value) 	.	

 
The main difference between the second and third equations is the absolute value in the 

numerator.37 Here, the positive and negative errors cancel each other out instead of adding up.  
Figure 2.8 shows data for these three metrics for all USAF-managed spare parts (not just those 

driven by FHs) from FYs 2008 to 2014 (calculated on a semiannual basis).38 The dotted blue line 
shows the demand volume–weighted value, the solid red line shows the dollar demand–weighted 
value, and the black line with circles the net bias. The demand volume–weighted DFA increased 
from about 30 percent in FY 2008 to about 50 percent in FY 2012, when it appeared to level off.  

Personnel from 448 SCMW informed us that the wing scrubbed the forecast data during the 
period of DFA increase and, in large part, reversed decisions made by individual managers to 
adjust computer-generated forecast values.39 Many of these management decisions were hedges 
that increased forecasts above automated ones: These changes generally resulted in higher (and 
thus more robust) resource levels but also increased error by overplanning resources relative to 
actual demands.40 The scrubbing of these planning factors brought forecasts more in line with 
automated ones and increased their accuracy.  

The dollar demand–weighted DFA remained more stable over this time period. Given that 
the Air Force, until recently, used primarily the demand volume–weighted metric, it makes sense 
that improvements were seen in that metric. Efforts focused on improving that metric would 
favor high-demand items, which usually have lower costs.  

                                                
35 U.S. Government Accountability Office, Defense Inventory: Actions Needed to Improve the Defense Logistics 
Agency’s Inventory Management, Washington, D.C., GAO-14-495, June 2014. 
36 Email communication with 448 SCMW personnel on October 30, 2015. 
37 The other difference is that the bias equation does not have a “one minus” in the numerator. 
38 Values taken from PowerPoint briefings provided by 420th Supply Chain Management Squadron personnel on 
October 7, 2014, and February 20, 2015. Josh Moore, 448th Supply Chain Management Wing Demand Forecast 
Accuracy Sep 08–Mar 14 Briefing, October 2014, and Josh Moore, 448th Supply Chain Management Wing FY14 
DFA Results Briefing, January 14, 2015. 
39 Telephone interview with 448 SCMW personnel on February 20, 2015. 
40 PAF analysis of D200 data for DLRs driven by FHs shows a systematic overplanning bias in removal rates. This 
bias was as high as 40 percent in FY 2008 and gradually declined to about 5 percent in FY 2012.  
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Figure 2.8. Depot-Level Reparable Demand Forecast Accuracy Metrics 

 

SOURCE: 448 SCMW, all reparable spare parts. 

In FY 2014, the Air Force transitioned to a standard dollar demand–weighted metric 
developed by the Office of the Secretary of Defense. Presumably, improvement efforts will shift 
to those higher-dollar items that drive that metric.  

In Chapter Three, the next question we ask is how much of the error we observe in the 
demand forecasts is actually driven by the error in the number of FHs we observe. 
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Chapter Three 

Quantifying the Negative Effects of Flying Hour Program Variance 

In this chapter, we investigate the effect of FHP variance on demand forecast accuracy 
(DFA), opportunity cost in the budgeting process, long-term financial costs, and readiness. 

Relationship Between Flying Hour Program Variance and Forecast 
Accuracy 
Figure 2.1 and the surrounding text explain that the FHP drives the spare part forecast but 

also note that a host of other factors influence actual spare part demand. The project team 
modeled the extent to which departures from the planned FH program affect the accuracy of 
forecasts for flying-related spare parts. 

How We Modeled the Effect of Flying Hour Program Variance on Forecast Accuracy 

Our objective was to estimate DFA as a function of different levels of over- or underflying. 
To do this, for each item in our data set (described in data sources in this chapter), we needed to 
estimate predicted and actual demands for various levels of over- and underflying. Data from 
D200 tell us actual demands, actual FHs, and the demands per FH rate that were historically used 
to generate predicted demands. We did not want to assume any particular model for the 
relationship between actual FHs and actual demands because considerable uncertainty and, 
accordingly, lack of consensus surround this relationship. However, the relationship between 
predicted demands and predicted FHs is straightforward in Air Force models.  

For FH-driven items, the Air Force assumes that (predicted demands) = (predicted FHs) * 
(break rate), described in Chapter Two. This formulation enabled us to examine counterfactual 
situations where predicted FHs differed from actual FHs by different percentages. 

We used D200 data from FYs 2013 through 2015 to find the following three terms: 

• projected break rates per FH 
• actual item demands for FH-driven DLRs (total annual demands for each year) 
• actual FHs for each item.  

We used break rates estimated four quarters before actual demands occurred, representing a 
prediction one year out. For various levels of over- or underflying, we calculated what predicted 
item demands would have been. This calculation involved the following steps.  

We assumed that if the Air Force had overflown x percent, that means  
(𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓	𝐹𝐹𝐹𝐹) = \1 +	 ^

_``
a × 	(𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝐹𝐹𝐹𝐹)	. 

Therefore, 
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(𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝐹𝐹𝐹𝐹) = 	
(𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓	𝐹𝐹𝐹𝐹)

\1 + 𝑥𝑥
100a

. 

 
Similarly, underflying by x percent means that  
 

(𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝐹𝐹𝐹𝐹) =
(𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓	𝐹𝐹𝐹𝐹)

\1 − 𝑥𝑥
100a

. 

 
Using D200 formulas, we then calculated for different levels of over- and underflying: 
 

(𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝑝𝑝𝑛𝑛𝑛𝑛𝑓𝑓𝑛𝑛𝑝𝑝𝑓𝑓) = (𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑏𝑏	𝑛𝑛𝑓𝑓𝑓𝑓𝑛𝑛)	×	 (𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑝𝑝	𝐹𝐹𝐹𝐹) 
 
As a simple example, suppose that in D200, an item had 120 demands in FY 2015, flew ten 

hours, and in FY 2014 had an estimated demand rate of ten demands per FH. We would estimate 
various levels of error in the predicted demand for that item as follows: 

• If FHs had been predicted perfectly in FY 2014, the predicted number of demands for 
FY 2015 would have been 10 * 10 = 100, and the absolute error in the demand for that 
item would have been 20.  

• If the item had overflown by 10 percent in FY 2015, the predicted number of FHs in 
FY 2014 would have been 10/(1.1) = 9.1. If the predicted number of FHs were 9.1, 
predicted demand would have been 91, and the absolute error would have been 29. 

• If the item had underflown by 10 percent in FY 2015, predicted FHs would have been 
10/0.9 = 11.1 in FY 2014, the Air Force would have predicted 111 demands for the item, 
and the absolute error for that item would have been 9. 

