
AFRL-RY-WP-TR-2019-0135

MITOS: OPTIMAL DECISIONING FOR THE INDIRECT
FLOW PROPAGATION DILEMMA IN DYNAMIC
INFORMATION FLOW TRACKING SYSTEMS
Nicholas Sapountzis and Daniela Oliveira

University of Florida

DECEMBER 2019
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

December 2019 Final 30 June 2015 – 1 July 2019
4. TITLE AND SUBTITLE

MITOS: OPTIMAL DECISIONING FOR THE INDIRECT FLOW
PROPAGATION DILEMMA IN DYNAMIC INFORMATION FLOW
TRACKING SYSTEMS

5a. CONTRACT NUMBER
FA8650-15-C-7565

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)
Nicholas Sapountzis and Daniela Oliveira

5d. PROJECT NUMBER
1000

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1B3

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Florida
601 Gale Lemerand Dr
Gainesville, Florida, 32603

AFRL-RY-WP-TR-2019-0135

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced
Research Projects Agency
(DARPA/I2O)
675 North Randolph St.
Arlington, VA 22203

AFRL/RYWA
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2019-0135

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research deemed exempt from public affairs security and policy
review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy clarification memorandum
dated 16 Jan 09. Report contains color.

14. ABSTRACT
Dynamic Information Flow Tracking (DIFT) is a technique for tracking the information as it flows through a program's
execution. Specifically, some inputs or data get tainted and then these taint marks (tags) propagate usually at the
instruction-level. While DIFT has been a fundamental concept in computer and network security for the past decade, it
still faces open challenges that impede its widespread application in practice; one of them being the indirect flow
propagation dilemma: should the tags involved in an indirect flow, e.g., in a control or address dependency, be
propagated? Propagating all these tags, as is done for direct flows, leads to overtainting, while not propagating those
leads to undertainting. In this work, we analytically model that decisioning problem for indirect flows, by optimally
weighting various tradeoffs including undertainting versus overtainting. Towards tackling this problem, we design and
implement MITOS, a distributed-optimization algorithm that optimally decides about the propagation of indirect flows.
We also perform a case-study scenario with a real in-memory only attack and show that MITOS improves
simultaneously (i) system's spatiotemporal overhead and (ii) system's fingerprint on suspected bytes (up to 167%)
compared to traditional DIFT, even though these metrics usually conflict.

15. SUBJECT TERMS
dynamic information flow tracking, distributed optimization, direct flows, indirect flows, in memory attacks

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 32

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Tod Reinhart
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution is unlimited.

TABLE OF CONTENTS
Section Page

List of Figures .. iii

List of Tables ... iii

List of Equations .. iii

1.0 SUMMARY ... 1

2.0 INTRODUCTION .. 2

3.0 METHODS, ASSUMPTIONS AND PROCEDURES ... 4

3.1 DIFT Methods and State of the Art .. 4

3.2 Assumptions ... 5

3.3 Problem Definition ... 6

3.4 Optimal Solution to the Problem .. 10

4.0 RESULTS AND DISCUSSIONS .. 16

4.1 Applying MITOS to FAROS – an existing software-based DIFT .. 16

4.2 Sensitivity Analysis .. 17

4.3 Case study: Flagging In-Memory-Only Attacks ... 21

4.4 Discussion and Future Work .. 22

5.0 CONCLUSIONS .. 25

6.0 REFERENCES ... 26

LIST OF ACRONYMS & SYMBOLS .. 27

ii
Approved for public release; distribution is unlimited.

LIST OF FIGURES
Figure Page

Figure 1. Provenance list of a byte .. 6
Figure 2. Considered cost functions for undertainting and overtainting ... 9
Figure 3. Address dependency example: store word sw instruction with sufficient space 12
Figure 4. Address dependency example: store word sw instruction without sufficient space 13
Figure 5. System Architecture .. 16
Figure 6. [x-axis] time vs. [y-axis] marginal costs and IFP decisions .. 18
Figure 7. Optimal Points for different values of τ 19
Figure 8. α vs. fairness (and tag balancing) .. 1 9
Figure 9. Netflow tag importance vs. portion of netflow tags that got propagated 20
Figure 10. Optimal points for different benchmark scenarios .. 21

LIST OF TABLES
Table Page

Table 1. In-memory attack: MITOS vs. FAROS ... 22

LIST OF EQUATIONS
Equation Page

Equation 1 ... 7
Equation 2 ... 7
Equation 3 ... 7
Equation 4 ... 9
Equation 5 ... 9
Equation 6 ... 12

1
Approved for public release; distribution is unlimited.

1.0 SUMMARY
Dynamic Information Flow Tracking (DIFT), also called Dynamic Taint Analysis (DTA), is a
technique for tracking the information as it flows through a program's execution. Specifically,
some inputs or data get tainted and then these taint marks (tags) propagate usually at the
instruction-level. While DIFT has been a fundamental concept in computer and network security
for the past decade, it still faces open challenges that impede its widespread application in
practice; one of them being the indirect flow propagation dilemma: should the tags involved in
an indirect flow, e.g., in a control or address dependency, be propagated?

Propagating all these tags, as is done for direct flows, leads to overtainting (all taintable objects
become tainted), while not propagating them leads to undertainting (information flow becomes
incomplete). In this report, we analytically model that decisioning problem for indirect flows, by
optimally weighting various tradeoffs including undertainting versus overtainting, importance of
heterogeneous code semantics and context, and we show that the complete problem is NP-hard.

Towards tackling this problem, we design MITOS, a distributed-optimization algorithm, that:
optimally decides about the propagation of indirect flows, is of low-complexity, is scalable, is
able to flexibly adapt to different application scenarios and different security needs and
converges to an optimal point. Additionally, MITOS is applicable to most DIFT systems that
consider an arbitrary number of tag types, and introduces the key properties of fairness and tag-
balancing to the DIFT field.

To demonstrate MITOS's applicability in practice, we implement and evaluate MITOS on top of
an open-source DIFT, and we shed light on the open problem. We also perform a case-study
scenario with a real in-memory only attack and show that MITOS improves simultaneously (i)
system's spatiotemporal overhead (up to 40%), and (ii) system's fingerprint on suspected bytes
(up to 167%) compared to traditional DIFT, even though these metrics usually conflict.

2
Approved for public release; distribution is unlimited.

2.0 INTRODUCTION

Dynamic Information Flow Tracking (DIFT), or Dynamic Taint Analysis (DTA), systems
operate by tainting various inputs or data of interest with some metadata (called tags) and
keeping track of these tags during program or system execution. DIFT systems operate
dynamically without requiring the availability of the source code, which makes them appealing
for various types of applications, including enforcement of security policies, forensics analysis,
and re-verse engineering. Prior work has attempted to leverage DIFT mainly for privacy and
security purposes. For example, some early DIFT works (H. Yin, 2007) (J. Newsome and D.
Song, 2005) (J. R. Crandall, 2004) (G. E. Suh, 2004)(J. R. Crandall, A security assessment of the
minos architecture, 2005) attempted to detect different types of malware by following the
information flow. Recently, DIFT has been leveraged to address different privacy and security
vulnerabilities not only for modern operating systems (OSes), commodity software and honeypot
technologies (A. M. Espinoza, 2016)(M. N. Arefi, 2018) but also for various IoT platforms (I.
Bastys, 2018) and mobile devices (B. Gu, 2013).

