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1.0 SUMMARY 
Dynamic Information Flow Tracking (DIFT), also called Dynamic Taint Analysis (DTA), is a 
technique for tracking the information as it flows through a program's execution. Specifically, 
some inputs or data get tainted and then these taint marks (tags) propagate usually at the 
instruction-level. While DIFT has been a fundamental concept in computer and network security 
for the past decade, it still faces open challenges that impede its widespread application in 
practice; one of them being the indirect flow propagation dilemma: should the tags involved in 
an indirect flow, e.g., in a control or address dependency, be propagated? 

Propagating all these tags, as is done for direct flows, leads to overtainting (all taintable objects 
become tainted), while not propagating them leads to undertainting (information flow becomes 
incomplete). In this report, we analytically model that decisioning problem for indirect flows, by 
optimally weighting various tradeoffs including undertainting versus overtainting, importance of 
heterogeneous code semantics and context, and we show that the complete problem is NP-hard. 

Towards tackling this problem, we design MITOS, a distributed-optimization algorithm, that: 
optimally decides about the propagation of indirect flows, is of low-complexity, is scalable, is 
able to flexibly adapt to different application scenarios and different security needs and 
converges to an optimal point.  Additionally, MITOS is applicable to most DIFT systems that 
consider an arbitrary number of tag types, and introduces the key properties of fairness and tag-
balancing to the DIFT field.  

To demonstrate MITOS's applicability in practice, we implement and evaluate MITOS on top of 
an open-source DIFT, and we shed light on the open problem. We also perform a case-study 
scenario with a real in-memory only attack and show that MITOS improves simultaneously (i) 
system's spatiotemporal overhead (up to 40%), and (ii) system's fingerprint on suspected bytes 
(up to 167%) compared to traditional DIFT, even though these metrics usually conflict. 
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2.0 INTRODUCTION 

Dynamic Information Flow Tracking (DIFT), or Dynamic Taint Analysis (DTA), systems 
operate by tainting various inputs or data of interest with some metadata (called tags) and 
keeping track of these tags during program or system execution. DIFT systems operate 
dynamically without requiring the availability of the source code, which makes them appealing 
for various types of applications, including enforcement of security policies, forensics analysis, 
and re-verse engineering. Prior work has attempted to leverage DIFT mainly for privacy and 
security purposes. For example, some early DIFT works (H. Yin, 2007)  (J. Newsome and D. 
Song, 2005) (J. R. Crandall, 2004) (G. E. Suh, 2004)(J. R. Crandall, A security assessment of the 
minos architecture, 2005) attempted to detect different types of malware by following the 
information flow. Recently, DIFT has been leveraged to address different privacy and security 
vulnerabilities not only for modern operating systems (OSes), commodity software and honeypot 
technologies (A. M. Espinoza, 2016)(M. N. Arefi, 2018) but also for various IoT platforms (I. 
Bastys, 2018) and mobile devices (B. Gu, 2013). 

Nevertheless, DIFT systems still face open challenges that impede their widespread application 
in practice. One of these challenges is the dilemma of indirect flow dependency propagation. An 
indirect flow occurs when information dependent on the program input determines from where 
and to where information flows. For example, in the code <a=b+ 1>, there is a direct flow from 
<b> to <a>, and all DIFT systems would propagate the tag of <b> to <a>. However, in the
code<a= 0 ; if (b== 1) {a= 1}; >, the value of <a> is dependent on <b>, meaning that there is an
indirect flow from <b> to <a>. Not propagating tags in these cases can lead to undertainting,
where key important information flows are missed. Propagating tags for all indirect flow
dependencies leads to overtainting, where most of the taintable objects in the system (e.g., bytes)
become tainted with little useful information being acquired. While previous works have
proposed some heuristics to tackle the problem, they usually make unrealistic assumptions to
modern systems and have several limitations. For example, Panorama (H. Yin, 2007) relies on a
human to manually label which indirect flows should be propagated. DTA++ (M. G. Kang,
2011) DTA++  or DYTAN (J. Clause, 2017) rely on offline analysis requiring multiple traces,
which does not scale well. RIFLE (N. Vachharajani, 2004) and GLIFT are based on static
analysis, and other works have prohibitive performance overheads (A. M. Espinoza, 2016) (M.
N. Arefi, 2018). While useful, these techniques can only partially combat the problem.

Another, not well-studied, tradeoff in modern DIFT, is the one between semantics and 
applicability. Most of the DIFT systems ignore semantics, in order to be able to be applied to 
machine code or to be scaled to whole live systems, including all processes and the kernel. For 
example, it is difficult to properly keep track of the flow of different semantics even after they 
get inserted into the system, as they usually have heterogeneous properties, different propagation 
speeds, and contribute differently to the execution context. Further, ignoring them or adapting an 
one-size-fits-all handling may improve the DIFT applicability, but it usually misses some 
important knowledge about the information flow, putting a heavy toll on the DIFT performance 
and the detection efficiency for attacks.  
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In this work, we propose MITOS, an analytical framework that tackles the open problem of: 
when an indirect flow should be propagated in an optimal (providing the best solution) and 
efficient (of low-complexity, scalable, flexible and easily implementable) manner. In other 
words, MITOS theoretically addresses and tackles the open problem of indirect flow propagation 
encountered in practical DIFT systems, by unifying the two, usually conflicting, worlds of theory 
and practice. To the best of our knowledge, this is the first work in that direction, namely to 
analytically study this practical problem that remains open since the past decade. Specifically, 
the contributions of our work are: 

(1) We theoretically model the open problem of optimal decisioning for indirect flow 
dependencies, optimally weighting various tradeoffs encountered in practical DIFT systems 
such as the undertaining vs. overtainting, importance of heterogeneous code semantics and 
context, and we show that the complete problem is NP-hard. 

(2)  We relax the problem and by leveraging distributed optimization we propose an algorithm 
that: optimally decides about the propagation of the indirect flows, is of low-complexity, is 
scalable, is able to flexibly adapt to different security or privacy scenarios, is applicable to 
most DIFT systems and converges to an optimal point. 

(3) To the best of our knowledge, we are the first to introduce the fairness and tag balancing 
properties to the DIFT field, which control the balancing among the propagations of different 
tags or/and tag types. It matches information-theoretic intuitions about how tags should be 
propagated: e.g., flipping a coin that has 50%−50%chance of heads-tails carries more 
information than a coin that is biased in one direction. Similarly, when tag propagation 
becomes unbalanced towards one tag (e.g., due to the considered semantics or run dynamics), 
every object is tagged, and we show that little information is gained. 

