
The Continuing Arms Race: Code-Reuse Attacks
and Defenses1

Stephen Crane, Immunant, Inc.
Andrei Homescu, Immunant, Inc.

Per Larsen, University of California, Irvine & Immunant, Inc.
Hamed Okhravi, MIT Lincoln Laboratory

Michael Franz, University of California, Irvine

1 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
This material is based upon work partially supported by the Department of Defense under Defense Ad-
vanced Research Projects Agency (DARPA) contract FA8750-15-C-0124, Air Force contracts FA8721-
05-C-0002 and FA8702-15-D-0001, and by the National Science Foundation under awards CNS-
1513837 and CNS-1619211.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency
(DARPA), its Contracting Agents, the Air Force, the National Science Foundation, or any other agency
of the U.S. Government.

Contents
1 Diversity & Information Leaks 1

1.1 Software Diversity . 2
1.2 Information Leakage . 2
1.3 Mitigating Information Leakage . 3
1.4 Address Oblivious Code Reuse . 7
1.5 Countering Address Oblivious Code Reuse 9

1.5.1 Authenticating Direct Calls & Returns 9
1.5.2 Securing Indirect Calls & Returns 11

1.6 Evaluation of Code Pointer Authentication 12
1.6.1 Security . 12
1.6.2 Performance . 14

1.7 Conclusions . 15

iii

List of Figures
1.1 Direct and indirect memory disclosure. Source Crane et al. [2015a]. 5
1.2 Code pointer authentication. Direct calls and returns are illustrated in the left-

most third of the figure; indirect calls and returns are shown in the rightmost
two thirds. Light grey boxes contain execute-only code and white boxes con-
tain data. Dark grey labels show where we insert additional instructions to
prevent address harvesting attacks. The =32 operator in the check after edge
9 indicates that we only check the lower 32-bits of the return cookie. 10

1.3 Performance overhead of code pointer authentication on SPEC CPU2006. All
measurements include the overhead of the Readactor++ [Crane et al. 2015b]
transformations. 14

v

List of Tables

vii

1 Diversity & Information Leaks
Almost three decades ago, the Morris Worm infected thousands of UNIX workstations by,
among other things, exploiting a buffer-overflow error in the fingerd daemon [Spafford
1989]. Buffer overflows are just one example of a larger class of memory (corruption)
errors [Szekeres et al. 2013; van der Veen et al. 2012]. The root of the issue is that systems
programming languages—C and its derivatives—expect programmers to access memory
correctly and eschews runtime safety checks to maximize performance. There are three
possible ways to address the security issues associated with memory corruption. One is to
migrate away from these legacy languages which were designed four decades ago, long before
computers were networked and thus exposed to remote adversaries. Another is to retrofit the
legacy code with runtime safety checks. This is a great option whenever the, often substantial,
cost of runtime checking is acceptable. In cases where legacy code must run at approximately
the same speed, however, we must fall back to targeted mitigations which, unlike the other
remedies, do not prevent memory corruption. Instead, mitigations make it harder, i.e., more
labor intensive, to turn errors into exploits.

Since stack-based buffer overwrites were the basis of the first exploits, the first mitigations
were focused on preventing the corresponding stack smashing exploits [Levy 1996]. The
first mitigations worked by placing a canary, i.e., a random value checked before function
returns, between the return address and any buffers that could overflow [Cowan et al. 1998].
Another countermeasure that is now ubiquitous makes the stack non-executable. Since then,
numerous other countermeasures have appeared and the most efficient of those have made it
into practice [Meer 2010]. While the common goal of countermeasures is to stop exploitation
of memory corruption, their mechanisms differ widely. Generally speaking, countermeasures
rely on randomization, enforcement, isolation, or a combination thereof. Address space layout
randomization is the canonical example of a purely randomization-based technique. Control-
flow integrity [Abadi et al. 2005; Burow et al. 2016] is a good example of a enforcement
technique. Software-fault isolation, as the name implies, is a good example of an isolation
scheme. Code-Pointer Integrity, CPI [Kuznetsov et al. 2014] is an isolation scheme focused
on code pointers. While the rest of this chapter focuses on randomization-based mitigations,
we stress that the best way to mitigate memory corruption vulnerabilities is to deploy multiple,
different mitigation techniques as opposed to being overly reliant on any single defense.

1

2 Chapter 1 Diversity & Information Leaks

1.1 Software Diversity
Randomization, or software diversity [Cohen 1993; Larsen et al. 2014b], essentially hides im-
plementation details such as the memory layout from adversaries. This means that adversaries
cannot rely on code, variables, or other program artifacts residing at a known location. This
idea has similarities with biodiversity wherein some fraction of animals in a herd will have
immunity against environmental hazards due to random differences in their immune systems.
One can also draw parallels to kinetic warfare insofar that belligerents seek to conceal their
locations to avoid becoming an easy target.

Because adversaries in the digital domain seek to exploit implementation flaws that trigger
invalid memory accesses, the inputs that cause the unintended behavior are highly implemen-
tation dependent. This is why randomization of the code layout has a de-stabilizing effect on
code-reuse attacks that depend on code snippets (gadgets in ROP parlance [Shacham 2007])
residing at known addresses.

Adversaries generally have two ways to bypass diversified binaries: guessing or reconnoi-
tering their target. Repeatedly mounting an attack which crashes the victim program [Bittau
et al. 2014; Evans et al. 2015; Shacham et al. 2004] has visible side effects that often facilitate
detection. Information leakage, on the other hand, is often silent and leaves few traces, if any,
on the victim system. In the rest of this chapter, we focus on bypasses of diversity relying on
information leakage, particularly code layout disclosure, and the countermeasures available
to defenders.

1.2 Information Leakage
In their seminal paper on stack guards, Cowan et al. mention that their techniques are not
impossible to bypass, but to do so would require the attacker to examine the entire memory
image of the program [Cowan et al. 1998, p. 4]. The tacit assumption is that the attacker
cannot easily leak the memory contents of a running program. Their follow-up work focusing
on pointers also cites the difficulty of accessing process memory in their security argument:
“To obtain the key, the attacker would either have to already have permission to manipulate
the process with debugging tools (e.g. ptrace) or would have to have already successfully
perpetrated a buffer overflow attack against the process.” [Cowan et al. 2003]. Strackx et
al. [Strackx et al. 2009] were the first to examine what they termed the “Memory Secrecy
Assumption” underpinning randomizing defenses at the time. The gist of their argument is that
memory secrecy relies on the absence of memory corruption vulnerabilities, an assumption
that, if valid would also obviate the need for memory corruption mitigations such as ASLR,
stack canaries and other diversity techniques. Information leakage can arise from format string
vulnerabilities which cause the defective program to print out internal data or code rather than
the intended output. Strackx et al., point out that buffer over-reads are a more common source

1.3 Mitigating Information Leakage 3

of information leakage and demonstrate a concrete attack in which ASLR and ProPolice [Etoh
and Yoda 2000] can be bypassed thanks to such over-reads.