Nevertheless, DIFT systems still face open challenges that impede their widespread application
in practice. One of these challenges is the dilemma of indirect flow dependency propagation. An
indirect flow occurs when information dependent on the program input determines from where
and to where information flows. For example, in the code <a=b+ 1>, there is a direct flow from
 to <a>, and all DIFT systems would propagate the tag of to <a>. However, in the
code<a= 0 ; if (b== 1) {a= 1}; >, the value of <a> is dependent on , meaning that there is an
indirect flow from to <a>. Not propagating tags in these cases can lead to undertainting,
where key important information flows are missed. Propagating tags for all indirect flow
dependencies leads to overtainting, where most of the taintable objects in the system (e.g., bytes)
become tainted with little useful information being acquired. While previous works have
proposed some heuristics to tackle the problem, they usually make unrealistic assumptions to
modern systems and have several limitations. For example, Panorama (H. Yin, 2007) relies on a
human to manually label which indirect flows should be propagated. DTA++ (M. G. Kang,
2011) DTA++ or DYTAN (J. Clause, 2017) rely on offline analysis requiring multiple traces,
which does not scale well. RIFLE (N. Vachharajani, 2004) and GLIFT are based on static
analysis, and other works have prohibitive performance overheads (A. M. Espinoza, 2016) (M.
N. Arefi, 2018). While useful, these techniques can only partially combat the problem.

Another, not well-studied, tradeoff in modern DIFT, is the one between semantics and
applicability. Most of the DIFT systems ignore semantics, in order to be able to be applied to
machine code or to be scaled to whole live systems, including all processes and the kernel. For
example, it is difficult to properly keep track of the flow of different semantics even after they
get inserted into the system, as they usually have heterogeneous properties, different propagation
speeds, and contribute differently to the execution context. Further, ignoring them or adapting an
one-size-fits-all handling may improve the DIFT applicability, but it usually misses some
important knowledge about the information flow, putting a heavy toll on the DIFT performance
and the detection efficiency for attacks.

3
Approved for public release; distribution is unlimited.

In this work, we propose MITOS, an analytical framework that tackles the open problem of:
when an indirect flow should be propagated in an optimal (providing the best solution) and
efficient (of low-complexity, scalable, flexible and easily implementable) manner. In other
words, MITOS theoretically addresses and tackles the open problem of indirect flow propagation
encountered in practical DIFT systems, by unifying the two, usually conflicting, worlds of theory
and practice. To the best of our knowledge, this is the first work in that direction, namely to
analytically study this practical problem that remains open since the past decade. Specifically,
the contributions of our work are:

(1) We theoretically model the open problem of optimal decisioning for indirect flow
dependencies, optimally weighting various tradeoffs encountered in practical DIFT systems
such as the undertaining vs. overtainting, importance of heterogeneous code semantics and
context, and we show that the complete problem is NP-hard.

(2) We relax the problem and by leveraging distributed optimization we propose an algorithm
that: optimally decides about the propagation of the indirect flows, is of low-complexity, is
scalable, is able to flexibly adapt to different security or privacy scenarios, is applicable to
most DIFT systems and converges to an optimal point.

(3) To the best of our knowledge, we are the first to introduce the fairness and tag balancing
properties to the DIFT field, which control the balancing among the propagations of different
tags or/and tag types. It matches information-theoretic intuitions about how tags should be
propagated: e.g., flipping a coin that has 50%−50%chance of heads-tails carries more
information than a coin that is biased in one direction. Similarly, when tag propagation
becomes unbalanced towards one tag (e.g., due to the considered semantics or run dynamics),
every object is tagged, and we show that little information is gained.

(4) To assess MITOS potential in real DIFT systems, we implemented and evaluated MITOS on
top of FAROS, an existing open-source DIFT system (M. N. Arefi, 2018). We investigated
the complex tradeoffs involved in the indirect flow dilemma e.g., the impact of undertainting
vs. overtainting weight on the Pareto optimal distribution. Also, we performed a case-study
scenario with a real in-memory attack and showed that MITOS improved simultaneously(i)
system’s time and memory overhead (up to 40%), and (ii) system’s fingerprint on suspected
bytes (up to167%) compared to standard DIFT, even though these metrics usually conflict.

Note: MITOS, in Greek mythology, was a ball of thread, that Ariadne gave to Theseus to help
him escape the labyrinth of Minos kingdom. As MITOS helped Theseus to reversely find his way
back to labyrinth’s entrance by minimizing his wandering, our framework minimizes the
incoherent tag propagations (e.g. of indirect flows), helping to illuminate the information flow
from a certain output all the way back to the input.

4
Approved for public release; distribution is unlimited.

3.0 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 DIFT Methods and State of the Art

Dynamic Information Flow Tracking (DIFT), or Dynamic Taint Analysis (DTA), a fundamental
concept in computer and network security, is a promising method to make systems transparent
and to enable a wide variety of applications, such as enforcement of security policies, real-time
forensics analysis, and reverse engineering.

The main idea is based to tag certain inputs or data (tag insertion), and then, propagating these
tags as the program or system runs (tag propagation) with the goal of illuminating the flow of
information.

Tag insertion is usually straight-forward, as the bytes being involved in certain system activities
get tagged with some metadata. For example, in MINOS (J. R. Crandall, A security assessment
of the minos architecture, 2005), an early DIFT system, all data coming from network were
tagged with an extra bit indicating if the byte was suspicious.

There are two types of tag propagation flows: direct and indirect. Direct flow propagations
(DFP) come from copy and computation dependencies. In a copy dependency, a value is copied
from one location (e.g., from a byte, word of memory, CPU register) to another. To track this
information flow, DIFT systems propagate the tag from the source to the destination. In
computation dependencies, tags must be combined, e.g., after the computation of a sum between
two variables, the tag of the result should contain both tags of variables. Indirect flow
propagations (IFP) occur when information dependent on program input determines from where
and to where information flows. There are two types of indirect flows: address and control
dependencies. The follow example is an example of an address dependency:

char InputString = "This string is tainted";
char OutputString [128];
for (i = 0; i < strlen(InputString); i++)
OutputString[i]= lookuptable[InputString[i]];

We note an example in C that converts an array of tainted input from one format to another using
a lookup table. There, as the string InputString is tainted, the string OutputString should also be
tainted, since they carry the same information. To ensure that OutputString is properly tainted we
check the taintedness of the address used for the load with LookupTable as its base, and
propagate this taint. This example appears in special handling of ASCII control characters to
ASN.1 encodings. Generally, indirect flows are expected to be the rule rather than the exception
in modern systems, occurring in operations such as in compression/ decompression,
encryption/decryption, hashing, switch statements, string manipulations. Indirect flows can
create blindspots for practical DIFT analysis or vulnerabilities in security applications e.g.,
Trojans embedded in PDF documents or attacks that use encryption mechanisms are common,
but cannot be tracked without tracking indirect flows.

Similarly, a control dependency, illustrated in the following code:

5
Approved for public release; distribution is unlimited.

char InputTainted;
char OutputUntainted = 0;
for (bit = 1; bit < 256; bit <<= 1){
 if (bit & InputTainted) { OutputUntainted |= bit; }

There, InputTainted is copied to OutputUntainted bit by bit. Information flows one bit at a time
through the control dependency in the if statement. Indirect flows can create blindspots for
practical DIFT analysis or vulnerabilities in security applications e.g., Trojans embedded in PDF
documents or attacks that use encryption mechanisms are common, but cannot be tracked
without tracking indirect flows

Propagating all indirect flows can lead to overtainting, where most of the objects become tainted
with little being be learned about the information flow. Conversely, not propagating indirect
flows can lead to undertainting, where important knowledge about the information flow might be
lost, which can be crucial for security applications to detect attack or violation of security
policies. While many works have attempted to tackle this dilemma, it still remains open, and
constitutes one of the major impedances to the widespread usage of DIFT. The focus of this work
is to model at hand and optimally tackle this problem.

