

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and
development center operated by Massachusetts Institute of Technology. This material is based
upon work supported by the Under Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Under Secretary of Defense for Research and Engineering.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

 Security and Performance Analysis of Custom Memory Allocators

T. Tang

Student, MIT
Dept. of Electrical Engineering and Computer Science

H. Okhravi

Group 53

3 October 2019

Massachusetts Institute of Technology
Lincoln Laboratory

Technical Report 1241

Lexington Massachusetts

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This page intentionally left blank.

TABLE OF CONTENTS

Page

List of Figures ix

1. DEFINITION 1

2. MEMORY CORRUPTION ATTACKS 3

2.1 Code Injection 3

2.2 return-to-libc 5

2.3 Return-Oriented Programming 6

3. ENFORCEMENT-BASED DEFENSES 9

3.1 Non-Executable Memory 9

3.2 Control-Flow Integrity 9

3.3 Complete Memory Safety 10

4. RANDOMIZATION-BASED DEFENSES 11

4.1 Address Space Layout Randomization 11

4.2 Code Randomization 11

4.3 Instruction Set Randomization 11

5. DEFINITION 13

6. INTEL MPX 15

6.1 Design 15

6.2 Implementation 15

6.3 Performance Overhead and Compatibility 17

7. RELATED WORK 19

7.1 Object-Based Approach 19

7.2 Pointer-Based Approach 20

8. BACKGROUND 23

vii

TABLE OF CONTENTS
(Continued)

Page

9. CUSTOM MEMORY ALLOCATORS 27

9.1 Per Class Allocators 27

9.2 Region and Pool Allocators 28

9.3 Custom Pattern 29

9.4 Apache Pool Allocator 29

9.5 nginx Pool Allocator 33

10. PREVIOUS WORK 39

10.1 Doug Lea Allocator 39

10.2 jemalloc per-class allocator 39

11. PARTIAL AND COMPLETE CUSTOM ALLOCATOR-AWARE MEMORY SAFETY 43

11.1 Partial Custom Allocator-Aware Memory Safety 43

11.2 Complete Custom Allocator-Aware Memory Safety 43

12. PERFORMANCE AND SECURITY IMPLICATIONS 45

12.1 Experiment Methodology 45

12.2 Apache Results 46

12.3 nginx Results 49

12.4 appweb Results 52

12.5 Analysis of Results 53

References 57

viii

LIST OF FIGURES

Figure

No. Page

1 Function Call Stack Layout 3

2 Function Call Stack Layout After An Overflow 4

3 Function Call Stack Layout after return-to-libc attack 5

4 ROP Attack 7

5 Base and Bounds 13

6 malloc performance when compiled with and without Intel’s Pointer Checker 18

7 free list with free memory blocks 24

8 A free list with a fixed memory block size 27

9 Memory Fragmentation 28

10 A free list with a fixed memory block size 29

11 allocator 30

12 pool 31

13 pool 32

14 nginx Pool Comparison 36

15 Adjacent Heap Corruption 40

16 apache performance 47

17 apache performance 48

18 nginx performance 50

19 nginx performance 51

20 nginx performance 52

ix

This page intentionally left blank.

INTRODUCTION

By definition, memory corruption occurs when memory is modified illegally. The memory
contract between the program and operating system is violated, and as a result, malicious actions
may occur. We use the term “may” because an instance of memory corruption does not necessarily
lead to a security exploit.

First, we must consider whether the corrupted memory can affect the program’s intended
behavior. There are instances in which the corrupted memory is either contained within a section of
the program that does not impact the program in a significant way, such as the cases in which the
overwritten memory is no longer used by the program or the overwritten memory gets written over
by the correct value before the program uses the memory. For a program to run correctly, only a
subset of values in the data execution path must be correct. These bits are referred to as
Architecturally Correct Execution (ACE). The rest are un-Ace. In a Spec2K benchmark test, it was
shown that 46% of bits in a program on average are ACE [1]. Therefore, it is possible for a memory
corruption to be benign.

On the other hand, memory corruption could also be malicious and result i n a successful exploit.
The majority of memory corruption bugs are caused by developer error and the use of a memory-unsafe
programming l anguage. Consider the code example below, which i s written i n C. This example was
taken f rom Smashing t he Stack for Fun and Profit [2], which demonstrates how to spawn a shell

from an unsuspecting user's computer by taking advantage of a simple buffer overflow.

1 void copyArray (char bad [1 0 0])
2 {
3 char buf [1 0] ;
4 s t r cpy (buf , bad) ;
5 }

copyArray is a function that takes in one parameter called bad, which is an array of type char and
of size 100. bad acts as a string. copyArray copies the data located at the address of bad into the
address at buf. buf is a char array of size 10 and is significantly smaller in size than bad. The
function, strcpy, does not check to see if buf has enough space to copy all of the elements in bad.
With no space to write all the characters from bad into the buf array, the program writes to the
memory after buf in the stack.

At this point, unexpected behavior may occur. The memory contract between the operating
system and the program when buf was allocated was that buf would only consist of 10 chars.
The operating system only gave buf enough space for 10 characters, so the memory that gets over-
written by the other 90 characters after the buf array does not belong to buf. buf's data could
even be overwritten at a later point, as buf has no control over what happens to memory that
was not given to it. If the memory overwritten is ACE and is later used by the program, then the
attacker may be able to trick the program into executing malicious code through something like
return-oriented programming (which we will expand upon at a later section) [17]. This allows an
attacker to remotely hijack the program execution and take malicious actions afterwards.

x

The implied solution to preventing memory corruption is to use memory-safe languages like
Rust, Go, or Java. If we had used Java to write copyArray instead, then we would have
received an out-of-bounds error when attempting to copy the contents of bad over to buf.
However, unsafe low-level programming languages such as C and C++ remain popular and are
still the preferred programming languages in many development environments today.

Memory-unsafe languages require the developer to manage memory themselves. By doing so,
the developer gains significant freedom and in many cases, can increase performance by opti-mizing
memory management for their specific application. Programming languages that perform automatic
memory management such as Java are often frowned upon when discussing performance and
optimizations. As such, the ability to manage memory becomes a double-edged sword.

Even though numerous safeguards have been developed over the years to ensure memory
safety, most of these defenses are often discarded for performance reasons or lack of compatibility
with the existing code. Most programmers tend to avoid anything with a high performance over-

head.
According to Milo Martin, one of the authors of Softbounds [3], the endowment effect [30]

affects the response of programmers when it comes to making decisions between having more per-
formance or security. The endowment effect is an attachment to the object that the person already
owns and the person’s reluctance to part with it. Thus, there is a status quo bias. The question
generally asked amongst programmers when deciding to implement a certain security defense is
“how much performance must I sacrifice for this defense?” If the number is say, 50%, it is highly
unlikely that the defense will be used. However, consider if the question was rephrased to “how
much security must I sacrifice for this performance gain?” If the number is also, say 50%, the
programmer might think differently before trading security for performance.

Unfortunately, it has been an ongoing trend to trade security for performance. More empha-
sis is placed on improving the performance of a program rather than the security. Due to this, a
number of security exploits have arisen such as the OpenSSL Heartbleed bug [5] and the BadUSB
bug [6]. The number of exploitable features only grow, especially with the development of the in-
ternet of things, which has been shown to neglect security because of consumer demand for better
performance and usability [4].

In this report, we demonstrate this trend of choosing performance over security with custom
memory allocators. Custom memory allocators achieve performance improvements, but are poorly
designed for security. One of the main goals of custom memory allocators is to achieve better
performance than the system memory allocator. However, recent research [9] shows that the sys-tem
memory allocator outperformed most known custom memory allocators. Only a specific type of
custom memory allocator, the pool/region allocator, seemed to achieve any sort of performance gain.
Even then, we show that the challenges created by custom memory allocators may out-weight the
small performance gain offered. Thus, developers may want to reconsider the use of custom memory

allocators.
To better understand custom memory allocators, we study three major servers: Apache,

Nginx, and Appweb. Each three of these major servers use a custom implementation of a pool
allocator. First we evaluate their unprotected performance with and without the custom allocator
by manually removing the custom allocator and replacing it with the system memory allocator.
This required code changes to all three servers. Then, we enable partial protection for the custom
memory allocator, which only enforces spatial safety at the granularity of allocations, and evaluate

xi

the performance of the three servers by measuring the latency for a number of HTTP requests.
Finally, we manually modify these servers to enforce full spatial safety by adding Intel MPX func-
tions to log all custom allocators. Like before, we evaluate with and without a custom allocator.

The studies resulted in mixed results. In some cases, performance gains we expect to see exist.
However, in other situations, the performance is actually worse. For example, when Apache has
full protection, the system allocator performs worse than the custom allocator. Given that the level
of granularity is higher in the case of the custom allocator, one would expect the custom memory
allocator to perform slower. When we consider the other problems caused by using custom allo-
cators, such as vulnerabilities and granularity limitations, our findings show that developers must
carefully consider the implications before using a custom allocator.

The rest of the report is as follows. In Section 2, we review existing memory corruption
literature and a number of available defenses. In Section 3, we discuss Intel MPX, a software and
hardware defense that enforces spatial memory safety. In Section 4, we examine the general memory
allocator and commonly used types of custom memory allocators. Then we list the advantages and
disadvantages of each custom memory allocator explored. In Section 5, we evaluate the security
of custom memory allocators. In Section 6, we analyze custom memory allocator-aware memory
safety and its implications. We conclude in Section 7.

xii

BACKGROUND

In this section, we examine memory corruption in more detail. Then we review modern
defenses, namely enforcement-based and randomization-based defenses.

xiii

1. DEFINITION

Memory corruption bus can be categorized into two major classes: spatial memory bugs and
temporal memory bugs. To better understand these bugs, here we look at how each class works by
using a demonstrative example.

A spatial memory bug occurs when an attempt to dereference memory that is outside the
bounds of the allocated object. Traditionally speaking, this is the cause of buffer overflows. To better
illustrate this, consider a character array of size 255. The developer makes an error while writing his
code and mistakenly allows 256 characters to be written into the array. The array only has enough
space to store 255 characters. Since the program is forced to write all 256 characters into the array,
the last character is written to the memory location right after the array. This provides a good
opportunity for an attacker to exploit.

The second case deals with use-after-free bugs, which occurs when the developer uses
memory that has been returned to the operating system already. A common ex- ample of a use-
after-free bug is a dangling pointer. A dangling pointer occurs when memory is allocated for a
pointer and then freed, but the pointer is still pointing to the same memory address. Though the
memory is returned to the operating system, it can still be reused if the pointer has a reference to
the freed memory address. This may be disastrous if the memory has been reassigned to
another pointer, as the developer expects the newer pointer to be the only pointer that has access
to the memory address.

In both these examples, the leading cause is developer error due to the complexity of having to
manage memory. The goal of achieving security is seemingly at conflict with achieving good
performance. New attack vectors arise when the developer is allowed to manage memory. Note that
Java is also susceptible to memory corruption bugs and many have been disclosed to the public [58].
Though Java is memory safe, the JRE (Java Runtime Environment) is written in C++ .

1

This page intentionally left blank.