Serna highlighted that type confusion and use-after-free vulnerabilities as well as
application-specific vulnerabilities also facilitate information leakage [Serna 2012]. The talk
also highlighted that the widespread deployment of ASLR and stack canaries in all modern
operating systems had made information leakage a requirement to write reliable exploits.
Most importantly, Serna noted that the combination of attacker-controlled scripting and mem-
ory corruption errors put adversaries in a powerful position.

Snow et al. [2013] translated Serna’s observation into practice by using an overflowed
buffer object to systematically scan the memory of the process running a malicious script. Just-
in-time code reuse, JIT-ROP, attacks generalize previous attacks and are worth summarizing
here. The general goal of JIT-ROP is to find as many mapped code pages as possible by
starting from a small root set of known pages. The discovery of additional code pages happens
by recursively scanning each page for references to other pages and adding these pages to a
working set. In context of browsers, the JIT-ROP technique is used to break out of a sandboxed
scripting environment, such a JavaScript VM hosted by a browser. This lets the adversary
execute arbitrary code with all permissions granted to the operating system process. To do so,
the adversary tricks an unsuspecting user into visiting a web page serving a malicious script.
The script constructs a write-what-where primitive out of a memory corruption vulnerability
such that the adversary can access any mapped location within the virtual address space of
the process. Since the code layout is not known to the adversary a priori, the exploit fails
if it touches unmapped memory and the resulting segmentation fault is not handled by the
program. Segmentation faults are avoided by scanning for pointers to code in the data memory
surrounding the overflowed object (using a priori knowledge of the heap layout). Next,
the exploit scans the code page identified by the code pointer. Since the virtual-to-physical
memory mapping happens at the page granularity, it is always safe to scan an entire page
which is usually 4KiB in size. Snow et al. realized that they could implement a disassembler
in JavaScript to recover references between code pages and use the recovered references to
discover additional code pages recursively. The recursive disassembly step terminates when
the script has discovered enough code snippets to mount a traditional code-reuse attack.

1.3 Mitigating Information Leakage
Backes and Nürnberger [2014] were first out of the gate with a response to JIT-ROP attacks.
Their technique, Oxymoron, splits the code segment into 4KiB pages. Furthermore, any code
reference to another page is indirected through a lookup table. The base of the lookup table is
hidden using the vestiges of x86 segmentation. This prevents the recursive disassembly step
in the JIT-ROP attack. An interesting aspect of Oxymoron is that the scheme was designed to
allow code pages to be shared among processes. This is an important optimization for shared

4 Chapter 1 Diversity & Information Leaks

libraries and one that is overlooked by most of the academic literature although it is crucial in
practice.

Davi et al. [2015] presented a different response to JIT-ROP attacks—Isomeron—
motivated by their finding that the original JIT-ROP technique could be modified slightly
to bypass Oxymoron. The key to the Oxymoron bypass was the finding that data memory
contains enough pointers to discover enough code pages to mount an attack, even if it is
not possible to discover additional pages through inter-page references thanks to Oxymoron.
Virtual method tables for the C++ dispatch mechanism, for example, enable pointer harvest-
ing and lessen the need for recursive disassembly. The Isomeron defense [Davi et al. 2015]
frustrates return-oriented programming techniques by cloning each program function and ran-
domly picking between original and function clones during execution. Code-reuse exploits
need not use returns to chain gadgets, so the Isomeron technique has shortcomings of its own.

Backes et al. [2014] advocated for a more principled way to counter information leakage:
preventing read accesses to code pages. Their implementation—eXecute-no-Read or just
XnR—presented a workaround for all x86 processors whose memory management units
lack native support for executable, non-readable pages. To work around this limitation, XnR
prevents reads by clearing the present bit for nearly all code pages. Normally, the CPU uses
the present bit to track which pages are present in RAM and or paged out to disk. Accesses
to a page with the present bit cleared, causes the CPU to generate a page fault which the
operating system handles by reading the missing page from the pagefile. XnR modifies the
operating systems page fault handler to to mark XnR pages present (without evicting their
contents) if and only if the present bit was cleared to prevent read accesses and if the page
fault was triggered by instruction fetch, i.e., an attempt to execute the page was made. If,
on the other hand, the fault was generated by a read access to an executable page, the XnR
page fault handler terminates the program before any memory contents can be leaked. The
number of page faults to handle determines the overhead of the XnR approach. To avoid
excessive slowdowns, XnR keeps a small window of recently executed pages readable and
executable—and thus exposed to information leaks. However, XnR uses a sliding window of
2-8 pages to limit the amount of code that can be leaked at any point in the execution.

Gionta et al. [2015] developed a system—HideM—which similarly made code pages
unreadable but does so by using the Translation Look-aside Buffer, TLB, in a special way
known as TLB-desynchronization. On processors that use separate TLBs for data and code,
the two TLBs are usually kept in sync which gives an executing process the same view of its
address space regardless of the type of access. HideM configures the memory management
unit such that accesses to the same virtual address translate to different physical addresses
depending on the access type. This way, instruction fetches proceed as intended whereas
read accesses—whether malicious or not—go to a different physical copies of the text
section. To ensure that legitimate reads to constant data stored on code pages function
correctly, HideM zeroes out all instructions in the readable copy of the text section while

1.3 Mitigating Information Leakage 5

JMP label

CALL Func_A

Code page 1

Readable-writable
Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 1.1 Direct and indirect memory disclosure. Source Crane et al. [2015a].

preserving all embedded constant data. This is a point in favor of HideM since XnR does
not explicitly address the problem of reading embedded constants. On the other hand, most
modern processors have unified TLBs and thus do not not support TLB-desynchronization as
required by HideM.

While XnR and HideM goes a long way towards preventing direct leakage through
adversarial reads, adversaries can also make inferences about the code layout by inspecting
code pointers stored in the data segments of a running process. The difference between these
two types of leakage is illustrated in Figure 1.1. The defenses we’ve discussed so far have
protected the code pages and references between these (top half of Figure) but not references
from data pages to code pages (bottom half of Figure). The utility of leaking a function pointer
or return address when code pages cannot be read directly depends on the granularity of the
code layout diversity. If each individual instruction is placed at a random location [Hiser et al.
2012], such leaks mainly facilitate whole-function reuse. However, the most granular diversity
techniques tend to have high overheads [Larsen et al. 2014a] and may prevent page sharing
between processes [Backes and Nürnberger 2014; Crane et al. 2016].