3.2 Assumptions

Tag differentiation. First, MITOS assumes that the DIFT system will leverage an arbitrary
number of tag types. For example, it could include network tags (representing bytes coming from
network), file tags (representing bytes coming from a file), process tags (representing bytes
coming from the address space of a process). For the sake of presentation, we denote the
different tag types as: t1, t2, t3, etc. Tag differentiation is a promising feature of modern DIFT
systems since it captures the information flow from different perspectives. Note that, depending
on the DIFT system and the security or privacy application needs, MITOS is open to the
consideration of any type of code semantics as soon as they get captured with different tags or
tag combinations (e.g., different data types or pointer tags).

Provenance list. MITOS assumes that for each byte in the main memory, register bank and
Ethernet card memory, a provenance list of tags accumulated during the system execution.
MITOS also assumes that different tag types will have different formats and sizes depending on
the type of information they represent; i.e., network, file, process, string, pointer tags. The
provenance list, through the set of tags it stores, keeps all information flow history for the life
cycle of a byte in the system. For example, the following figure illustrates the provenance list for
the byte representing memory address #7FFFFF8. This byte came from a network source
(IP=10.245.44.43), was read as part of the address space of a process (PID 3543), was written
into a file (with file ID 14) and then was read as part of an address space of another process (PID
2912).

6
Approved for public release; distribution is unlimited.

Provenance list size. The provenance list size is finite, denoted as Mprov. For example, Mprov =
10 means that each byte can keep up to 10 different tags in its provenance list.

Shadow Memory. MITOS assumes that the provenance list of tags for each byte will be stored
in a shadow memory, whose implementation depends on the DIFT system, e.g., hashmap or
duplicated memory.

3.3 Problem Definition

We first (A) define the variables that are associated with the indirect flow dilemma
corresponding to our control variables. Then, (B) we design a new cost function that attempts to
optimally weight the different tradeoffs involved at the indirect flow propagation. Finally, (C) we
define our optimization problem.

 (A. Control Variables: n). When the DIFT system is confronted with an indirect flow
dependency, it needs to decide whether it is worth propagating that particular tag to one
additional byte. For the sake of presentation, let us assume that each particular tag has a unique
ID t,i; where t (t=t1, or t=t2, etc.) indicates the tag type, and i (i=1 or i=2, etc.) represents an
integer that differentiates tags of same type. We now define n t,i to be the number of bytes whose
provenance lists contain the tag with ID t,i. Throughout this work, we will often refer to nt,i as the
number of copies of the tag with ID t,i. The vector n looks like:

n=�
n_{1,1} ⋯ ⋯

⋮ ⋱ ⋮
⋮ ⋯ ⋱

�

Figure 1. Provenance list of a byte

7
Approved for public release; distribution is unlimited.

The number of dimensions of n changes dynamically as the system runs, since new tags are
created/deleted due to the continuous creation/ termination of processes, network connections,
etc. This prevents the usage of standard optimization techniques, further complicating the
problem

(B. Cost function: c (n)). We now define our cost function c (n) that dynamically weights the
cost of α -fair undertainting and the cost of β-steep overtainting.

Equation 1

𝒄𝒄 (𝒏𝒏) = 𝒄𝒄 𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) + 𝝉𝝉 ∗ 𝒄𝒄 𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏) (1)

where 𝑐𝑐 𝑎𝑎𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝑛𝑛) is the cost of undertainting, and 𝑐𝑐 𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛) is the cost of overtainting.

 In the next two paragraphs (see B.1 and B.2) we elaborate on these two costs. τ, that is a positive
constant is input and dynamically weights the tradeoff between over- and under- tainting. When
τ = 0 the cost of overtainting disappears and, thus, the undertainting cost dominates, and all tags
are propagated. As we increase τ the emphasis moves towards the overtainting, which limits tag
propagation. This weighting parameter is often used in multicriterion optimization problems. We
are interested in finding Pareto efficient operating points.

A solution n* is Pareto efficient if for any other feasible n, it holds:
Equation 2

𝒄𝒄 𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) + 𝝉𝝉 ∗ 𝒄𝒄 𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏) < 𝒄𝒄 𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏 ∗) + 𝝉𝝉 ∗ 𝒄𝒄 𝜷𝜷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒏𝒏 ∗) (2)
 => 𝒏𝒏 = 𝒏𝒏 ∗

The above relation suggests that any other solution could improve the undertainting or the
overtainting, but not both. All Pareto efficient points can be found by scalarization, e.g.
minimizing our considered cost function for different values of τ.

(B1. Cost function of undertainting.) Now, we model the undertainting cost function. We
introduce the fairness parameter α ϵ R+ that is input and balances the number of propagations for
different tags, and the parameter ut ϵ R+ that weights the importance of different tag types.

Equation 3

𝒄𝒄 𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒏𝒏) = ∑ 𝒖𝒖𝒕𝒕 𝒕𝒕 ∑ 𝒏𝒏𝒕𝒕,𝒊𝒊
𝟏𝟏−𝜶𝜶

𝜶𝜶−𝟏𝟏𝒊𝒊 (3)

In the following, we discuss the properties of our considered cost function. Figure 2 Considered
cost functions for undertainting and overtainting. depicts this function for different values of α.
When α = 1, the above function is not defined, and log is used instead. Note that, the proposed α-
fair fairness function was inspired by the fairness in resource allocation for wireless networks (N.

8
Approved for public release; distribution is unlimited.

Sapountzis, 2018). It is monotonically decreasing on nt,i. This means that the more the copies of a
tag, the lower the undertainting cost for that tag. Thus, the slope of undertainting cost is
continuously decreasing, meaning that it has negative gradient.

As α→∞ tag-balancing is achieved through max-min fairness. As we increase the slope becomes
more and more steep. α→∞ the slope maximizes and thus our function attempts to maximize the
propagation of tags with fewer copies, i.e. max-min fairness. The latter maximizes the entropy of
the system from an information-theory perspective. This fairness has interesting implications for
DIFT systems.

For example, assume that a system service reads input from the network that contains the number
of bytes that a remote machine will send as an integer, followed by the actual bytes of data.
Suppose the service first reads the integer from the network and then allocates enough space on
the heap for all the data based on that integer. The entire placement of data on the heap has now
been influenced by tagged input. If address dependencies are propagated too aggressively, then
for the rest of the lifetime of that process all information stored on the heap will become tainted
with the tag that had been associated with that integer (a netflow tag). Other examples include,
the scenario where a stack pointer is tainted by variable-sized arrays on the stack, or the stack
pointer being popped or set from a register while the program counter happens to be tagged.
Then, everything on the stack becomes tainted and starts overtainting all taintable objects in the
system because the stack is heavily accessed. Slowinska and Bos provide more examples with
different semantics in that direction (Bos, 2009). In all such scenarios, MITOS will adjust the tag
propagations that attempt to hurt the system entropy.

Tag-balancing alone may not be sufficient for a good propagation decision. Different tag types
carry heterogeneous information (e.g., network, pointer, file) and potentially propagate
differently in the system. This calls for schemes that are able to weight the propagation speed for
different tag types, based on e.g. the application, the system workload, or the security policies
implemented. Our cost function flexibly overcomes this obstacle by using ut ≥ 0 which weights
the importance of different tag types and can boost or decelerate their propagation respectively.
We define u to be the vector weighting the different tag types: u = [ut1 ; ut2 ; …].