Results 

Figure 3.1 shows parts forecast (y-axis) as a function of FH error (x-axis). The green 
columns to the left or right of the middle show the DFA for different levels of under- and 
overflying, respectively. The middle green column shows that if FHs were forecast perfectly 
(i.e., with zero error), the DFA for FH DLRs would be expected to be 62 percent. That value is 
simply the demand volume–weighted DFA for parts with zero FHP variance. 

At high levels of FHP variance, the DFA significantly diminishes. However, the DFA 
changes little for relatively small errors in predicted FHs (–10 percent to +10 percent), which is 
consistent with recent experience.  
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Figure 3.1. Relationship Between Flying Hour Program Variance and Demand Forecast Error 

 

SOURCE: D200 data for FH DLRs, FYs 2013–2015 (two-year-out forecast). 

As one moves to the left or right, forecast error increases as FH error does. But even at  
50-percent flying error, other sources of error still constitute the majority of total forecast error. 
If all parts were underflown by 50 percent (leftmost column), total error would be 60 percent 
(sum of the blue and purple column sections), only 30 points of which are attributable to FHP 
variance.41 If all parts were overflown by 50 percent (rightmost column), total error would be 
53 percent, only 23 points of which are attributable to FHP variance.  

The blue sections show forecast errors for which actual demand was lower than forecast DLR 
demand: These errors result in holding parts inventory in excess of near-term needs, increasing 
cost. The purple sections show errors for which actual DLR removals outstrip plans: Here, DLR 
shortages might compromise readiness. At zero FHP variance, these two errors are about equal. 

                                                
41 In this case, the error driven by FHs is slightly less than 30 percent, and the other error is slightly more than 
30 percent. The total is slightly more than 60 percent but rounds to 60 percent. 
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The inherent “noisiness” occurs because of the underlying fact that FHs simply do not 
correlate very strongly to removals, as shown in Figure 2.5.42 This conclusion is reinforced by 
the balance of over- and underplanning error: As one moves to the left, underflying error 
increases and overflying error decreases, and vice versa. But even at 50-percent overplanning of 
FHs, a small percentage of DLRs remains underplanned, and vice versa.43  

On the whole, forecast error induced by FHs added about five points to the baseline (i.e., 
non–FH induced) forecast error, which translates to an increase of about 15 percent.44 As shown 
here, higher FHP variance (such as the extreme overflying during FY 2014) would have larger 
effects on DFA.  

If FHs were known perfectly, would forecasts be improved? Until recently, no. Figure 3.2 
compares the DFA for planned with actual FHs. The height of each bar shows the DFA; each 
pair compares the value for planned FHs with actual FHs. The left blue column shows the value 
for planned FHs, the right red column for actual FHs. The figure shows the comparisons for 
FY 2010–2015 flying activity, with forecasts one year out.  

Figure 3.2. Demand Forecast Accuracy for Planned Versus Actual Number of Flying Hours 

SOURCE: D200, FH DLRs (two-year-out forecast). 
       

42 This conclusion is corroborated by our own aggregate calculations using D200 data, as well as by analysis from 
Analysis Directorate, Strategic Plans, Programs, Requirements and Assessments Division, Air Force Materiel 
Command (AFMC/A9A). 
43 The reader might notice that the maximum DFA in Figure 3.1 is observed at both 0-percent and 10-percent 
overflying. We found systematic overplanning bias in the D200 data. So, on the whole, overflying by about 
10 percent actually corrects for the overplanning error already in the system. This is discussed in relation with 
Figure 3.2. 
44 The baseline error (parts error when FH variance is 0) shown in Figure 3.1 is 30 percent. In earlier years (e.g., 
FYs 2010–2012), that baseline error was nearly 40 percent.  
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In the first three pairs in Figure 3.2, forecasting part removals using the actual FHs (i.e., with 
perfect knowledge of future flying) would have resulted in a lower DFA than with the original, 
planned FHs. The difference is pronounced for FY 2010 FHs and is barely visible by FY 2012. 
Then, for FYs 2013 through 2015, forecasting using actual FHs would have resulted in a higher 
DFA than with planned FHs, as intuition would suggest. We observed in the data that, in these 
earlier years, manual intervention was causing systematic overplanning to ensure sufficient 
inventory levels. That arguably improves readiness but at the expense of stocking more parts and 
of the DFA metric. We were told that the amount of this manual intervention had been reduced 
in recent years, thus reducing systematic overplanning bias and increasing overall DFA.45  

Even though FHP variance has generally had modest effects on enterprise-level DFA (with 
the exception of the sequester in FY 2014), two concerns remain. The first is that even small 
enterprise-level perturbations could drive large cost or readiness issues. After all, the FHP drives 
many billions of dollars in spending every year. The other is that some individual programs (i.e., 
aircraft fleets) do experience large variance, and these drive real-world decisions that could later 
prove to be costly.  

We now investigate other potential downstream effects of FHP variance: opportunity cost, 
financial cost, and readiness.  

Opportunity Cost 
Opportunity cost represents a lost opportunity in the annual programming process. For 

example, if a forecast with zero error resulted in logistics spending of $1 billion in a given year, 
but the actual forecast (with some error) resulted in logistics spending of $1.2 billion, we can say 
that there was an opportunity cost of $200 million. The USAF could have spent that money on 
something else: readiness for another weapon system, infrastructure repairs, or any number of 
other things. This is not to say that the “extra” $200 million was wasted. Indeed, if the money 
were spent on reparable spare parts, the USAF no doubt would use them, would get readiness 
value out of them, and could reuse them for some time. But budgeting the “right” amount 
provides enough money to support expected levels of readiness and takes nothing additional 
away from other competing priorities. The opportunity cost as described here simply represents a 
number of dollars the USAF could have spent differently. Said another way, that is money that 
the logistics community could “give back” to the USAF. In this section, we will also use the term 
budget error interchangeably with opportunity cost to stress that this is an artifact of the budget 
process, not necessarily a financial cost to the Air Force, and to help us distinguish between 
positive errors (i.e., spending too much) and negative errors (i.e., spending too little). 

Because the opportunity cost is a figure in the annual programming process, we take the net 
over- and underspending resulting from over- and underplanning. If the USAF bought too many 

                                                
45 This shift in manual intervention was corroborated by 448 SCMW personnel. 
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of part A, spending $10 more than it should have, and too few of part B, spending $5 less than it 
should have, the opportunity cost is $5, not $10. With a perfectly accurate forecast, the total 
logistics spending would go down by only $5 (in this case). We are not yet concerned with other 
downstream effects of either over- or underplanning, which we discuss later. 

To assess the potential opportunity costs of FHP variance, we developed a computer 
simulation to replicate DLR spares buy or repair decisions and quantify spending driven by 
planning error. (See Appendix A for technical details.) Our model allows us to simulate buy-or-
repair decisions, and thus total logistics spending, based on different levels of FHP variance. For 
example, 10-percent overflying results in spending of about $270 million more on spare parts 
than if the FHP were flown exactly as planned. We applied the mathematical relationships 
between FHP variance and logistics spending to recent data on FHP variance. Figure 3.3 shows 
the results.  

