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Computational Information Games

Final Report

Program Manager: Dr. Fariba Fahroo DR-04 USAF AFMC AFOSR/RTA
Change in AFOSR program manager: Dr. Fariba Fahroo DR-04 USAF
AFMC AFOSR/RTA has replaced Dr. Jean-Luc Cambier DR-04 USAF
AFMC AFOSR/RTA.
Contract/Grant #: FA9550-16-1-0054.
Reporting Period: 11/15/2015 to 11/14/2018.
PI: Houman Owhadi
Organization: California Institute of Technology

Abstract: This project has explored interplays between Game Theory, Numerical
Approximation and Gaussian Process Regression and developed a general theory
for a game theoretic approach to numerical approximation and algorithm design.
This game theoretic approach has lead to the discoveries of (i) wavelets adapted
to arbitrary linear operators (gamblets) (ii) scalable solvers with some degree of
universality (iii) new tools for numerical analysis and algorithm design such as the
Fast Gamblet Transform (FGT). These discoveries provide new tools for numerical
analysis and algorithm design and one of these tools is the Fast Gamblet Transform
(FGT). The scope of potential applications of those tools is comparable to hav-
ing a Fast Fourier Transform that could be applied to arbitrary linear operators.
For instance (i) the FGT enables the multi-resolution analysis of arbitrary linear
operators defined on Sobolev spaces in near-linear complexity (ii) The FGT leads
to a solver for arbitrary continuous symmetric linear bijections mapping Hs

0(Ω)
to H−s(Ω) in O(N log2d+1N) complexity (this is the state of the art for PDEs
with rough coefficients) (iii) The FGT enables near-linear complexity when using
implicit solvers for hyperbolic and parabolic PDEs (thereby opening the complex-
ity bottleneck of such solvers) (iv) We have derived a simple incomplete Cholesky
factorization algorithm for the compression, inversion and approximate the PCA
of dense N ×N kernel matrices in O(N log2d+2N) complexity.
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1 Accomplishments

The objective of AFOSR/EQUIPS Grant number FA9550-16-1-0054 (Computa-
tional Information Games) was to develop a game theoretic approach to numerical
approximation and algorithm design [4, 3, 11, 7, 13]. This approach has been
turned in a general framework [7] which has lead to the discoveries of (i) a general
solution to the numerical homogenization problem [7] (ii) wavelets adapted to large
classes of linear operators (gamblets) [7] (iii) scalable solvers with some degree of
universality [7, 13] (e.g., of O(N log2d+1N) complexity for arbitrary continuous
symmetric linear bijections mapping Hs

0(Ω) to H−s(Ω), this is the state of the
art for such operators). These discoveries provide new tools for numerical anal-
ysis and algorithm design and one of these tools is the Fast Gamblet Transform
(FGT). The scope of potential applications of those tools is comparable to having
a Fast Fourier Transform that could be applied to a large class of linear operators.
Another major breakthrough is [13] which introduces a very simple incomplete
Cholesky factorization algorithm to compress, invert and approximate the PCA
of dense N ×N kernel matrices in O(N log2d+2 N) complexity. This algorithm is
derived and analysed by using gamblets to represent fundamental linear algebra
operations such as Schur complementation.

1.1 List of accomplishments

Major accomplishments

• Discovery of (the first) fully operator adapted wavelets (this discovery has
been and is still branching into many others).

• Discovery of robust scalable solvers for general elliptic, parabolic and hy-
perbolic linear PDEs of rigorous a priori complexity vs accuracy estimates
(of O(N log2d+1 N) complexity to achieve grid size accuracy in energy norm,
this is state of the art for PDEs with rough coefficients).

• Discovery of a very simple incomplete Cholesky factorization algorithm to
compress, invert and approximate the PCA of dense N ×N kernel matrices
in O(N log2d+2 N) complexity (this is state of the art for kernels defined as
Green’s functions of general elliptic operators). A software has been made
available at

https://github.com/f-t-s/nearLinKernel

• Development of a general game/decision theoretic framework to numerical
approximation (this development has been and still branching into many
others, with impacts in Kriging, and statistical estimation/computational
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tradeoffs, etc... the fundamental impacts are on the interplays between com-
putational complexity and UQ).