Function Parameters

 Return Address

 Misc

 Local Variables

Figure 1. Function Call Stack Layout

2. MEMORY CORRUPTION ATTACKS

In this section, we present the history of exploit techniques that take advantage of memory
corruption.

2.1 CODE INJECTION

We start with the traditional buffer overflow exploits [2, 14], a technique that writes more
data to a buffer than the buffer can hold and forces the memory contents to spill over to adjacent
memory locations. The attacker might then be able to change the control flow of the program. A
program consists of an ordering of computer instructions that get executed. When the program is
exploited and the control flow changes as a result, the program is executing a path that would not
get executed under normal circumstances. To fully understand why overwriting memory allows the
attacker to change program control flow, imagine that we have a stack.

The call stack grows from the bottom up, as indicated by the arrow to the right of the figure.
The stack is used to store metadata about the function being executed by the program. Say the
program is currently within a function call (figure 1). The object of interest is the return address,
which is the instruction address that the program will return to once the program finishes executing
the current function. Generally, the return address points to the succeeding instruction in the
previous function that called this function. In order words, the return address points to the next
instruc-tion the program will execute after finishing this function. If the attacker can modify the
return address, then the attacker can change the program control flow by forcing the program to
return to a different location.

1 void f unc t i on (char ∗ s t r) {
2 char b u f f e r [1 6] ;
3 s t r cpy (bu f f e r , s t r) ;
4 }
5 void main () {

3

Function Parameters

 ‘AAAA’

 ‘AAAA’

 ‘AAAA’

Figure 2. Function Call Stack Layout After An Overflow

6 char l a r g e s t r i n g [2 5 6] ;
7 int i ;
8 for (i = 0 ; i < 255 ; i++)
9 l a r g e s t r i n g [i] = ’A ’ ;

10 func t i on (l a r g e s t r i n g) ;
11 }

The code excerpt in Listing 2.1 contains a bug that will cause a buffer overflow. In this
example, the program first initializes large string, which is a char array of size 256 and sets all
elements in the array to be the character A. Once that is completed, large string is copied over to
buffer, an array of size 16. buffer is not able to hold all 256 characters, but the function strcpy
(as opposed to the safer version, strncpy) does not perform any checks regarding the size difference
and will allow the action to occur. As the program copies all 256 characters from large string to
buffer, some of the A's will spill over to adjacent memory.

The aftermath of the overflow is shown in the call stack. Since the return address is higher up in
the call stack than the local variables, the return address has been overwritten with the A's. By doing
a simple mathematical calculation (or plain guess) based on where the local variable buffer is
relative to the function's return address, the attacker can find out exactly where in large string to
put the relevant information to change the return address to a set of instructions that the attacker
wants to execute.

However, where can the attacker find the exact set of instructions to execute? Do they
even exist? The attacker can insert program instructions onto the stack using a buffer overflow,
calculate the address at which these inserted program instructions are located, and then set the
return address in the function call stack to be at that address. At the time of simple code injection
attacks [2], the stack was executable (gcc today marks the stack as unexecutable except for certain
situations), so this exploit could be pulled off easily.

4

printf parameters

 Fake Return Addr

 printf

 Overflowed Buffer

Figure 3. Function Call Stack Layout after return-to-libc attack

2.2 RETURN-TO-LIBC

The return-to-libc [14,16] exploit was developed afterwards. It is the first example of a code
reuse attack, in which the existing code in the program is used to change control flow as opposed
to shellcode injected by the attacker. As the name implies, the attacker takes advantage of the
presence of the libc library in a return-to-libc attack. libc is the C standard library, which all
C programs are guaranteed to have. The libc functions and source code are readily available on
the internet for anyone to access. There are thousands of lines of code in the libc library, which
makes it a good tool for exploits. In this example, we assume that the attacker has found a way
to overflow the stack through a buffer overflow and has the ability to modify the return address of
the current function to an address of his choosing.

1 (gdb) p p r i n t f

If we do not (or cannot) use the stack to execute instructions, we must use existing instructions
in the program, but how do we guarantee that an instruction we need will exist? We know that
all C programs contain the libc library, which is composed of many functions. In most cases,
having access to these functions is sufficient in carrying out an exploit. All that is left is to find
out where the libc functions we need are in memory, which is a simple task. The attacker can find
the address to a function in libc by running the program in a debugger like gdb and printing out
the address. Alternatively, the attacker can use object dump. The location of libc functions are
relative to each other so once the attackers find the starting address of libc in the program, they
know all the addresses in libc.

For example, suppose the attacker wants to execute printf, even though the program never
calls printf. The attacker must first find the address of the printf function in libc. If he
overwrites the return address in the call stack of the current function to point to printf, then the
program will jump to printf. However, that will still not achieve the goal of calling printf. As we
noticed, all functions have their own call stack. Since the program was never meant to call printf,
the program does not have a proper call stack for printf. The attacker will have to modify the
stack to mimic the function call stack of the printf function first before “returning” to printf.

5

The attacker needs to set the return address of the current function’s call stack to point to
the memory address of the printf function. In addition, he needs to set a fake return address for
the call stack of printf, as the program expects all function call stacks to have a return address.
The fake return address can be bogus or if the attacker wishes to chain his return-to-libc attack,
can be the address of the next function the attacker wants to call. Then the attacker needs to set
up the function parameters of the printf function, if any exist.

2.3 RETURN-ORIENTED PROGRAMMING

Return-Oriented Programming, or ROP, is a technique that was developed around 2005
[17,18] and has more freedom than return-to-libc attacks. It is fine-grained code reuse and Turning-
complete [17]. In ROP, the hacker reuses machine code (as opposed to just existing functions) to
carry out his exploit.

1 pop $eax ;
2 pop $ebx ;
3 r e t ;

In this type of exploit, the attacker builds gadgets, which contain lines of existing machine code.
ROP is called “return-oriented programming” because in the original exploit, the RET return instruc-
tion was used to jump around in code. As a result, gadgets often ended with the RET instruction.
Similar to how libc functions are discovered by the attacker, the attacker can find the address of
any instruction using the same techniques. Then, using these lines of instructions, the attacker can
make gadgets. Since there are so many lines of instructions available (whether it be in the program
code or libc, we can guarantee that the gadgets made by the attacker are Turning complete.

In a ROP exploit (figure 4, the attacker jumps to his first gadget. After the gadget has
finished running, the gadget “returns” to the next gadget until all gadgets have been executed.
Since the first paper, there have been numerous papers published showing that it is not necessary
for gadgets to end with a RET instruction to carry out a successful attack [31–33]. For example, a
JMP instruction could be used in place of a RET instruction, as both instructions function similarly
enough.

6

RET

RET

RET

Figure 4. ROP Attack

7

This page intentionally left blank.

3. ENFORCEMENT-BASED DEFENSES

In this section, we examine enforcement-based defenses. Enforcement-based defenses take a
proactive approach in preventing exploits from occurring.

3.1 NON-EXECUTABLE MEMORY

Non-executable memory was first developed on OpenBSD in 2003 [15] as WˆX (write exclusive-
or execute). It attempts to solve the problem of code injections during buffer overflows. With non-
executable memory, memory can either be writable or executable, but not both. The pages (unit
of memory) in memory are marked with an extra bit called the NX bit that determines whether
or not the page is writable or executable. Recall in the code injection example, we overflowed the
stack with shellcode. Even though the stack’s intended purpose was to store information regarding
the variables and return address of the function, we were able to execute instructions located on
the stack. By marking the stack as non-executable (since it is writable), the shellcode will not be
able to run correctly.

Most popular operating systems offer support for the NX bit. It is known as Data-Execution
Prevention (abbreviated as DEP) [14,36] on Windows.

In response to non-executable memory, code reuse attacks were developed. Code reuse attacks
counteract non-executable memory by not having to inject shellcode. Instead, because the attack
reuses pre-existing code in memory (that is marked as executable), the attack will not be prevented
by non-executable memory. In certain cases, some attackers find a way to disable non-executable
memory on the operating system (usually with a code reuse attack), inject shellcode, and then
complete their attack [35]. Nonetheless, having non-executable memory is a good deterrent and is
already automatically enabled in most operating systems today.

3.2 CONTROL-FLOW INTEGRITY

Control-flow integrity (CFI) is a recently developed defense that was first mentioned in 2005
[24]. Since then, many versions of CFI have been developed, including coarse-grained and fine-
grained CFI. CFI was developed in an attempt to counteract code reuse attacks. The main principle
of CFI is to maintain correct control flow for a program. CFI must be able to build accurate static
or dynamic control flow graphs for the program that it is protecting. The control flow graphs
contain the possible paths that a program might follow. Whenever the program takes an illegal
path not marked on the control flow graph, it means that an attacker may possibly be redirecting
control flow.

However, in practice, due to the number of possible paths and unknown variables (such as cast
types) before runtime, control flow graphs are often very complex and in certain cases impossible
to generate beforehand [18].

Fine-grained CFI has a high performance overhead, and as stated before, the control flow
graphs do not have 100% accuracy. Attempts have been made with coarse-grained CFI to improve
performance numbers, but a number of papers have shown that it is very easy to bypass coarse-
grained CFI due to the way coarse-grained CFI attempts to simplify the control flow graph [37–39].

9

More recently, it has been shown that even with correct control flow graphs, it might be possible
to launch an exploit.

3.3 COMPLETE MEMORY SAFETY

Complete memory safety is a very powerful technique that prevents almost all memory cor-
ruption attacks [14]. This technique relies on enforcing temporal and spatial safety by ensuring that
the bounds of objects and pointers are correct. The only obvious disadvantage is the performance
overhead that comes with this defense. Intel MPX [7], which will be discussed in a later chapter,
is an example of this defense.

10

4. RANDOMIZATION-BASED DEFENSES

In this section, we study randomization-based defenses. Randomization-based defenses base
their defense on information hiding through randomization.

4.1 ADDRESS SPACE LAYOUT RANDOMIZATION

Address Space Layout Randomization (ASLR) relies on randomizing the address space of
a program [40–42]. The commonly randomized areas are the stack, heap, and libraries. In the
example for the return-to-libc attack, printf becomes randomized with ASLR, meaning that the
next time the program runs, the address of printf would be at a different memory location. By
randomizing the layout of the process, ASLR makes it difficult for the attacker to guess where
everything in libc is located. There is a higher chance that the attacker will redirect the program
to a faulty address and cause the program to crash before anything bad occurs.

Combining non-executable memory and ASLR is very common in operating systems and
increases security with a relatively low overhead compared to other defenses.

4.2 CODE RANDOMIZATION

Code Randomization is actually as the name implies [43, 44]. It randomizes code through
a series of transformations to make it harder for the attacker to know the memory layout of the
code. Generally, the techniques involving code randomization are the re-ordering of instructions,
changing which register contains the return value of a function (usually in the x86 instruction set,
this register is eax), randomizing register allocations, inserting nonsensical instructions (NOP),
inserting basic-blocks, and randomizing the stack locations used to save and restore register values.