In Figure 3.3, the purple columns represent positive budget error, the spending in the budget 
for overforecast parts. Every time a part is overforecast relative to a perfect forecast, it drives 
resource allocation for repair capacity and part buys beyond what current analytic tools (for 
repair planning and part stockage) suggest is necessary to meet near-term needs (i.e., until the 
next funding cycle). With a perfect forecast, this is spending the Air Force could avoid (at least 
in that fiscal year) and put back on the table for other priorities. The green columns represent the 
counterpart of the purple column: the spending in the budget for underforecast parts (i.e., 
negative budget error). This represents a budget gap: Here the budget contains too little funding 
to support the expected demand for spare parts. The black dotted line represents the net budget 
error, or opportunity cost. As explained above, because these are simply budget dollars and not 
actual spare parts, the dollars are fungible.  

In Figure 3.3, we see that the net opportunity cost was positive about half the time between 
FYs 2009 and 2015.  The most extreme year of positive opportunity cost was FY 2013, the first 
year of the sequester. During these years of positive opportunity cost, there was net underflying 
(i.e., overforecasting) of FHs, meaning that more money was being programmed for buying and 
repairing spare parts on balance than was needed to support flying operations at expected levels 
of readiness. (Compare the pattern to Figure 2.4. Caution: Underflying equates to overbudgeting; 
the terminology can be confusing.) At the time this project was launched in FY 2014 by HQ 
AFSC, most of the center’s recent history showed overbudgeting, creating a sense that money 
was consistently being left on the table in the budgeting process—in the case of FYs 2009–2011, 
about $100 million per year, a nontrivial amount.46 

                                                
46 HQ AFMC/A9A analysis in this same time range estimated the opportunity cost of spares (i.e., overbudgeting) of 
$60 million to $170 million per year for FY 2011–2012 examples.  
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Figure 3.3. Opportunity Cost of Flying Hour Program Variance 

 

For FYs 2013–2015, the fluctuations mirror the patterns shown in Chapter Two’s analysis of 
aggregate FH error. In FY 2013, FHs were drastically cut back. Normally, this would lead to 
overbudgeting, which Figure 3.3 is designed to reflect. In reality, the money was removed during 
the year of execution, so what this figure shows as about $250 million in net opportunity cost 
was probably much lower because the FHs were reduced to meet the artificially imposed budget 
ceiling. FY 2014 brought significant underbudgeting: Fewer hours, and thus dollars, were 
programmed to meet the ceiling, then some select fleets overflew (see the thick red line in 
Figure 2.6 for FY 2014). 

There are two main reasons for such a large dollar effect from what appears to be a relatively 
small change in FH forecast error: (1) In recent years, total spending on DLR spares averages 
more than $3 billion per year, and (2) budgetary effects are determined by spare part forecasts, 
which are directly tied to FH forecasts and are not affected by any differences between planned 
and actual DLR demands. So overforecasting by a certain amount has a more or less proportional 
effect on overbudgeting, and vice versa. And even a small fraction of $3 billion is a significant 
amount of funding.  



 26 

Financial Costs of Flying Hour Program Variance 
In theory, both over- and underplanning can exact financial costs. In the context of the DLR 

spares supply chain, overplanning results in the purchase of more parts than are called for within 
the planning horizon, and these carry storage and obsolescence costs. Interviews with AFSC 
SMEs suggest that unused repair capacity (as a result of overplanning) is a lesser concern.47 For 
underplanning, work-arounds can occur when the parts or labor needed to perform a repair are 
not available once a reparable part has been inducted into the depot.48 However, FH 
underplanning error alone does not likely cause many work-arounds, because the relationship 
between FHs and removals is already weak, and many other sources of variance between part 
removal and a depot shop can result in a work-around. Thus, we focus our analysis of financial 
costs on parts costs that result from overplanning, using the same simulation referenced above.  

It is useful to group DLR requirements into two categories. The first requirement is for parts 
that fail during service and must be replaced. The second is parts needed to achieve specified 
readiness positions (“holes” in weapon systems and establishing war reserve stocks) by a future 
time. We call these requirements, respectively, keep up and catch up. In general, unless there is a 
surplus of stock or reduced operational aircraft availability is desired, the keep-up requirements 
must be satisfied, whereas catch-up requirements are policy-driven variables.49 In our simulation, 
we hold any catch-up holes constant and define the buy-or-repair requirements according to the 
keep-up requirement. Thus, we estimate unneeded inventory driven by FHs and other error 
according to the keep-up requirement.50  

With no FH error, the simulation generates a one-year DLR buy of about $800 million. If 
FHs for all parts are overplanned by 10 percent, for example, the one-year buy increases by 
$250 million, on average. (Figure A.3 shows that these estimates have significant uncertainty 
because of uncertainty in demands.)  

Of the additional $250 million from that notional 10-percent overplanning, our calculations 
show that $160 million would buy DLRs that would support current requirements (i.e., including 
                                                
47 The depot system has two mechanisms that mitigate overplanning. Initial workload estimates driven by customer-
forecast demand always exceed historical levels of production (i.e., what actually “drives in”). Thus, in their annual 
planning process, called requirements review and depot determination, depot planners modulate initial workload 
estimates to align with historical production levels. Additionally, planners decrement labor levels by 5 percent of the 
stated requirement, expecting to make up any shortfalls using overtime. Further, when asked about cases in which 
maintainers really were “standing around,” the only example that depot personnel could produce was an occasion 
when a removal rate planning factor was not updated, thus leaving repair capacity for a line that was expected to be 
shut down.  
48 Some examples of work-arounds are part cannibalizations, local manufacture of a part, and rerouting a repair to 
accomplish a portion of repair tasks until resources are available to complete it.  
49 Richard Hillestad, Robert Kerchner, Louis W. Miller, Adam C. Resnick, and Hyman L. Shulman, The Closed-
Loop Planning System for Weapon System Readiness, Santa Monica, Calif.: RAND Corporation, MG-434-AF, 
2006, pp. 5–6. 
50 Unneeded inventory could be generated by catch-up requirements if a safety or pipeline level were generated in 
error (from obsolete data, for example), or nonoptimized stocks that were above realized demands.  
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requirements for catch-up and keep-up demands) because the Air Force consistently underfunds 
DLR buys. We based our funding assumptions on FY 2011–2012 automated budget compilation 
system (ABCS) data. Thus, some of the “overspending” is really applied to valid requirements 
that were underfunded in the first place.  