6 Chapter 1 Diversity & Information Leaks

Crane et al. [2015a] built a system—Readactor—which explicitly seeks to prevent both
direct and indirect leakage of code code layout. Rather than emulating execute-no-read
permissions, Readactor leverages the extended page translation mechanisms found in modern
(circa 2008 and onwards) processors to accelerate hypervisors. Memory accesses inside
virtual machines undergo two levels of address translation i) guest virtual to guest physical
translation and ii) guest physical to host physical translation. The effective permissions of
an access to host physical memory is the intersection of the permissions used in the two
translation steps. Unlike the first translation step which forces read permissions on executable
pages, the second translation step can represent true execute-only memory permissions. The
Readactor system used a lightweight hypervisor to activate the extended page tables on a
per process basis to protect individual applications running on a traditional host system, i.e.,
outside a traditional hypervisor. Rather than allowing accesses to constant data on code pages,
Redactor used a modified compiler to eliminate all such reads. The major open source C/C++

compilers later stopped emitting constants on code pages for performance reasons, which also
benefits execute-only techniques.

Readactor tackles indirect leakage by introducing a pointer indirection layer so no pointer
stored in a readable memory region points directly to its target. All that adversaries can
observe are pointers into a special execute-only area containing trampolines (direct jumps) to
the actual functions. Because the trampolines are stored on pages with execute-only memory,
they cannot be dereferenced by an exploit. Adversaries therefore cannot learn the locations of
functions in the absence of hardware-level side channels [Gras et al. 2017] or implementation
errors. Readactor also demonstrated that just-in-time compiled code can be made compatible
with execute-only memory with modest effort; the need to also protect JITed code from
indirect disclosure was highlighted but not implemented. The necessity of avoiding indirect
disclosure of JITed code was reiterated by Maisuradze et al. [2017].

A few variations of and extensions to the basic ideas behind XnR, HideM, and Readactor
are worth mentioning. Schuster et al. [2015] demonstrated a new type of code-reuse attack
called counterfeit object oriented programming, or COOP, which is capable of bypassing
control-flow integrity defenses that are not C++ aware. C++-awareness, in this context, simply
means using information about class hierarchies to further constrain the set of outgoing control
flow edges at a C++ virtual method call site. C++-aware CFI is straightforward to implement
when program source code is available whereas techniques to recover class hierarchies via
binary analysis took a while to appear [Pawlowski et al. 2017]. Since COOP attacks execute
entire C++ methods without regard for the actual code layout, such attacks can also bypass
defenses such as Readactor. COOP attacks are not entirely layout agnostic however; they
require knowledge of the layout of C++ objects and the layout of C++ virtual method tables.
Since objects must be stored in RW memory, their layouts are difficult to hide. Vtables, on the
other hand, contain a mix of data and pointers to code, the latter part of which can be hidden
and randomized along the lines of the Readactor system. Crane et al. [2015b] presented a

1.4 Address Oblivious Code Reuse 7

counter to COOP attacks called Readactor++ that splits virtual method tables into two parts:
one containing data and another containing code (direct jump trampolines to virtual methods).
The code part, called the xvtable, is protected by execute-only permissions, and randomized.
To prevent brute force attacks, dummy entries are added to each xvtable that are never
activated during normal program execution [Crane et al. 2013].

Supporting execute-only memory is not always straightforward and most approaches rely
on using the memory management unit in unconventional ways. For systems where MMU
“tricks” are infeasible, such as systems having a simpler memory protection unit, execute-only
permissions can be enforced in software [Braden et al. 2016] using techniques conceptually
similar to software-fault isolation [McCamant and Morrisett 2006; Wahbe et al. 1993].

Lu et al. demonstrated that it is possible to use a pointer indirection layer to prevent indirect
leakage without using execute-only memory to protect against direct leakage [Lu et al. 2015].
Their proposed solution, ASLR-Guard, uses the vestiges of x86 segmentation support to hide
the location of a table that translates between code locators (visible to adversaries) and actual
code addresses (hidden). Lu et al. argues that without a way to disclose code addresses, there
is no need to prevent against direct leakage since a 64-bit virtual address space is large
enough to resist brute force attempts at finding an ASLR’ed code segment. Later research
on crash resistance and allocation oracles have undermined that assumption [Gawlik et al.
2016; Göktaş et al. 2016; Oikonomopoulos et al. 2016]. On a practical level, the ASLR-Guard
implementation does not bound the growth of code locators, and thus its memory overhead.

Chen et al. [2017] demonstrated support for execute-only memory for source-less binaries.
Specifically, their NORAX system is able to protect 64-bit ARM (AArch64) binaries. Notably,
the AArch64 platform offers native support for execute-only memory unlike current x86
CPUs. A general challenge of binary analysis and assembly is to accurately separate code and
data. Code misclassified as data (data misclassified as code) can lead to page faults when using
DEP (execute-only memory) to mitigate exploits. NORAX addresses this challenge using a
combination of offline binary rewriting and online load/runtime monitoring. The offline step
conservatively estimates code regions and moves data bytes embedded in these regions to a
new data section. The original data bytes are overridden with unique magic numbers that are
recognized by the NORAX loader and runtime monitor. This lets the NORAX loader adjust
any references to the original data bytes which are now inaccessible since all code is mapped
with execute-only permissions. If an attempt to read a code page happens at runtime, the
NORAX runtime monitor determines whether the associated access violation was generated
by a legitimate access (missed by the offline analysis) or whether it is a malicious access
which should cause program termination.

1.4 Address Oblivious Code Reuse
Rudd et al. [Rudd et al. 2017] explored the security properties of an ideal version of leakage-
resilient code diversity, i.e., one that is not weakened by implementation-level flaws. Their

8 Chapter 1 Diversity & Information Leaks

finding was that even an ideal implementation does not stop all types of code reuse. The
reason is that code hiding mechanisms such as execute-only memory only apply to code
pages, not code locators, e.g., function pointers and return addresses or pointers to Readactor
trampolines. Code locators must be readable and writable for the program to function properly.
Even with defenses such as Readactor and ASLR-Guard in place, adversaries can manipulate
code locators used in place of traditional code pointers.