4.3 INSTRUCTION SET RANDOMIZATION

Instruction Set Randomization (abbreviated as ISR) randomizes the instruction set that the
computer is using [45–47]. This method relies on hiding the instruction set from the attacker.
Thus, the later the computer decides on a instruction set, the better. However, it does not prevent
return-to-libc attacks, which do not rely on knowing the instruction set [46].

11

Intel MPX (Memory Protection Extensions)

In this section, we review Intel MPX, a base and bounds checker than enforces spatial safety
at the software, hardware, and operating system level. We also examine similar approaches.

12

5. DEFINITION

To understand how Intel MPX functions, we need to understand what base and bounds mean.
Base refers to the start of the memory location of an object or pointer. Bounds is the size of the
object or pointer in question. For clarity, we demonstrate this with an example below.
[h]

1 char ∗buf = mal loc (1024) ;

This code snippet allocates an array of size 1024. In this case, the base is the memory location
at the start of the array. The bounds is the size of the array, which is 1024 in this example. The
memory location at the end of the array is obtained by adding the bounds to the base. Note that
since the index starts at 0, the bounds is actually 1023.

If the program tries to access a memory location not recorded as a “base”, Intel MPX will

buf } Bounds
Base

Figure 5. Base and Bounds

report a bounds violation error.

13

This page intentionally left blank.

6. INTEL MPX

6.1 DESIGN

Intel MPX is a pointer-based solution to enforcing memory safety. Intel Pointer Checker is
the software-based predecessor of Intel MPX. Both defenses function similarly, though Intel Pointer
Checker is meant to be used as a diagnostic tool due to its high overhead. Figure 6 demonstrates the
change in performance once Intel Pointer Checker is enabled. Instead, Intel MPX is recommended,
which Intel claims has much faster run-times.

Traditionally, the pointer-based approach modifies the pointers themselves to maintain base
and bounds information. Instead of storing the metadata in each pointer, Intel MPX records the
base and bounds information of every pointer allocated into a separate bounds table. The bounds
table takes a hierarchical approach, similar to how memory is organized. A bounds directory is used
to organized bounds tables, which in turn record the base and bounds information for individual
pointers. On a pointer dereference, the table is consulted and a check is performed to ensure that
the operation is legal, meaning the pointer still maintains correct base and bounds. The bounds
table resolves the compatibility issues that traditional pointer-based approaches struggle with as
the pointers in this scheme are left untouched.

Fundamentally, Intel MPX is easy to use. The requirements are to possess a fifth generation
or later Intel processor and to have kernel support in the operating system for Intel MPX. Either
the gcc or icc compiler can be used. If using gcc, then gcc 5.0 or later is required. At compile
time, the developer must specify the correct configuration flags, at which point Intel MPX will be
enabled for the program. Some of the possible values for the flags are:

• -fcheck-pointer-bounds: tells the compiler to compile with Intel MPX enabled

• -fchkp-check-read: every time a read to memory occurs, checks that the memory read is
within bounds

• -fchkp-check-write: every time a write to memory occurs, check that the memory being
written to is within bounds

• -fchkp-store-bounds: every time a write to memory occurs, stores the base and bounds

• -fchkp-narrow-bounds: use field bounds instead of full bounds (for example, a struct in C
contain multiple fields)

• -fchkp-first-field-has-own-bounds: the first element in the struct has its own bounds;
otherwise, the first element in the struct has the same bounds as the whole struct

6.2 IMPLEMENTATION

6.2.1 Bounds Table

As stated earlier, Intel MPX achieves spatial safety by checking the base and bounds of
allocated memory. Four new bound registers were introduced to the Intel architecture and are

15

exclusively used by Intel MPX. Given the limited number of registers available for storing base and
bounds, we will need more than just registers to store bounds information. The base and bounds
are stored in a bounds table instead and swapped out to the bounds registers as needed. Two
new assembly instructions BNDLDX and BNDSTX were introduced, which correspond to bounds load
and bounds store respectively. BNDLDX loads an entry from the bounds table to a bounds register.
BNDSTX stores an entry into the bounds table.

The bounds table is a two-level radix tree, where the index is the virtual address of all the
pointers in the bounds table. A bounds directory is used to look-up a particular bounds table.
Each entry in the bounds table consists of four elements (the size of pointers): (1) lower bounds,
(2) upper bound, (3) check pointer value, and (4) unused.

6.2.2 Performing Checks

Intel MPX instruments code during compile time in order to perform its base and bounds
checking during run-time. There are five ways in which a pointer may be dereferenced [50].

1. return value from a function call: both the pointer and its bounds are returned

2. load from memory: bounds are loaded from the bounds table

3. function argument: bounds are passed along with the pointer

4. object address: the object address acts as the low bound and its size is used to compute the
upper bound

5. field address: bounds are narrowed for a field address

We demonstrate bounds checking with an example.

[h]

1 int f unc t i on (void ∗∗p)
2 {
3 int ∗ptr = (int ∗) (∗p) ;
4 return ∗ptr ;
5 }

In Code Listing 6.2.2, the base and bounds information of p are retrieved from the bounds
table at line 3. The actual check is performed when the pointer is returned at line 4.

[h]

1 int buf [1 0 0] ;
2 int f oo (int i)
3 {
4 int ∗p = buf ;
5 return p [i] ;
6 }

16

In Code Listing 6.2.2, when p is assigned to buf, it receives the same base and bounds of
the array. In this case, because buf is an int array, the base and bounds are [buf, buf + 399].
(It is 399 rather than 99 because each element in the array is 4 bytes). During line 5, a check is
performed to ensure that we are still within the base and bounds of the array.

6.2.3 Bounds Narrowing

[h]

1 struct S1
2 {
3 void ∗ f i e l d 1 ; // s i z e i s 4
4 void ∗ f i e l d 2 ; // s i z e i s 4
5 } ;

If bounds narrowing is enabled (which is not turned on by default), Intel MPX will attempt
to get a better estimate of the individual fields in a struct. However, the fields in a struct has their
bounds narrowed only when the fields are referenced. In this example, field1 has base and bounds
as [S1, 3] and field2 has base and bounds of [field2, 3], S1 has base and bounds of [S1,

7].

6.3 PERFORMANCE OVERHEAD AND COMPATIBILITY

In this section, we look at the performance overhead of Intel MPX and possible compatibility
issues that may arise.

As mentioned earlier, an entry in the bounds table consists of four pointers. If a program
allocates memory for a pointer, the program also needs to allocate memory for the bounds table
entry, which would be four times the size of the pointer. If the program uses a lot of pointers, the
total memory consumed can quickly add up (4x). Additionally, given that we are fetching data
from memory, there could be a performance impact caused by address lookup and cache usage [59].

To get an accurate estimation about the performance overhead of Intel's Pointer Checker
(the software-only solution), we performed a test with malloc, which is the default allocator for
C. For the experiment, we continuously called malloc and free. The num of requests in the
graph indicate the number of times malloc was called. bare indicates that the code was compiled
without Intel's Pointer Checker. full indicates that the code was compiled with Intel's Pointer
Checker. The times were recorded using C’s time library with the clock function. The testing was
done on a personal laptop and on a virtual machine running Ubuntu 14.04. For this experiment,
Intel’s compiler icc was used.

From what is shown, we can see that when the code is compiled with Intel’s Pointer Checker,
there is a 3.5x performance overhead on average.

Compatibility-wise, Intel’s Pointer Checker is compatible with most operating systems with
the exception of Mac OS. It is software-based and consists of wrapper code for the memory manage-
ment functions. The program needs to be compiled with icc and specific flags that enable Pointer

17

Figure 6. malloc performance when compiled with and without Intel’s Pointer Checker

Checker. Intel's Pointer Checker itself transforms the code during compile time to include base
and bounds check.

18

7. RELATED WORK

Numerous defenses [3, 48, 49] have emerged to safeguard against memory corruption attacks
by tracking pointer usage and ensuring pointers are manipulated correctly. We highlight some of
the more popular approaches.

1. Object-Based Approach

2. Pointer-Based Approach

7.1 OBJECT-BASED APPROACH

For the object-based approach [25,26], the entire object's base and bounds are recorded and
checked. This approach is favorable because it is easily compatible with the existing system. The
memory layout does not need to be modified in order to adopt this approach. Secondly, for this
scheme, pointers are always mapped to an object. While compatibility might be a reason someone
chooses to adopt this scheme, there are many reasons not to use this approach. One important
reason is that this approach does not entirely enforce memory safety due to the number of edge
cases that arise. The Softbounds paper [3] notes an important case, in which pointers to the same
object are treated as the same. In their example, they use:
[h]

1 struct person {
2 int age ;
3 int he ight ;
4 } ;

In Code Listing 7.1, the pointer to person and the pointer to age, the first parameter in
the structure, both point to the same memory location. Therefore, according to the object-based
approach, the pointer to age would have the same base and bounds information as the pointer to
person. This is incorrect behavior. The pointer to age should have a smaller bounds than the entire
struct. Since this approach is object-based, it would not be able to narrow the bounds like Intel
MPX can.

In addition to edge cases such as the previous example, there is a significant overhead with
the object-based approach due to the complexity of storing the base and bounds information of the
pointers mapped to objects. For the reasons pointed out, the object-based approach is not very
favorable. It does not enforce complete memory safety and incurs high performance overhead.

7.1.1 Valgrind

Valgrind is an example of an object-based approach and widely used in industry to detect
memory bugs such as use-after-free, memory leaks, and reading and writing to invalid memory
locations. Memcheck is included in Valgrind’s source code. Valgrind often introduces a huge drop in
performance due to how it instruments the code. Therefore, Valgrind is usually used as a diagnostic
tool to detect mistakes made by the developer before shipping out the final product.

19

Whenever memory has been freed, Valgrind will record the address of that piece of memory
in a separate area. If a pointer tries to dereference an already freed memory address, Valgrind will
report an error to the developer. Sometimes, this might fail if another pointer is reassigned the
memory and the previous pointer’s reference has not been removed [14].

For memory leaks, Valgrind will report the number of memory blocks that are “maybe lost”
and “definitely lost” and print out the stack trace that lead to the issue. Valgrind will also report
illegal read and writes to bad memory addresses. As it is an object-based approach, Valgrind does
not offer complete temporal safety.

7.2 POINTER-BASED APPROACH

The second is the traditional pointer-based approach [20], which involves recording base and
bounds information for each individual pointer, rather than each object. In the traditional scheme,
the pointer is modified to include this information. It solves many of the concerns that arise with
the object-based approach. The edge cases, such as the aforementioned case where two pointers
pointing to the same memory location are treated with the same base and bounds information, are
solved. However, the most obvious disadvantage with this scheme is that it requires the pointers
to be modified and changes the layout of the program. Compatibility becomes a major concern for
this approach.

7.2.1 Softbounds+CETS

There are also similar safeguards, such as Softbounds+CETS. Softbounds itself is another
example of a base and bounds checker. Like Intel MPX, Softbounds also records base and bounds
information of individual pointers. Instead of a bounds table, Softbounds uses a shadow table.
Softbounds transforms the code with an LLVM (LLVM is a compiler) pass to record a base and
bounds or check a base and bounds depending on the function or method. It contains a lot of
wrapper code for the memory management functions. It bares a lot of similarities to Intel MPX,
with the exception that it is software only. However, the use-after-free checking for CETS [8] is
much lighter weight than Intel's Pointer Checker according to the CETS authors.