• First rigorous a priori rigorous exponential decay estimates on the screening
effect.

• Thresholding the Gamblet Transform of noisy solutions of observations of
solutions of PDEs or Graph Laplacians is a near minimax recovery estimator
[17].

Broader impact of transition from FA9550-12-1-0389 into FA9550-16-1-
0054

• Our results on the non robustness of Bayesian inference [10, 6, 9, 5] lead
us to predict that that deep/machine learning algorithms could be non
robust and could lead to increased confidence in incorrect solutions (see
talk by Mike McKerns at SciPy 2013, https://www.youtube.com/watch?
v=o-nwSnLC6DU&feature=youtu.be&t=74 published on July 2013). These
predictions have been confirmed [16] and addressing these vulnerabilities (1)
is now recognized as critical to the safety of Machine Learning Algorithms
and (2) has stimulated the emergence of “advesarial machine learning”.

• FA9550-12-1-0389 supported the further development of the Mystic frame-
work and the broader impact is now manifest under FA9550-16-1-0054. In
particular Mystic and Pathos have been used at the Intelligence Systems
Support Office (ISSO) of USAF and these codes are now in the top charts
in GitHub (see https://hugovk.github.io/top-pypi-packages/ for official stats
and links to code, mystic, pathos are rank 252 with 4.141M downloads per
year).

1.2 Generalization of the gamblet transform

We have completed the monograph [7] describing the generalization of the game
theoretic approach and gamblets introduced in [4] (for second order divergence
operator) to large classes of operators. We are currently finishing a book [8] (to
appear soon) to make these results accessible.

1.2.1 The numerical approximation/optimal recovery game

Gamblets emerge from a game theoretic approach to numerical approximation
and algorithm design [7], which unfolds from the following observations: (i) to
compute fast one must compute with partial information of hierarchies of levels of
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complexity (ii) the process of computing with partial information can be turned
into an adversarial game with respect to the missing information (iii) inaccurate
approximations, in repeated intermediary calculations, lead to loss in CPU time
and the total CPU time required to invert a given linear operator is the sum of
these losses.

One fundamental result of [7] can be described as follows. Let B be a Banach
space endowed with a quadratic norm ‖ · ‖. Let φ1, . . . , φm be m independent
linear elements of B∗. Consider an adversarial zero sum game where player I
chooses u ∈ B and player II must recover u based on the incomplete information
([φ1, u], . . . , [φm, u]). Then the optimal bet of player II is

v = E
[
ξ | [φi, ξ] = [φi, u] for all i

]
(1)

where ξ is a centered Gaussian field defined by [φ, ξ] ∼ N (0, ‖φ‖2
∗) for φ ∈ B∗ and

writing ‖ · ‖∗ for the dual norm. Furthermore this optimal bet can be written as
a linear combination of elementary bets, i.e. as

v =
∑
i

[φi, u]ψi (2)

with
ψi = E

[
ξ | [φj, ξ] = δi,j for all j

]
(3)

Based on this observation, [7] derives wavelets adapted to the norm ‖ · ‖ and
fast solvers for the operator defining that norm. For the sake of the clarity of
this report we will present the results when (B, ‖ · ‖) is the Sobolev space Hs

0(Ω)
endowed with the operator norm

‖u‖2 :=

∫
Ω

uLu (4)

where
L : Hs

0(Ω)→ H−s(Ω) (5)

is an arbitrary symmetric, positive linear bijection that is assumed to be local, in
that

∫
Ω
uLv = 0 if u and v have disjoint supports.

1.2.2 Numerical homogenization

The generalized purpose of numerical homogenization, can be described as follows.

Problem 1.1. Given an arbitrary operator L : Hs
0(Ω)→ H−s(Ω) and a given m,

to find m basis functions ψ1, . . . , ψm satisfying the following two requirements:
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1. Accuracy. The approximation error

sup
f∈L2(Ω)

inf
c∈Rm

‖L−1f −
∑m

i=1 ciψi‖
‖f‖L2(Ω)

(6)

must be as small as possible.

2. Localization. The basis functions ψi must be as localized as possible (e.g.
with compact support or exponentially decaying).