Rudd et al. used a data memory disclosure vulnerability to observe the state of a protected
program as it executes. The fact that programs execute in a way that inherently leaks informa-
tion about the state of execution enables profiling of the code indirection layer. An adversary
can correlate the execution state of his own, unprotected program instance to that of a remote,
protected instance at the time of the memory disclosure. Therefore, profiling can inform adver-
saries that a code identifier points to a function F in the protected program (without revealing
the address of F). Adversaries can use this mapping from code identifiers to the underlying
functions to construct a position-independent, whole-function code-reuse attack. Rudd et al.
called this address-oblivious code reuse—AOCR—since the attack executes all code through
code identifiers without any knowledge of the actual code layout.

Although AOCR attacks are possible, they require more effort to construct than their
position-dependent equivalent. First of all, the state of the system changes rapidly which
makes it challenging to correctly time memory disclosures of code identifiers. If the target
application is multi-threaded, however, memory corruption allows an adversary to manipulate
the variables controlling entry to a critical section. Mutexes, for instance, are usually set by a
thread as it enters the mutex such that other threads wanting to enter will suspend until the first
thread has exited the critical section protected by the mutex. For instance, an adversary may
use one thread TA to manipulate the mutex in a way that causes another thread TB to block.
This gives the adversary a chance to inspect memory without the timing unpredictability
resulting from the execution of TB .

Once the adversary has discovered a mapping from code locators to functions, he must find
a way to i) hijack the control flow, ii) pass proper arguments to functions used in the exploit
and iii) chain function calls. The control flow can be hijacked by using memory corruption to
swap a code locator with the code locator corresponding to the first function in the malicious
call chain. Rudd et al. solved the second challenge by reusing functions that read all their
arguments from global variables. This requires knowledge of how global variables are laid
out, but that too can be profiled and, in contrast to code, global variables must be readable.
The third challenge, chaining calls through code locators, was solved using malicious loop
redirection, MLR. This technique requires the vulnerable application to contain a loop whose
body contains an indirect call site. Specifically, the loop must:

1. have a loop condition that is attacker controllable,

2. call functions through code pointers/locators.

1.5 Countering Address Oblivious Code Reuse 9

An ideal loop looks like this:

while (task) { task->fptr(task->arg); task = task->next; }

where task points to a linked-list of (fptr, arg) pairs in attacker-controlled memory. Note
that register randomization is not an effective defense because the semantics of the call
dictates that the first argument is taken from task->arg and moved to rdi to conform to
the x86 64 ABI. Note that MLR is conceptually similar to the loop-gadget concept in COOP
and Subversive-C code-reuse attacks [Lettner et al. 2016; Schuster et al. 2015]

Using these techniques, Rudd et al. demonstrated working AOCR attacks against two
popular web servers protected by Readactor: Nginx and the Apache HTTP Server. Readactor
served as a stand in for leakage-resilient diversity techniques in general since it is the most
comprehensive implementation of leakage-resilient diversity available. Note that approaches
based on destructive code reads [Tang et al. 2015; Werner et al. 2016] are also vulnerable
to AOCR since these attacks never attempt to read the actual code. Snow et al demonstrated
additional attacks specifically targeting destructive-code-read techniques [Snow et al. 2016].

1.5 Countering Address Oblivious Code Reuse
Recall that code pointer hiding via trampolines already limits the set of addresses that
are reachable from an attacker-controlled indirect branch. Even if an attacker discloses all
trampoline pointers, only function entries, return sites, and individual instructions inside
trampolines are exposed. We therefore implemented an extension to the Readactor code
pointer hiding mechanism, which we call Code Pointer Authentication (CPA). CPA adds
authentication after direct calls and before indirect calls to prevent the control-flow hijacking
step as explained in Section 1.4 and thus mitigate AOCR attacks. One of the benefits of
randomization-based defenses is that they do not rely on static program analysis, an advantage
which helps them scale to complex code bases. To avoid relying on static program analysis,
we must use different techniques to authenticate direct and indirect calls since we do not know
the set of callees in advance.

1.5.1 Authenticating Direct Calls & Returns

Our general approach to authenticate direct calls uses cookies. A cookie is simply a randomly
chosen value that is loaded into a register by the caller and read out and checked against
an expected value by the callee. For returns, the callee loads another cookie into a register
before returning, and the register is checked for the expected value directly after the return.
Each function has two unique, random cookies: one to authenticate direct calls to the function
(forward cookie, FC) and another to authenticate returns (return cookie, RC). Because the
instructions that set and check cookies are stored in execute-only memory and the register
storing the cookie is cleared directly after the check, attackers cannot leak or forge the cookies.

10 Chapter 1 Diversity & Information Leaks

foo:

jump t_bar
r_foo:

t_bar: call bar
jump r_foo

bar:
…

ret

3

41

2

set r9 ← RC

check r9 = RC

check r9 = FC

set r9 ← FC
foo:
rax = t_base[idx]

jump t_foo
r_foo:

t_foo: call *rax
jump r_foo

bar:
…

ret

8

95

6

set r9 ← RC

check r9 = RC

check r9 = FC

check HMAC

t_base: jump …
jump bar + Δ

7

idx

HMAC idx

addr' idx'HMAC'

addr

hidden by X-only

observable

authenticating
direct calls and returns

authenticating indirect calls and returns

RW dataXO code and trampolines

32

XO code and trampolines

SipHash(addr|idx,key) = HMAC?

Figure 1.2 Code pointer authentication. Direct calls and returns are illustrated in the leftmost third of
the figure; indirect calls and returns are shown in the rightmost two thirds. Light grey boxes
contain execute-only code and white boxes contain data. Dark grey labels show where we
insert additional instructions to prevent address harvesting attacks. The =32 operator in the
check after edge 9 indicates that we only check the lower 32-bits of the return cookie.

Our prototype implementation chooses cookie values at compile time and inserts these
values into the execute-only code. A full-featured implementation could randomize the cookie
values at load time so they vary between executions. This could easily be accomplished by
marking all cookie locations during compilation, iterating over these locations during program
initialization, and writing new cookies into the code before re-protecting the memory with
execute-only permission.

The left-hand side of Figure 1.2 shows how we authenticate an example direct function call
from foo to bar. Dark grey labels indicate how we extend the Readactor code pointer hiding
technique with authentication cookies. Before transferring control to the direct call trampoline
t bar along control flow edge 1 , we load bar’s forward cookie into a scratch register. Edge
2 transfers control from t bar to bar. The prologue of bar checks that the register contents

match the expected forward cookie value and clears the register to prevent spilling its contents
to memory. Before the bar function returns along edge 3 , we load the backward cookie for
bar into the same scratch register. At the return site in foo, we check that the register contains
the backward cookie identifying bar as the callee. The return site then clears the register.