The remainder, $90 million in this case, would be unneeded relative to current keep-up 
demand. Because these are commonly demanded items, that inventory would be drawn down (in 
about three years, by our estimates) because the inventory management system buys less in 
subsequent years and ongoing demand generated by FHs eventually “consume” the unneeded 
inventory.51 (Our modeling suggests that these parts that exceed immediate demand will be 
consumed within three years.) If that 10-percent overplanning error is repeated each year, new 
inventory accumulates as old inventory is consumed, the net result being the carrying of 
unneeded inventory. The steady-state, or cumulative, level of unneeded inventory generated by 
10-percent overplanning is about $150 million.  

We applied this relationship between planning error and inventory value to recent historical 
data. Figure 3.4 shows the value of unneeded inventory (for flying DLRs) that would have 
accumulated between FYs 2009 and 2015. The solid black line with dots shows the amount of 
unneeded inventory driven by overplanning (i.e., underflying) purchased in each year. The 
amount fluctuates year to year in direct proportion to the amount of underflying (hence the spike 
in FY 2013). 

The multicolored areas show the cumulative inventory. Inventory is bought in one year, is 
consumed (i.e., flown, broken, and repaired until condemned) in subsequent years and thus 
disappears from inventory. Each year, as new unneeded inventory is purchased and previously 
unneeded inventory is consumed, the cumulative inventory fluctuates.  

In FY 2009, according to our simulation results, about $75 million of unneeded inventory 
driven by FHs would have been purchased. By FY 2010, more than $30 million would have left 
the inventory, but $88 million more would have been purchased, creating a cumulative 
$120 million. By FY 2012, all of the FY 2009 inventory would have been condemned. After that, 
the cumulative unneeded inventory fluctuates between about $100 million and $150 million. 

                                                
51 The scope of our analysis is reparable parts, so the parts in question here are not consumed in the traditional sense 
of consumable parts, which are used until broken and then disposed of. Rather, reparable parts have some finite 
number of breaks and repairs until they are condemned. Thus, even reparable parts are eventually “consumed.” 
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Figure 3.4. Financial Cost of Unneeded Inventory Resulting from Flying Hour Program Variance 

 

 

The right-hand y-axis shows the estimated holding cost to the Air Force. We use an approach 
to estimate holding cost found in Peltz, Cox, et al. (2015).52 This approach resulted in an annual 
holding cost of 2.6 percent of the dollar value of the inventory. This is relatively low because we 
assume that this inventory will not experience obsolescence because these parts are forecast (and 
therefore often demanded) items. Given all this, we estimate the annual holding cost from 
unneeded inventory driven by overforecasted FHs to be around $2 million to $4 million per year.  

Readiness Effects of Flying Hour Program Variance 
Finally, overflying FHs could result in readiness effects, if inventory and repair capacity are 

insufficient to meet demand. To address this, we looked at a key indicator of supply material 
availability, mission impaired capability awaiting parts (MICAP) incidents. A MICAP incident 

                                                
52 Eric Peltz, Amy G. Cox, Ed Chan, George E. Hart, Daniel Sommerhauser, Caitlin Hawkins, and Kathryn Connor, 
Improving DLA Supply Chain Agility: Lead Times, Order Quantities, and Information Flow, Santa Monica, Calif.: 
RAND Corporation, RR-822-OSD, 2015. 



 29 

occurs when a piece of equipment—an aircraft or weapon system, for example—is unable to 
perform at least one of its missions because it lacks a part that base supply cannot provide.53  

To analyze the potential effect of FHP variance on MICAPs, we compared the FH data 
referenced above with historical data on MICAP incidents and duration from FYs 2007 through 
2012.54 This included 3,600 NIINs, applied to 16 MDS, covering more than 605,000 MICAP 
incidents. 

Figure 3.5 shows the results of this comparison. It shows two plots. Each plot shows the 
relationship of MICAP incidents and duration to FH variance. The top plot shows this for all 
MICAP cause codes; the bottom plot shows this for cause code H only.55 On each plot, the 
purple area shows the number of NIINs with each level of FHP variance (right y-axis). One can 
see that most of the NIINs fall between –20 percent and +10 percent. These are roughly the same 
years as the data from Figure 2.1, and the general underplanning bias is consistent.  

Also on each plot, the blue line shows the number of MICAP incidents per NIIN in each FHP 
variance bin, the red line shows the number of MICAP incidents per removal in each bin, and the 
green line shows the average MICAP duration in each bin. We scaled the number of MICAPs by 
the number of NIINs and removals in each FHP variance bin to have a scale to compare across 
NIINs. All of these statistics are then normalized to 100 percent of the value for zero FHP 
variance. (One can see that all three lines converge at 100 percent on the y-axis at zero FHP 
variance on the x-axis.) 

These plots show no clear or consistent visual trends or relationships between FHP variance 
and MICAP behavior. Moreover, statistical tests show no statistically significant relationships 
between FHP variance and MICAP behavior. As we stated above, the relationship between FHs 
and removals themselves is very noisy. Second, MICAPs happen for all sorts of reasons, many 
involving supply chain issues having nothing to do with flying activity (e.g., parts obsolescence, 
lapsed contracts, irregular demands). Thus, there is a baseline of many MICAPs happening on all 
aircraft types all the time. Finally, in a case of decreasing stock levels because of underforecast 
demands, the EXPRESS would request additional repair inductions. This is not a panacea—
supply support (e.g., consumable-item levels) tends to lag demand changes, but it can help 
mitigate performance effects. 

                                                
53 This definition is adapted from Jeremy Arkes and Mary E. Chenoweth, Estimating the Benefits of the Air Force 
Purchasing and Supply Chain Management Initiative, Santa Monica, Calif.: RAND Corporation, MG-584-AF, 
2008.  
54 MICAP data were provided by Logistics Directorate, Air Force Sustainment Center (AFSC/LG) on February 4, 
2015, and February 26, 2015. Files were drawn from a data warehouse maintained by AFMC, which is populated by 
monthly pulls or archiving of MICAP data from the Air Force Logistics, Installations, and Mission Support data 
enterprise. 
55 Cause code H is defined as “Less than full base stock—Stock replenishment requisition exceeds priority group 
UMMIPS [Uniform Materiel Movement and Issue Priority System] standards. Focus attention on source of supply 
processing of stock replenishment requisitions.” The AFSC/LG personnel who provided the MICAP data informed 
us that cause code H would be the likeliest to be affected by FHP variance.  



30 

Figure 3.5. Effect of Flying Hour Program Variance on Mission Impaired Capability Awaiting Parts 
Incidence and Duration 

 

SOURCES: D200 FH data, FYs 2007–2012; MICAP Data Source, FYs 2007–2012. 

This does not mean that FH error does not contribute to MICAPs (it likely does, given the 
small but consistent effect on forecast error)—only that there is no consistent relationship 
between the two. This finding comes into play when setting expectations for what could be 
accomplished were FH error significantly reduced. It also does not mean that FH error has no 
effect on other readiness metrics, such as back orders or customer wait time. We focused here on 
MICAPs as a kind of proxy for operational readiness. 