These requirements are, to some degree, conflicting because the basis functions
minimizing (6) (i.e. achieving the Kolmogorov n-width [2] with n = m) are the
eigenfunctions of L corresponding to the m smallest eigenvalues [2, 1, 4], which
are not localized.

Figure 1: τi and xi. Used from forthcoming book [8] with permission from Cam-
bridge University Press.

Gamblets provide a very simple and natural solution to Problem 1.1. Let
τ1, · · · , τm form a partition of Ω of resolution h as illustrated in Figure 1. Let
x1, . . . , xm be points centered in τ1, · · · , τm. For i ∈ {1, . . . ,m} take φi = 1τi or
(for s > d/2) φi = δ(x− xi).

Let ψ1, . . . , ψm be the corresponding gamblets defined in (3). Then, [7] shows
that ψ1, . . . , ψm are a solution to Problem 1.1. More precisely, they achieve the
accuracy of the Kolmogorov n-width [2] (the minimum of (6)) up to a multiplicative
constant: for f ∈ L2(Ω),

inf
ψ∈span{ψ1,...,ψm}

‖L−1f − ψ‖Hs
0(Ω) ≤ Chs‖f‖L2(Ω). (7)
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Furthermore, they are exponentially localized, i.e.

‖ψi‖Hs(Ω/B(xi,nh)) ≤ Ce−n/C , i = 1, . . . ,m . (8)

Figure 2: Matrix representation with fully adapted wavelets. Used from forthcom-
ing book [8] with permission from Cambridge University Press.

1.2.3 Operator adapted wavelets

As emphasized in [15, p. 83] ideal operator adapted wavelets should be character-
ized by three properties (see Figure 2) described in the following problem.

Problem 1.2. Given an arbitrary operator L, find wavelets simultaneously satis-
fying the following three properties.

1. Scale-orthogonality with respect to the operator scalar product. This prop-
erty implies that the (stiffness) matrix representation of the operator in the
wavelet basis is block-diagonal.

2. Local support (or rapid decay) of the basis functions. This property
implies that the individual blocks are sparse or nearly sparse.

3. Riesz stability in the energy norm. This property implies that the blocks
are uniformly well-conditioned.

As discussed in [15, p. 83], although adapted wavelets achieving 2 of these
properties have been constructed, “it is not known if there is a practical technique
for ensuring all the three properties simultaneously in general”.
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Figure 3: Overview of the construction. Used from forthcoming book [8] with
permission from Cambridge University Press.

Gamblets provide a very simple solution to Problem 1.2. This solution, illus-
trated in Figure 3, can be described as follows.

1. Select non-operator adapted pre-wavelets for H−s(Ω). These pre-wavelets

φ
(k)
i ∈ H−s(Ω) (where heuristically k stands for scale and i for location) form

a hierarchy satisfying the nesting relation

φ
(k)
i =

∑
j

π
(k,k+1)
i,j φ

(k+1)
j . (9)

Prototypical examples for the choice of φ
(k)
i are Haar pre-wavelets (Figure 4,

which induce a multi-resolution decomposition of the compact embedding of
L2(Ω) into H−s(Ω) that is not adapted to the operator L) and, for s > d/2,
sub-sampled Diracs (Figure 5).
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Figure 4: Haar pre-wavelets as φ
(k)
i . Used from forthcoming book [8] with permis-

sion from Cambridge University Press.

2. View the φ
(k)
i as measurement functions for numerical approximation games

and define ψ
(k)
i as the corresponding gamblets, i.e. using (3),

ψ
(k)
i :=

∑
j

Θ
(k),−1
ij L−1φ

(k)
j , (10)

where Θ(k),−1 is the inverse of the Gramian matrix Θ(k) defined by Θ
(k)
i,j :=

[φ
(k)
i ,L−1φ

(k)
j ]. The elements ψ

(k)
i are then pre-wavelets, adapted to the op-

erator L, forming a nested hierarchy of Hs
0(Ω), i.e. ψ

(k)
i =

∑
j R

(k,k+1)
i,j ψ

(k+1)
j .