(4) To assess MITOS potential in real DIFT systems, we implemented and evaluated MITOS on 
top of FAROS, an existing open-source DIFT system (M. N. Arefi, 2018). We investigated 
the complex tradeoffs involved in the indirect flow dilemma e.g., the impact of undertainting 
vs. overtainting weight on the Pareto optimal distribution. Also, we performed a case-study 
scenario with a real in-memory attack and showed that MITOS improved simultaneously(i) 
system’s time and memory overhead (up to 40%), and (ii) system’s fingerprint on suspected 
bytes (up to167%) compared to standard DIFT, even though these metrics usually conflict. 

 

Note: MITOS, in Greek mythology, was a ball of thread, that Ariadne gave to Theseus to help 
him escape the labyrinth of Minos kingdom. As MITOS helped Theseus to reversely find his way 
back to labyrinth’s entrance by minimizing his wandering, our framework minimizes the 
incoherent tag propagations (e.g. of indirect flows), helping to illuminate the information flow 
from a certain output all the way back to the input. 
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 DIFT Methods and State of the Art 

Dynamic Information Flow Tracking (DIFT), or Dynamic Taint Analysis (DTA), a fundamental 
concept in computer and network security, is a promising method to make systems transparent 
and to enable a wide variety of applications, such as enforcement of security policies, real-time 
forensics analysis, and reverse engineering.  

The main idea is based to tag certain inputs or data (tag insertion), and then, propagating these 
tags as the program or system runs (tag propagation) with the goal of illuminating the flow of 
information.  

Tag insertion is usually straight-forward, as the bytes being involved in certain system activities 
get tagged with some metadata. For example, in MINOS (J. R. Crandall, A security assessment 
of the minos architecture, 2005), an early DIFT system, all data coming from network were 
tagged with an extra bit indicating if the byte was suspicious. 

There are two types of tag propagation flows: direct and indirect. Direct flow propagations 
(DFP) come from copy and computation dependencies. In a copy dependency, a value is copied 
from one location (e.g., from a byte, word of memory, CPU register) to another. To track this 
information flow, DIFT systems propagate the tag from the source to the destination. In 
computation dependencies, tags must be combined, e.g., after the computation of a sum between 
two variables, the tag of the result should contain both tags of variables. Indirect flow 
propagations (IFP) occur when information dependent on program input determines from where 
and to where information flows. There are two types of indirect flows: address and control 
dependencies. The follow example is an example of an address dependency: 

char InputString = "This string is tainted"; 
char OutputString [128]; 
for (i = 0; i < strlen(InputString); i++) 
OutputString[i]= lookuptable[InputString[i]]; 

We note an example in C that converts an array of tainted input from one format to another using 
a lookup table. There, as the string InputString is tainted, the string OutputString should also be 
tainted, since they carry the same information. To ensure that OutputString is properly tainted we 
check the taintedness of the address used for the load with LookupTable as its base, and 
propagate this taint. This example appears in special handling of ASCII control characters to 
ASN.1 encodings. Generally, indirect flows are expected to be the rule rather than the exception 
in modern systems, occurring in operations such as in compression/ decompression, 
encryption/decryption, hashing, switch statements, string manipulations. Indirect flows can 
create blindspots for practical DIFT analysis or vulnerabilities in security applications e.g., 
Trojans embedded in PDF documents or attacks that use encryption mechanisms are common, 
but cannot be tracked without tracking indirect flows.  

Similarly, a control dependency, illustrated in the following code: 
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char InputTainted;  
char OutputUntainted = 0;  
for (bit = 1; bit < 256; bit <<= 1){  
  if (bit & InputTainted) { OutputUntainted |= bit; } 

 

There, InputTainted is copied to OutputUntainted bit by bit. Information flows one bit at a time 
through the control dependency in the if statement. Indirect flows can create blindspots for 
practical DIFT analysis or vulnerabilities in security applications e.g., Trojans embedded in PDF 
documents or attacks that use encryption mechanisms are common, but cannot be tracked 
without tracking indirect flows 

Propagating all indirect flows can lead to overtainting, where most of the objects become tainted 
with little being be learned about the information flow. Conversely, not propagating indirect 
flows can lead to undertainting, where important knowledge about the information flow might be 
lost, which can be crucial for security applications to detect attack or violation of security 
policies. While many works have attempted to tackle this dilemma, it still remains open, and 
constitutes one of the major impedances to the widespread usage of DIFT. The focus of this work 
is to model at hand and optimally tackle this problem.  

 

3.2 Assumptions 

Tag differentiation. First, MITOS assumes that the DIFT system will leverage an arbitrary 
number of tag types. For example, it could include network tags (representing bytes coming from 
network), file tags (representing bytes coming from a file), process tags (representing bytes 
coming from the address space of a process). For the sake of presentation, we denote the 
different tag types as: t1, t2, t3, etc. Tag differentiation is a promising feature of modern DIFT 
systems since it captures the information flow from different perspectives. Note that, depending 
on the DIFT system and the security or privacy application needs, MITOS is open to the 
consideration of any type of code semantics as soon as they get captured with different tags or 
tag combinations (e.g., different data types or pointer tags).  

Provenance list. MITOS assumes that for each byte in the main memory, register bank and 
Ethernet card memory, a provenance list of tags accumulated during the system execution. 
MITOS also assumes that different tag types will have different formats and sizes depending on 
the type of information they represent; i.e., network, file, process, string, pointer tags. The 
provenance list, through the set of tags it stores, keeps all information flow history for the life 
cycle of a byte in the system. For example, the following figure illustrates the provenance list for 
the byte representing memory address #7FFFFF8. This byte came from a network source 
(IP=10.245.44.43), was read as part of the address space of a process (PID 3543), was written 
into a file (with file ID 14) and then was read as part of an address space of another process (PID 
2912).  
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Provenance list size. The provenance list size is finite, denoted as Mprov. For example, Mprov = 
10 means that each byte can keep up to 10 different tags in its provenance list.  

Shadow Memory. MITOS assumes that the provenance list of tags for each byte will be stored 
in a shadow memory, whose implementation depends on the DIFT system, e.g., hashmap or 
duplicated memory. 

3.3 Problem Definition 

We first (A) define the variables that are associated with the indirect flow dilemma 
corresponding to our control variables. Then, (B) we design a new cost function that attempts to 
optimally weight the different tradeoffs involved at the indirect flow propagation. Finally, (C) we 
define our optimization problem. 