One could even consider a tag confluence (when two or more tags come together to the same
provenance list) to control the tag propagation of the involved tags based on a certain run
context. For example, one could weight differently the undertainting cost when tag types tn; tm
confluence together as that confluence might highlight a certain context scenario of interest. In
our results we consider a study case scenario where two particular tag types confluence together
illuminating an inmemory only attack. These considerations lead to a weighted fair optimization.

(B2. Cost function of overtainting). If R is the memory capacity of the system in bytes (e.g.,
main memory, register bank, Ethernet card memory) and Μprov is the maximum size of the
provenance list, then the total tag space in the provenance lists is NR = R * Μprov. For example, if
R = 4GB and for each byte we keep a list up to 10 elements, there are in total NR = 40 * 10 9
provenance list elements.

We introduce the parameter β that is an input and dictates the slope, namely steepness, on the
overtainting cost. Then,

9
Approved for public release; distribution is unlimited.

Equation 4

𝑐𝑐 𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛) = �

∑ ∑ 𝑛𝑛𝑡𝑡,𝑖𝑖𝑖𝑖𝑡𝑡

𝑁𝑁𝑅𝑅
�
𝛽𝛽

 (4)

In the following, we discuss the properties of our considered cost function. Figure 2 Considered
cost functions for undertainting and overtainting depicts the function of overtainting It is
monotonically increasing on nt,i., i.e. the larger the number of tags in the system, the higher the
cost. Thus, its slope is continuously increasing with positive gradient. Following the standard
penalty functions, it should have at least quadratic penalty on the memory pollution, thus we
keep β >= 2, ensuring also that it is twice differentiable.

 As β increases the cost of overtainting gets steeper. Similarly, to the undertainting cost, different
tag types may impact memory pollution differently. Our cost function flexibly takes memory
pollution into account by using o = [ot1; ot2; …] that weights the partial pollution of different
tag types and adapts their impact on the total pollution.

In the following figure we plot the undertainting cost and overtainting cost for different values of
α and β.

(C. Optimization Problem). Based on the defined control variables and cost function we
formulate our problem.

Problem 1: The indirect flow propagation problem at hand is:
Equation 5

min
𝑛𝑛

 𝑐𝑐 𝛼𝛼𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝑛𝑛) + 𝑐𝑐 𝛽𝛽
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝑛𝑛) (5)

Figure 2. Considered cost functions for undertainting and overtainting

10
Approved for public release; distribution is unlimited.

We now explain the physical meaning of our optimization problem. Our control variable is the
vector n that determines the decision of propagating the tags coming from indirect flows.
Specifically, if a tag in such a scenario is worth propagating (i.e., it improves the information
flow), e.g. due to the semantics or context priorities, we propagate it and increase the
corresponding value of n, otherwise we do not (see A. Control Variables). This will become
more clear in the next subsection where we describe how n should be best derived: n is updated,
by leveraging the marginal costs dictated by the considered cost function (see B. Cost Function)
and the considered linear constraints, every time our system encounters an indirect flow
leveraging distributed optimization techniques. The marginal cost will optimally take into
consideration all the tradeoffs discussed above.

This problem has two main challenges at hand.

• First, the control variables nt,i of the considered vector n takes integer values, i.e. nt,i =
1,2,3… since a tag can be propagated to one or several bytes. Thus, this is a NP-hard
integer optimization problem, which is hard to solve optimally.

• Second, the number of control variables nt,i can experience sharp increases and decreases
in very short intervals (e.g., a video game reads data from files and downloads content
from Internet, thus generates hundreds of file and network tags in a few milliseconds),
thus continuously changing the dimensions of n. This further complicates the problem
since the system dynamics and the optimal points change continuously as the system
runs.

3.4 Optimal Solution to the Problem

We now tackle Problem 1.

We start by discussing how we are going address the two major challenges discussed earlier: the
problem is NP hard and the number of dimensions of the control variable change continuously.
Similarly to various works, we first propose to consider the continuous relaxation of the problem
to obtain a closed form real-valued solution. Specifically, we relax the allowed values for nt,i
such that nt,i ϵ R+ (it takes all real values). This relaxation brings two fundamental advantages:
first, it is possible to evaluate the quality of a feasible set of solutions; second, it is much faster to
optimize than the original integer problem.

Lemma 1. The relaxation of nt,i from nt,i N+ to R+ in Problem 1 transforms it in a convex
optimization problem.

Proof. To show that the relaxed problem is a convex optimization problem we need to show that
the objective function and the constraints are convex functions on the control variables. Our
objective function is the weighted sum of the undertainting and over-tainting cost cover (n). The
cost function of undertainting is convex for nt,i ϵ R+, as its second derivative is positive. Note
that, the sum of convex functions is also convex, and, thus, their sum is also convex. Also, the

11
Approved for public release; distribution is unlimited.

cost function of overtainting is a sum of exponential functions that are all convex, thus cover (n)
is also convex. To sum up, our relaxed objective function is convex as it is the weighted sum of
two convex functions.

This relaxed problem can be solved analytically using the method of Lagrange multipliers and
Karush Kuhn Tucker (KKT) conditions, to derive the optimal vector. 2 However, such a solution
would require a centralized implementation that would need to (i) gather all the necessary
information from all tags, and (ii) re-calculate the global optimal point every time a new tag is
inserted/deleted at the system. Note that, this solution might not scale well, as new tags are
created and deleted very frequently as the system runs, and, thus, the overhead in re-calculating
the new optimal points can be prohibitive.

Thus, we propose a distributed solution that scales well, namely, it dynamically adapts to the
rapid tag creations/deletions and the system changes and show that it converges to an optimal
point in the long term. Solution roadmap: In the following, we start with Indirect Flow
Propagation (IFP) Scenario 1, where we assume that the source operand of the indirect flow
attempts to propagate a single tag and the destination has at least one available space in its
provenance list to accommodate it. Then, we generalize it to IFP Scenario 2 and we assume that
the destination has limited available space in its provenance list, and cannot accommodate all
tags scheduled for propagation.

IFP Scenario 1: Single tag propagation with sufficient space at the destination provenance
list. Assume an indirect flow scenario in a particular instruction where (i) the source operand has
only one tag for potential propagation. Also, (ii) the destination has (at least) one available space
in its provenance list, e.g., see the figure below. The store word instruction illustrated, copies
data from a register to memory. In our example, it attempts to store a word from register t0 to the
memory location corresponding to 7FFFFF0 + t3 = 7FFFFF0 + 8 = 7FFFFF8, given that the
value of t3 = 8. This is an address dependency, since the value of t3 will dictate the memory
address location that the data of register t0 will be stored, and further the system execution. Note
that, there is a direct flow too from t0 to 7FFFFF8 that will be propagated following the basic
DIFT rules and is out of the scope of this work. Our objective is to answer the following
question: should the DIFT system propagate the red tag C?

12
Approved for public release; distribution is unlimited.

Algorithm 1. IFP Scenario 1: Propagation of the tag with ID with sufficient space at the
destination’ provenance list.
1: Step1: Derive the direction of the gradient towards nT;I .
2: Step2: Use the gradient-descent crit. for IFP decisioning.
3: If marginal cost < 0 then propagate the tag.
4: Else, block the tag.

Alg. 1 shows our proposed method towards answering this question. The main idea is to take the
indirect flow propagation decision based on the first-order optimization criterion. In the
following two paragraphs we elaborate on the two-steps of Alg. 1.