The return address pushed on the stack by the call instruction in t bar leaks the location
of the following jump instruction as well as the direct call itself. If the adversary manipulates
an indirect branch to execute control flow edge 2 , the check at the target address will cause
the forward cookie check to fail and thus the attack to fail. Analogously, redirecting control
to flow along edge 4 will cause the check at r foo to fail.

1.5 Countering Address Oblivious Code Reuse 11

1.5.2 Securing Indirect Calls & Returns

Without static program analysis, we don’t know the target of an indirect call at compile time
and thus enforce bounds on the program control flow. Cookies, as used in the direct call
case, are therefore not applicable to indirect calls. However, we can still authenticate that
the function pointer used in an indirect call was correctly stored and not maliciously forged
without requiring any static analysis.

All function pointers in a program protected by Readactor are actually pointers to trampo-
lines that obscure the true target address. Inspired by the techniques of CCFI [Mashtizadeh
et al. 2015], we change the representation of trampoline pointers (which are stored in attacker
observable memory) to allow for authentication. In Readactor’s code pointer hiding mecha-
nism, a trampoline pointer is simply the address of the forward trampoline. With CPA, the
trampoline pointer representation is composed of a 16-bit index (idx) into a table of tram-
polines (starting at t base) and a 48-bit hash-based message authentication code, HMAC.
We show two such pointers in the right-hand side of Figure 1.2. Using a trampoline index
prevents leakage of the forward trampoline pointer address since the base address of the array
of forward trampolines t base can be hidden in execute-only code. We found that programs
need less than 216 forward pointers in practice, so it suffices to use the lower 16 bits of a
64-bit word for the index (this can be adjusted as needed for larger applications). We compute
the HMAC by hashing the index along with the least significant 48 bits of its virtual memory
address. With this HMAC we can detect if the adversary tries to replace a code pointer with
another pointer harvested from a different memory location. We find that SipHash [Aumasson
and Bernstein 2012], which is optimized for short messages, is a good choice of HMAC for
our approach.

The middle third of Figure 1.2 illustrates the case where the function foo calls bar

indirectly through a function pointer. Again, dark gray labels highlight our extensions to
Readactor’s code pointer hiding technique. The indirect call site in foo loads the (HMAC,
index) pair from memory, recomputes the HMAC using the (address, index, key) tuple, and
compares the two (see rightmost third of Figure 1.2). If HMACs match, the index is used
to lookup the address of the forward pointer which is subsequently used to execute control-
flow edge 6 . Note that the forward trampoline that creates edge 7 does not target the first
instruction in bar; instead, we add a delta to the address of bar to skip the forward cookie
check that authenticates direct calls to bar (e.g., edge 2).

As explained in Section 1.4, AOCR attacks swaps two pointers to hijack the program
control flow. Because the address of the pointer is used to compute the HMAC, moving the
pointer without re-computing the HMAC will cause the HMAC check before all indirect calls
to fail unless the two (address, index) pairs collide in the hash. Attackers can still harvest and
swap (HMAC, index) pairs stored to the same address at different times. See Section 1.6.1 for
a more complete security analysis.

12 Chapter 1 Diversity & Information Leaks

Returns from indirect calls make up the fourth and final class of control flows that we must
authenticate. The callee sets a return cookie before the callee returns and checks the cookie at
the return site; see edges 8 and 9 in Figure 1.2. We again clear the cookie register directly
after the check to prevent leaks. The cookie check at the end of arrow 9 must pass for all
potential callees. Therefore, we set the lower 32-bits of all backward cookies to the same
global random value and only check the lower halfword of the backward cookie at the return
site. This ensures that returns only target return sites; however, any return instruction can target
indirect call-preceded gadgets under this scheme. We did not reuse any indirect call-preceded
gadgets in our harvesting attack since these are also protected by register randomization and
callee-saved stack slot randomization. It is possible to further restrict returns from indirect
calls by taking function types into account. Rather than setting the 32 lower bits of return
cookies to the same random value, we can use different random values for different types of
functions.

1.6 Evaluation of Code Pointer Authentication
1.6.1 Security

Code pointer authentication prevents reuse of the remaining exposed trampoline pointers, even
if the attacker has harvested all available trampoline locations. This authentication mitigates
AOCR attacks. To show how, we systematically consider each possibly exposed indirect
branch target in turn.

Direct call trampoline entry (edge 1 in Figure 1.2) An attacker can harvest the location
of the backwards jump (jump r foo) in the call trampoline from the return address on the
stack. In the original Readactor defense, it is possible to compute the address of the previous
instruction from this pointer and invoke t bar.

With direct call authentication, each direct callee function checks that its specific, per-
function cookie is set prior to calling it. If the attacker cannot forge the callee function’s
cookie, this check will fail. We store the cookie as an immediate value in execute-only memory
and pass it to the callee in a register. After performing the cookie check, the callee clears the
register. Thus, direct call cookies cannot leak to an adversary, and the attacker has a 2−64

chance of successfully guessing the correct 64-bit random cookie value. Since the attacker
cannot forge a correct cookie before an indirect branch to a direct call cookie, direct call
trampoline entry points are unavailable as destinations for an attack.

Direct call trampoline return (edge 3 in Figure 1.2) Harvesting a return address corre-
sponding to a direct call trampoline gives the attacker the location of the backwards jump in
a call trampoline. In Readactor, this destination allows the attacker to invoke a call-preceded
gadget beginning at r foo in the example.

We also protect these destinations with an analogous, function-specific return cookie.
Directly before a callee function returns, it sets its function-specific return cookie. The return
site verifies that the expected callee’s return cookie was set before continuing execution. This

1.6 Evaluation of Code Pointer Authentication 13

prevents the attacker from reusing this destination unless the control-flow edge would be
allowed during normal program execution.

Indirect call trampoline entry (edge 5 in Figure 1.2) Similarly, an attacker can harvest
indirect call trampoline locations from the stack and dispatch to the beginning of an indirect
call trampoline. However, this destination is trivial to the attacker, since he must set another
valid, useful destination for the indirect call before invoking the trampoline. The attack could
always dispatch straight to this final destination instead of the indirect call trampoline. Thus,
we do not need to protect indirect call trampoline entry points from reuse.

Indirect call trampoline return (edge 8 in Figure 1.2) Analogous to the direct call case,
the attacker can dispatch to the backwards edge of an indirect call trampoline to invoke an
indirect-call proceeded gadget. This is a more challenging edge to protect without static
analysis, since the indirect call site cannot know which function-specific return cookie to
check.