 (A. Control Variables: n). When the DIFT system is confronted with an indirect flow 
dependency, it needs to decide whether it is worth propagating that particular tag to one 
additional byte. For the sake of presentation, let us assume that each particular tag has a unique 
ID t,i; where t (t=t1, or t=t2, etc.) indicates the tag type, and i ( i=1 or i=2, etc.) represents an 
integer that differentiates tags of same type. We now define n t,i to be the number of bytes whose 
provenance lists contain the tag with ID t,i. Throughout this work, we will often refer to nt,i as the 
number of copies of the tag with ID t,i. The vector n looks like: 

n=�
n_{1,1} ⋯ ⋯

⋮ ⋱ ⋮
⋮ ⋯ ⋱

� 

Figure 1. Provenance list of a byte 
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The number of dimensions of n changes dynamically as the system runs, since new tags are 
created/deleted due to the continuous creation/ termination of processes, network connections, 
etc. This prevents the usage of standard optimization techniques, further complicating the 
problem 

 

(B. Cost function: c (n)). We now define our cost function c (n) that dynamically weights the 
cost of α -fair undertainting and the cost of β-steep overtainting. 

Equation 1 

𝒄𝒄 (𝒏𝒏) = 𝒄𝒄  𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) + 𝝉𝝉 ∗ 𝒄𝒄  𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏)             (1) 

where 𝑐𝑐  𝑎𝑎𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝑛𝑛) is the cost of undertainting, and 𝑐𝑐  𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛) is the cost of overtainting.  

 In the next two paragraphs (see B.1 and B.2) we elaborate on these two costs. τ, that is a positive 
constant is input and dynamically weights the tradeoff between over- and under- tainting. When 
τ = 0 the cost of overtainting disappears and, thus, the undertainting cost dominates, and all tags 
are propagated. As we increase τ the emphasis moves towards the overtainting, which limits tag 
propagation. This weighting parameter is often used in multicriterion optimization problems. We 
are interested in finding Pareto efficient operating points. 

 

A solution n* is Pareto efficient if for any other feasible n, it holds: 
Equation 2 

𝒄𝒄  𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) + 𝝉𝝉 ∗ 𝒄𝒄  𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏) < 𝒄𝒄  𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏 ∗) + 𝝉𝝉 ∗ 𝒄𝒄  𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏 ∗)       (2) 
  => 𝒏𝒏 = 𝒏𝒏 ∗ 

The above relation suggests that any other solution could improve the undertainting or the 
overtainting, but not both. All Pareto efficient points can be found by scalarization, e.g. 
minimizing our considered cost function for different values of τ. 

 
 

(B1. Cost function of undertainting.) Now, we model the undertainting cost function. We 
introduce the fairness parameter α ϵ R+ that is input and balances the number of propagations for 
different tags, and the parameter ut ϵ R+ that weights the importance of different tag types. 

Equation 3 

𝒄𝒄  𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) = ∑ 𝒖𝒖𝒕𝒕  𝒕𝒕 ∑ 𝒏𝒏𝒕𝒕,𝒊𝒊
𝟏𝟏−𝜶𝜶

𝜶𝜶−𝟏𝟏𝒊𝒊       (3) 

In the following, we discuss the properties of our considered cost function. Figure 2 Considered 
cost functions for undertainting and overtainting. depicts this function for different values of α. 
When α = 1, the above function is not defined, and log is used instead. Note that, the proposed α-
fair fairness function was inspired by the fairness in resource allocation for wireless networks (N. 
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Sapountzis, 2018). It is monotonically decreasing on nt,i. This means that the more the copies of a 
tag, the lower the undertainting cost for that tag. Thus, the slope of undertainting cost is 
continuously decreasing, meaning that it has negative gradient.  

As α→∞ tag-balancing is achieved through max-min fairness. As we increase the slope becomes 
more and more steep. α→∞ the slope maximizes and thus our function attempts to maximize the 
propagation of tags with fewer copies, i.e. max-min fairness. The latter maximizes the entropy of 
the system from an information-theory perspective. This fairness has interesting implications for 
DIFT systems.  

For example, assume that a system service reads input from the network that contains the number 
of bytes that a remote machine will send as an integer, followed by the actual bytes of data. 
Suppose the service first reads the integer from the network and then allocates enough space on 
the heap for all the data based on that integer. The entire placement of data on the heap has now 
been influenced by tagged input. If address dependencies are propagated too aggressively, then 
for the rest of the lifetime of that process all information stored on the heap will become tainted 
with the tag that had been associated with that integer (a netflow tag). Other examples include, 
the scenario where a stack pointer is tainted by variable-sized arrays on the stack, or the stack 
pointer being popped or set from a register while the program counter happens to be tagged. 
Then, everything on the stack becomes tainted and starts overtainting all taintable objects in the 
system because the stack is heavily accessed. Slowinska and Bos provide more examples with 
different semantics in that direction (Bos, 2009). In all such scenarios, MITOS will adjust the tag 
propagations that attempt to hurt the system entropy.  

Tag-balancing alone may not be sufficient for a good propagation decision. Different tag types 
carry heterogeneous information (e.g., network, pointer, file) and potentially propagate 
differently in the system. This calls for schemes that are able to weight the propagation speed for 
different tag types, based on e.g. the application, the system workload, or the security policies 
implemented. Our cost function flexibly overcomes this obstacle by using ut  ≥ 0 which weights 
the importance of different tag types and can boost or decelerate their propagation respectively. 
We define u to be the vector weighting the different tag types: u = [ut1  ; ut2  ; …].  

One could even consider a tag confluence (when two or more tags come together to the same 
provenance list) to control the tag propagation of the involved tags based on a certain run 
context. For example, one could weight differently the undertainting cost when tag types tn; tm 
confluence together as that confluence might highlight a certain context scenario of interest. In 
our results we consider a study case scenario where two particular tag types confluence together 
illuminating an inmemory only attack. These considerations lead to a weighted fair optimization. 

(B2. Cost function of overtainting). If R is the memory capacity of the system in bytes (e.g., 
main memory, register bank, Ethernet card memory) and Μprov  is the maximum size of the 
provenance list, then the total tag space in the provenance lists is NR = R * Μprov. For example, if 
R = 4GB and for each byte we keep a list up to 10 elements, there are in total NR = 40 * 10 9 
provenance list elements.  

We introduce the parameter β that is an input and dictates the slope, namely steepness, on the 
overtainting cost. Then,  
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Equation 4 

𝑐𝑐  𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛) = �

∑ ∑ 𝑛𝑛𝑡𝑡,𝑖𝑖𝑖𝑖𝑡𝑡

𝑁𝑁𝑅𝑅
�
𝛽𝛽

     (4) 

In the following, we discuss the properties of our considered cost function. Figure 2 Considered 
cost functions for undertainting and overtainting depicts the function of overtainting It is 
monotonically increasing on nt,i., i.e. the larger the number of tags in the system, the higher the 
cost. Thus, its slope is continuously increasing with positive gradient. Following the standard 
penalty functions, it should have at least quadratic penalty on the memory pollution, thus we 
keep β >= 2, ensuring also that it is twice differentiable. 