First, we derive the direction of the gradient towards the dimension we are interested in. In our
case, this dimension refers to the control variable that is associated with the tag considered for
indirect flow propagation. For the sake of presentation, we assume that the type of the tag
considered for propagation (e.g., the red tag in Fig. 5) is T, with identification number I, i.e. the
involved control variable nT,I (we use capital letters T; I to refer to a particular tag). The partial
derivative of the tag involved in an indirect flow with ID T,I , namely nt,i , that will determine its
propagation is:

Equation 6

𝛥𝛥𝑛𝑛𝑇𝑇,𝐼𝐼 = 𝜃𝜃 𝑐𝑐(𝑛𝑛)
𝜃𝜃 𝑛𝑛𝑇𝑇,𝐼𝐼

= −𝑢𝑢𝑇𝑇 ∗ 𝑛𝑛𝑇𝑇,𝐼𝐼
−𝛼𝛼 + 𝜏𝜏 ∗ 𝛽𝛽 ∗ �∑ 𝑜𝑜𝑡𝑡 ∑ 𝑛𝑛𝑇𝑇,𝐼𝐼𝑖𝑖𝑡𝑡

𝑁𝑁𝑅𝑅
�
𝛽𝛽−1

 (6)

The variable nΤ,Ι refers to the cost added by propagating that tag with ID Τ,Ι to one more byte,
and, therefore, can be seen as the marginal cost of the indirect flow propagation.

This marginal cost depends on: (i) the submarginal cost of undertainting that attempts to decrease
it (left part of marginal cost) , and on (ii) the submarginal cost of overtainting that attempts to
increase it (right part of marginal cost). Note that, while the former quantity differentiates for

Figure 3. Address dependency example: store word sw instruction with sufficient space

13
Approved for public release; distribution is unlimited.

different tags (it can be derived with local information, in practice), the latter quantity is the same
for all tags (it is actually the memory pollution, kept in a globally available variable, in practice).
The sign of their sum, and, thus, the direction of the gradient, follows the sign of the highest
absolute value. Second, following the direction of the gradient, we attempt to improve our
considered cost function. Since our function is convex and we attempt to minimize it, we need to
follow the opposite direction of the considered gradient. More precisely, if the partial derivative
of the marginal cost is negative, then the first-order optimization criterion suggests increasing the
6 involved control variable by +1 and thus to propagate the indirect flow. On the other hand, if
the partial derivative is positive such a decision would hurt our objective and thus the DIFT
system should not propagate the tag.

Lemma 2. [Optimal decisioning for indirect flow propagation] The optimal rule for determining
the propagation of a tag currently involved in an indirect flow, is:

propagate it if: nΤ,Ι < 0; block it otherwise.

IFP Scenario 2: Multiple tag propagations with insufficient space at the destination
provenance list. We now generalize the above scenario. Assume an indirect flow scenario where
(i) the source operand has multiple tags for potential propagation, and (ii) the destination operand
does not have enough space in its provenance list to accommodate all the potential tags
scheduled for propagation, as depicted in the figure below. In this store word instruction we see
again an address dependency from the register t3 (source) to the same memory location 7FFFFF8
(destination). However, now the source has three potential tags for propagation and the
destination only two available spaces in its provenance list. Our objective is to answer the
following question: which, at maximum two, tags (out of the C, E, B) should the DIFT system
propagate ?

This is a challenging question and considering all possible combinations would require
exponential complexity. We extend Algorithm 1 to Algorithm 2, and use a prioritized first-order
optimization criterion, by exploiting that the improvement of the cost function can be maximized
if we follow the gradient towards the lowest submarginal costs.

Figure 4. Address dependency example: store word sw instruction without sufficient space

14
Approved for public release; distribution is unlimited.

Algorithm 2. IFP Scenario 2: Propagation of multiple tags with limited space available in
the destinations’ provenance list, namely A available tags space.
1: Derive the partial derivatives (marginal costs) for all involved tags in the current IFP.
2: Sort the tags wrt their partial derivatives increasingly.
3: Set j = 1. // tag being considered currently for propagation.
4: Set #props= 0. // number of successfully propagated tags.
5: while (#props _ A) and (nΤj,Ιj < 0)
6: Propagate tag j.
7: #props++. // increase by 1 the propagated tags.
8: j++ //move for the next tag.
9: Recalculate

 First, we derive all the partial derivatives of all tags involved in the considered indirect flow at
the source using Lemma 2. (line 1, Alg. 2). Then, we sort the partial derivatives in an increasing
order, such that the first tag (j=1) has the lowest marginal cost (line 2, Alg. 2). 3 Then, we set (i)
the first tag to be considered for propagation to the one with lowest marginal cost i.e. j=1, and
(ii) the tags that have been successfully propagated to 0, #props = 0 (line 3-4, Alg. 2). The while
loop that follows keeps propagating the tags while the available space in the destination
provenance list is not exceeded (#props <= A) and while the marginal cost of the current tag is
negative. More precisely, if the above two conditions hold true, we propagate the tag and
increase by +1 the counter of propagations (line 6-7, Alg. 2). Then, we move the pointer to the
next tag (line 8, Alg. 2) and recalculate the partial derivative of the next tag since the cost of
overtainting might have changed (line 9, Alg. 2). Since the tags are ranked according to their
marginal cost, and the propagation decision is based on them, during each indirect flow the
improvement in c(n) is maximal among all feasible directions (a variable nΤ,Ι cannot change
during an indirect flow propagation, if the tag T,I is not present in the list of the source); given
the convexity of our cost function, this method is shown to correspond to a distributed
implementation of a gradient decent algorithm.

We now discuss various properties of our proposed rule in Lemma 2 and of our generic
Algorithm 2.

1) Our derived rule optimally decides about the propagation of all indirect flows
encountered. It does so by optimally weighting the involved tradeoffs (e.g., undertainting
versus overtainting, semantics and context priorities) and system dynamics (e.g., memory
pollution).

2) Our rule for the IFP is of low-complexity. The time complexity is O(1), since every time
MITOS needs to make an IFP decision it only needs to sum two real numbers. For the
space complexity, we need (i) O(NR) space for the submarginal cost of undertainting, as
our policy is byte level attributable. Also, we only require (ii) O(1) space for the
overtainting cost, as we keep a single estimation of the memory pollution.

3) It is scalable. MITOS only needs to retrieve a local value about how undertainted the tag
is, for the IFP decisioning. This keeps MITOS scalable as its complexity doesn’t change
on the number of tags in the system.

15
Approved for public release; distribution is unlimited.

4) It is flexible, since by changing the input parameters one can flexibly weight the involved
tradeoffs differently and capture different performance degrees based on the 7 application
scenarios and security needs. It is also - fair, since captures different degrees of tag
balancing.

5) Alg. 2 converges to an optimal point leveraging the descent direction of the first-order
optimization criterion.

Generalization to direct flows and different objectives. Modern instruction-level DIFT
systems usually incur an intolerable overhead due to also aggressive direct flow propagations.
MITOS can be extended to optimize the propagation of direct flows through the considered
objective. In that case, Alg. 2 should be invoked every time the system has to make either a
direct or an indirect flow decision. Additionally, MITOS can be used to optimize different cost
functions for propagation decisioning. One should just: (i) change the cost function by modeling
the tradeoffs he wants, (ii) use the new partial derivative in the tag sorting (line 2, Alg. 2), and
then check whether the partial derivative is negative to perform the tag propagation (line 5, Alg.
2). The nature of our proposed algorithm would stay the same, e.g., it will still be scalable, of
low complexity, convergent, etc.

