# Software Rejuvenation For Secure Tracking Control Of **Cyber-Physical Systems**

Raffaele Romagnoli<sup>†</sup>, Bruce H. Krogh<sup>††</sup>, Bruno Sinopoli<sup>†††</sup> <sup>†</sup>Carnegie Mellon University, <sup>††</sup>Software Engineering Institute CMU, <sup>†††</sup>University of Washington in St Louis

#### Motivation

Software rejuvenation (SR) protects cyberphysical systems (CSPs) against cyber attacks on the run time code by **periodically** refreshing the system with an uncorrupted software image.

During SR, the system is in **open loop**, then this mechanism of protection may imply severe issues from the control perspective, such as stability and the inability to complete a mission (tracking performances).

#### Goal

To propose a **secure tracking control scheme** based on **software rejuvenation** for nonlinear and linear systems and provide the general conditions that guarantee the property of **safety** and liveness.

#### Introduction

Software Engineering

'...Software Rejuvenation is a periodic preemptive rollback of continuously running applications to prevent failures in the future." [Huang et al, 1995]

- I reboot;
- I restart the application from a clean internal state.

#### Control System

- I Fault Tolerant Control;
- I Secure Control of CPS [Abdi et al 2018, Arroyo et al 2017]

### **Attack Model and Architecture**



#### **How SR works**



The refresh clock period has to guarantee that for any control input, the system cannot leave the safety set.

# **Safety Control**



## **Lyapunov Functions and Invariant Sets**

 $\dot{x} = f_{\varphi}(x) \triangleq f(x, \varphi(x)),$ Controlled system:

 $\begin{aligned}
V_{\varphi}: \mathbb{R}^n \to \mathbb{R} \\
V_{\varphi}(x_{eq}) &= 0
\end{aligned} \dot{V}_{\varphi}(x) = \frac{\partial V}{\partial x} \cdot f_{\varphi}(x) < 0.$ Lyapunov Function:

 $\mathcal{E}_{\varphi}(\epsilon) = \{x \in \mathcal{N}_{V_{\varphi}}(x_{eq}) | V_{\varphi}(x) \le \epsilon \}$ Lyapunov level Set:

### Positively Invariant Set:

 $\forall t > 0, \ \mathcal{R}(t; \mathcal{E}_{\varphi}(\epsilon), \varphi) \subseteq \mathcal{E}_{\varphi}(\epsilon).$ 

 $0 < \epsilon' < \epsilon, \, \mathcal{E}_{\varphi}(\epsilon') \subset \mathcal{E}_{\varphi}(\epsilon)$ 



## **Two Fundamental Propositions**

Proposition 2.1: Given system (1) with stabilizing controller  $\varphi$  for equilibrium state  $(x_{eq}, \varphi(x_{eq}))$  and Lyapunov function  $V_{\varphi}(x)$  as defined above, given  $\epsilon > 0$  for any  $\epsilon < \epsilon' \le 1 \ \exists \ \gamma > 0 \ \ni \forall \ t \ge (\epsilon' - \epsilon) \gamma^{-1},$ 

$$\mathcal{R}(t; \mathcal{E}_{\varphi}(\epsilon'), \varphi) \subseteq \mathcal{E}_{\varphi}(\epsilon). \tag{10}$$

Proposition 2.2: For any  $U \subseteq \mathcal{U}$  and any  $0 < \epsilon < \epsilon' \le 1$ ,  $\exists T_U > 0 \ni \mathcal{R}(t; \mathcal{E}_{\varphi}(\epsilon), U) \subseteq \mathcal{E}_{\varphi}(\epsilon') \ \forall \ t < T_U.$ 

## **Tracking Control**



 $\mathcal{E}_{TC^{j}}(\epsilon_{TC}) \subset \mathcal{E}_{TC^{j+1}}(\epsilon'), \quad \exists t^{j+1} > 0 \ni \forall \ t \geq t_{j+1},$  $\mathcal{R}(t; \mathcal{E}_{TC^j}(\epsilon_{TC}), TC^{j+1}) \subset \mathcal{E}_{TC^{j+1}}(\epsilon_{TC}).$ 

## **Safety and Liveness**

- safety: when  $x^j \to x^{j+1}$ , the system has to be in  $\mathcal{E}_{TC^{j+1}}(\epsilon_{TC}^s);$
- liveness: in presence of software refresh, the tracking controller has to drive the system to  $\mathcal{E}_{TC^{j}}(\epsilon_{TC})$ .

## **Example:** quadrotor

- 6 DOF quadrotor using the PX4 jMAVSim quadrotor simulator
- Linearized model





Simulation results in presence of an attack. Details about the switching between the serveral controllers and equilibrium points is pointed out in the zoomed fig.



# Carnegie Mellon University

Software Engineering Institute