 As β increases the cost of overtainting gets steeper. Similarly, to the undertainting cost, different 
tag types may impact memory pollution differently. Our cost function flexibly takes memory 
pollution into account by using o = [ot1; ot2; …] that weights the partial pollution of different 
tag types and adapts their impact on the total pollution. 

 

In the following figure we plot the undertainting cost and overtainting cost for different values of 
α and β.  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
(C. Optimization Problem). Based on the defined control variables and cost function we 
formulate our problem. 
 
Problem 1: The indirect flow propagation problem at hand is: 
Equation 5 

 

min
𝑛𝑛

   𝑐𝑐  𝛼𝛼𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝑛𝑛) + 𝑐𝑐  𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛)     (5) 

Figure 2. Considered cost functions for undertainting and overtainting 



10 
Approved for public release; distribution is unlimited. 

We now explain the physical meaning of our optimization problem. Our control variable is the 
vector n that determines the decision of propagating the tags coming from indirect flows. 
Specifically, if a tag in such a scenario is worth propagating (i.e., it improves the information 
flow), e.g. due to the semantics or context priorities, we propagate it and increase the 
corresponding value of n, otherwise we do not (see A. Control Variables). This will become 
more clear in the next subsection where we describe how n should be best derived: n is updated, 
by leveraging the marginal costs dictated by the considered cost function (see B. Cost Function) 
and the considered linear constraints, every time our system encounters an indirect flow 
leveraging distributed optimization techniques. The marginal cost will optimally take into 
consideration all the tradeoffs discussed above.  

 

This problem has two main challenges at hand.  

• First, the control variables nt,i of the considered vector n takes integer values, i.e. nt,i = 
1,2,3… since a tag can be propagated to one or several bytes. Thus, this is a NP-hard 
integer optimization problem, which is hard to solve optimally.  

• Second, the number of control variables nt,i can experience sharp increases and decreases 
in very short intervals (e.g., a video game reads data from files and downloads content 
from Internet, thus generates hundreds of file and network tags in a few milliseconds), 
thus continuously changing the dimensions of n. This further complicates the problem 
since the system dynamics and the optimal points change continuously as the system 
runs. 

 

3.4  Optimal Solution to the Problem 
 

We now tackle Problem 1.  

We start by discussing how we are going address the two major challenges discussed earlier: the 
problem is NP hard and the number of dimensions of the control variable change continuously. 
Similarly to various works, we first propose to consider the continuous relaxation of the problem 
to obtain a closed form real-valued solution. Specifically, we relax the allowed values for nt,i 
such that nt,i ϵ R+ (it takes all real values). This relaxation brings two fundamental advantages: 
first, it is possible to evaluate the quality of a feasible set of solutions; second, it is much faster to 
optimize than the original integer problem.  

Lemma 1. The relaxation of nt,i  from nt,i N+ to R+ in Problem 1 transforms it in a convex 
optimization problem.  

Proof. To show that the relaxed problem is a convex optimization problem we need to show that 
the objective function and the constraints are convex functions on the control variables. Our 
objective function is the weighted sum of the undertainting and over-tainting cost cover (n). The 
cost function of undertainting is convex for nt,i ϵ R+, as its second derivative is positive. Note 
that, the sum of convex functions is also convex, and, thus, their sum is also convex. Also, the 



11 
Approved for public release; distribution is unlimited. 

cost function of overtainting is a sum of exponential functions that are all convex, thus cover (n) 
is also convex. To sum up, our relaxed objective function is convex as it is the weighted sum of 
two convex functions. 

This relaxed problem can be solved analytically using the method of Lagrange multipliers and 
Karush Kuhn Tucker (KKT) conditions, to derive the optimal vector. 2 However, such a solution 
would require a centralized implementation that would need to (i) gather all the necessary 
information from all tags, and (ii) re-calculate the global optimal point every time a new tag is 
inserted/deleted at the system. Note that, this solution might not scale well, as new tags are 
created and deleted very frequently as the system runs, and, thus, the overhead in re-calculating 
the new optimal points can be prohibitive.  

Thus, we propose a distributed solution that scales well, namely, it dynamically adapts to the 
rapid tag creations/deletions and the system changes and show that it converges to an optimal 
point in the long term. Solution roadmap: In the following, we start with Indirect Flow 
Propagation (IFP) Scenario 1, where we assume that the source operand of the indirect flow 
attempts to propagate a single tag and the destination has at least one available space in its 
provenance list to accommodate it. Then, we generalize it to IFP Scenario 2 and we assume that 
the destination has limited available space in its provenance list, and cannot accommodate all 
tags scheduled for propagation. 

 

IFP Scenario 1: Single tag propagation with sufficient space at the destination provenance 
list. Assume an indirect flow scenario in a particular instruction where (i) the source operand has 
only one tag for potential propagation. Also, (ii) the destination has (at least) one available space 
in its provenance list, e.g., see the figure below. The store word instruction illustrated, copies 
data from a register to memory. In our example, it attempts to store a word from register t0 to the 
memory location corresponding to 7FFFFF0 + t3 = 7FFFFF0 + 8 = 7FFFFF8, given that the 
value of t3 = 8. This is an address dependency, since the value of t3 will dictate the memory 
address location that the data of register t0 will be stored, and further the system execution. Note 
that, there is a direct flow too from t0 to 7FFFFF8 that will be propagated following the basic 
DIFT rules and is out of the scope of this work. Our objective is to answer the following 
question: should the DIFT system propagate the red tag C?  
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Algorithm 1. IFP Scenario 1: Propagation of the tag with ID with sufficient space at the 
destination’ provenance list. 
1: Step1: Derive the direction of the gradient towards nT;I . 
2: Step2: Use the gradient-descent crit. for IFP decisioning. 
3:              If marginal cost < 0 then propagate the tag. 
4:             Else, block the tag. 

 

Alg. 1 shows our proposed method towards answering this question. The main idea is to take the 
indirect flow propagation decision based on the first-order optimization criterion. In the 
following two paragraphs we elaborate on the two-steps of Alg. 1.  

First, we derive the direction of the gradient towards the dimension we are interested in. In our 
case, this dimension refers to the control variable that is associated with the tag considered for 
indirect flow propagation. For the sake of presentation, we assume that the type of the tag 
considered for propagation (e.g., the red tag in Fig. 5) is T, with identification number I, i.e. the 
involved control variable nT,I (we use capital letters T; I to refer to a particular tag). The partial 
derivative of the tag involved in an indirect flow with ID T,I , namely nt,i , that will determine its 
propagation is: 

Equation 6 

𝛥𝛥𝑛𝑛𝑇𝑇,𝐼𝐼 =  𝜃𝜃 𝑐𝑐(𝑛𝑛)
𝜃𝜃 𝑛𝑛𝑇𝑇,𝐼𝐼

=  −𝑢𝑢𝑇𝑇 ∗ 𝑛𝑛𝑇𝑇,𝐼𝐼
−𝛼𝛼 + 𝜏𝜏 ∗ 𝛽𝛽 ∗ �∑ 𝑜𝑜𝑡𝑡 ∑ 𝑛𝑛𝑇𝑇,𝐼𝐼𝑖𝑖𝑡𝑡

𝑁𝑁𝑅𝑅
�
𝛽𝛽−1

   (6) 

The variable nΤ,Ι refers to the cost added by propagating that tag with ID Τ,Ι to one more byte, 
and, therefore, can be seen as the marginal cost of the indirect flow propagation.  