16
Approved for public release; distribution is unlimited.

4.0 RESULTS AND DISCUSSIONS

To evaluate MITOS applicability in practice we implemented it in an existing, open-source DIFT
system, FAROS (M. N. Arefi, 2018). We start by detailing our implementation, and then we
evaluate MITOS’ performance under various tradeoffs encountered in different indirect flow
scenarios, such as undertainting vs. overtainting, tag type importance, and different fairness
degrees in tag balancing. Then, we evaluate MITOS in a study case, where FAROS is detecting
stealthy in-memory-only attacks. We show how the application of MITOS for all types of flows
can not only improve FAROS’ spatiotemporal performance, but also its detection accuracy, in
terms of recognizing the bytes that are part of an exploit. In the following, if not explicitly
mentioned, we assume α= 1.5, β = 2, ut = ot =1, τ = 1, and that all τ values are normalized up to
the power of 10-6. Also, unless otherwise stated, we consider the address dependencies, as
indirect flows, in this evaluation section, and we plan to consider the control flow dependencies
in our future work. Finally, we varied the parameters in our evaluations and reached similar
conclusions. Finally, our discussion concludes the section.

4.1. Applying MITOS to FAROS – an existing software-based DIFT

The following figure illustrates our architecture which consists of five layers: (i) the host Linux
14.04 machine, (ii) the QEMU virtual machine (VM) with the PANDA plugin, (iii) the
opensource DIFT tool FAROS, (iv) MITOS implemented as a FAROS extension for the IFP
problem, (v) Windows 7 as guest OS 4. FAROS was implemented for Windows 7. Note that, the
type of OS does not affect the nature of the indirect flow propagation problem considered in this
work, thus the OS choice is not expected to (directly) impact the insights offered by MITOS.

PANDA is built upon the QEMU whole-system emulator adding to it capabilities for instruction
level analysis including recording and replaying a system run. FAROS was implemented as an
PANDA plugin extension leveraging direct flow propagations for malware analysis. We now
describe the implementation of MITOS along with its interaction with PANDA and FAROS.
PANDA provides access to all instructions emulated in a previously recorded run (steps (1)-(2)).

Figure 5. System Architecture

17
Approved for public release; distribution is unlimited.

Then, FAROS component is_DFP filters and processes the instructions that involve a direct flow
propagation (DFP) (step (3)) and propagates all the DFPs by inspecting and modifying the
shadow memory at the host. Then, FAROS invokes MITOS, to propagate any indirect flow
propagations (IFPs). Next, the instructions associated with IFP are subject to Alg. 2 (step (5)).
Specifically, MITOS inspects the shadow memory and calculates the marginal costs for all tags
appeared in the source operand of the instruction, it sorts them and decides if they worth being
propagated (see Alg. 2). Finally, MITOS updates the shadow memory of the propagated tags.

4.2. Sensitivity Analysis

Sensitivity analysis explores the impact of the inputs in a mathematical model (e.g., MITOS
inputs include α) to the output (e.g., for MITOS we are interested in the indirect flow decision
impact, memory pollution, overhead etc). We focus on three scenarios and investigate MITOS
performance on the tradeoffs involved in the indirect flow decisioning.

(Scenario 1: Network (1 minute record - 11 hours of replay)) We ran an one-minute network-
benchmark on Windows using the PerformanceTest tool of Passmark (
https://www.passmark.com/.), where the guest acts as a client and downloaded several
megabytes. There, (i) the functions is_DFP and DFP are removed from FAROS, and (ii) both
direct and indirect flows are forwarded to MITOS and further to Alg. 2. To do so, we replace the
function is_IFP with is_DFP_or_IFP, i.e. MITOS now handles instructions related to both direct
and indirect flows. 8 data from a remote server. We replayed this record multiple times with
MITOS on top of FAROS using different values for our inputs. Below, we focus on the impact
of our inputs on the tradeoffs involved on IFP decisioning.

Undertainting vs. overtainting. The parameter that weights this tradeoff is τ > R+, where the
higher the τ the more emphasis is put on the cost of overtainting. Figure 6 [x-axis] time vs. [y-axis]
marginal costs and IFP decisions. shows how the system reacts for three different values of τ . We
replayed the one-minute recordings three times, using different values of τ = 1; τ=0.1; τ=0.001,
keeping all other parameters fixed, and waited until the system converges to a point at the end of
the replay (actually, the control vector n converges to a value). Figure 6 [x-axis] time vs. [y-axis]
marginal costs and IFP decisions., in the (a) plot, shows the marginal costs of under- and
overtainting (y-axis) for different indirect flow propagations that MITOS encountered as a
function of time (x-axis).

For the sake of presentation, we have included the effect of τ at the cost of overtainting. The
undertainting costs of different indirect flows varies; this cost is only dependent on the current
number of copies of the considered tag. The overtainting cost is (mostly) monotonically
increasing over time since the memory pollution is (mostly) increasing on time due to the new
tag insertions/propagations. Figure 6 [x-axis] time vs. [y-axis] marginal costs and IFP decisions., in the
(b) plot, shows the corresponding decisions for these indirect flows: if the cost of undertainting
dominates the tag is propagated (and we plot +1 in the y-axis), otherwise the tag is blocked (and
we plot -1). Since we keep a relatively high value of τ, most of the tags are blocked. In Figure 6
[x-axis] time vs. [y-axis] marginal costs and IFP decisions., in the (c) and (d) plots, we decrease τ,

18
Approved for public release; distribution is unlimited.

which further decreases the emphasis of overtainting and plot the decisions of the indirect flows
encountered. Indeed, more tags get propagated over time due to τ decrease.

Message: The undertainting vs. overtainting tradeoff should not be a challenge in the indirect
flow dilemma and DIFT efficiency. Instead of applying simple heuristics that attempt to improve
either side of that tradeoff, MITOS weights it with respect to τ, converging to a point that flexibly
optimizes it.

Optimal distribution. We showed that for a fixed value of τ, MITOS converges to an optimal
point. This point is an optimal point, as its found through the gradient descent criterion. Figure 7
Optimal Points for different values of τ. depicts all optimal points for different values of τ. Each
point in the x-axis (different τ value) corresponds to a MITOS’ run and the y-axis (c(n))
corresponds to the value of the cost function. Note that, this point is not necessarily a global
optimal point.

 Message: The optimal distribution is quite useful when one wants to investigate, or even predict,
how a change in τ affects the cost function and performance.

Figure 6. [x-axis] time vs. [y-axis] marginal costs and IFP decisions

19
Approved for public release; distribution is unlimited.

Fairness - Tag balancing. The higher the α, the more fair MITOS is. Specifically, as α increases
the undertainting cost becomes steeper, i.e. it penalizes more intensely the overpropagated tags.
This attempts to maximize the tags with fewer copies. In other words, through a maxmin fairness
MITOS can perform tag balancing based on the input. Figure 8 α vs. fairness (and tag
balancing).corresponds to six different MITOS’ runs for six different values of α. We measure the
fairness degree, or taint-balancing efficiency, based on the mean square error difference between
the number of copies of different tags. The sharp deviations of the tags can be alleviated by
adapting α, thus improving tag balancing performance, and entropy, up to 2Χ. This is important
as traditional DIFT systems tend to overpropagate tags in multiple scenarios, consequently
hurting their overall performance and wasting memory resources from the provenance lists.

Message: MITOS input parameter flexibly captures different fairness degrees, in terms of tag-
balancing. We envision this to have immense impact on modern DIFT systems, since these
systems experience situations where they tend to overpropagate certain tags. MITOS is generic
enough to capture all these cases and handle tag balancing an optimal way.