3. For k ≥ 2 orthogonalize the pre-wavelets ψ
(k)
i through local linear combina-

tions/differences with coefficients spanning the kernel of π(k−1,k), i.e. intro-
ducing W (k) as a sparse matrix such that Im(W (k),T ) = Ker(π(k−1,k)) and

χ
(k)
i :=

∑
j

W
(k)
ij ψ

(k)
j , (11)
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Figure 5: Sub-sampled Diracs as φ
(k)
i . Used from forthcoming book [8] with per-

mission from Cambridge University Press.

the χ
(k)
i are operator adapted wavelets (inducing a multi-resolution decom-

position of Hs
0(Ω) adapted to L in the sense of Problem 1.2).

Algorithm 1 The Gamblet Transform.

1: ψ
(q)
i = ϕi

2: A
(q)
i,j =

〈
ψ

(q)
i , ψ

(q)
j

〉
3: for k = q to 2 do
4: B(k) = W (k)A(k)W (k),T

5: χ
(k)
i =

∑
j∈I(k) W

(k)
i,j ψ

(k)
j

6: R(k−1,k) = π(k−1,k)(I(k) − A(k)W (k),TB(k),−1W (k))
7: A(k−1) = R(k−1,k)A(k)R(k,k−1)

8: ψ
(k−1)
i =

∑
j∈I(k) R

(k−1,k)
i,j ψ

(k)
j

9: end for

The resulting algorithm for computing those operator adapted wavelets is pre-
sented in Algorithm 1. In this algorithm the operator adapted pre-wavelets are
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computing in hierarchical nested fashion, i.e.

ψ
(k)
i =

∑
j

R
(k,k+1)
i,j φ

(k+1)
j , (12)

and this computation can be done fast because the interpolation matrices R(k,k+1)

are sparse (since the gamblets are exponentially decaying). As a consequence the
overall complexity of this algorithm is O(N ln2d+1N).

1.2.4 Fast solvers

Is it possible to identify/design a scalable solver that could be applied to a large
class of linear operators? One incentive to ask this question is the vast and in-
creasing literature on the numerical approximation of linear operators where the
number of linear solvers seems to trail the number of possible linear systems.
Paraphrasing Sard’s assertion, one reason not to ask this question is the historical
presupposition that [12, pg. 223] “of course no one method of approximation of a
linear operator can be universal.” Using gamblets to answer this question in the
setting of linear operators leads to a fast solver with some degree of universality.

For instance, consider the problem of solving

Lu = f (13)

as fast as possible to a given accuracy, where L, defined in (5), is arbitrary. Gam-
blets provide a very simple solver based on the decomposition of the solution space
Hs

0(Ω) into sub-bands W(k) = span{χ(k)
i |i ∈ I(k)} that are orthogonal in operator

scalar product, i.e.

Hs
0(Ω) = V(1) ⊕W(2) ⊕ · · · ⊕W(q) ⊕W(q+1) (14)

and such that L is uniformly well-conditioned within each sub-band.
Therefore, the gamblet transform turns the inverse problem Lu = f into a

sequence of independent, uniformly well-conditioned, sparse linear systems. Each
sub-band solution (illustrated in Figure 6) can be computed independently. This
fast gamblet solve is presented in Algorithm 2.

Since the matrices B(k) of Algorithm 2 are uniformly well-conditioned and
sparse, the complexity of the algorithm is O(N logd+1 N) for each linear solve.

1.3 Dense kernel matrices

The fast solver described in Subsection 1.2 is based on an explicit computation of
the gamblets. By representing elementary linear algebra operations, such as com-
puting Schur complements, as operations on Gamblets (i.e. on wavelets adapted

10



Figure 6: Multi-resolution decomposition of the solution of Lu = f . Used from
forthcoming book [8] with permission from Cambridge University Press.

Algorithm 2 The Gamblet Solve.

1: f
(q)
i =

∫
Ω
fψ

(q)
i

2: for k = q to 2 do
3: w(k) = B(k),−1W (k)f (k)

4: u(k) − u(k−1) =
∑

i∈J (k) w
(k)
i χ

(k)
i

5: f (k−1) = R(k−1,k)f (k)

6: end for
7: U (1) = A(1),−1f (1)

8: u(1) =
∑

i∈I(1) U
(1)
i ψ

(1)
i

9: u = u(1) + (u(2) − u(1)) + · · ·+ (u(q) − u(q−1))

to the underlying operator) one can derive simple algorithms that can be anal-
ysed through gamblets. This approach is illustrated in the recent preprint [13],
which introduces a simple incomplete Cholesky factorization algorithm (rigorously)
achieving O(N log2d+2 N) complexity for the inversion, compression, and approx-
imate PCA of an N × N dense kernel matrix Θ ∈ RN×N obtained from point
evaluations of the Green’s function G at locations {x1, . . . , xN} (Θi,j = G(xi, xj))
of a local continuous symmetric linear operator L mapping Hs(Ω) to H−s(Ω).