20

Custom Memory Allocators

In this section, we discuss memory management and memory allocators. Then we expand on
the topic with custom memory allocators including popular implementations, such as Apache's and
nginx's custom pool allocator. We assume the reader has basic knowledge of memory in operating
systems.

21

This page intentionally left blank.

8. BACKGROUND

Memory management is a crucial function for any computer. It involves handing off memory
from the operating system to the individual processes. Memory is a resource required by all pro-
grams to run properly. When a process wants memory, the process simply has to ask the operating
system. The operating system will hand off memory to the process that asks for it and keep track
of who has what memory. It is similar to how a library functions. Everyone can borrow mem-
ory, but only one process can borrow a particular block of memory. Once the block of memory is
checked out by the process, no other process can check it out until the memory has been returned
to the operating system. Processes also cannot hand off memory to each other (i.e., once process
A terminates, it cannot give the memory it borrowed to process B). Only the operating system can
lend out memory. Unlike a library, there is no hard deadline that the process will have to return
the memory by. However, the operating system can at any point reclaim the borrowed memory
(such as in the case of a restart or a forceful program termination).

Manual memory management is performed when the developer makes a conscious decision
on when and how much to ask the operating system for memory. This is done through allocators.
With allocators, developers are given the freedom to allocate and free memory at an given moment
in the program. Though the concept of manual memory management is relative straightforward,
dealing with allocators can often be frustrating. It is easy to make an error, such as forgetting
to free a pointer, which would cause a memory leak to occur. If the program was running for a
long period of time and the memory leak occurred every ten minutes or so, for example, then the
leakage could add up.

The function of an allocator is to provide available memory to the developer when asked, to
inform the developer that no free memory is available at this moment, or to take back memory when
the developer no longer leads it. For performance and space efficiency (avoiding fragmentation),
the allocator generally maintains a free list. The free list is most commonly a singly-linked list
because elements in a linked list do not have to be adjacent in memory. It is very rare that freed
memory from the program returns to the heap. Most of the time, the freed memory is shuffled into
the free list, where it may be reused at a later point by the program. Depending on the design, the free
list may or may not be initially empty. The size of each free memory block in the list may vary
depending on the allocator and on the sizes that the developer chooses.

Figure 7 depicts a free list after a number of allocations and frees have been made. When
a request for memory is made to the operating system, the free list is checked to see if there are
any memory blocks available. There are many implementations of how the free list performs this
check. If there are no memory blocks available in the free list, memory is then obtained from the
heap, which contains dynamic memory that is available for the developer to take. Otherwise, a free
memory block of the appropriate size is removed from the free list and given.

C and C++ comes with a pre-packaged allocator, which performs dynamic memory alloca-
tion. Dynamic memory allocation differs from static and automatic memory allocation. In static
memory allocation, the variable persists for the entire lifetime of the program. In automatic mem-
ory allocation, the variable persists for the duration of the function. In dynamic memory allocator,
the variable persists for as long as the developer wishes or until the end of the program. Dynamic
memory allocation allows the developer more control in allocating and freeing memory, but also

23

Ov
ers
ize
d

Figure 7. Free List With Free Memory Blocks

allows for more mistakes to happen in between.
In general, the heap is used whenever there is a request for dynamic memory allocations.

When the developer wants to get more memory, the developer takes it from the heap and when the
developer needs to free an object, the developer returns the memory to the heap. As discussed in
chapter two, failure to properly obtain or free memory can cause a multitude of problems. As one
might expect, the two common mistakes are when the developer fails to free memory properly after
it has been used and when the developer fails to check if memory was properly allocated. Below,
we discuss reasons why these mistakes sometime occur.

One possible consequence of memory corruption is a memory leak. A memory leak occurs
when memory becomes allocated, used in the program, and the developer forgets to free it after
use. Since the memory never becomes freed, it will not be used again. We illustrate this with a
simple example, where the developer forgets to free memory after allocating.

[h]

1 void makeArray () {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 . . //do s t u f f
5 }

In Code Listing 8, we first obtain memory from the heap by calling malloc(size), where size

is the amount of memory the developer wants in bytes. However, in this example, the memory
allocated for arr is never freed. The heap has not been informed that this piece of memory has
been freed and thus, nothing else will be allowed to use it. Memory is wasted.

24

1 void makeArray () {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 //do s t u f f
5 f r e e (a r r) ;
6 }

In this example, we add an additional line, which calls free after the variable is no longer used.
free marks the memory as no longer being in use and allows it to be reused.

Another common case is when the developer fails to check if memory was successfully allo-
cated. If memory is not successfully allocated, a null pointer is returned instead when malloc is
called.

We also illustrate this with an example below. [h]

1 void makeArray () {
2 char ∗ ar r ;
3 a r r = (char∗) mal loc (1024) ;
4 i f (a r r == NULL) {
5 // f a i l u r e to ob ta in memory
6 // do s t u f f to f i x problem and/or inform program
7 }
8 //do s t u f f
9 f r e e (a r r) ;

10 }

These two examples are not the only scenarios in which an error may occur when dealing with
manual memory management. These errors occur very easily. Most of these errors are resolved
once the program exits. Once the program terminates, all memory is returned to the operating
system. Unfortunately, an attack may have already occurred by then.

The general-purpose allocator is implemented in several ways. One of the two most com-
mon ways is via a naive implementation with sbrk or with Doug Lea’s malloc [12], which stores
pre-allocated chunks of memory into sorted bins of varying powers of two for faster performance.
When searching for memory in the free list, the allocator looks for a best fit match, meaning it
tries to find a memory block that is most similar in size to the size that has been requested by the
developer. The C allocator uses the implementation by Doug Lea, whose implementation is very
efficient in terms of performance.

25

The proper way, instead, would be to free the memory such as in Code Listing 8 [h]

This page intentionally left blank.

9. CUSTOM MEMORY ALLOCATORS

Most developers who wish for an improvement in performance may choose to implement
their own custom memory allocators. This section details a number of popular custom memory
allocators.

9.1 PER CLASS ALLOCATORS

Per-class allocators are relatively straightforward [51]. These allocators use the pre-packaged
malloc provided by the C/C++ libraries (abbreviated as libc). However, as the name suggests,
per-class allocators maintain several free lists per class [9]. In the general case, the free list contains
different-sized memory chunks. The allocator must iterate through the free list to find a block
of the appropriate size, which takes time. However, in per-class allocators, each free list contains
memory blocks of identical sizes because there are more than one free list. In per-class allocators,
the burden of having to iterate through the free list is eliminated. If there is a free memory block
in the list, the block can immediately be returned because it will be of the appropriate size.

Ov
ers
ize
d

Figure 8. A Free List With a Fixed Memory Block Size

27

One of the bottlenecks is the time it takes for the allocator to iterate through the free list.
There are several optimizations that deal with this. Some free lists allow the developer to know
the size of each memory block according to index, but in the worst case scenario, the list must be
checked at [index, MAX INDEX). Some optimizations that developer use to eliminate this worse
case scenario is by first checking index and if there are no free memory blocks at index, jump to
MAX INDEX instead. However, this is not efficient in terms of space. By making each free list per
class, the per-class allocator essentially gets rid of this problem because all memory blocks are of
the appropriate size. Note that this adds complexity and according to [9], the trade-off between the
increased complexity and the performance of the per-class allocator is negligible and sometimes,
the per-class allocator performs worse than the general-purpose allocator.

Another possible advantage of this method is that less fragmentation may occur. Fragmen-
tation is a tricky problem and occurs when memory blocks of different sizes are returned to the
free pool.

Used Free Memory

Used Free Memory

Used Free Memory Used Free Memory

Figure 9. Memory Fragmentation

Eventually, as shown in the figure above, the free memory available becomes fragmented and
becomes interleaved with used memory. The developer is not able to use all of the available free
memory depicted in the figure above for one single allocation because the free memory is no longer
adjacent. Thus, per-class allocators may help alleviate this effect because all requests are of the
same size.

9.2 REGION AND POOL ALLOCATORS

Region allocators allocate huge chunks of free memory beforehand. When requests for mem-
ory are made, memory is taken from the pre-allocated chunks of memory, not from the heap. This
reduces overhead as it reduces the amount of communication that occurs between the process and
the operating system. Region and pool are used interchangeably.

28

9.3 CUSTOM PATTERN

Custom pattern allocators are optimized for specific pieces of code. The program is analyzed
during run-time and the “patterns” in which memory is allocated is observed and recorded to see
if there are specific trends in which memory is allocated. If the memory patterns of the code
are known beforehand, then optimizations can be done knowing that pattern. For example, for a
specific program, it may be possible that the program allocates mostly for arrays of size 1024 and
4096. In this case, the developer knows that it may be wiser to allocate free memory blocks of only
size 1024 and 4096.

9.4 APACHE POOL ALLOCATOR

In this section, we explain how the Apache pool allocator is implemented. We first introduce
the three main structs of the Apache pool allocator which are memnode, allocator, and pool.
Then we follow with an example on how pools are used, and then explain why Apache chose to
adopt the pool allocator. For more reference, refer to apr pools.c and apr pools.h.

9.4.1 Memnode

The most basic component of the Apache pool allocator is the apr memnode t, which is used
by both the allocator and pool structs. apr memnode t is a singly-linked list. It is the most basic
component of Apache’s memory management, as it contains metadata on the memory owned by
Apache.

Used Free Memory

*end_p*first_avail

Figure 10. A free list with a fixed memory block size

Each apr memnode t points to the next apr memnode t, unless it is the last apr memnode t,
which points to NULL. Each apr memnode t also contains a reference to itself. All apr memnode t

nodes point to a specific block of memory that they have been assigned. Additionally, there
is a pointer to the memory address of the remaining available memory in the memory block,
first avail, as well as a pointer to the end of the free memory block, end p. index records the

29

size of the entire memory block. first index records the amount of free memory still available.
To get to the start of the entire memory block, we can use end p and size. For reference, the code
source for apr memnode t is provided.