Tag type importance. We now focus on the tradeoff arising when tags of different tag types
compete for propagation. Modern DIFT systems might include different tag types with different
properties, importance, and propagation speeds. There are many reasons that warrant dynamic

Figure 7. Optimal Points for different values of τ

Figure 8. α vs. fairness (and tag balancing)

20
Approved for public release; distribution is unlimited.

and somewhat personalized strategies to determine the weight of over vs under tainting based on
tag type. For example, for applications handling sensitive files one might want to put a higher
cost on undertainting so that the probability of not tracking a file tag is low. MITOS takes this
into account through the parameters ut (determining the importance of a particular tag type), for
all tag types t. In Figure 9 Netflow tag importance vs. portion of netflow tags that got propagated.we
consider different values of unetflow (by keeping the remainder parameters fixed and equal to 1).
For each value we plot in blue (netflow line in the legend) the percentage of netflow tags,
encountered at the end of each replay, that is normalized by the maximum value taken when
unetflow = 100. Increasing unetflow monotonically boosts the netflow tag propagation speed. The
boosting of certain tag type propagation speed impacts how MITOS handles other tag types,
because a speed boosting means an increase in memory pollution. For example, as shown in
Figure 9 Netflow tag importance cs. portion of netflow tags that got propagated. the number of
propagation of CR3 (process) tags decrease as MITOS increases the important of netflow tags.
Note that, since export table tags are, in general, more mildly propagated compared to the CR3
tags, the undertainting cost of the former is higher, and, thus, thus the propagation speed of
export table tags is mildly decelerated. Results for file tags are not shown because there were no
indirect flow propagations for them for this particular benchmark.

Message: MITOS introduces a flexible way to dynamically fine-tune the propagation speed of
different tag types though the tag type importance, to accommodate the inherently heterogeneity
of tag priorities for a particular system.

Figure 9. Netflow tag importance vs. portion of netflow tags that got propagated

21
Approved for public release; distribution is unlimited.

(Scenario 2,3: CPU and file-system (1 minute record - 12 and 11 hours of replay, respectively))
We evaluated MITOS in two additional scenarios, leveraging (i) a CPU-benchmark using the
PerformanceTest tool of Passmark, where the guest OS created, ruan and terminated various
processes performing tasks related to compression, physics, and prime numbers and (ii) a file-
benchmark, by manually creating, copying and pasting various files including other actions that
would impact indirect flows e.g. search and replace. We could not use the file-benchmark of
Passmark because it only uses basic file actions, which would not lead to indirect flows. For
these two scenarios we found results similar to those detailed for Scenario 1 (Network). For
completeness we plot the optimal distributions in Figure 10 Optimal points for different benchmark
scenarios.. The File benchmark creates some indirect flows, with a few tags. Thus, increasing τ
will not considerably affect the cost function after some point. The CPU benchmark is steeper
compared to both the Network and File benchmarks, since CR3 tags are significantly more
involved in indirect flows.

4.3. Case study: Flagging In-Memory-Only Attacks

We now apply MITOS in FAROS while it is flagging stealthy in-memory attacks and show the
substantial improvement MITOS brings in spatiotemporal performance and detection efficiency.
In particular, we study: how much time MITOS/FAROS needs to replay such an attack
compared to the standard FAROS (time complexity), how much memory is used (space
complexity), and how many bytes could successfully detected as suspicious (detection
efficiency) in each case.

In an in-memory-only attack, the attacker, usually through a shell, injects a payload inside a
legitimate process address space. The hallmark of the in-memory-only attack is the following.
The payload comes from the Internet and is associated with netflow tag. Then, these bytes are
written into the kernel memory area where linking/loading operations occurs and are also
associated with the tag export-table. FAROS flags the attack when these two tags (netflow and
export-table) come together on a byte.

We implemented the in-memory attacks using the Meterpreter module from Metasploit in a way
similar to that done for FAROS (M. N. Arefi, 2018).

Figure 10. Optimal points for different benchmark scenarios

22
Approved for public release; distribution is unlimited.

 We set up the attacker’s VM (Linux Kali) and generated a shell code that ran in the victim’s VM
(Windows 7). This opened a session for the attacker and we then perform a remote reflective
DLL injection targeting the victim process calculator.exe. As explained earlier, we consider two
systems and attempt to compare their performance: (i) [FAROS] propagating aggressively all
direct flows and no indirect flows as suggested in various DIFT systems including FAROS, and
(ii) [MITOS] propagating all flows (direct and indirect) at the MITOS level. For (ii) we
generalize MITOS to also capture and optimize direct flows, as explained earlier.

The spatiotemporal complexity and the detection performance of both systems is depicted in the
following table. We ran six Metasploit shells (reverse https, reverse https proxy, reverse tcp rc4
dns, reverse tcp rc4, reverse tcp) and show the average performance. While FAROS aggressively
propagates all tags (M. N. Arefi, 2018), MITOS propagates only the tags that are important
based on our considered objective that measures the information flow (see Alg. 2). We note that
MITOS achieves the following improvements simultaneously (even though they usually come in
an antagonistic fashion): (i) it propagates fewer tags than FAROS by further alleviating the space
and time needed for the tracking analysis 1.65X and 1.11X times respectively, and (ii) it can
successfully detect 2.67X times more bytes that were involved in the in-memory attack.

Table 1. In-memory attack: MITOS vs. FAROS

Variable FAROS MITOS IMPROVEMENT
Time (sec) 837 509 1.65 X
Space (Mega bytes) 2.21 1.99 1.11 X
Detected Bytes 543 1449 2.67 X

Message: MITOS opens new horizons of how information flow can be measured and optimized in
modern DIFT systems where spatiotemporal complexity emerges as a key performance
bottleneck that penalizes the enforcement of security policies, forensics analysis, real-time
system inspection and reverse engineering.

4.4. Discussion and Future Work

MITOS consists of an analytical algorithm and set of optimal policies for the open problem of
indirect flow propagation in modern DIFT systems.

From a theoretical viewpoint, MITOS is novel as it analytically models the tradeoffs between
undertainting and overtainting and between the importance of heterogeneous code semantics and
context (e.g., when different tags come across to the same provenance list). It also introduces
fairness and tag-balancing: two key properties for the success of modern DIFT, and investigates
the impact of different -fair degrees on system performance. While the complete problem is
shown to be NP-hard, MITOS provides the optimal rules for indirect flow propagation using
distributed optimization.

23
Approved for public release; distribution is unlimited.

From a systems viewpoint, MITOS is distributed, scalable, flexible, of low complexity,
applicable to most DIFT systems. In our extensive performance evaluation we demonstrated that
it can be easily applied to an existing software-based DIFT system, and then shed some light on
the various dimensions of the open problem. Additionally, we performed a study case scenario
with an in-memory only attack. There, we showed that MITOS can improve simultaneously
spatiotemporal complexity up to 40% and the detection efficiency up to 167%, compared to
traditional DIFT.

Summing up, MITOS analytically studies and addresses a problem of DIFT systems that has
been open for the last decade: the problem of whether indirect flows should be propagated or not;
a dilemma that impedes the application of DIFT to practice. Then, we demonstrate our optimal
decisioning framework under an existing DIFT system. In the remainder of the section we
discuss our future work directions and some limitations of MITOS.

Scheduling management in the lists. We have assumed that the provenance lists follow a First-In-
First-Out (FIFO) queue: we drop the head of the list if the list is full and an additional tag
attempts to enter. We defer to future work the design of a proper tag scheduling and dropping
decisioning using penalty functions for indirect flows, as Matzakos et al. did for delay tolerant
networks (P. Matzakos, 2018).