In the next and final chapter, we discuss conclusions and policy implications.  
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Chapter Four 

Conclusions and Recommendations 

Conclusions 

Flying Hour Program Variance Has Several Sources 

We grouped the causes of FHP variance into three categories. Simple planning error accounts 
for the basic uncertainties in predicting the FHP in a given year, including the number of pilots, 
number and type of sorties, sortie duration, and the like. External causes are those that originate 
outside the service and usually affect the entire enterprise or a significant portion of it, such as 
contingency operations or congressional action. The third category is internal Air Force 
decisions, which can cause FHP variance when far-reaching decisions (about force structure, 
budgets, or FHs themselves) are made after the original FHP is set. Understanding these various 
sources is key to crafting policy solutions to address and reduce FHP variance. 

Flying Hour Program Variance Causes Several Quantifiable, Negative Downstream 
Effects in the Supply Chain 

In this report, we assessed four effects of FHP variance. FHP variance—regardless of its 
source—increases forecast error, the source of all other downstream effects. Underflying (i.e., 
overplanning) can incur opportunity cost, leaving money on the table in the budget process. It 
also incurs financial costs in the form of holding costs for unneeded inventory. Overflying (i.e., 
underplanning) likely contributes to readiness problems, but our analysis found no statistically 
significant relationship between FHP variance and MICAPs, one of several important 
aircraft readiness metrics. 

At an Enterprise Level, Most of the Downstream Effects Are Modest 

Each effect described above comes with caveats. Though forecast error induced by FHP 
variance for specific aircraft fleets can be enormous, in most years, the effects on enterprise-
level DFA was modest. Except for one year of sequestration, we found the average enterprise-
level increase to forecast error to be about five points, or an increase of about 15 percent over 
baseline error.  

Budget opportunity cost can be high—hundreds of millions of dollars in a single year—but 
many of the recent sources of volatility were events for which flying funding itself was cut from 
the budget after the FHP was set. Thus, the FH budget was not necessarily too large (i.e., leaving 
money on the table), even though hours were underflown from their original estimate.  

Financial costs incurred from underflying appear to be low, about $2 million to $4 million 
per year for inventory holding costs in recent years, including the years of sequestration. 
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Some Individual Programs Do Experience Large Flying Hour Program Variance and 
Downstream Effects 

The AFSC’s planning processes do eventually catch large perturbations in FHP inputs, but 
that does not preclude supply chain planners and operators from having to respond to them. 
AFSC SMEs reported that, on several occasions, they were caught off guard by seemingly 
sudden, radical changes to an individual fleet’s FH forecast, with little or no communication 
from planners as to why and with little opportunity to communicate the downstream effects (e.g., 
canceled contracts, reduced or eliminated repair capacity). A considerable amount of supply 
chain management time is spent on low-density platforms (which often have unique and 
expensive parts) to ensure dependable wartime support. This no doubt drives a portion of the 
AFSC’s concern with the accuracy of FHP forecasts.  

Some steps have already been taken that might address this gap in communication (at least in 
part spurred by increased scrutiny from CER). For example, AF/A3 issued a memorandum to 
increase communication and coordination among HAF organizations involved in the FHP.56 
Besides placing a general emphasis on synchronization and awareness, the memo states that 
MAJCOMs must explain under- or overexecution and notify AFSC/LG (among other 
organizations) of approved FH realignment actions.  

However, this apparently has not produced the desired results, and the integration of 
stakeholders involved in FH processes has not been incorporated into efforts aimed at improving 
FH variance.57 As a result, AFSC/LG has started an eight-step Cross Command Flying Hour 
Program Working Group to continue and intensify efforts needed to improve integration and 
communication regarding the development of FH programs. This should help address extreme 
program-level perturbations—which appear to be one of AFSC’s biggest concerns—that might 
cause undue FHP variance if supply chain planners are not kept in the loop.  

The air staff made several other changes to planning processes: planning FHs at the MDS 
level, setting improvement targets for FH variance, and including a factor for deployments 
(which had been excluded in some cases).58 These changes should be most successful at reducing 
the natural error in the FH planning process because they are aimed at the fundamental processes 
that produce the estimates. 

Improving Flying Hour Planning Does Not Significantly Improve Spare Part Forecasting 

The overarching objective in this analysis, which our specific question about FHP variance 
addresses, is to achieve CER. Our analysis suggests that there are two separate issues or concerns 

                                                
56 Giovanni K. Tuck, HQ AF/A3, “FY15 Flying Hour Program Execution Guidance,” memorandum, Washington, 
D.C., October 8, 2014. 
57 Email communication with HQ AFSC personnel on December 19, 2016. 
58 Email communication with HQ AFSC personnel on October 15, 2014. 
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here. The first is about opportunity cost—essentially, a question of developing a budget. The 
second is about demand forecasting and its downstream effects.  

Significant overplanning can actually reduce budget tradespace by a significant amount that 
could be invested in other important programs. Thus, improving FH planning could contribute to 
the accuracy of the POM and free up badly needed resources, in cases in which the driver of 
overplanning was not a belated cut to the FH budget itself. HAF actions referenced above should 
help address this. 

However, this progress does not necessarily influence the second issue, that of enterprise-
level forecast accuracy. Even with a more accurate planning process (i.e., the number-crunching 
that informs the POM input), FHs remain subject to severe volatility, to all of those features 
inherent in DoD’s current budget system, and to those external events that cannot be anticipated. 
Given the tenuous nature of the relationships we observed, further efforts to reduce FHP variance 
might or might not have an observable effect on long-term financial cost or readiness because so 
many other sources of error affect the system. Particular spare parts might be affected more by 
FHP variance because their removals correlate more highly with flying activity, but any such 
effects would not be observed system-wide.  

The current forecasting system has at least two problems. First, it uses only FHs as a direct, 
linear input, whereas FHs are themselves volatile.59 They are subject to the budget process, so 
the Air Force is pegging its prediction to an input variable that is ever-shifting and based in part 
on strategy but more so on unforeseeable institutional factors beyond its control and subject to 
fiscal pressures and budget games.  

The second, and maybe more important, feature is that FHs are generally poor predictors of 
actual removals and repair demands. The individual part level is what matters most for supply 
chain cost and effectiveness, but there is virtually no correlation with FHs at the part level.60 
Even if numbers of FHs never changed from the original POM forecast, they would still be poor 
predictors and would give relatively poor DFA and other associated effects. In sum, the Air 
Force has chosen to drive its parts forecasts for flying DLRs by a single variable that is 
notoriously volatile and demonstrably unreliable.  

So, could DLR removals be better forecast without better FHP forecasts? It is beyond the 
scope of this report to describe a comprehensive approach to improve the Air Force’s spare part 
forecasting system, although we believe that such an approach is needed. However, we did 
discuss several possibilities with analysts in the 448 SCMW and AFMC/A9A.  