Such dense kernel matrices arise in computational physics, numerical analysis,
statistics and machine learning, which can suffer from the computational com-
plexity bottleneck associated with simple operations such as (i) storing Θ (a naive
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approach costs O(N2)) (ii) computing the matrix vector product Θv (a naive ap-
proach costs O(N2)) (iii) computing the inverse Θ−1v (a naive approach costs
O(N3)) (iv) computing the determinant of Θ (a naive approach costs O(N3)) (v)
approximation the PCA of Θ (a naive approach costs O(N4)).

The overall algorithm introduced in [13] performs an ordering of {xi}1≤i≤N ,
with corresponding permutation matrix P , and computes, in complexityN polylog(N) polylog(1

ε
)

in time and space, a sparse lower triangular matrix L (whose number of non zero
entries is O(N polylog(N) polylog(1

ε
))) such that

‖Θ− PLLTP T‖ ≤ O(ε).

Figure 7: Decompose {xi}i∈I (fine blue dots in the left figure) into a nested (sub-
sampled) hierarchy {xi}i∈I(1) ⊂ {xi}i∈I(2) ⊂ {xi}i∈I(3) ⊂ · · · ⊂ {xi}i∈I(q) . Used
from forthcoming book [8] with permission from Cambridge University Press.

The simplicity of this algorithm is remarkable: First, decompose {xi}i∈I into
a nested hierarchy {xi}i∈I(1) ⊂ {xi}i∈I(2) ⊂ {xi}i∈I(3) ⊂ · · · ⊂ {xi}i∈I(q) and define
I(1) = J (1),. . . ,I(k) = J (1) ∪ · · · ∪ J (k) as in Figure 7 (see the J (k) are the
hierarchical stratification defined below).

Next, order the degrees of freedom (elements of I) from J (1) to J (q) (i.e.
the nesting/inclusion of the set of points I(k) defines a stratification leading to
an ordering of the points of I) and for ε ∈ (0, e−1) define the sparsity pattern,
S :=

{
(i, j) ∈ I × I

∣∣i ∈ J (k), j ∈ J (l), dist(xi, xj) ≤ 2 ln 1
ε
× 2−min(k,l)

}
. S

contains O(N(polylogN polylog 1
ε
)) elements and all the entries of Θ lying outside

of this sparsity pattern are ignored (i.e. the resulting G(xi, xj) do not even need
to be evaluated).
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Figure 8: The algorithm. Skip entries of A (computational surrogate for Θ) outside
of the sparsity pattern (i.e. skip all operations for which (k, j), (k, i) or (j, i) are
outside of the sparsity pattern illustrated in the right figure).

The Cholesky factorization A = LLT (computational surrogate for Θ) is then
computed as in Figure 8 with one small tweak: skip all operations for which (k, j),
(k, i) or (j, i) are outside of the sparsity pattern (right hand side of Figure 8) (the
Cholesky factorization is not applied to Θ but only to a subset of entries of Θ
defined by the sparsity pattern).

Figure 9: The matrices π(k−1,k) and W (k) for sub-sampled masses of Diracs. Used
from forthcoming book [8] with permission from Cambridge University Press.

Why does it work?
The analysis of the algorithm is performed using gamblets. By choosing Dirac

delta functions at the locations xi as measurement functions at the finest scale (i.e.

13



φ
(q)
i = δ(· − xi)) one can represent Θ as the Gram matrix of these measurement

functions, i.e. Θi,j = [φ
(q)
i ,L−1φ

(q)
j ], and its inverse Θ−1 is the stiffness matrix of

the corresponding gamblets, i.e. Θ−1
i,j =

〈
ψ

(q)
i , ψ

(q)
j

〉
:= [Lψ(q)

i , ψ
(q)
j ].