[h]

1 struct apr memnode t {
2 apr memnode t ∗next ; // p t r to next node
3 apr memnode t ∗∗ r e f ; // p t r to s e l f
4 a p r u i n t 3 2 t index ;
5 a p r u i n t 3 2 t f r e e i n d e x ;
6 char ∗ f i r s t a v a i l ;
7 char ∗endp ;
8 } ;

9.4.2 Allocator

Ov
ers
ize
d

apr_memnode_t *free

O
v
e
r
s
i
z
e
d

8192
12288

16384

81920

Figure 11. Allocator

The main purpose of the apr allocator t struct is to maintain a free list of memory blocks
and the bookkeeping variables for that list. The free list is implemented with apr memnode t ele-
ments. It contains MAX INDEX slots, and the size of each memory block is based on where it is in
the list.

size = (i + 1)∗ BOUNDARY SIZE
i is the index number and BOUNDARY SIZE is a set variable. By default, Apache sets BOUNDARY SIZE

to 4096. The exception to this rule is slot 0, which contains memory block sizes that are greater
than the maximum memory block size at the last slot. Slot 0 houses the over-sized memory blocks.
[h]

30

1 struct a p r a l l o c a t o r t {
2 a p r u i n t 3 2 t max index ;
3 a p r u i n t 3 2 t max f ree index ;
4 a p r u i n t 3 2 t c u r r e n t f r e e i n d e x ;
5 a p r p o o l t ∗owner ;
6 apr memnode t ∗ f r e e [MAX INDEX] ;
7 } ;

The bookkeeping variables are mainly there to keep track of the number of free blocks and the
current index of the list. Memory blocks are not allocated beforehand. The index of the free list
increases as needed. Whenever a request is sent to the allocator to obtain a free memory block, the
following steps occur. First, the allocator checks to see if the size is at least MIN ALLOC. If not, the
size will increase to be MIN ALLOC. Then, the allocator does a walk around the linked list in search
of a memory block that is either the same size or greater than the requested size. If no block of
that size is available, the allocator allocates a new memory block and adds it to the list. Lastly,
the allocator keeps a record of the current pool that owns the allocator.

9.4.3 Pool

[h]

1 struct a p r p o o l t {
2 a p r p o o l t ∗parent ;
3 a p r p o o l t ∗ c h i l d ;
4 a p r p o o l t ∗ s i b l i n g ;
5 a p r p o o l t ∗∗ r e f ;
6 a p r a l l o c a t o r t ∗ a l l o c a t o r ;
7 } ;

apr_allocator_t *allocator

apr_memnode_t *active

O
v
e
r
s
i
z
e
d

Figure 12. Pool

31

[h]

The apr pool t struct is the main component of the Apache pool allocator, and the struct that
is used by the developer to obtain memory. To put it simply, the pool contains two linked lists,
one containing the active memory blocks that are currently in use, and a free list of non-active
memory blocks, which is maintained by the apr allocator t struct. We have discussed the free
list in the previous section. We will focus on the active list in this section. When a request for
memory is first made, the active list, rather than the free list is first checked. The active list is
checked if the current memory block has enough memory available to fulfil the request. If there is
not enough memory, then the request will be passed to the free list. Otherwise, the pool will use
the memory block in the current active apr memnode t that it is on, pass the first avail pointer
to the developer, and then move the first avail pointer down accordingly.

After a request for memory, we can see that the pointer first avail has moved right from
its initial position to indicate that memory has been allocated to the developer and is no longer
free.

Used Free Memory

*first_avail *end_p

Used Free Memory

*first_avail *end_p

Figure 13. pool

9.4.4 Example

In this section, we will use an example to demonstrate how the Apache pool allocator can be

used. [h]

1 a p r p o o l t ∗pool
2 a p r p o o l c r e a t e (&pool , NULL) ;
3 char ∗buf ;
4 int ∗buf2 ;
5 buf = a p r p a l l o c (pool , SIZE) ;
6 buf2 = a p r p a l l o c (pool , SIZE2) ;
7 a p r p o o l d e s t r o y (pool) ;

In line 2 of Code Listing 9.4.4, we initialize the pool. In lines 5 and 6, we allocate from the
pool. Since buf2 is allocated right after buf, the two arrays are adjacent in memory. Finally, when
we want to free the memory, we simply destroy the entire pool. There is no need to individually
free everything that was allocated.

32

9.4.5 Utility

The Apache pool allocator is used for several main reasons. First, the code is fairly straight-
forward and easy for most developers to understand and use. Second, there is a performance
increase. Finally, it prevents memory leaks from occurring.

As shown, the Apache pool allocator is straightforward and easy to use. Unlike the regular
malloc, the developer is not required to free all the variables that he initialized; therefore, that
burden is lifted off the developer and only a call to destroy the pool at the end of the function is
required. Pools may also be given a lifetime, in which the pool is automatically destroyed once a
certain amount of time has passed. In Apache, there is a “parent” pool that all other pools are
children of. Once the parent pool is destroyed, the children are also destroyed. Thus, once the
program ends, the parent pool is destroyed and all memory is returned to the heap.

Secondly, the use of pool allocators allows for a performance increase. To understand this,
we must understand the difference between general allocators and pool allocators. Unlike general
allocators, which repeatedly ask the operating system for memory blocks when needed, when a
request for memory is made for pool allocators, the request is fulfilled by the process rather than
the operating system. This is possible because the pool allocator asks for large chunks of memory
at a time from the operating system, which can be used for many requests. Because Apache is
managing its own allocations, it has a performance increase.

Finally, the use of pool allocators means that there won't be any memory leaks. The pools
themselves have a set lifetime. At the end of their lifetime, the pools are destroyed and the memory
that they previously owned is freed. Developers do not have to free each individual variable for
which they allocated memory. This lifts the burden of potentially causing a memory leak off the
developer's hands.

9.5 NGINX POOL ALLOCATOR

In this section, we examine the pool allocator of nginx, another popular HTTP server, and
how it works. The nginx pool allocator and the Apache pool allocator are actually pretty similar.
For reference, refer to ngx palloc.c and ngx palloc.h.

Being both pool allocators, the design of the nginx pool allocator is almost identical to the
Apache pool allocator. Like the Apache pool allocator, the nginx pool allocator asks the operating
system for large chunks of memory and then manages subsequent requests locally by using its pre-
allocated chunks of memory.

The nginx pool allocator also manages its free list similarly, in that the free list houses a
number of free memory nodes. The nginx pool allocator uses the first element in its free list like
the Apache pool allocator. The first element is used to store over-sized memory blocks. However,
the difference is that the sizes of the free memory blocks in the linked list is based on an amount
specified by the user. Aside from the first element, the rest of the linked list contains blocks of sizes
specified by the user. Memory is aligned by an internal number when allocated.

33

2 u char ∗ l a s t ;
3 u char ∗end ;
4 ngx poo l t ∗next ;
5 n g x u i n t t f a i l e d ;
6 } ngx poo l da ta t ;

The ngx pool data t serves as the most basic of components, the singly linked list. Like the
Apache apr memnode t, it contains a reference to the next node. last, end, and failed will be
explained in a later example.

[h]

1 struct ngx poo l s {
2 ngx poo l da ta t d ;
3 s i z e t max ;
4 ngx poo l t ∗ cur rent ;
5 n g x p o o l l a r g e t ∗ l a r g e ;
6 } ;

The ngx pool t functions similarly to Apache’s apr allocator t and apr pool t, but is
much simpler. d is the free list used to manage available memory blocks. max is the maximum size
a memory block in anywhere that isn’t the over-sized list. current is the current pool that we are
obtaining memory from. large is used to store over-sized memory nodes.

Next, we show how a pool is created.

[h]

1 ngx poo l t ∗ n g x c r e a t e p o o l (s i z e t s i z e , n g x l o g t ∗ l og)
2 {
3 ngx poo l t ∗p ;
4
5 p = ngx memalign (NGX POOL ALIGNMENT, s i z e , l og) ;
6 i f (p == NULL) {
7 return NULL;
8 }
9 p−>d . l a s t = (u char ∗) p + s izeof (ngx poo l t) ;

10 p−>d . end = (u char ∗) p + s i z e ;
11 p−>d . next = NULL;
12 p−>d . f a i l e d = 0 ;
13
14 s i z e = s i z e − s izeof (ngx poo l t) ;
15 p−>max = (s i z e < NGX MAX ALLOC FROM POOL) ? s i z e : NGX MAX ALLOC FROM POOL;
16 p−>cur rent = p ;
17 return p ;
18 }

The nginx pool allocator uses ngx memalign, which is a function that calls posix memalign and
then logs the action. The parameters of the ngx pool t are then set. last refers to the
starting memory location in which there is free memory. end refers to the end of the free
memory block. failed is used during the allocation process, in which the current pool is
searched for available memory. Once failed reaches four, the next memory pool is looked at.

34

Below, we show the two main structs of the nginx pool allocator.

[h]

1 typedef struct {

If the size is larger than page size, then it is placed in the over-sized node. Otherwise, the
allocator checks if a pre-allocated chunk fits the criteria. If not, then it will communicate with the
operating system to get memory.

9.5.1 Example

We demonstrate how the nginx pool allocator works with a simple example. [h]

1 ngx poo l t ∗ pool = n g x c r e a t e p o o l (4096) ;
2 char ∗p = (char ∗) ngx pa l l o c (pool , 1024) ;
3 char ∗c = (char ∗) ngx pa l l o c (pool , 1024) ;

Like the Apache pool allocator, the code to initialize the pool and to allocate memory is
straightforward. The difference is that the ngx create pool function takes in a parameter, size.
size is used to specify the size of the pool. To allocate from the pool, the developer only needs to
call ngx palloc and provide two parameters. The first is the pool the developer wishes to allocate
from and the second is the size of the object. In the case that we use all 4096 bytes, then the pool
allocator will retrieve a new memory block, where the size will be equal to the amount specified by
the developer. [h]

1 void ∗ ngx pa l l o c (ngx poo l t ∗pool , s i z e t s i z e)
2 {
3 u i n t 8 t ∗m;
4 ngx poo l t ∗p ;
5 i f (s i z e <= pool−>max) {
6 p = pool−>cur rent ;
7 do {
8 m = (u i n t 8 t ∗) n g x a l i g n p t r (p−>d . l a s t , NGX ALIGNMENT) ;
9

10 i f ((s i z e t) (p−>d . end − m) >= s i z e) {
11 p−>d . l a s t = m + s i z e ;
12 return m;
13 }
14 p = p−>d . next ;
15
16 } while (p) ;
17 return n g x p a l l o c b l o c k (pool , s i z e) ;
18 }
19 return n g x p a l l o c l a r g e (pool , s i z e) ;
20 }

As shown in the method ngx palloc, if the current memory block does not have enough space
to store the new request, then a new block is allocated.

9.5.2 Utility

The nginx pool allocator is used for reasons similar to the Apache pool allocator. Like the
Apache pool allocator, it is easy to learn and use. There is also a performance increase, making
it highly favorable in the eyes of many developers. Like the Apache pool allocator, we will take
advantage of the design. More specifically, we exploit the fact that that the pool allocator

35

allocates big memory chunks at a time.
Unlike the Apache pool allocator, the nginx pool allocator allows the developer the freedom

to choose the initial pool size. We ran a test to see how the initial pool size affect performance.

Figure 14. nginx Pool Comparison

36

Security Evaluation of Custom Allocators

For this test, we had two initial pool sizes, which are 4096 and 1000000. Each instance was
subjected to a number of allocation requests before the pool was finally destroyed at the end. From
what can be seen in the graph, the performance of both instances are similar. This is due to the fact
that after the initial pool is used, the nginx pool allocator allocates block sizes set by the developer. It
does not allocate larger chunks. In essence, the nginx pool allocator behaves like malloc after the
memory in the initial pool has run out.

37

This page intentionally left blank.

10. PREVIOUS WORK

We now present the history of memory allocator corruption exploits.