                                                
59 Manual overrides are used in cases of known or anticipated program changes, but data analysis shows that in 
aggregate, these overrides generally increase total forecast error. 
60 Past RAND research notes that one fundamental assumption underlying the spare part forecasting system is not 
supported by the data. In other words, the so-called linearity assumption: “Aircraft failures are driven by a known 
operational activity: the expected number of failures of a particular part is proportional to a known and measurable 
quantity, such as flying hours or landing” (see Crawford, 1988, p. v). 
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The current forecasting system uses a calculated demand rate (removals per FH) and allows 
for human intervention when equipment specialists have additional applicable information about 
anticipated future demands (e.g., phasing in or out parts or aircraft). One possibility is, instead of 
using just a removal rate, supplementing or replacing that with a time-based failure rate, such as 
demands per quarter. Separate analyses by the PAF research team, 448 SCMW, and AFMC/A9A 
have shown that DFA can improve when using historical removals instead of the current method 
of using removal rates, either discounting FHs or ignoring them altogether.61  

Another possibility is reducing SME intervention in the removal forecast. We found that 
whether using time-based or FH-based failure rates, on the whole, SME input actually worsened 
forecasts and reduced DFA. 448 SCMW personnel reported that they briefed personnel at the 
Office of the Secretary of Defense that DFA was 68.7 percent but would have been 70.2 percent 
if every item used the system-generated eight-quarter moving average demand rate.62 This 
suggests to us that they could achieve a significant increase in DFA (and thus improved 
readiness and reduced costs) if they merely reverted to this system-generated value.  

Even more gains could presumably be garnered with targeted human intervention. The 
448 SCMW uses what it calls the DFA team and the Propulsion Analysis and Collaboration for 
Estimates process to target DFA improvements. They rightly target such changes as time change 
technical orders and modifications that can (generally) be forecast based on foreseeable events, 
and such an approach would thus improve on a blanket system-generated moving average 
demand rate. We simply argue that human intervention, although necessary in some cases, 
should be used sparingly and only in cases in which it is reliably shown to improve outcomes.  

Also, past RAND research also points to some potential solutions. Adams, Abell, and 
Isaacson (1993) lays out an approach to better forecasting high-demand items using a weighted 
regression technique.63 And a number of RAND studies from the mid-1960s showed that sorties 
rather than FHs drove failures.64  

Finally, HQ AFSC is working to implement a method called Peak Policy for low-demand, 
highly variable items. That methodology has been implemented by the Defense Logistics 
Agency for consumables, and the AFSC is currently working to extend it to include reparables.  

                                                
61 Some high-demand parts do actually show a reliable relationship between FHs and removals, so the D200 default 
could be retained. Adams, Abell, and Isaacson (1993) proposed a system that promised even better results. 
62 Email communication with HQ AFSC personnel on May 8, 2017.  
63 Adams, Abell, and Isaacson (1993). 
64 For example, RAND research by William H. McGlothlin, Theodore S. Donaldson, and A. F. Sweetland, as well 
as Peter J. Francis and Geoffrey B. Shaw, Effect of Aircraft Age on Maintenance Costs, Alexandria, Va.: Center for 
Naval Analyses, CAB D0000289.A2, March 2000. 
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Recommendations  
In light of these findings, we make four recommendations. 
Maintain changes to the FHP planning process, which appear to be essentially zero-cost 

to implement. These changes address mostly our first category of FHP variance, simple 
planning error, which has driven the majority of the overall volume of enterprise-level FH error 
in recent years. In addition to providing opportunity cost savings, addressing FHP variance 
should better balance cost and readiness across Air Force fleets. Resolving recent levels of FHP 
variance means that the Air Force would not overinvest in one fleet relative to another fleet.65 
However, reliably reducing the cost per unit of readiness (the goal of CER) requires that forecast 
error be reduced much more significantly than reducing FHP variance alone can accomplish. 

Second, continue to support and extend efforts to improve integration and 
communication across commands and between the operational and supply chain communities, 
such as the Cross Command Flying Hour Program Working Group started by AFSC/LG. This 
type of effort seems like the best hope to address our third category of FHP variance, internal Air 
Force decisions. The communication and coordination inherent in something like the working 
group can help avoid surprises or potentially mitigate shortsighted decisions.  

Third, consider management mechanisms that could dampen the downstream volatility 
caused by FHP variance. One approach to this would have supply chain managers explicitly 
incorporate uncertainty and total cost into their decision calculus. Sometimes downstream supply 
chain decisions are incremental (e.g., determining the number of spare parts to buy or the number 
of maintainers to hire). Thus, more FHs means buying more parts, and more overflying, for 
example, means higher inventory costs for unneeded parts. But sometimes decisions are 
essentially binary (e.g., starting or stopping a repair line altogether, or canceling or letting a 
contract). There could be cases in which understanding and sharing information about these 
thresholds (which only supply chain specialists would know) could change the decision calculus 
of budget planners, if only enough to avoid crossing a potentially costly threshold. 

In cases for which FHs depart drastically from history (assuming that history is somewhat 
consistent), one reasonable question is this: Is the cost (financial or otherwise) of executing this 
action according to stated requirements, and then reversing it, greater or lesser than if historical 
requirements are used? Suppose that a requirement is provided that is half the number of 
historical FHs for an aircraft fleet. It is possible that the cost of canceling a spare part buy 
contract, then having to pay to restart it and mitigate parts shortages in the meantime, is greater 
than the cost of simply maintaining the contract and holding slightly more inventory until the 
numbers of FHs return to historically typical levels (assuming that the FHs were not simply 
following a reduction in force structure).  

                                                
65 One can imagine a cynical planner deliberately overestimating FHs for a particular MDS and, in the year of 
execution, simply achieving higher mission capability rates or fuller spares kits when those FHs do not materialize, 
to the detriment of other MDS that were more conservative in their planning. 
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For small programs, perhaps the costs of overplanning (holding a little more inventory) are 
less than underplanning (experiencing and frantically remedying readiness problems). For larger 
programs, especially those with more-robust supply chains (e.g., commercial equivalent or 
derivative aircraft, or aircraft with global sales), the threshold might be lower because there are 
more options to accommodate a shortfall.  

This approach also goes hand-in-hand with better communication. If up- and downstream 
personnel communicate clearly and regularly about the real-life dynamics and uncertainties in 
shaping and reshaping the FHP and the thresholds for downstream decisions, they could 
collectively reach decisions that reflect the least cost to the Air Force. This could result in 
adjusting FHP requirements, downstream decisions, or both. But it is possible only in an 
environment with healthy, robust communication. Some of this communication already happens 
downstream because equipment specialists and item managers communicate about demand rates 
and demand plans. Perhaps that communication could be broadened to include upstream planners 
and demanders to better understand costs and benefits.  