Next by constructing the hierarchy of measurement functions φ
(k)
i via sub-

sampling (as illustrated in Figure 9) and ordering the points xi according to this

hierarchy one obtains that the I(k) × I(k) Gram matrix Θ
(k)
i,j = [φ

(k)
i ,L−1φ

(k)
j ]

corresponds to the upper left block of Θ as illustrated in Figure 10.

Figure 10: Θ and its sub-matrices Θ(k). Used from forthcoming book [8] with
permission from Cambridge University Press.

Figure 11: Correspondence between Schur complements and gamblets. Used from
forthcoming book [8] with permission from Cambridge University Press.

The elementary steps of the algorithm correspond to the computation of the
Schur complement of Θ(k) in Θ. As illustrated in Figure 11, this Schur complement
is equal to (B(k))−1, where B(k) is the stiffness matrix of the orthogonalized gam-

blets, i.e. B
(k)
i,j =

〈
χ

(k)
i , χ

(k)
j

〉
. Using the fact that B(k) is uniformly well-conditioned

and sparse (i.e. exponentially decaying away from the diagonal) we deduce the

14



Figure 12: Conditional sparsity and the screening effect. Used from forthcoming
book [8] with permission from Cambridge University Press.

sparsity of (B(k))−1 and therefore, of the Schur complement (which allows us to
skip the steps involving negligible entries of (B(k))−1).

The screening effect.
Writing ξ for the Gaussian field with covariance matrix G (emerging as the

optimal mixed strategy in the game theoretic approach), as illustrated in Figure

12, (B(k))−1
i,j is the covariance between [φ

(k)
i , ξ] and [φ

(k)
j , ξ] given [φ

(k−1)
l , ξ], ∀l, i.e.

(B(k))−1
i,j = Cov

(
[φ

(k)
i , ξ], [φ

(k)
j , ξ]

∣∣∣[φ(k−1)
l , ξ], ∀l

)
Therefore, the sparsity of (B(k))−1 corresponds to the de-correlation of the Gaus-
sian field on fine nodes after conditioning on coarse nodes (a phenomenon known
as the screening effect in kriging [14], proved and used in [7, 13] ).

2 Broader impact of the work accomplished

2.1 Brittleness/Robustness of Bayesian Inference and Ma-
chine Learning Algorithms

One of the results (initiated under FA9550-12-1-0389, completed under FA9550-
16-1-0054 and whose impact is now manifest), was the derivation of Brittleness
(non robustness) results for Bayesian estimators [10, 6, 9, 5].

Since this lack of robustness is caused by a mechanism that (1) is inher-
ent to doing inference in a continuous world with finite-information (2) implies
that consistency and robustness are conflicting requirements, we predicted that
deep/machine learning algorithms could be non robust and could lead to increased
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confidence in incorrect solutions (see talk by Mike McKerns at SciPy 2013, https:
//www.youtube.com/watch?v=o-nwSnLC6DU&feature=youtu.be&t=74 published
on July 2013).

Google engineers who were present at the talk tested these predictions for neu-
ral networks and observed in [16] (Szegedy et al, Dec 2013, Intriguing properties of
neural networks) the non robustness of these algorithms to adversarial examples.
This area has grown into the field known as “advesarial machine learning”
which studies (1) how those algorithms could be attacked by exploiting their brit-
tleness and (2) how to protect those algorithms against those attacks. Addressing
these vulnerabilities is now recognized as critical to the safety of Machine Learning
Algorithms.

2.2 The Mystic framework

FA9550-12-1-0389 supported the further development of the Mystic framework
and the broader impact is now manifest under FA9550-16-1-0054. In particu-
lar Mystic and Pathos have been used at the Intelligence Systems Support Of-
fice (ISSO) of USAF and these codes are now in the top charts in GitHub (see
https://hugovk.github.io/top-pypi-packages/ for official stats and links to code,
mystic, pathos are rank 252 with 4.141M downloads per year).

Mystic is a highly-configurable framework for highly constrained non convex
optimization and uncertainty quantification. Its environment includes Pathos, a
parallel graph execution framework providing a high-level programmatic interface
to high-performance computing. Both Mystic and Pathos were publicly released
with planned long term support and a large number of individual downloads.