10.1 DOUG LEA ALLOCATOR

In Smashing the Heap for Fun and Profit [52], named after the infamous Smashing the the
Stack for Fun and Profit [2], MaXX demonstrates one of the first-ever exploits against the general-
purpose allocator. The exploit takes advantage of a heap overflow through an adjacent heap
corruption. In addition, MaXX demostrates unlinking and frontlinking techniques for corrupting
meta-data.

MaXX takes advantage of the fact that the Doug Lea allocator places meta-data within the
memory block itself. Therefore, by overwriting parts of the heap in a particular manner, the at-
tacker is able to change the meta-data of the memory blocks. Changing the meta-block data leads
to unlinking and frontlinking techniques, which are used to carry out the exploit.

The unlink technique takes advantage of the linked list structure used to store free memory
blocks.

[h]

1 #define unl ink (P, BK, FD) { \
2 [1] BK = P−>bk ; \
3 [2] FD = P−>fd ; \
4 [3] FD−>bk = BK; \
5 [4] BK−>fd = FD; \
6 }

The call to free essentially is a call to unlink. When unlink occurs, meta-data that is
adjacent to the memory chunk is looked at. With a heap overflow, the attacker is able to overwrite
the meta-data with data of their choosing to execute the unlink technique.

The frontlink technique is much more difficult to achieve and as been noted by the author has
never been executed in the wild. Frontlinking occurs when there is an attempt to insert a memory
block into the free list. The exploit also tries to overwrite meta-data to trick the computer into
processing a pointer.

10.2 JEMALLOC PER-CLASS ALLOCATOR

jemalloc is a per-class allocator that focuses on performance. The exploits for this allocator
take advantage of adjacent heap corruption. For this allocator, the attacker first sets up the heap.
As a per-class allocator, the free list contains memory chunks of the same size. The attacker first
allocates many times to insert malicious data and then frees every other memory chunk so that the
heap looks like:

39

Used Free Memory Used Free Memory

Figure 15. Adjacent Heap Corruption

40

Custom Allocator-Aware Memory Safety

Generally, developers use custom memory allocators to improve performance or to make
memory management for languages like C and C++ easier. In this chapter, we focus on the
performance benefits of custom memory allocators along with the trade-offs that come with using
them.

In chapter 4, we defined custom memory allocators and the types of custom memory allo-
cators. We concluded that the presence of a custom memory allocator reduces the performance
overhead of having to repeatedly ask the operating system for memory and by extension, improves
the application’s performance. However, as with all designs, there are trade-offs to consider. In
the case of custom memory allocators, the performance benefits of using custom memory allocators
become unclear when we add security defenses to the equation. For instance, consider the case
where we are not using any custom memory allocators and are using the system memory allocator.
In the following code example, we allocate memory by calling system malloc.

[h]

1 int ∗ ar r ;
2 a r r = (int ∗) mal loc (s izeof (int) ∗ 5) ; // i n t array o f s i z e 5
3 f r e e (a r r) ;

If we use Intel MPX to enforce memory safety for an application, we know that we must
establish the base and bounds for the memory allocated by the operating system for the application
at some point. But how does this occur? For Linux and GCC, the memory management functions
in libc such as malloc, calloc, realloc, memcpy, free become modified by MPX wrapper
functions. When the application makes a call to malloc, the application first makes a call to a MPX
wrapper function that will record the base and bounds for the memory being allocated before finally
calling malloc.

In this example where we allocate an int array of size five, the base will be the address of arr
and the bounds will be 39. The bounds is 39 because the array has five ints and each int has eight
bytes, totalling to a size of 40 bytes. However, since the index starts at 0, the bounds is 39. When
free is later called, the base and bounds information for the array will be removed from the bounds
table. Finding the base and bounds is relatively straightforward in the case of the system allocator,
but what happens when we add custom memory allocators to the equation? Consider the following
example, where the application is using a pool allocator to manage its memory allocations. We
define pool alloc to be the malloc function of a generic pool allocator.

[h]

1 int ∗ ar r ;
2 a r r = (int ∗) p o o l a l l o c (s izeof (int) ∗ 5) ; // i n t array o f s i z e 5

In this case, assume the application would have asked the operating system for a large
piece of memory using system malloc beforehand making calls to pool alloc. When the
application needs memory, it will check if its custom memory allocator has memory available for
use. If the custom memory allocator has memory available, the application will ask the custom
memory allocator for

41

memory rather than the operating system. However, when we use Intel MPX to try to enforce
memory safety for our application with the pool allocator, Intel MPX is unaware of the fact that
the application is managing its own memory allocations. Therefore, Intel MPX will only enforce
the base and bounds set by the system memory allocator rather than the custom memory allocator.
Memory safety is only enforced on the large piece of memory given by the system to the allocator.
The individual bits of memory allocated by the pool allocator through pool alloc are not protected
by Intel MPX. This means that if arr goes out of bounds in this example, Intel MPX will not catch
the memory violation.

42

11. PARTIAL AND COMPLETE CUSTOM ALLOCATOR-AWARE
MEMORY SAFETY

11.1 PARTIAL CUSTOM ALLOCATOR-AWARE MEMORY SAFETY

In this section, we introduce the concept of partial and complete custom allocator-aware
memory safety. Partial custom allocator-aware memory safety is when the application is only
aware of the base and bounds set for memory allocated by the system. This is the scenario where
we compile an application using a custom memory allocator with Intel MPX. If the application
ever attempts to use memory that is not allocated to it by the system, such as attempting to read
or write to a memory address that does not belong to it, then Intel MPX will report a memory
violation.

Even without Intel MPX to guard the base and bounds of memory allocated by the system
allocator, the MMU (memory management unit) has ways to defend against similar situations. An
application does not have information about the memory addresses of pages not given to it, so if
an application attempts to read or write to memory outside of its process map, a page fault will
occur. Therefore, despite achieving only partial custom allocator-aware memory safety, there are
still benefits to using it.

Namely, the operating system can enforce base and bounds for every application and ensure
that all of the applications are only using the memory given to them. If the developer only cares
about achieving memory safety at the granularity of the application level, this is a good solution.
Partial custom allocator-aware memory safety is easy to implement in that it rarely requires manual
modification of the code and in most cases, the developer will not have to do anything to achieve
partial custom allocator-aware memory safety.

11.2 COMPLETE CUSTOM ALLOCATOR-AWARE MEMORY SAFETY

If we want to achieve finer-grained memory safety, we need to use complete custom allocator-
aware memory safety rather than just partial custom allocator-aware memory safety. As the name
suggests, complete custom allocator-aware memory safety is when the application is aware of the
base and bounds for every piece of memory allocated, even the pieces allocated by the custom
memory allocator. In the code example above where a pool allocator is being used to manage
memory for the application, it means knowing the base and bounds of the array allocated by
pool alloc.

By default (as we have learned), just compiling the application with something like Intel
MPX will not give us that awareness in the application. These base and bounds must be explicitly
set for the custom allocator. In the case of the system allocator, the developers of GCC had to
devote some work into writing the previously mentioned wrapper functions for the libc memory
management functions to allow awareness of the base and bounds of allocations performed by the
system. Below, we display an actual example from the Intel MPX wrapper functions for libc.

43

1 #include ”mpxrt/mpxrt . h”
2
3 void ∗
4 mpx wrapper mal loc (s i z e t s i z e)
5 {
6 void ∗p = (void ∗) mal loc (s i z e) ;
7 i f (! p) return bnd nu l l p t r bounds (p) ;
8 return bnd se t p t r bounds (p , s i z e) ;
9 }

In the Intel MPX wrapper function for malloc, we need mark the base and bounds explicitly
using bnd set ptr bounds, which is part of the API provided by Intel to enable Intel MPX at
the software level. Every time the base and bounds changes, such as when realloc (which resizes
a previously allocated piece of memory) is called, then we need to mark the new base and bounds.

For applications with custom memory allocators, the way to achieve complete memory safety
often requires the developer to manually modify the application’s code. For example, using Intel
MPX, the developer will need to modify the memory management functions in their application’s
custom memory allocator code.

The wrapper function might consist of only one to two additional lines of code. However,
even such a small change might not be be feasible to do in a production setting (as we will soon
see.)

44

[h]

12. PERFORMANCE AND SECURITY IMPLICATIONS

In this section, we report our findings on the performance implications of enforcing memory
safety protection on applications using a custom memory allocator. We used Intel MPX as our
choice of defense to carry out the experiment. In order to achieve any sort of custom allocator-aware
memory safety with Intel MPX, we must add an additional number of checks to the application to
enforce the base and bounds of the memory used.

There are two obvious consequences from this action. The first is that the amount of space
required will increase to store this new metadata. Space refers to the amount of memory used to
store the base and bounds in the bounds table and bounds directory along with the registers added
to support the extra Intel MPX operations. Secondly, we expected that there will be an increase
in performance overhead due to the fact that we are now doing more work by setting and checking
the base and bounds information. While we obtained data to back up the first observation, it was not
as clear-cut for the second observation.

12.1 EXPERIMENT METHODOLOGY

We performed the experiment on three different applications with custom memory allocators.
The first was the Apache HTTP server, an open-source project that uses a pool allocator for memory
management. The second was the nginx web server, another open-source project that uses a pool
allocator. The third and final application we used was appweb, a proprietary web server that
also uses a pool allocator. While all three applications use pool allocators, there were significant
enough differences in their implementations that the performance varied differently depending on
how strict the base and bounds were being enforced for the memory allocations being done. For a
more detailed discussion on how the custom memory allocators work for Apache and nginx, please
refer to chapter 4.

Since all three applications are implementations of web servers, the most important metric is
the time it takes for the web server to respond to a client request. In our experiment, we measure the
time it takes for the web server to answer a client’s request, given changes to memory management
and safety.

We used ApacheBench to measure the performance of four scenarios for all three applications.
ApacheBench is a bench-marking tool that sends a number of user requests concurrently (this
number is controlled by the tester) to a specified HTTP web page. In our experiment, we sent a large
amount of user requests to an HTTP web page that is being managed by the application web
server and measured the amount of time it takes for the web server to respond to the user.

The size of the web page was consistent throughout the experiment. Originally, the HTTP
web page we used was a small file that only consisted of the words “Hello World”, but we found
that having such a small file made it hard to interpret results. Therefore, we increased the size of
the HTTP web page to 360kb.

The experiment was performed on a standard laptop running with an Intel Core i7 6700HQ
processor (Skylake generation) @ 2.60GHz with 12GB RAM on Linux Ubuntu 16.04.4 LTS. Each of

45

the three chosen applications were subjected to performance test under five different situations to
gather data on how the usage of Intel MPX and custom memory allocators impacted performance.

The configurations are Custom Allocator/No Protection, Custom Allocator/Partial Protec-
tion, Custom Allocator/Full Protection, System Allocator/No Protection, and System Allocator/-
Full Protection. “Custom Allocator/No Protection” means that the application was compiled using
GCC without Intel MPX enabled. No base and bounds information is generated about memory al-
located from either the system allocator or the custom memory allocator. As this is the default way
to compile the application (without Intel MPX and without modifications done to the application’s
source code), the data from this scenario served as the baseline for our later experiments.