Since the caller does not know the precise callee, we enforce a weaker authentication check
on indirect call return destinations. By splitting return cookies into a global part and function-
specific part, we can still ensure that the return site must be invoked by a return, not an indirect
call. We believe that the fine-grained register randomization implemented in Readactor largely
mitigates the threat of indirect-call proceeded gadget reuse, since the attacker cannot be sure
of the semantics of the gadget due to execute-only memory.

Function trampolines (edge 6 in Figure 1.2) Function trampoline harvesting and reuse
is the easiest attack vector against code-pointer hiding schemes. In Readactor, after harvesting
function trampolines, the attacker can overwrite any return address or function pointer with a
valid function trampoline destination and perform whole-function reuse.

We prevent reuse of function trampolines by changing the function pointer format to
include an HMAC tying the function pointer to a specific memory address. This prevents
reuse of function pointers from returns as well as most swaps of function pointers in memory.

Since function pointers are no longer memory addresses in our authentication scheme, the
attacker cannot use a function pointer as a return address at all. The return would interpret the
address as an HMAC—Idx pair and fail to verify the HMAC, crashing the program.

Function pointers cannot be swapped arbitrarily under this defense, since the pointer is tied
to its address in memory by the HMAC. If a pointer P at address A is moved to address B,
the HMAC check when it loaded from address B will fail. Thus the attacker must either forge
a valid HMAC or have harvested P from the targeted location in memory at a previous point
in execution.

HMAC Forgery We first address the possibility of forging a valid HMAC for a function
and pointer address pair without ever having seen a valid HMAC for that pair. SipHash is
designed to be forgery-resistant, thus the probability of correctly forging a valid HMAC for
a pointer at an address not previously HMACed is expected to be 2−48, based on the size of

14 Chapter 1 Diversity & Information Leaks

perlb
ench

bzip
2gccmcf

gobmk

hmmer
sje

ng

lib
quantum

h264ref
asta

r

xalancb
mk

milc
namd

dealII

soplex
lbm

sp
hinx3

Geo M
ean

0

10

20

30

40

50
P
e
rf

o
rm

a
n
ce

 S
lo

w
d
o
w

n
 (

%
)

DCA

ICA

Full CPA

Figure 1.3 Performance overhead of code pointer authentication on SPEC CPU2006. All measurements
include the overhead of the Readactor++ [Crane et al. 2015b] transformations.

the HMAC tag. Additionally, since we can store the HMAC key in execute-only memory, an
attacker cannot disclose the 128-bit key, and thus is limited to brute-forcing this key.

Replay Attacks As in other pointer encryption schemes [Cowan et al. 2003; Mashtizadeh
et al. 2015], HMACs do not provide temporal safety against replay attacks on function
pointers. That is, a function pointer can be harvested at one point in program execution and
later rewritten to the same address.

1.6.2 Performance

To evaluate the performance of our code pointer authentication, we applied the protections
on top of the Readactor++ system. We measured the performance overhead of both direct call
authentication and function pointer authentication on the SPEC CPU2006 benchmark suite.
These results are summarized in Figure 1.3. All benchmarks were measured on a system with
two Intel Xeon E5-2660 processors clocked at 2 Ghz running Ubuntu 14.04.

With all protections enabled, we measured a geometric mean performance overhead of
9.7%. This overhead includes the overhead from basic Readactor call and jump trampolines
and compares favorably with the 6.4% average overhead reported by Crane et al. [Crane
et al. 2015a]. We also measured the impact of direct call authentication and indirect call
authentication individually (labeled DCA and ICA in the figure, respectively). We found

1.7 Conclusions 15

that indirect code pointer authentication generally adds more overhead (6.7% average) than
direct code pointer authentication (5.9% average), although this is strongly influenced by the
program workload, specifically the percentage of calls using function pointers.

We observed that h264ref stands out as an interesting outlier for indirect call authentica-
tion. This benchmark repeatedly makes a call through a function pointer in a hot loop. To
make matters worse, the target function is a one-line getter, thus our instrumentation domi-
nates the time spent in the callee. This benchmark in particular benefits greatly from inlining
the HMAC verification to avoid the extra call overhead. To speed up HMAC verification, es-
pecially in this edge case, we implemented a small (128 byte), direct-mapped, hidden cache of
valid HMAC entries. This hidden cache is only accessed via offsets embedded in execute-only
memory and is thus tamper-resistant. Before recomputing an HMAC, the verification routine
checks the cache to see if the HMAC is present.

We found three corner cases in SPEC where we could not automatically compute a new
HMAC when a function pointer was moved. This is because the program first casts away the
function pointer type then copies the pointer inside a struct. We had to insert a single manual
HMAC in gcc and another in povray to handle these edge cases. perlbench stores function
pointers in a growable list, which is moved during reallocation. Since our prototype does not
yet instrument the libc realloc function, we had to manually instrument these operations.
The CCFI [Mashtizadeh et al. 2015] HMAC scheme requires similar modifications. Finally,
Readactor is not fully compatible with C++ exception handling, so we were not able to run
omnetpp and povray which require exception handling.

1.7 Conclusions
There are three ways to bypass diversity-type mitigations. One is to target unprotected areas,
the second is to employ brute force guessing, and the third relies on information leakage. The
first two ways are relatively straightforward to counter through good engineering. The third
option, however, remains the most challenging to fully address. Although it is possible to
prevent leakage (perhaps modulo hardware side channels) leakage of the code layout, address
oblivious attacks, though technically complex, are feasible. It is possible to mitigate address
oblivious code reuse too, although the solution we designed and evaluated adds additional
overhead and complexity to what was initially a fairly simple defense strategy.

If history is any guide, retrofitting security into fundamentally insecure languages without
hampering performance will remain an open research challenge in the foreseeable future.
The specific strand of research presented here is not the “one true answer” to all security
problems; just as is the case with mitigation alternatives such as CFI and CPI. Instead, we
describe our broader expectations for the short, medium, and long term based on recent
industry developments:

16 Chapter 1 Diversity & Information Leaks

• In the short term, deploying better mitigations is the best option. This is not a partic-
ular insight of ours; one simply has to look at the direction in which major software
developers are headed. At the time of writing, work is underway to improve the granu-
larity of code randomization schemes and hardware support for execute-only memory is
forthcoming for Intel and already available for ARM. Although deployment of leakage-
resilient diversity, as enabled by these techniques, is unlikely to stop all exploits, it does
raise the bar to attackers considerably. At the same time, control-flow integrity techniques
is supported by all major compilers and hardware support is similarly forthcoming from
both Intel and ARM. Diversity and CFI are not mutually exclusive techniques; and either
will stop a sufficiently determined adversary on its own. Rather, we believe a combina-
tion of disparate exploit mitigations will offer the best return on investment.