Mystic and Pathos have their own webpages at http://trac.mystic.cacr.

caltech.edu/project/mystic/wiki.html and http://trac.mystic.cacr.caltech.

edu/project/pathos/wiki.html They were initially developed under 12$M NSF
IMR-MIP DANSE software project (for neutron scattering and optimization prob-
lems in material science) and upgraded for UQ calculations under the Caltech
PSAAP, the LANL/LLNL ExMatEx and the AFOSR (FA9550-12-1-0389) projects.
In addition to adding UQ components, under ExMatEx and FA9550-12-1-0389
asynchronous computing capabilities have been added to pathos. The klepto pack-
age (http://trac.mystic.cacr.caltech.edu/project/pathos/wiki/klepto.html)
has been created to provide an abstraction for storage and retrieval of objects in a
database, in memory, or on disk. Under ExMatEx and FA9550-12-1-0389 the ma-
jority of Mystic has also been converted to asynchronous computing, thus enabling
optimization to dramatically scale in size and complexity.
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3 List of publications

3.1 Published or accepted for publications

1. De-noising by thresholding operator adapted wavelets. G. R. Yoo and H.
Owhadi, 2018. arXiv:1805.10736. To appear in Statistics and Computing.

2. Conditioning Gaussian measure on Hilbert space. H. Owhadi and C. Scovel.
To appear in Journal of Mathematical and Statistical Analysis. 2018.

3. Qualitative Robustness in Bayesian Inference. ESAIM: Probability and
Statistics, 2017. H. Owhadi and C. Scovel. arXiv:1411.3984

4. Gamblets for opening the complexity-bottleneck of implicit schemes for hy-
perbolic and parabolic ODEs/PDEs with rough coefficients. Journal of Com-
putational Physics, Vol 347, pages 99-128, 2017. Houman Owhadi and Lei
Zhang. arXiv:1606.07686

5. Separability of reproducing kernel spaces. H. Owhadi and C. Scovel. Pro-
ceedings of the AMS. Volume 145, Number 5, Pages 2131-2138, 2017. arXiv:1506.04288

6. Extreme points of a ball about a measure with finite support. H. Owhadi
and C. Scovel. Communications in Mathematical Sciences. Vol. 15, No. 1,
pp. 77–96, 2017. arXiv:1504.06745

7. Multigrid with rough coefficients and Multiresolution operator decomposi-
tion from Hierarchical Information Games. H. Owhadi. SIAM Review (Re-
search spotlights), 59(1), 99-149, 2017. arXiv:1503.03467.

8. Towards Machine Wald (book chapter). H. Owhadi and C. Scovel. Springer
Handbook of Uncertainty Quantification, 2017, pages 157–191, arXiv:1508.02449.

9. Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and
C. Scovel. Communications in Mathematical Sciences, vol. 14, n. 1, pp.
83-145, 2016. arXiv:1304.7046

10. On the Brittleness of Bayesian Inference. H. Owhadi, C. Scovel and T. Sulli-
van. SIAM Review (Research spotlights), 57(4), 566-582, 2015. arXiv:1308.6306

11. Brittleness of Bayesian Inference under Finite Information in a Continuous
World. H. Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statis-
tics, vol 9, pp 1-79, 2015. arXiv:1304.6772
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3.2 Conference publications

1. The game theoretic approach to Uncertainty Quantification, reduced order
modeling and numerical analysis. H. Owhadi. 19th AIAA Non-Deterministic
Approaches Conference Grapevine, Texas, 2017.

3.2.1 Preprints

1. Statistical Numerical Approximation. H. Owhadi, F. Schäfer and C. Scovel.
Under Review in Notices of the AMS.

2. Kernel Flows: from learning kernels from data into the abyss. H. Owhadi,
G. R. Yoo, 2018. arXiv:1808.04475

3. Fast eigenpairs computation with operator adapted wavelets and hierarchical
subspace correction. H. Xie, L. Zhang and H. Owhadi, 2018. arXiv:1806.00565

4. Compression, inversion, and approximate PCA of dense kernel matrices at
near-linear computational complexity. F. Schäfer, T. J. Sullivan and H.
Owhadi. 2017. arXiv:1706.02205

5. Universal Scalable Robust Solvers from Computational Information Games
and fast eigenspace adapted Multiresolution Analysis. H. Owhadi and C.
Scovel. 2017. arXiv:1703.10761

3.2.2 Book

1. Operator adapted wavelets, fast solvers, and numerical homogenization from
a game theoretic approach to numerical approximation and algorithm design.
H. Owhadi and C. Scovel. The Cambridge Monographs on Applied and
Computational Mathematics series 2019 (Cambridge University Press).