Having flexibility in a system—any system—costs something. FH funding can be easier to 
obtain, has more leverage than other programs, and is thus a useful tool in the bureaucratic 
maneuvering that takes place every year. Having a budgeting system that allows upstream 
planners to change the FHP as funding becomes available to provide readiness is a very valuable 
capability. Until the nature of the funding process for FHs radically changes, that will remain a 
fact of life. But that flexibility comes at a cost. Upstream decisionmakers should be aware of that 
cost and the effort required to keep supporting the critical readiness they desire.  

Another approach to dampening downstream volatility is to use a more automated strategy. 
In the current system, the computational process for peacetime spares requirements recomputes 
the demand rate and resupply times each quarter without regard to previous quarters’ values. 
This approach can induce some degree of volatility because the rates and pipeline times shift. A 
different strategy would be to update these values only when there has been a statistically 
supportable change in the mean value.  

Fourth, continue to take a holistic approach to improving spare part forecasts—i.e., look 
beyond the FHP—and focus improvement efforts on issues that are the largest sources of 
forecast variance. Further efforts to improve forecasting should focus on (admittedly harder) 
problems, such as the forecasting algorithms themselves, inventory policies (such as Peak 
Policy), and the information systems that contain them. 

We understand that the Air Force sought to improve its spare part forecasting system with the 
failed implementation of Expeditionary Combat Support System, and the Air Force is again 
investigating information system solutions to this (and other) issues. As new systems come 
online, one key question is when FHs should be used for forecasts. Empirical analyses can be 
performed to assess which items have a strong enough correlation to be useful or, in other cases, 
where thresholds should be set such that FHP variance beyond a certain point would trigger 
some action. To the degree that these new systems provide insights into these questions and the 
ability to better calibrate spare part decisionmaking, the Air Force can realize some long-awaited 
benefits to readiness and cost-effectiveness.  
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Appendix A 

Simulation Tool for DLR Decisions 

This appendix explains more about the computer simulation we used to estimate opportunity 
costs and unneeded inventory in Chapter Three. We begin by listing the key sources and 
assumptions for simulation (Table A.1).

Table A.1. Key Sources and Assumptions for Simulation 

 
NOTE: AFTOC = Air Force Total Ownership Cost. 

Given planned and actual numbers of FHs, our simulation computes removals, 
condemnations, carcasses, buys, and repairs. For each year, the simulation models planning and 
execution. In planning, the model calculates the total funded requirement, which is equal to the 
funded level of additives (including safety stock and pipeline levels), plus the expected number 
of breaks predicted based on planned numbers of FHs and historical breaks per FH, minus the 
numbers of any serviceable assets on hand. We assume that the system would prefer to satisfy 
this requirement through repair. The planned repair is equal to the lesser of the requirement, or 
the number of carcasses available for repair, minus the number of any planned condemnations. 
Buys (both planned and actual) are equal to whatever portion of the funded requirement cannot 
be satisfied though repair. At the end of the planning phase, the number of serviceable assets is 
increased according to the buys. 

In execution, we simulate a true number of breaks for each NIIN, which might differ from 
the expected number of breaks. The difference between the numbers of expected and actual 
breaks (prediction error) is drawn from a distribution based on data from D200. Similar to what 
is done for the planned requirement, we calculate an execution requirement, which is the sum of 
the number of funded additives and actual breaks, minus the numbers of serviceable assets. We 
assume that the number of repairs will be equal to the minimum of the number of carcasses 
available (after condemnations in execution) and the execution requirement. At the end of 

Data source Data inputs 

ABCS (FY11, FY12) Buy/repair split 
Amount of total requirement (buy and repair) that is 
funded 

D200 Differences between planned and actual demands 
Buy vs. repair costs 

AFTOC DLR costs of FHP (includes unit-level removals, 
not depot-level removals) 
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execution, the number of serviceable assets and the number of carcasses are updated to reflect 
the breaks and repairs that occurred in execution.  

We assume that, under perfect planning, the funded requirement is equal to the keep-up 
requirement, which funds the buys and repairs for the breaks expected during the fiscal year. We 
use this assumption to calibrate the funded additive levels in the model (𝐴𝐴f), such that, when 
𝑝𝑝𝐹𝐹𝐹𝐹f

g = 𝑓𝑓𝐹𝐹𝐹𝐹f
g for all i and all n, the funding levels for buy or repair match those in ABCS for 

FYs 2011 and 2012. Table A.2 lists the variables for simulation.  
 

Table A.2. Description of Variables for Simulation 

Variable Name Description 
i Item (DLR) index 
𝒑𝒑𝑭𝑭𝑭𝑭𝒊𝒊

𝒏𝒏 Number of planned FHs for item i in iteration n 
𝒂𝒂𝑭𝑭𝑭𝑭𝒊𝒊𝒊𝒊𝒏𝒏 Number of actual FHs for item i in iteration n 
𝑨𝑨𝒊𝒊 Funding level for additives for item i. Funding level is relative to the full (and partly unfunded) 

additive requirement. Funding level –3 would indicate that the funded additive level is three less 
than the full additive requirement 

𝒇𝒇𝒊𝒊 Number of breaks per FH rate for item i 
𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊𝒏𝒏 Expected (planned) number of breaks for item i in iteration n 
𝒑𝒑𝒑𝒑𝒊𝒊

𝒏𝒏 Expected (planned) number of repairs for item i in iteration n 
𝒂𝒂𝒑𝒑𝒑𝒑𝒊𝒊𝒏𝒏 Actual number of breaks for item i in iteration n 
𝒂𝒂𝒑𝒑𝒊𝒊

𝒏𝒏 Actual number of repairs for item i in iteration n 
𝑺𝑺𝒊𝒊
𝒏𝒏 Number of serviceable items i in iteration n 

𝒑𝒑𝐮𝐮𝒊𝒊
𝒏𝒏 Number of buys of item i in iteration n 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊
𝒏𝒏 Planned requirement for item i in iteration n 

𝒂𝒂𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊
𝒏𝒏 Actual (execution) requirement for item i in iteration n 

𝒑𝒑𝒑𝒑𝒑𝒑𝒏𝒏𝒊𝒊
𝒏𝒏 Planned number of condemnations for item i in iteration n 

𝒂𝒂𝒑𝒑𝒑𝒑𝒏𝒏𝒊𝒊
𝒏𝒏 Actual number of condemnations (in execution) for item i in iteration n 

𝒑𝒑𝒂𝒂𝒑𝒑𝒊𝒊𝒏𝒏 Number of carcasses of item i in iteration n 
 
Figure A.1 shows how the simulation models the planning process. We assume that the total 

planned requirement, which could be satisfied through either buy or repair, is equal to: 
 