This marginal cost depends on: (i) the submarginal cost of undertainting that attempts to decrease 
it (left part of marginal cost) , and on (ii) the submarginal cost of overtainting that attempts to 
increase it (right part of marginal cost). Note that, while the former quantity differentiates for 

Figure 3. Address dependency example: store word sw instruction with sufficient space 



13 
Approved for public release; distribution is unlimited. 

different tags (it can be derived with local information, in practice), the latter quantity is the same 
for all tags (it is actually the memory pollution, kept in a globally available variable, in practice). 
The sign of their sum, and, thus, the direction of the gradient, follows the sign of the highest 
absolute value. Second, following the direction of the gradient, we attempt to improve our 
considered cost function. Since our function is convex and we attempt to minimize it, we need to 
follow the opposite direction of the considered gradient. More precisely, if the partial derivative 
of the marginal cost is negative, then the first-order optimization criterion suggests increasing the 
6 involved control variable by +1 and thus to propagate the indirect flow. On the other hand, if 
the partial derivative is positive such a decision would hurt our objective and thus the DIFT 
system should not propagate the tag. 

Lemma 2. [Optimal decisioning for indirect flow propagation] The optimal rule for determining 
the propagation of a tag currently involved in an indirect flow, is: 

propagate it if: nΤ,Ι < 0; block it otherwise. 

IFP Scenario 2: Multiple tag propagations with insufficient space at the destination 
provenance list. We now generalize the above scenario. Assume an indirect flow scenario where 
(i) the source operand has multiple tags for potential propagation, and (ii) the destination operand 
does not have enough space in its provenance list to accommodate all the potential tags 
scheduled for propagation, as depicted in the figure below. In this store word instruction we see 
again an address dependency from the register t3 (source) to the same memory location 7FFFFF8 
(destination). However, now the source has three potential tags for propagation and the 
destination only two available spaces in its provenance list. Our objective is to answer the 
following question: which, at maximum two, tags (out of the C, E, B) should the DIFT system 
propagate ?  

 

 

 

 

 

 

 

This is a challenging question and considering all possible combinations would require 
exponential complexity. We extend Algorithm 1 to Algorithm 2, and use a prioritized first-order 
optimization criterion, by exploiting that the improvement of the cost function can be maximized 
if we follow the gradient towards the lowest submarginal costs.  

Figure 4. Address dependency example: store word sw instruction without sufficient space 
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Algorithm 2. IFP Scenario 2: Propagation of multiple tags with limited space available in 
the destinations’ provenance list, namely A available tags space. 
1: Derive the partial derivatives (marginal costs) for all involved tags in the current IFP. 
2: Sort the tags wrt their partial derivatives increasingly. 
3: Set j = 1. // tag being considered currently for propagation. 
4: Set #props= 0. // number of successfully propagated tags. 
5: while (#props _ A) and (nΤj,Ιj < 0) 
6: Propagate tag j. 
7: #props++. // increase by 1 the propagated tags. 
8: j++ //move for the next tag. 
9: Recalculate 

 

 First, we derive all the partial derivatives of all tags involved in the considered indirect flow at 
the source using Lemma 2. (line 1, Alg. 2). Then, we sort the partial derivatives in an increasing 
order, such that the first tag (j=1) has the lowest marginal cost (line 2, Alg. 2). 3 Then, we set (i) 
the first tag to be considered for propagation to the one with lowest marginal cost i.e. j=1, and 
(ii) the tags that have been successfully propagated to 0, #props = 0 (line 3-4, Alg. 2). The while 
loop that follows keeps propagating the tags while the available space in the destination 
provenance list is not exceeded (#props <= A) and while the marginal cost of the current tag is 
negative. More precisely, if the above two conditions hold true, we propagate the tag and 
increase by +1 the counter of propagations (line 6-7, Alg. 2). Then, we move the pointer to the 
next tag (line 8, Alg. 2) and recalculate the partial derivative of the next tag since the cost of 
overtainting might have changed (line 9, Alg. 2). Since the tags are ranked according to their 
marginal cost, and the propagation decision is based on them, during each indirect flow the 
improvement in c(n) is maximal among all feasible directions (a variable nΤ,Ι  cannot change 
during an indirect flow propagation, if the tag T,I is not present in the list of the source); given 
the convexity of our cost function, this method is shown to correspond to a distributed 
implementation of a gradient decent algorithm.  

We now discuss various properties of our proposed rule in Lemma 2 and of our generic 
Algorithm 2.  

1) Our derived rule optimally decides about the propagation of all indirect flows 
encountered. It does so by optimally weighting the involved tradeoffs (e.g., undertainting 
versus overtainting, semantics and context priorities) and system dynamics (e.g., memory 
pollution).  

2) Our rule for the IFP is of low-complexity. The time complexity is O(1), since every time 
MITOS needs to make an IFP decision it only needs to sum two real numbers. For the 
space complexity, we need (i) O(NR) space for the submarginal cost of undertainting, as 
our policy is byte level attributable. Also, we only require (ii) O(1) space for the 
overtainting cost, as we keep a single estimation of the memory pollution. 

3)  It is scalable. MITOS only needs to retrieve a local value about how undertainted the tag 
is, for the IFP decisioning. This keeps MITOS scalable as its complexity doesn’t change 
on the number of tags in the system.  
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4) It is flexible, since by changing the input parameters one can flexibly weight the involved 
tradeoffs differently and capture different performance degrees based on the 7 application 
scenarios and security needs. It is also - fair, since captures different degrees of tag 
balancing.  

5)  Alg. 2 converges to an optimal point leveraging the descent direction of the first-order 
optimization criterion.  
 