Additional optimization degrees and semantic considerations. We plan to modify our objective
to consider how often tags are propagated at specific program counter locations and different
semantics contexts, e.g., the confluence of different types of data at a program counter location.
Additionally, based on the application scenario one can easily extend our framework and
consider τ as an additional control variable that would change dynamically based on the system
dynamics to further improve performance or decrease memory pollution. Similarly, one could
consider provenance list sizes that are dynamically changing, while keeping their sum constant.
Also, we plan to evaluate MITOS in DIFT systems with different application scenarios that do
not consider the dilemma of indirect flow propagation, beyond FAROS, e.g. including the “If
This Then What system” that explores the impact of information flow tracking on several IoT
attacks (I. Bastys, 2018).

 MITOS in Hardware. To ensure implementation flexibility for different hardware platforms,
MITOS can be implemented as a configurable component in a System on Chip (SoC).
Configuration parameters for the MITOS algorithm can be saved in newly added model specific
registers, allowing an interface to a trusted OS module or platform loader to set up the interfaces.
Information flow during execution, tag information can be stored in dictionary-like structures
that reside in a segmented portion of main memory. Segmentation can be performed during
platform initialization, such as the Pre-EFI Initialization (PEI) portion of Unified Extensible
Firmware Interface (UEFI), much like the enclave page cache is reserved for usage in Intel’s
Software Guard Extensions (SGX). Recently accessed information can be stored in a MITOS-
specialized series of caches to mask memory latency. We move the computational process
employed by MITOS to decide tag propagation to specialized hardware. We extract data flow
information directly from the CPU as code executes. For out of order cores, we look at the
commit stage in the CPU, as to capture the proper architectural state and not violate execution
model. The decision on whether to propagate tag information is then performed by hardware.

24
Approved for public release; distribution is unlimited.

Limitations. Note that, as our implementation was based on FAROS and PANDA, we
encountered several limitations in the performance evaluation. For example, FAROS poses a
large overhead on the host machine: e.g., the memory required to replay a record increases
exponentially on the record duration, prohibiting us to run scenarios longer of one minute. Also,
PANDA restricts the size of the record and further the system activities that can be recorded
simultaneously. The latter prevented us from running complex evaluation scenarios, e.g., run
multiple attacks of benchmark scenarios jointly. Finally, note that FAROS runs on Windows 7,
restricting our OS choice for our case study analysis. While the OS itself does not affect the
nature of the open IFP problem and the insights offered by MITOS, we plan to also apply
MITOS in more modern OSes in our future work.

25
Approved for public release; distribution is unlimited.

5.0 CONCLUSIONS
In this research work we propose MITOS, an iterative algorithm along with set of policies for
optimal propagation decisioning under an indirect flow for modern DIFT systems. We have
taken into consideration the tradeoffs of undertaining versus overtainting, different semantics and
run context priorities, and different -fairness degrees. We then pointed out how fairness relates to
tag balancing and entropy maximization, and we further claim that they are key properties to
improve performance in modern DIFT. Putting everything together, MITOS theoretically studies
and tackles the open problem of indirect flow propagation encountered in practical DIFT
systems, by unifying the two, usually conflicting, worlds of theory and practice, opening new
horizons on how DIFT should optimize their performance. Experimental evaluation sheds light
on the open problem of indirect flow propagation and investigates the complex tradeoffs
involved. Additionally, we performed a case-study scenario with a real in-memory attack and
showed that MITOS improves simultaneously (i) system’s time and memory overhead (up to
40%), and (ii) system’s fingerprint on suspected bytes (up to 167%) compared to standard DIFT,
even though these metrics are usually antagonistic.

26
Approved for public release; distribution is unlimited.

6.0 REFERENCES

BIBLIOGRAPHY
https://www.passmark.com/. (n.d.).

A. M. Espinoza, J. K.-A. (2016). Vdift: Vector-based dynamic information flow tracking with
application to locating cryptographic keys for reverse engineering,. IEEE ARES.

B. Gu, X. L. (2013). D2taint: Differentiated and dynamic information flow tracking on
smartphones for numerous data sources. IEEE INFOCOM.

Bos, A. S. (2009). ointless tainting?: evaluating the practicality of pointer tainting. ACM EuroSYS.

G. E. Suh, J. W. (2004). Secure program execution via dynamic information flow tracking. ACM
ASPLOS.

H. Yin, D. S. (2007). Panorama: capturing system-wide information flow for malware detection
and analysis. ACM CCS.

I. Bastys, M. B. (2018). If this then what?: Controlling flows in IoT apps. ACM CCS.

J. Clause, W. L. (2017). Dytan: a generic dynamic taint analysis framework,. ACM ISSTA.

J. Newsome and D. Song. (2005). Dynamic taint analysis for automatic detection analysis, and
signaturegeneration of exploits on commodity software. NDSS.

J. R. Crandall, F. T. (2004). Minos: Control data attack prevention orthogonal to memory model
orthogonal to memory model,”. IEEE/ACM MICRO.

J. R. Crandall, F. T. (2005). A security assessment of the minos architecture. ACM SIGARCH
Computer Architecture News.

M. G. Kang, S. M. (2011). “Dta++: dynamic taint analysis with targeted control-flow
propagation.”. NDSS.

M. N. Arefi, G. A. (2018). Faros: Illuminating in-memory injection attacks via provenance-based
whole-system dynamic information flow tracking. IEEE/IFIP DSN.

N. Sapountzis, T. S. (2018). Joint Optimization of User Association and Dynamic TDD for Ultra-
Dense Networks. IEEE INFOCOM.

N. Vachharajani, M. J. (2004). Rifle: An architectural framework for user-centric information-
flow security,. IEEE/ACM MICRO.

P. Matzakos, T. S. (2018). Joint scheduling and buffer management policies for dtn applications
of different traffic classes. IEEE Transactions on Mobile Computing.

27
Approved for public release; distribution is unlimited.

LIST OF ACRONYMS, ABBREVIATIONS AND SYMBOLS

ACRONYM DESCRIPTION

DIFT Dynamic Information Flow Tracking

DFP Direct Flow Propagation

IFP Indirect Flow Propagation

2-D 2-dimension

SYMBOL DESCRIPTION

t t = t1, t2,... ; tag type (e.g., t1 = network, t2 = process, etc.)
i i = 1,2,... ; increasing number that differentiates the tags belonging to the same

type
n t,i number of copies in memory for the tag with unique ID t,i
n 2-D optimization vector (control variable vector)
α * fairness degree in undertainting cost
β * * steepness of the overtainting cost
τ * weight for the undertainting vs. overtainting tradeoff
u t * weight of tag type t while considering semantics, context and tag types
o t* weight of tag type t for the memory pollution

	1.0 SUMMARY
	2.0 Introduction
	3.0 methods, assumptions and procedures
	,𝒄 - 𝒂-𝒖𝒏𝒅𝒆𝒓.,𝒏.+𝝉∗,𝒄 - 𝜷-𝒐𝒗𝒆𝒓.,𝒏. < ,𝒄 - 𝒂-𝒖𝒏𝒅𝒆𝒓.,𝒏∗.+𝝉∗,𝒄 - 𝜷-𝒐𝒗𝒆𝒓.,𝒏∗. (2)
	4.0 Results and discussions
	5.0 conclusions
	6.0 references
	Bibliography
	CoverPage.pdf
	afrl-rY-wp-tR-2019-0135

	SF298.pdf
	REPORT DOCUMENTATION PAGE