• Unlike the short term options, medium term options will require some source code
changes. Access control mechanisms such as SELinux, when correctly implemented,
helps implement the principle of least privilege such that vulnerabilities in unprivileged
code cannot be used to carry out privileged operations. Legacy applications are unlikely
to be broken into independent submodules based on the privileges they require, however.
Therefore, manual refactoring may be required to realize the full potential of access
control mechanisms. Similarly, techniques that retrofit type and memory safety into
legacy C/C++ code require that bad casts and invalid memory accesses are removed from
the application before a protected version can be released.

• Whereas medium term options may require minor changes and fixes to exiting source
code, the best long term option is likely to very gradually retire C/C++ code. This will take
multiple decades and some code bases may simply be abandoned instead as the software
landscape changes anyway. The reason we mention language mitigation, however long
it may take, is that it brings with it several important secondary benefits. Reduction of
technical debt and the resulting productivity benefits are chief among these. C and its
derivatives reflect the age in which they were designed. For instance, C programmers
must declare variables and functions defined outside of the current translation unit
such that the compiler can emit code in a single pass over the input files. Modern
programming languages reflect the current reality that computing cycles are cheap
and programmer attention scarce. Moreover, Balasubramanian et al. [Balasubramanian
et al. 2017] showed that the features of the Rust systems programming language can
support security capabilities, such as zero-copy software fault isolation, that cannot be
implemented efficiently in traditional languages. Only by abandoning the languages in
the C family, which have been spectacularly successful at any rate, can we make systems
programming more productive, safe, and accessible.

1.7 Conclusions 17

Acknowledgments

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
This material is based upon work partially supported by the Department of Defense under

Defense Advanced Research Projects Agency (DARPA) contract FA8750-15-C-0124, Air
Force contracts FA8721-05-C-0002 and FA8702-15-D-0001, and by the National Science
Foundation under awards CNS-1513837 and CNS-1619211.

Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA), its Contracting Agents, the Air Force, the National
Science Foundation, or any other agency of the U.S. Government.

Bibliography
Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In ACM

Conference on Computer and Communications Security, CCS, 2005.

Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A fast short-input PRF. In 13th International
Conference on Cryptology in India, INDOCRYPT, 2012.

Michael Backes and Stefan Nürnberger. Oxymoron: Making fine-grained memory randomization
practical by allowing code sharing. In 23rd USENIX Security Symposium, USENIX Sec, 2014.

Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger, and Jannik
Pewny. You can run but you can’t read: Preventing disclosure exploits in executable code. In ACM
Conference on Computer and Communications Security, CCS, 2014.

Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, and Aurojit Panda. System program-
ming in rust: Beyond safety. In Workshop on Hot Topics in Operating Systems, HotOS XVI, 2017.

Andrea Bittau, Adam Belay, Ali José Mashtizadeh, David Mazières, and Dan Boneh. Hacking blind. In
35th IEEE Symposium on Security and Privacy, S&P, 2014.

Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Leakage-resilient layout randomization for mobile devices. In 23rd Annual
Network and Distributed System Security Symposium, NDSS, 2016.

Nathan Burow, Scott A. Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per Larsen, and Michael
Franz. Control-flow integrity: Precision, security, and performance. CoRR, abs/1602.04056, 2016.
URL http://arxiv.org/abs/1602.04056.

Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed M. Azab, Long Lu, Hayawardh Vi-
jayakumar, and Wenbo Shen. NORAX: enabling execute-only memory for COTS binaries on
aarch64. In IEEE Symposium on Security and Privacy, S&P, 2017.

Frederick B. Cohen. Operating system protection through program evolution. Computer & Security, 12,
1993.

Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In 7th USENIX Security Symposium, 1998.

Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard: protecting pointers from
buffer overflow vulnerabilities. In 12th USENIX Security Symposium, USENIX Sec, 2003.

Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. Booby trapping software. In New
Security Paradigms Workshop, NSPW, 2013.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi,
Stefan Brunthaler, and Michael Franz. Readactor: Practical code randomization resilient to memory
disclosure. In 36th IEEE Symposium on Security and Privacy, S&P, 2015a.

19

20 BIBLIOGRAPHY

Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas Davi, Ahmad-
Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. It’s a TRaP: Table randomization
and protection against function-reuse attacks. In ACM Conference on Computer and Communications
Security, CCS, 2015b.

Stephen Crane, Andrei Homescu, and Per Larsen. Code randomization: Haven’t we solved this problem
yet? In IEEE Cybersecurity Development, SecDev, 2016.

Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and Fabian Monrose. Iso-
meron: Code randomization resilient to (Just-In-Time) return-oriented programming. In 22nd Annual
Network and Distributed System Security Symposium, NDSS, 2015.

Hiroaki Etoh and Kunikazu Yoda. Protecting from stack-smashing attacks. Technical report, IBM
Research Division, Tokyo Research Laboratory, June 2000.

Isaac Evans, Samuel Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang, Howard Shrobe,
Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Missing the point(er): On the
effectiveness of code pointer integrity. In 36th IEEE Symposium on Security and Privacy, S&P,
2015.

Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and Thorsten Holz. Enabling
client-side crash-resistance to overcome diversification and information hiding. In 23rd Annual
Network and Distributed System Security Symposium, NDSS, 2016.

Jason Gionta, William Enck, and Peng Ning. HideM: Protecting the contents of userspace memory in
the face of disclosure vulnerabilities. In 5th ACM Conference on Data and Application Security and
Privacy, CODASPY, 2015.

Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios Portokalidis, Cris-
tiano Giuffrida, and Herbert Bos. Undermining information hiding (and what to do about it). In 25th
USENIX Security Symposium, 2016.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giuffrida. Aslr on the line: Practical
cache attacks on the mmu. In Annual Network and Distributed System Security Symposium, NDSS,
2017.

J. Hiser, A. Nguyen, M. Co, M. Hall, and J.W. Davidson. ILR: Where’d my gadgets go. In 33rd IEEE
Symposium on Security and Privacy, S&P, 2012.

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn Song.
Code-pointer integrity. In 11th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI, 2014.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK: Automated software diversity.
In 35th IEEE Symposium on Security and Privacy, S&P, 2014a.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Automatic software diversity.
In IEEE Symposium on Security and Privacy, 2014b.