“Custom Allocator/Partial Protection” refers to the partial custom memory-aware memory
safety that we defined in the previous section. The application is compiled using GCC with Intel
MPX enabled so we are aware of the base and bounds of the allocations performed by the system
allocator. As the application code does not get modified, we do not know the base and bounds of
the allocations performed by the custom memory allocator.

“Custom Allocator/Full Protection” refers to the complete custom memory-aware safety that
we also defined in the previous section. The application code is modified, such that the memory
management functions of the custom memory allocator make calls to the Intel MPX API. Then
the application is compiled with Intel MPX. We know the base and bounds of all allocations done
by both the system allocator and the custom memory allocator.

“System Allocator/No Protection” and “System Allocator/Full Protection” required huge
modification of all three application’s source code. It involved replacing the custom allocator with
the system allocator. In other words, rather than call pool alloc, we modified the applications to
call malloc instead. When pool free is called, free is called instead. The implication behind this
is that the application gets the overhead of having to contact the system every time it wants to
request or discard a piece of memory. In return, for using the system allocator, the application no
longer has the overhead of managing its memory. In most of these cases, that means not having to
manage a free list. In “System Allocator/No Protection”, the application is using only the system
allocator and not compiled with Intel MPX. In “System Allocator/Full Protection”, the application
is using only the system allocator and is compiled with Intel MPX. These two tests were added to
further understand the implications of using custom memory allocators. By choosing to use the
system allocator only, we wanted to see if there would be a huge impact to performance when the
application was compiled with and without Intel MPX.

12.2 APACHE RESULTS

12.2.1 Setup

We briefly describe the setup for Apache. We used Apache version 2.2.19. The configure
commands to compile Apache with and without Intel MPX respectively are:

./configure --prefix="/usr/local/apache"

46

./configure --prefix="/usr/local/apachewithMPX" CFLAGS="-mmpx

-fcheck-pointer-bounds -lmpx" LDFLAGS="-lmpxwrappers -lmpx"

The “no protection” form of Apache is compiled regularly and without any additional options.
For the versions compiled with Apache, we need to add additional information so that GCC knows
to compile with Intel MPX. The libc libraries used were libmpx.so.0 and libmpxwrappers.so.0.
Setting the compiler flag -fcheck-pointer-bounds tells GCC to record and validate the base and
bounds of allocated memory. For a comprehensive list of compiler options offered by Intel MPX,
refer to the Intel Software Developer’s Manual. Note that the lastest version of GCC has stopped
support for Intel MPX. GCC 9 removes support for Intel MPX altogether.

Figure 16. apache performance

Both figure 16 and 17 record the same data, but display the data differently. Each data point is
based on the number of client HTTP get requests sent to the web server and the time it took for the
web server to respond. The x-axis increment by 100, starting at 10 client requests andending at 910
requests. Both nginx and appweb follow the same rules for data-gathering, so we will only explain this in
the Apache section of results.

47

Figure 17. apache performance

Based on the results in figure 16, “Custom Allocator/No Protection” Apache has the fastest
run-time, followed by “System Allocator/No Protection” Apache, “Custom Allocator/Partial Pro-
tection” Apache, “Custom Allocator/Full Protection” Apache, and finally “System Allocator/Full
Protection” Apache. It seems intuitive for why “Custom Allocator/No Protection” Apache is the
fastest out of all five scenarios. “Custom Allocator/No Protection” Apache does not have the over-
head added by Intel MPX nor does it have to regularly talk to the system allocator for memory
management.“Custom Allocator/No Protection” Apache has faster results than “System Alloca-tor/
No Protection” Apache, which has the increased overhead of having to communicate with the system
allocator for all memory allocations and frees. After “System Allocator/No Protection” Apache, the
next fastest scenario for is “Custom Allocator/Partial Protection” Apache. This makes sense because
the application is starting to become aware of the base and bounds for one of the allocations,
but not all of them.

48

We noticed that for certain data points in Figure 17, “System Allocator/No Protection”
Apache and “Custom Allocator/Partial Protection” Apache performed better than “Custom
Allocator/No Protection”. Considering the observations we just made, it does not make sense
that “System Allocator/No Protection” and “Custom Allocator/Partial Protection”, with the
additional over-head, would be able to beat “Custom Allocator/No Protection” Apache in
performance. However, consider the case for “System Allocator/No Protection”. Recall that the
Apache pool allocator maintains a free list of all the memory blocks that was freed by the
application previously. The free list is a linked list of lists, which contain memory blocks. As
more and more allocations are done, the lists in the free list will grow longer and it will take
time to iterate through these lists (as this is a linked list, and list traversals take linear time).
When the memory used by the custom allocator is returned to the system, the custom allocator
will have to remove all the references to the memory blocks in the linked lists. Depending on
how and when these frees are being done, it is possible to have an impact on performance.
These were the reasons we attributed as to why “System Allocator/No Protection” was
sometimes better than “Custom Allocator/No Protection”.

In the points where “Custom Allocator/Partial Protection” Apache performed better than
“Custom Allocator/No Protection” Apache, “Custom Allocator/Partial Protection” Apache’s in-
crease in performance was never more than 5%. This indicates that the performance gain might
be caused by variance in the data results or there was indeed an advantage to compiling with Intel
MPX when the number of requests is in the range of 200-400.

The next fastest scenario was “Custom Allocator/Full Protection” Apache, which makes
sense based on the results we have seen so far. “Custom Allocator/Full Protection” Apache has
to generate and record the base and bounds of all memory allocations, unlike the previous three
results.

Finally, the slowest scenario was “System Allocator/Full Protection” Apache, which is not
only using Intel MPX, but the system allocator for all allocations. The overhead of “System Alloca-
tor/Full Protection” Apache compared to the second slowest “Custom Allocator/Full Protection”
Apache was significant in that the difference was greater than “Custom Allocator/Full Protection”
and the third slowest, “Custom Allocator/Partial Protection”. This reflects the fact that custom
allocators do help in improving performance, if only slightly.

12.3 NGINX RESULTS

12.3.1 Setup

We briefly describe the setup for nginx. The version of nginx used was 1.12.2. The configure
commands to compile nginx with and without Intel MPX respectively are:

./configure --prefix="/usr/nginx" --without-http rewrite module

./configure --prefix="/usr/nginxwithMPX" --with-cc-opt="-mmpx -fcheck-
pointer-bounds -lmpx" --with-ld-opt="-lmpxwrappers -lmpx"
--without-http rewrite module

49

Figure 18. nginx performance

Due to the differences in implementation of pool allocators between Apache and nginx, the
results for nginx are slightly different. “Custom Allocator/No Protection” nginx and “Custom Al-
locator/Partial Protection” nginx roughly have the same performance measurements. For Apache,
there was a bigger difference between “Custom Allocator/No Protection” and “Custom Allocator/-
Partial Protection”. The discrepancy is due to the fact that nginx’s pool allocator tends to allocate
either small or large blocks of memory from the system allocator. In both “Custom Allocator/No
Protection” and “Custom Allocator/Partial Protection”, allocations done by the system allocator
are rare. The small blocks that do get allocated tend to get used for the client HTTP get requests,
but are never reused by the custom allocator. When large blocks get freed, the blocks are returned
to the system allocator and not added to the free list. Therefore, it makes sense that “Custom
Allocator/No Protection” and “Custom Allocator/Partial Protection” exhibit the same behavior.
The number of calls to malloc is insignificant enough that enabling Intel MPX does not impact
run-time.

50

Figure 19. nginx performance

There is a bigger overhead when we transition between “Custom Allocator/No Protection”
and “System Allocator/No Protection.” It shows that the nginx custom memory allocator does

improve performance.

The slowest two are “Custom Allocator/Full Protection” nginx and “System Allocator/Full
Protection” nginx. The two have similar run-times. This makes sense because of symmetry, given
that “Custom Allocator/No Protection” nginx and “System Allocator/No Protection” nginx have
similar run-times as well.

51

12.4 APPWEB RESULTS

12.4.1 Setup

We briefly describe the setup for appweb. We used appweb 7.0.3. Note that appweb requires
the use of an in-house “make” program if we want to specify compiler or linker flags. The version
of appweb used was The configure commands to compile appweb with Intel MPX respectively is:

CFLAGS="-mmpx -fcheck-pointer-bounds -lmpx" LDFLAGS="-lmpxwrappers -lmpx

-L/usr/lib/x86/64 − linux − gnu − mmpx − fcheck − pointer − bounds”meconfigure −
−prefixbase = ”/usr/local/fullappweb” −−static

For the compiler and linker flags to be recognized, both flags have to be before “me configure”.
Otherwise, the in-house “make” program will ignore the flags.

Figure 20. nginx performance

52

We only have a bar graph with a log y-axis for appweb (with three different scenarios), due to
the huge performance overhead that prevents all the data from being displayed in a regular line
graph. “Custom Allocator/No Protection” appweb has the best performance. The run-times get
exponentially worse than the base.“Custom Allocator/Partial Protection” appweb is exponen-tially
worse (almost 1000% times slower) and “Custom Allocator/Full Protection” is 10000% times slower.
Considering even an 15% increase in performance overhead can often invalidate a security
mechanism, even “Custom Allocator/Partial Protection” appweb is unusable. In certain cases like
appweb, using Intel MPX can have devastating effects.

12.5 ANALYSIS OF RESULTS

In all three applications, the changes caused by enabled Intel MPX varied depending on how
strongly memory safety was enforced and what type of allocator was used. Therefore, even though
custom allocators help by increasing performance, they tend to increase the complexity of the
situation when memory protection is required. First, we have to understand the implementation
of the custom allocator. For example, we need to know how memory is being managed by the
custom memory allocator and the frequencies of memory requests the system and custom allocator
get. We also need to know the latency caused by Intel MPX for all scenarios, such as “Custom
Allocator/Partial Protection” and “Custom Allocator/Full Protection”, but that knowledge would
be incomplete without knowing the latency caused by Intel MPX when the application is using the
system allocator only. With so many factors at hand, using something like Intel MPX with custom
allocators becomes a much more complicated situation and we have to wonder if custom allocators
are really all that beneficial.

53

Conclusion and Future Work

Obtaining either good performance or security is difficult. Trying to achieve both is very
difficult. We demonstrate this with custom memory allocators. We show that in most cases, effi-
ciency and correctness are hard to achieve due to the complexity that comes with manual memory
management. More specifically, we know that custom memory allocators are not the most practical
of tools. Only a certain subset of custom memory allocators yield decent results. For the majority
of custom memory allocators, there are many cases in which the general-purpose allocator or to
be more specific, the Doug Lea memory allocator outperforms the custom memory allocator [9].
In certain cases, such as the pattern memory allocator, which relies on obtaining real-life data
about the memory allocation patterns of a program, it may not always be possible. Even if it is
possible to examine the program at depth, it may be hard to find any relevant patterns to exploit
for performance.

In Section 4, we listed a number of popular custom memory allocators and explain the advan-
tages and disadvantages they provide to the programmer. Only the pool/region memory allocator
proves to be advantageous in terms of memory leak prevention, minimized communication between
the kernel and the process, and a decrease in run-time. We show that despite the advantages
provided by the pool/region memory allocator, in hindsight, security considerations make those
advantages more questionable. In Section 5, we show that there has been a history of exploits
made on custom memory allocators, and that security is still very much a concern even if memory
becomes easier to manage.