Generalization to direct flows and different objectives. Modern instruction-level DIFT 
systems usually incur an intolerable overhead due to also aggressive direct flow propagations. 
MITOS can be extended to optimize the propagation of direct flows through the considered 
objective. In that case, Alg. 2 should be invoked every time the system has to make either a 
direct or an indirect flow decision. Additionally, MITOS can be used to optimize different cost 
functions for propagation decisioning. One should just: (i) change the cost function by modeling 
the tradeoffs he wants, (ii) use the new partial derivative in the tag sorting (line 2, Alg. 2), and 
then check whether the partial derivative is negative to perform the tag propagation (line 5, Alg. 
2). The nature of our proposed algorithm would stay the same, e.g., it will still be scalable, of 
low complexity, convergent, etc. 
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4.0 RESULTS AND DISCUSSIONS 
 
To evaluate MITOS applicability in practice we implemented it in an existing, open-source DIFT 
system, FAROS (M. N. Arefi, 2018). We start by detailing our implementation, and then we 
evaluate MITOS’ performance under various tradeoffs encountered in different indirect flow 
scenarios, such as undertainting vs. overtainting, tag type importance, and different fairness 
degrees in tag balancing. Then, we evaluate MITOS in a study case, where FAROS is detecting 
stealthy in-memory-only attacks. We show how the application of MITOS for all types of flows 
can not only improve FAROS’ spatiotemporal performance, but also its detection accuracy, in 
terms of recognizing the bytes that are part of an exploit. In the following, if not explicitly 
mentioned, we assume α= 1.5, β = 2, ut = ot =1, τ = 1, and that all τ values are normalized up to 
the power of 10-6. Also, unless otherwise stated, we consider the address dependencies, as 
indirect flows, in this evaluation section, and we plan to consider the control flow dependencies 
in our future work. Finally, we varied the parameters in our evaluations and reached similar 
conclusions. Finally, our discussion concludes the section. 
 
4.1. Applying MITOS to FAROS – an existing software-based DIFT 

The following figure illustrates our architecture which consists of five layers: (i) the host Linux 
14.04 machine, (ii) the QEMU virtual machine (VM) with the PANDA plugin, (iii) the 
opensource DIFT tool FAROS, (iv) MITOS implemented as a FAROS extension for the IFP 
problem, (v) Windows 7 as guest OS 4. FAROS was implemented for Windows 7. Note that, the 
type of OS does not affect the nature of the indirect flow propagation problem considered in this 
work, thus the OS choice is not expected to (directly) impact the insights offered by MITOS. 

 

 

 

 

 

 

 

 

 

 

PANDA is built upon the QEMU whole-system emulator adding to it capabilities for instruction 
level analysis including recording and replaying a system run. FAROS was implemented as an 
PANDA plugin extension leveraging direct flow propagations for malware analysis. We now 
describe the implementation of MITOS along with its interaction with PANDA and FAROS. 
PANDA provides access to all instructions emulated in a previously recorded run (steps (1)-(2)). 

Figure 5. System Architecture 
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Then, FAROS component is_DFP filters and processes the instructions that involve a direct flow 
propagation (DFP) (step (3)) and propagates all the DFPs by inspecting and modifying the 
shadow memory at the host. Then, FAROS invokes MITOS, to propagate any indirect flow 
propagations (IFPs). Next, the instructions associated with IFP are subject to Alg. 2 (step (5)). 
Specifically, MITOS inspects the shadow memory and calculates the marginal costs for all tags 
appeared in the source operand of the instruction, it sorts them and decides if they worth being 
propagated (see Alg. 2). Finally, MITOS updates the shadow memory of the propagated tags. 

 

4.2. Sensitivity Analysis 

Sensitivity analysis explores the impact of the inputs in a mathematical model (e.g., MITOS 
inputs include α) to the output (e.g., for MITOS we are interested in the indirect flow decision 
impact, memory pollution, overhead etc). We focus on three scenarios and investigate MITOS 
performance on the tradeoffs involved in the indirect flow decisioning.  

(Scenario 1: Network (1 minute record - 11 hours of replay)) We ran an one-minute network-
benchmark on Windows using the PerformanceTest tool of Passmark ( 
https://www.passmark.com/.), where the guest acts as a client and downloaded several 
megabytes. There, (i) the functions is_DFP and DFP are removed from FAROS, and (ii) both 
direct and indirect flows are forwarded to MITOS and further to Alg. 2. To do so, we replace the 
function is_IFP with is_DFP_or_IFP, i.e. MITOS now handles instructions related to both direct 
and indirect flows. 8 data from a remote server. We replayed this record multiple times with 
MITOS on top of FAROS using different values for our inputs. Below, we focus on the impact 
of our inputs on the tradeoffs involved on IFP decisioning.  

Undertainting vs. overtainting. The parameter that weights this tradeoff is τ > R+, where the 
higher the τ the more emphasis is put on the cost of overtainting. Figure 6 [x-axis] time vs. [y-axis] 
marginal costs and IFP decisions. shows how the system reacts for three different values of τ . We 
replayed the one-minute recordings three times, using different values of τ = 1; τ=0.1; τ=0.001, 
keeping all other parameters fixed, and waited until the system converges to a point at the end of 
the replay (actually, the control vector n converges to a value). Figure 6 [x-axis] time vs. [y-axis] 
marginal costs and IFP decisions., in the (a) plot, shows the marginal costs of under- and 
overtainting (y-axis) for different indirect flow propagations that MITOS encountered as a 
function of time (x-axis).  

For the sake of presentation, we have included the effect of τ at the cost of overtainting. The 
undertainting costs of different indirect flows varies; this cost is only dependent on the current 
number of copies of the considered tag. The overtainting cost is (mostly) monotonically 
increasing over time since the memory pollution is (mostly) increasing on time due to the new 
tag insertions/propagations. Figure 6 [x-axis] time vs. [y-axis] marginal costs and IFP decisions., in the 
(b) plot, shows the corresponding decisions for these indirect flows: if the cost of undertainting 
dominates the tag is propagated (and we plot +1 in the y-axis), otherwise the tag is blocked (and 
we plot -1). Since we keep a relatively high value of τ, most of the tags are blocked. In Figure 6 
[x-axis] time vs. [y-axis] marginal costs and IFP decisions., in the (c) and (d) plots, we decrease τ, 
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which further decreases the emphasis of overtainting and plot the decisions of the indirect flows 
encountered. Indeed, more tags get propagated over time due to τ decrease.  

Message: The undertainting vs. overtainting tradeoff should not be a challenge in the indirect 
flow dilemma and DIFT efficiency. Instead of applying simple heuristics that attempt to improve 
either side of that tradeoff, MITOS weights it with respect to τ, converging to a point that flexibly 
optimizes it. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Optimal distribution. We showed that for a fixed value of τ, MITOS converges to an optimal 
point. This point is an optimal point, as its found through the gradient descent criterion. Figure 7 
Optimal Points for different values of τ. depicts all optimal points for different values of τ. Each 
point in the x-axis (different τ value) corresponds to a MITOS’ run and the y-axis (c(n)) 
corresponds to the value of the cost function. Note that, this point is not necessarily a global 
optimal point. 

 Message: The optimal distribution is quite useful when one wants to investigate, or even predict, 
how a change in τ affects the cost function and performance. 