𝑝𝑝𝑝𝑝𝑛𝑛𝑞𝑞fg = 	𝐴𝐴f + 𝑝𝑝𝑝𝑝𝑛𝑛fg − 𝑆𝑆fg, 
 

which is the funded level of additives (including safety stock and pipeline requirements), plus the 
expected number of DLR breaks, which is equal to the planned number of FHs times the 
historical breaks–per–FH rate from D200 (𝑝𝑝𝑝𝑝𝑛𝑛fg=𝑜𝑜f ∗ 𝑝𝑝𝐹𝐹𝐹𝐹f

g), minus the number of serviceable 
assets on hand.  
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Figure A.1. How the Simulation Model Accounts for the Planning Process 

 

We further assume that the system would prefer to satisfy the requirement through repair 
than through purchasing new DLRs. The number of planned repairs is given by 

𝑝𝑝𝑝𝑝f
g = min(𝑝𝑝𝑝𝑝𝑛𝑛𝑞𝑞fg,𝐶𝐶𝑓𝑓𝑛𝑛fg − 𝑝𝑝𝐶𝐶𝑜𝑜𝑛𝑛f

g). 

We assume a condemnation rate of 13 percent per repair, which we determined through 
calibration to match the observed buy-or-repair split from ABCS (higher condemnation rates 
increase the proportion of the requirement that is fulfilled through buys). The number of buys 
(both planned and actual), then, is equal to the funded DLR requirement minus the planned 
repair: 

𝑝𝑝𝑛𝑛f
g = 𝑝𝑝𝑝𝑝𝑛𝑛𝑞𝑞fg − 𝑓𝑓𝑝𝑝f

g.

The final step in modeling DLR planning is to update the number of serviceable assets to 
include the newly purchased DLRs; we call this intermediate number of serviceables 𝑆𝑆f

g�½; it is 
given by 

𝑆𝑆f
	g�½ = 𝑆𝑆f	g + 𝑝𝑝𝑛𝑛f

	g. 

Figure A.2 shows how we model execution in the simulation. We first compute the number 
of breaks, which is drawn from a distribution that is conditional on the expected number of 
breaks. The distribution is based on historical D200 data for FH-driven items from FYs 2010 
through 2012. We then determine the number of condemnations, which is drawn from a Poisson 
distribution based on the number of breaks and the condemnation (per break) rate. We then 
update the number of carcasses available (we call the number of carcasses available at this  
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Figure A.2. How the Simulation Model Accounts for the Execution Process 

 

intermediate step 𝐶𝐶𝑓𝑓𝑛𝑛f
g�½) for repair by subtracting the condemnations from the number of 

available carcasses: 
𝐶𝐶𝑓𝑓𝑛𝑛f

g�½ = 𝐶𝐶𝑓𝑓𝑛𝑛fg − 𝑓𝑓𝐶𝐶𝑜𝑜𝑛𝑛f
g.

We then determine the execution requirement, which is given by 

𝑓𝑓𝑝𝑝𝑛𝑛𝑞𝑞fg = 𝐴𝐴f + 𝑓𝑓𝑝𝑝𝑛𝑛fg − 𝑆𝑆f
g�½, 

equal to the funded level of additives, plus the number of breaks, minus the number of 
serviceable DLRs on hand. The number of repairs done in execution is the minimum of the 
number of available carcasses and execution repair requirement; this is given by 

𝑓𝑓𝑝𝑝f
g = min(𝐶𝐶𝑓𝑓𝑛𝑛f

g�½, 𝑓𝑓𝑝𝑝𝑛𝑛𝑞𝑞fg). 
 

The final step in simulating execution is to update the number of carcasses and the number of 
serviceable DLRs. The number of carcasses increases with DLR breaks and decreases with 
repairs; the number of DLRs increases with repairs and decreases with breaks. These quantities 
are given by 

𝑆𝑆fg�_ = 𝑆𝑆f
g�½ + 𝑓𝑓𝑝𝑝f

g − 𝑓𝑓𝑝𝑝𝑛𝑛fg 
𝐶𝐶𝑓𝑓𝑛𝑛fg�_ = 𝐶𝐶𝑓𝑓𝑛𝑛f

g�½ − 𝑓𝑓𝑝𝑝f
g + 𝑓𝑓𝑝𝑝𝑛𝑛fg. 
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Figure A.3 shows the DLR buy spending for a single year (in billions of FY 2013 dollars), as 
computed by our simulation. The middle column shows a spending level of $800 million with 
perfect FHP prediction. The error bars show the level of uncertainty in buy requirement because 
of fluctuating demands.  

Underplanning reduced DLR buy spending by about $200 million, and overplanning 
increased spending by about $250 million. Overplanning costs more than underplanning saves 
because, relative to a steady state, overplanning increases the mix of demands that must be 
fulfilled with purchases rather than repairs. Underplanning represents a greater mix of repairs, 
rather than purchases, that were avoided. Because repairs are less costly than purchases, 
underplanning results in less savings than overplanning costs.  

Furthermore, overplanning has more long-term financial effects because overbought parts 
must be reduced by attrition, but underbuying can be reversed in the next planning cycle (albeit 
with potential readiness effects in the intervening period). 

Figure A.4 shows the same results for repairs.  
Underplanning reduced repair spending by about $180 million, whereas overplanning 

increased spending by about $170 million. Furthermore, overplanning has more long-term 
financial effects because overplanned capacity might be partially unusable, and therefore 
unrecoverable, whereas underplanning capacity can usually be remedied by working overtime. 
Having estimated these error–cost relationships with our simulation, we can now apply them to 
historical levels of FHP variance.  

Figure A.3. Spare Part Buy Costs of Planning Error 
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Figure A.4. Repair Costs of Planning Error 
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Appendix B 

Additional Data on Flying Hours and Removals 

This appendix shows data plots in addition to those in Chapter Three. Figures B.1–B.4 show 
FH data for fixed-wing aircraft types for FYs 2008–2011, respectively. Each diamond represents 
one MDS, showing the actual FHs (x-axis) compared with the FH variance as a percentage of 
forecast FHs (y-axis). The further away a diamond is from the centerline, the greater the variance 
from what was planned. A diamond above the line indicates that the MDS flew more hours than 
were budgeted; below the line, fewer hours. We have truncated the y-axis at 100-percent 
overflying. 

Figure B.1. FY 2008 Aircraft-Type Flying Hour Error 

 

SOURCE: D200, 2011 (two-year-out forecast).  
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Figure B.2. FY 2009 Aircraft-Type Flying Hour Error 

 

SOURCE: D200, 2011 (two-year-out forecast). 
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Figure B.3. FY 2010 Aircraft-Type Flying Hour Error 

 

SOURCE: D200, 2011 (two-year-out forecast). 
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Figure B.4. FY 2011 Aircraft-Type Flying Hour Error 

 

SOURCE: D200, 2011 (two-year-out forecast). 
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