The idea of custom memory allocators was created from the desire of programmers to im-
prove performance and compatibility for specific programs. However, it is clear that while custom
memory allocators have been shown to be good in dealing with certain bugs that are often common
in the C programming language, such as memory leaks, custom memory allocators are bad in terms
of safety. Rather than use custom memory allocators purely for performance, programmers should
look to a more viable solution that does not undermine safety for performance. There have been
custom memory allocators made that target safety, such as Cling. More efforts should be placed
on these allocators.

In addition, ideas such as minimized communication between the kernel and process are not
exclusive to the pool allocator. In general, it is good practice, especially if performance is an issue.
The Doug Lea allocator also made attempts to minimize communication. The Doug Lea allocator
was created with the goal to act as a general-purpose allocator. It does not try to improve per-
formance for one specific type of program, but for all programs. It achieves this and outperforms
much of the custom memory allocators. Therefore, while performance is still an important con-
cern, perhaps there can be effort on fixing the C programming language such that memory leaks
are harder to be created by the programmer.

By showing the trade-off between performance and security in custom memory allocators, we
hope that this research will allow programmers to realize that more attempts should be made to
find a better solution that does not undermine security.

54

This page intentionally left blank.

This page intentionally left blank.

REFERENCES

[1] Emer J., Reliable Architectures, MIT 6.823 Lecture, MA, June 2015.

[2] Aleph One, A Smashing the stack for fun and profit, Phrack, 7(49), November 1996.

[3] Nagarakatte, S., Zhao J., Martin, M., Softbound: Highly compatible and complete spatial
memory safety for C,. SIGPLAN, June 2009.

[4] ”FTC Internet of Things Workshop,” Federal Trade Commission, 19 November 2013.

[5] CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-0160, December 3 2013.

[6] CVE-2014-4115. Available from MITRE, CVE-ID CVE-2014-4115, June 12 2014.

[7] Intel MPX Support in the GCC Compiler. https://gcc.gnu.org/wiki/Intel MPX support in
the GCC compiler, 2015. Accessed: 2015-07-06.

[8] Nagarakatte, S., Zhao J., Martin, M., CETS: compiler enforced temporal safety for C. ISMM,
ACM, 2010.

[9] Berger, E., Zorn, B., McKinley, K., Reconsidering Custom Memory Allocation. OOPSLA,

2002.

[10] Apache Foundation. Apache Web Server. http//www.apache.org

[11] Free Software Foundation. GCC Home Page. http://gcc.gnu.org

[12] Doug Lea. A Memory Allocator. http://g.oswego.edu/dl/html/malloc.html

[13] nginx community. nginx Web Server. nginx.org/en/

[14] Szekeres, L., Payer, M., Wei, T., Song, D., Sok: Eternal war in memory. IEE Symposium on

Security and Privacy, 2013.

[15] OpenBSD. Openbsd 3.3, 2003.

[16] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P., On the expressiveness of
return-into-libc attacks. RAID, 2011.

[17] Shacham, H., The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). ACM, 2007.

[18] Soderstrom, E., Analysis of return oriented programming and countermeasures. Master’s
Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2014.

[19] Nagarakatte, S., Zdancewic, S., Martin, M., Watchdog: Hardware for Safe and Secure Manual
Memory Management and Full Memory Safety. ISCA 2012.

[20] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J., Region-Based Memory
Management in Cyclone. In PLDI 2002

57

[21] Berger, E., Hertz, M., Automatic vs. Explicit Memory Management: Settling the Performance
Debate. OOPSLA, 2004.

[22] Johnstone, M., Wilson, P., The memory fragmentation problem: Solved? In International
Symposium on Memory Management, 1998.

[23] Kreinin, Y., Why Custom Memory allocators/pools are hard. http://yosefk.com/blog/why-
custom-allocatorspools-are-hard.html

[24] Abadi, M., Budiu, M., Erlingsson, J., Ligatti, J., Control-flow integrity. In Proceedings of the
12th ACM conference on Computer and communications security, ACM, 2005.

[25] Eigler. F., Mudflap: Pointer Use Checking for C/C++. In GCC Developer’s Summit, 2003.

[26] Dhurjati, D., Adve, V., Backwards-Compatible Array Bounds Checking for C with Very Low
Overhead. In Proceeding of the 28th International Conference on Software Engineering, May
2006.

[27] Austin, T., Breach, S., Sohi, G., Efficient Detection of All Pointer and Array Access Errors.
In Proceedings of the SIGPLAN 1994 Conference on Programming Language Design and
Implementation, SIGPLAN, 1994.

[28] Regehr, J., Memory Safe C/C++: Time to Flip the Switch.
http://blog.regehr.org/archives/939, 2013. Accessed: 2015-08-12.

[29] El-Sherei, S., Return-to-libc. https://www.exploit-db.com/docs/28553.pdf

[30] Kahneman, D., Knetsch, J., Thaler, R., Anomalies: The Endowment Effect, Loss Aversion,
and Status Quo Bias. The Journal of Economic Perspectives, 1991.

[31] Liang, Z., Bletsch, T., Jiang, X., Free, V., Jump-Oriented Programming: A New Class of
Code-Reuse Attack. ASIACSS, 2011.

[32] Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D., Hacking Blind. In IEEE
Symposium on Security and Privacy, 2014.

[33] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M., Return-
Oriented Programming without Returns . CCS, 2010

[34] PaX Team., PaX Non-executable Stack (NX): http://pax.grsecurity.net/docs/ noexec.txt

[35] Schwartz, E., The Dangers of Unrandomized Code. USENIX, 2011.

[36] Andersen, S., Abella, V., “Changes to functionality in microsoft windows xp service pack
2, part 3: Memory protection technologies, Data Execution Prevention,” Microsoft TechNet
Library, September 2004, http://technet.microsoft.com/en-us/library/bb457155.aspx.

[37] Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G., Out Of Control: Overcoming
Control-Flow Integrity. IEEE Symposium on Security and Privacy, 2014.

58

[38] Davi, L., Sadeghi, A., Lehmann, D., Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection. USENIX, 2014.

[39] Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Negro, M., Qunaibit,
M., Sadeghi, A. Losing Control: On the Effectiveness of Control-Flow Integrity under Stack
Attacks. CCS, 2015.

[40] PaX ASLR Documentation. http://pax.grsecurity.net/docs/aslr.txt

[41] Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D., On the Effectiveness
of Address-Space Randomization. CCS, 2004.

[42] Snow, K., Monrose, F., Davi, L., Dmitrienko, A., Just-In-Time Code Reuse: On the Effective-
ness of Fine-Grained Address Space Layout Randomization. In IEEE Symposium on Security
and Privacy, 2013.

[43] Pappas, V., Polychronakis, M., Keromytis, A., Smashing the Gadgets: Hindering Return-
Oriented Programming Using In-Place Code Randomization. In ACM, 2012.

[44] Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A., Brunthaler, S.,
Franz, M., Readactor: Practical Code Randomization Resilient to Memory Disclosure. In
IEEE Symposium on Security and Privacy, 2015.

[45] Kc, G., Keromytis, A., Prevelakis, V., Countering Code-Injection Attacks With Instruction-
Set Randomization. In CCS, 2003.

[46] Sovarel, A., Evans, D., Paul, N., Where’s the FEEB? The Effectiveness of Instruction Set
Randomization. In ACM, 2005.

[47] Barrantes, G., Ackley, D., Palmer, T., Zovi, D., Forrest, S., Stefanovic, D., Randomized
instruction set emulation to disrupt binary code injection attacks. In ACM, 2005.

[48] Ganesh, K., Pointer Checker: Easily Catch Out-of-Bounds Memory Accesses. In Intel Parallel
Universe Magazine, 2012.

[49] Nagarakatte, S., Marin, M., Zdancewic, S., WatchdogLite: Hardware-Accelerated Compiler-
Based Pointer Checking. In CGO, 2014.

[50] Intel Pointer Checker. https://software.intel.com/en-us/node/522702

[51] jemalloc. http://www.canonware.com/jemalloc/

[52] MaXX, Vudo - An object superstitiously believed to embody magical powers, Phrack, Novem-
ber 2001. Accessed: 2015-09-16.

[53] argp, huku, Pseudomonarchia jemallocum, Phrack, April 2012. Accessed: 2015-09-16.

[54] argp, huku, The Art of Exploitation: Exploiting VLC, a jemalloc case study, Phrack, April
2012. Accessed: 2015-09-16.

59

[55] Karmitas, C., Argyroudis, P., Exploiting the jemalloc Memory Allocator: Owning Firefox’s
Heap, In Blackhat, 2012.

[56] Akritidis, P., Cling: A Memory Allocator to Mitigate Dangling Pointers. In IEEE Symposium
on Security and Privacy, 2010.

[57] Oleksenko, O., Kuvaiskii, D., Intel MPX Explained: An Empirical Study of Intel MPX and
Software-based Bounds Checking Approaches. In Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2018

[58] Drake, J. Exploiting Memory Corruption Vulnerabilities in the Java Runtime. In Black Hat
Abu Dhab, 2011.

[59] Hansen, D. Intel R© Memory Protection Extensions (Intel R© MPX) for Linux. 2016.

60

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

03-10-2019
2. REPORT TYPE
 Technical Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8702-15-D-0001

Security and Performance Analysis of Custom Memory Allocators 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER
2231

T. Tang, M. Ohkravi 5e. TASK NUMBER
2801

 5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02421-6426

TR-1241

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
MIT Lincoln Laboratory, Technology Office
244 Wood Street
Lexington, MA 02426

MIT LL, TO

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
By definition, memory corruption occurs when memory is modified illegally. The memory contract between the program and
operating system is violated, and as a result, malicious actions may occur. We use the term “may” because an instance of memory
corruption does not necessarily lead to a security exploit.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Same as report 62 19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

This page intentionally left blank.

62

	Title
	Table of Contents
	List of Figures
	Definition
	Memory Corruption Attacks
	Code Injection
	return-to-libc
	Return-Oriented Programming

	Enforcement-based Defenses
	Non-Executable Memory
	Control-Flow Integrity
	Complete Memory Safety

	Randomization-based Defenses
	Address Space Layout Randomization
	Code Randomization
	Instruction Set Randomization

	Definition
	Intel MPX
	Design
	Implementation
	Performance Overhead and Compatibility

	Related Work
	Object-Based Approach
	Pointer-Based Approach

	Background
	Custom Memory Allocators
	Per Class Allocators
	Region and Pool Allocators
	Custom Pattern
	Apache Pool Allocator
	nginx Pool Allocator

	Previous Work
	Doug Lea Allocator
	jemalloc per-class allocator

	Partial and Complete Custom Allocator-Aware Memory Safety
	Partial Custom Allocator-Aware Memory Safety
	Complete Custom Allocator-Aware Memory Safety

	Performance and Security Implications
	Experiment Methodology
	Apache Results
	nginx Results
	appweb Results
	Analysis of Results

	References
	Blank Page
	Blank Page