4 List of presentations

1. November 6-8, 2015. University of Texas at Dallas. Texas Analysis and
Mathematical Physics Symposium 2015.

2. January 19 - 22, 2016. IPAM. Uncertainty Quantification for Multiscale
Stochastic Systems and Applications.

3. April 5-8, 2016. EPFL. SIAM UQ 2016. Mini-tutorial.

4. May 30 June 2, 2016. City University of Hong Kong. International Confer-
ence on Applied Mathematics.
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5. June 18-20, 2016. 4th CAM-ICCM Workshop, Multiscale and Large-scale
Scientific Computing, Chinese University of Hong Kong (CUHK).

6. August 1-5, 2016. RWTH Aachen University (Germany). XVI International
Conference on Hyperbolic Problems: Theory, Numerics, Applications. Ple-
nary.

7. January 4, 2017. AIAA SciTech. DARPA Efficient Quantification of Uncer-
tainty in Physical Systems.

8. February 27-March 3, 2017. SIAM CSE 2017, EQUiPS minisymposia.

9. April 3-7, 2017, IPAM workshop “Multiphysics, Multiscale, and Coupled
Problems in Subsurface Physics”.

10. April 10-14, 2017, “Multiscale Problems: Algorithms, Numerical Analysis
and Computation” Hausdorff Trimester Program.

11. June 5-10, 2017. ICERM. Probabilistic Scientific Computing: Statistical in-
ference approaches to numerical analysis and algorithm design (co-organizer).

12. June 19-23, 2017. Dynamics, aging and universality in complex systems.

13. September 12-15, 2017. Complex High-Dimensional Energy Landscapes Tu-
torials.

14. October 30, 2017. Computing@PNNL seminar series.

15. Januray 24, 2018. Stanford applied math seminar.

16. March 26, 2018: University of Notre Dame. Center for Informatics and
Computational Science Colloquium.

17. April 5, 2018: John Hopkins University, seminar.

18. April 6, 2018: Applied Math Colloquium, UMBC.

19. April 10, 2018: Jussieu (Paris VI). Seminaire du Laboratoire de Probabilités,
Statistique et Modélisation.

20. April 11-13, 2018. The Alan Turing Institute, London. SAMSI Workshop
on Probabilistic Numerics.

21. April 16, 2018. SIAM UQ 2018, MS17 Probabilistic Numerical Methods for
Quantification of Discretisation Error.
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22. April 20, 2018: Institut de Mathematiques de Marseille. Séminaire Proba-
bilités et Statistique.

23. April 23-27, 2018: BIRS, Numerical Analysis and Approximation Theory
meets Data Science.

24. July 10, 2018. SIAM AN 2018, MS100 Machine Learning for Scientific Com-
puting.

25. July 24, 2018. WCCM 2018, MS104.

26. November 5-7, 2018, RICAM (Linz), Multivariate Algorithms and Information-
Based Complexity.

5 Collaborations

1. Joel Tropp (Caltech). Collaboration on fast universal solvers with Gamblets.

2. Peter Schröder (Caltech). Collaboration on the fast inversion of complex
connection Laplacian with gamblets.

3. Mathieu Desbrun (Caltech). Collaboration on geometric integration and
model reduction in fluid dynamics with gamblets.

4. Vikram Gavini (University of Michigan). Collaboration on Large Scale Elec-
tronic Structure Calculations with Gamblets.

5. Lei Zhang (Shanghai Jiaotong University). Collaboration on fast eigen-
subspace decompositions and stochastic PDEs with Gamblets.

6. Hehu Xie (Chinese Academy of Sciences). Collaboration on fast eigen-
subspace decompositions with Gamblets.

7. Qingfu Zhang (China University of Petroleum). Collaboration on the appli-
cation of gamblets to transport in fractured media.

8. Bruce Suter (AFRL). Collaboration on gamblets.
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