Julian Lettner, Benjamin Collenda, Andrei Homescu, Per Larsen, Felix Schuster, Lucas Davi, Ahmad-
Reza Sadeghi, Thorsten Holz, and Michael Franz. Subversive-c: Abusing and protecting dynamic
message dispatch. In USENIX Technical Conference, ATC, 2016.

Elias Levy. Smashing the stack for fun and profit. Phrack magazine, 7, 1996.

BIBLIOGRAPHY 21

Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P Chung, Taesoo Kim, and Wenke Lee. ASLR-
Guard: Stopping Address Space Leakage for Code Reuse Attacks. In ACM Conference on Computer
and Communications Security, CCS, 2015.

Giorgi Maisuradze, Michael Backes, and Christian Rossow. What cannot be read, cannot be leveraged?
revisiting assumptions of jit-rop defenses. In USENIX Security Symposium, USENIX Sec, 2017.

Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI: cryptographically
enforced control flow integrity. In ACM Conference on Computer and Communications Security,
CCS, 2015.

Stephen McCamant and Greg Morrisett. Sfi for a cisc architecture. In 15th USENIX Security Symposium,
USENIX Sec, 2006.

Haroon Meer. Memory corruption attacks: The (almost) complete history. In Blackhat USA, BH US,
2010.

Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano Giuffrida. Poking holes
in information hiding. In 25th USENIX Security Symposium, USENIX Sec, 2016.

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, Thorsten Holz, Herbert Bos, Elias Athana-
sopoulos, and Cristiano Giuffrida. Marx: Uncovering class hiearchies in +̧+ programs. In Annual
Network and Distributed System Security Symposium, NDSS, 2017.

R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, Th. Hobson, S. Crane, Ch. Liebchen, P. Larsen, L. Davi,
M. Franz, A.-R. Sadeghi, and H. Okhravi. Address oblivious code reuse: On the effectiveness of
leakage resilient diversity. In Annual Network and Distributed System Security Symposium, NDSS,
2017.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Counterfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In 36th IEEE Symposium on Security and Privacy, S&P, 2015.

Fermin J. Serna. CVE-2012-0769, the case of the perfect info leak, 2012. URL https://media.blackhat.
com/bh-us-12/Briefings/Serna/BH US 12 Serna Leak Era Slides.pdf.

Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc without function calls (on
the x86). In ACM Conference on Computer and Communications Security, CCS, 2007.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan Boneh. On the
effectiveness of address-space randomization. In Proc. of ACM CCS, pages 298–307, 2004.

Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained address space
layout randomization. In 34th IEEE Symposium on Security and Privacy, S&P, 2013.

Kevin Z. Snow, Roman Rogowski, Jan Werner, Hyungjoon Koo, Fabian Monrose, and Michalis Poly-
chronakis. Return to the zombie gadgets: Undermining destructive code reads via code inference
attacks. In 37th IEEE Symposium on Security and Privacy, 2016.

Eugene H. Spafford. The internet worm program: An analysis. SIGCOMM Comput. Commun. Rev., 19
(1):17–57, January 1989. ISSN 0146-4833. doi: 10.1145/66093.66095. URL http://doi.acm.org/10.
1145/66093.66095.

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and Thomas Wal-
ter. Breaking the memory secrecy assumption. In 2nd European Workshop on System Security,

22 BIBLIOGRAPHY

EUROSEC, 2009.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In IEEE
Symposium on Security and Privacy, 2013.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Heisenbyte: Thwarting memory disclosure
attacks using destructive code reads. In ACM Conference on Computer and Communications Security,
CCS, 2015.

Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos. Memory errors: The
past, the present, and the future. In Proceedings of the 15th International Conference on Research in
Attacks, Intrusions, and Defenses, RAID’12, 2012.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-based
fault isolation. In ACM Symposium on Operating System Principles, SOSP, 1993.

Jan Werner, George Baltas, Rob Dallara, Nathan Otternes, Kevin Snow, Fabian Monrose, and Michalis
Polychronakis. No-execute-after-read: Preventing code disclosure in commodity software. In 11th
ACM Symposium on Information, Computer and Communications Security, ASIACCS, 2016.

Author’s Biography
Stephen Crane
To be added later

Andrei Homescu
To be added later

Per Larsen
Per is trying his hand as an entrepreneur and co-founded an information security startup—
Immunant, Inc.—specializing in exploit mitigation. Previously, he worked four years as a
postdoctoral scholar at the University of California, Irvine. He graduated with a PhD from the
Technical University of Denmark in 2011.

Per co-organized the 2015 Dagstuhl Seminar upon which this book is based and has
served as program committee member on several of academic conferences including USENIX
Security, USENIX WOOT, ICDCS, and AsiaCCS. In 2015, he was recognized as a DARPA
Riser.

Hamed Okhravi
Hamed Okhravi is a Senior Staff member at the Cyber Analytics and Decision Systems
group of MIT Lincoln Laboratory, where he leads programs and conducts research in the area
of systems security. His research interests include cyber security, science of security, security
evaluation, and operating systems. He is the recipient of 2014 MIT Lincoln Laboratory Early
Career Technical Achievement Award and 2015 Team Award for his work on cyber moving
target research. He is also the recipient of an honorable mention (runner-up) at the 2015
NSA’s 3rd Annual Best Scientific Cybersecurity Paper Competition. Currently, his research is
focused on analyzing and developing system security defenses.

He has served as a program chair for the ACM CCS Moving Target Defense (MTD) work-
shop and program committee member for a number of academic conferences and workshops
including ACM CCS, NDSS, RAID, AsiaCCS, ACNS, and IEEE SecDev.

Dr. Okhravi earned his MS and PhD in electrical and computer engineering from University
of Illinois at Urbana-Champaign in 2006 and 2010, respectively.

Michael Franz
Michael Franz is the director of the Secure Systems and Software Laboratory at the Univer-
sity of California, Irvine (UCI). He is a Full Professor of Computer Science in UCI’s Donald

23

24 BIBLIOGRAPHY

Bren School of Information and Computer Sciences and a Full Professor of Electrical Engi-
neering and Computer Science (by courtesy) in UCI’s Henry Samueli School of Engineering.
Prof. Franz was an early pioneer in the areas of mobile code and dynamic compilation. He
created an early just-in-time compilation system, contributed to the theory and practice of
continuous compilation and optimization, and co-invented the trace compilation technology
that eventually became the JavaScript engine in Mozilla’s Firefox browser. Franz received a
Dr. sc. techn. degree in Computer Science and a Dipl. Informatik-Ing. ETH degree, both from
the Swiss Federal Institute of Technology, ETH Zurich.