Figure 6. [x-axis] time vs. [y-axis] marginal costs and IFP decisions 
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Fairness - Tag balancing. The higher the α, the more fair MITOS is. Specifically, as α increases 
the undertainting cost becomes steeper, i.e. it penalizes more intensely the overpropagated tags. 
This attempts to maximize the tags with fewer copies. In other words, through a maxmin fairness 
MITOS can perform tag balancing based on the input. Figure 8 α vs. fairness (and tag 
balancing).corresponds to six different MITOS’ runs for six different values of α. We measure the 
fairness degree, or taint-balancing efficiency, based on the mean square error difference between 
the number of copies of different tags. The sharp deviations of the tags can be alleviated by 
adapting α, thus improving tag balancing performance, and entropy, up to 2Χ. This is important 
as traditional DIFT systems tend to overpropagate tags in multiple scenarios, consequently 
hurting their overall performance and wasting memory resources from the provenance lists.  

Message: MITOS input parameter flexibly captures different fairness degrees, in terms of tag-
balancing. We envision this to have immense impact on modern DIFT systems, since these 
systems experience situations where they tend to overpropagate certain tags. MITOS is generic 
enough to capture all these cases and handle tag balancing an optimal way. 

 

 

 

 

 

 

 

 

Tag type importance. We now focus on the tradeoff arising when tags of different tag types 
compete for propagation. Modern DIFT systems might include different tag types with different 
properties, importance, and propagation speeds. There are many reasons that warrant dynamic 

Figure 7. Optimal Points for different values of τ 

Figure 8. α vs. fairness (and tag balancing) 
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and somewhat personalized strategies to determine the weight of over vs under tainting based on 
tag type. For example, for applications handling sensitive files one might want to put a higher 
cost on undertainting so that the probability of not tracking a file tag is low. MITOS takes this 
into account through the parameters ut (determining the importance of a particular tag type), for 
all tag types t. In Figure 9 Netflow tag importance vs. portion of netflow tags that got propagated.we 
consider different values of unetflow (by keeping the remainder parameters fixed and equal to 1). 
For each value we plot in blue (netflow line in the legend) the percentage of netflow tags, 
encountered at the end of each replay, that is normalized by the maximum value taken when 
unetflow = 100. Increasing unetflow monotonically boosts the netflow tag propagation speed. The 
boosting of certain tag type propagation speed impacts how MITOS handles other tag types, 
because a speed boosting means an increase in memory pollution. For example, as shown in  
Figure 9 Netflow tag importance cs. portion of netflow tags that got propagated. the number of 
propagation of CR3 (process) tags decrease as MITOS increases the important of netflow tags. 
Note that, since export table tags are, in general, more mildly propagated compared to the CR3 
tags, the undertainting cost of the former is higher, and, thus, thus the propagation speed of 
export table tags is mildly decelerated. Results for file tags are not shown because there were no 
indirect flow propagations for them for this particular benchmark.  

Message: MITOS introduces a flexible way to dynamically fine-tune the propagation speed of 
different tag types though the tag type importance, to accommodate the inherently heterogeneity 
of tag priorities for a particular system.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Netflow tag importance vs. portion of netflow tags that got propagated 
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(Scenario 2,3: CPU and file-system (1 minute record - 12 and 11 hours of replay, respectively)) 
We evaluated MITOS in two additional scenarios, leveraging (i) a CPU-benchmark using the 
PerformanceTest tool of Passmark, where the guest OS created, ruan and terminated various 
processes performing tasks related to compression, physics, and prime numbers and (ii) a file-
benchmark, by manually creating, copying and pasting various files including other actions that 
would impact indirect flows e.g. search and replace. We could not use the file-benchmark of 
Passmark because it only uses basic file actions, which would not lead to indirect flows. For 
these two scenarios we found results similar to those detailed for Scenario 1 (Network). For 
completeness we plot the optimal distributions in Figure 10 Optimal points for different benchmark 
scenarios.. The File benchmark creates some indirect flows, with a few tags. Thus, increasing τ 
will not considerably affect the cost function after some point. The CPU benchmark is steeper 
compared to both the Network and File benchmarks, since CR3 tags are significantly more 
involved in indirect flows. 

 

 

 

 

 

 

 

 

4.3. Case study: Flagging In-Memory-Only Attacks 

We now apply MITOS in FAROS while it is flagging stealthy in-memory attacks and show the 
substantial improvement MITOS brings in spatiotemporal performance and detection efficiency. 
In particular, we study: how much time MITOS/FAROS needs to replay such an attack 
compared to the standard FAROS (time complexity), how much memory is used (space 
complexity), and how many bytes could successfully detected as suspicious (detection 
efficiency) in each case.  

In an in-memory-only attack, the attacker, usually through a shell, injects a payload inside a 
legitimate process address space. The hallmark of the in-memory-only attack is the following. 
The payload comes from the Internet and is associated with netflow tag. Then, these bytes are 
written into the kernel memory area where linking/loading operations occurs and are also 
associated with the tag export-table. FAROS flags the attack when these two tags (netflow and 
export-table) come together on a byte.  

We implemented the in-memory attacks using the Meterpreter module from Metasploit in a way 
similar to that done for FAROS (M. N. Arefi, 2018). 

Figure 10. Optimal points for different benchmark scenarios 
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 We set up the attacker’s VM (Linux Kali) and generated a shell code that ran in the victim’s VM 
(Windows 7). This opened a session for the attacker and we then perform a remote reflective 
DLL injection targeting the victim process calculator.exe. As explained earlier, we consider two 
systems and attempt to compare their performance: (i) [FAROS] propagating aggressively all 
direct flows and no indirect flows as suggested in various DIFT systems including FAROS, and 
(ii) [MITOS] propagating all flows (direct and indirect) at the MITOS level. For (ii) we 
generalize MITOS to also capture and optimize direct flows, as explained earlier.  

The spatiotemporal complexity and the detection performance of both systems is depicted in the 
following table.  We ran six Metasploit shells (reverse https, reverse https proxy, reverse tcp rc4 
dns, reverse tcp rc4, reverse tcp) and show the average performance. While FAROS aggressively 
propagates all tags (M. N. Arefi, 2018), MITOS propagates only the tags that are important 
based on our considered objective that measures the information flow (see Alg. 2). We note that 
MITOS achieves the following improvements simultaneously (even though they usually come in 
an antagonistic fashion): (i) it propagates fewer tags than FAROS by further alleviating the space 
and time needed for the tracking analysis 1.65X and 1.11X times respectively, and (ii) it can 
successfully detect 2.67X times more bytes that were involved in the in-memory attack.  

 

Table 1. In-memory attack: MITOS vs. FAROS 

Variable FAROS MITOS IMPROVEMENT 
Time (sec) 837 509 1.65 X 
Space (Mega bytes) 2.21 1.99 1.11 X 
Detected Bytes 543 1449 2.67 X 
 

 

Message: MITOS opens new horizons of how information flow can be measured and optimized in 
modern DIFT systems where spatiotemporal complexity emerges as a key performance 
bottleneck that penalizes the enforcement of security policies, forensics analysis, real-time 
system inspection and reverse engineering. 

 

4.4. Discussion and Future Work 

MITOS consists of an analytical algorithm and set of optimal policies for the open problem of 
indirect flow propagation in modern DIFT systems.  

From a theoretical viewpoint, MITOS is novel as it analytically models the tradeoffs between 
undertainting and overtainting and between the importance of heterogeneous code semantics and 
context (e.g., when different tags come across to the same provenance list). It also introduces 
fairness and tag-balancing: two key properties for the success of modern DIFT, and investigates 
the impact of different -fair degrees on system performance. While the complete problem is 
shown to be NP-hard, MITOS provides the optimal rules for indirect flow propagation using 
distributed optimization.  
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From a systems viewpoint, MITOS is distributed, scalable, flexible, of low complexity, 
applicable to most DIFT systems. In our extensive performance evaluation we demonstrated that 
it can be easily applied to an existing software-based DIFT system, and then shed some light on 
the various dimensions of the open problem. Additionally, we performed a study case scenario 
with an in-memory only attack. There, we showed that MITOS can improve simultaneously 
spatiotemporal complexity up to 40% and the detection efficiency up to 167%, compared to 
traditional DIFT.  

Summing up, MITOS analytically studies and addresses a problem of DIFT systems that has 
been open for the last decade: the problem of whether indirect flows should be propagated or not; 
a dilemma that impedes the application of DIFT to practice. Then, we demonstrate our optimal 
decisioning framework under an existing DIFT system. In the remainder of the section we 
discuss our future work directions and some limitations of MITOS.  

Scheduling management in the lists. We have assumed that the provenance lists follow a First-In-
First-Out (FIFO) queue: we drop the head of the list if the list is full and an additional tag 
attempts to enter. We defer to future work the design of a proper tag scheduling and dropping 
decisioning using penalty functions for indirect flows, as Matzakos et al. did for delay tolerant 
networks (P. Matzakos, 2018).  

Additional optimization degrees and semantic considerations. We plan to modify our objective 
to consider how often tags are propagated at specific program counter locations and different 
semantics contexts, e.g., the confluence of different types of data at a program counter location. 
Additionally, based on the application scenario one can easily extend our framework and 
consider τ as an additional control variable that would change dynamically based on the system 
dynamics to further improve performance or decrease memory pollution. Similarly, one could 
consider provenance list sizes that are dynamically changing, while keeping their sum constant. 
Also, we plan to evaluate MITOS in DIFT systems with different application scenarios that do 
not consider the dilemma of indirect flow propagation, beyond FAROS, e.g. including the “If 
This Then What system” that explores the impact of information flow tracking on several IoT 
attacks (I. Bastys, 2018). 

 MITOS in Hardware. To ensure implementation flexibility for different hardware platforms, 
MITOS can be implemented as a configurable component in a System on Chip (SoC). 
Configuration parameters for the MITOS algorithm can be saved in newly added model specific 
registers, allowing an interface to a trusted OS module or platform loader to set up the interfaces. 
Information flow during execution, tag information can be stored in dictionary-like structures 
that reside in a segmented portion of main memory. Segmentation can be performed during 
platform initialization, such as the Pre-EFI Initialization (PEI) portion of Unified Extensible 
Firmware Interface (UEFI), much like the enclave page cache is reserved for usage in Intel’s 
Software Guard Extensions (SGX). Recently accessed information can be stored in a MITOS-
specialized series of caches to mask memory latency. We move the computational process 
employed by MITOS to decide tag propagation to specialized hardware. We extract data flow 
information directly from the CPU as code executes. For out of order cores, we look at the 
commit stage in the CPU, as to capture the proper architectural state and not violate execution 
model. The decision on whether to propagate tag information is then performed by hardware.  
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Limitations. Note that, as our implementation was based on FAROS and PANDA, we 
encountered several limitations in the performance evaluation. For example, FAROS poses a 
large overhead on the host machine: e.g., the memory required to replay a record increases 
exponentially on the record duration, prohibiting us to run scenarios longer of one minute. Also, 
PANDA restricts the size of the record and further the system activities that can be recorded 
simultaneously. The latter prevented us from running complex evaluation scenarios, e.g., run 
multiple attacks of benchmark scenarios jointly. Finally, note that FAROS runs on Windows 7, 
restricting our OS choice for our case study analysis. While the OS itself does not affect the 
nature of the open IFP problem and the insights offered by MITOS, we plan to also apply 
MITOS in more modern OSes in our future work. 
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5.0  CONCLUSIONS 
In this research work we propose MITOS, an iterative algorithm along with set of policies for 
optimal propagation decisioning under an indirect flow for modern DIFT systems. We have 
taken into consideration the tradeoffs of undertaining versus overtainting, different semantics and 
run context priorities, and different -fairness degrees. We then pointed out how fairness relates to 
tag balancing and entropy maximization, and we further claim that they are key properties to 
improve performance in modern DIFT. Putting everything together, MITOS theoretically studies 
and tackles the open problem of indirect flow propagation encountered in practical DIFT 
systems, by unifying the two, usually conflicting, worlds of theory and practice, opening new 
horizons on how DIFT should optimize their performance. Experimental evaluation sheds light 
on the open problem of indirect flow propagation and investigates the complex tradeoffs 
involved. Additionally, we performed a case-study scenario with a real in-memory attack and 
showed that MITOS improves simultaneously (i) system’s time and memory overhead (up to 
40%), and (ii) system’s fingerprint on suspected bytes (up to 167%) compared to standard DIFT, 
even though these metrics are usually antagonistic.
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LIST OF ACRONYMS, ABBREVIATIONS AND SYMBOLS 

ACRONYM DESCRIPTION 

DIFT Dynamic Information Flow Tracking 

DFP Direct Flow Propagation 

IFP  Indirect Flow Propagation 

2-D 2-dimension

SYMBOL DESCRIPTION 

t t = t1, t2,... ; tag type (e.g., t1 = network, t2 = process, etc.) 
i i = 1,2,... ; increasing number that differentiates the tags belonging to the same 

type 
n t,i number of copies in memory for the tag with unique ID t,i 
n 2-D optimization vector (control variable vector)
α * fairness degree in undertainting cost
β * * steepness of the overtainting cost 
τ * weight for the undertainting vs. overtainting tradeoff 
u t * weight of tag type t while considering semantics, context and tag types 
o t* weight of tag type t for the memory pollution 
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