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Current high-frequency synthetic aperture sonar (SAS) imaging systems and pro-
cessing software have been largely successful in producing high-quality imagery in
a variety of oceanographic and seafloor environments. In most high-frequency real
aperture and SAS systems, the image pixel values have been adjusted for optimal
viewing by operators. The dynamic range of the pixel values may be truncated and
the mean background level may vary from image to image, even across images of
the same geographic area. Automated Target Recognition (ATR) algorithms that
process these images require that pixel energy levels are normalized to remove sys-
tematic variations in amplitude that can cause these algorithms to fail. However,
the adaptive nature of image normalization algorithms can introduce artifacts as
well. In many cases the discarded original pixel values may contain valuable in-
formation. Calibrated SAS images, defined as images whose pixel values represent
only the scattering properties of the seafloor or target, present a promising input
to ATR because 1) they preserve amplitude information, which may provide stable
feature measurements to ATR, and 2) they can be normalized without artifacts
by taking into account propagation and scattering physics, potentially offering a
superior method than current normalization techniques.

For this grant, measured system parameter were used to form calibrated im-
ages from a high frequency synthetic aperture sonar system. Systems with large
bandwidth and wide beams cannot directly estimate the scattering cross section,
since that quantity is defined using a plane wave of a single frequency for the in-
cident field. Correspondingly, the quantities produced by calibrated images must
be understood as quantities averaged over the systems bandwidth and beamwidth.
Details of this method, and scattering cross section results are presented in the
enclosed OCEANS2019 conference paper entitled “Analysis of Backscatter Mea-
surements from Calibrated Synthetic Aperture Sonar Images” by Peter D. Romain,
Derek R. Olson, and J. Tory Cobb.

Another aspect explored in this grant is to determine whether the scattering
cross section estimated using a broadband system is independent of the system
resolution, or bandwidth over which the system forms the image. To answer this
question, a numerical method was developed using the Helmholtz integral theorem
and Fourier synthesis to estimate the scattering cross section in the time domain
from a finite ensemble of rough surfaces. This work is detailed in the enclosed
manuscript that was submitted to the Journal of the Acoustical Society of Amer-
ica, entitled “Resolution dependence of rough surface scattering using a power law
roughness spectrum” by Derek R. Olson and Anthony P. Lyons.
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Abstract— Calibrated Synthetic Aperture Sonar (SAS) data 
can provide monostatic backscattering strength measurements as 
a function of grazing angle at high resolution. Motivated by an 
interest in obtaining invariant metrics from vehicle based sonar 
acquisition systems, an end-to-end processing methodology for 
recovering calibrated scattering cross section levels from seafloor 
swaths is presented. Calibrated SAS beamforming software 
developed for this work was based on the narrowband sonar 
equation and a delay-and-sum beamformer.  Modern SAS 
processing techniques such as redundant phase center 
micronavigation, and an autofocus algorithm to estimate sound 
speed, were employed in the beamforming stage. Data from 
overlapping sections of seafloor acquired in the Gulf of Mexico 
during 2012 provide the basis for analysis of comparative 
scattering results, which are examined in an effort to 
demonstrate adherence to established acoustic principles. 

Keywords— Calibrated Synthetic Aperture Sonar (SAS), 
acoustic backscattering strength, grazing angle, absolute intensity 

I. INTRODUCTION 
High-frequency sonar imagery is commonly used for target 

detection and mapping purposes [1]. The dynamic range of 
these images is quite high and the image power depends on 
range due to terms in the sonar equation, such as spherical 
spreading, sensor directivity, attenuation, and processing gain 
[2]. Image analysis by human operators or machines requires a 
certain dynamic range to achieve good performance, so these 
images are typically normalized using time-varying gain 
(TVG). A TVG can either be based on the sonar equation [3], 
or empirical analysis. A simple and common empirical method 
of normalization is to estimate the received intensity across all 
channels, then divide each channel by the mean amplitude 
(square root of the mean power). The normalized channel data 
are then used to form the image using standard imaging 
algorithms [4], such as backprojection. 

 

 

After beamforming, a secondary image pre-processing step 
is usually applied to the beamformed imagery to reduce the 
dynamic range of the pixel intensity to the appropriate bit 
depth of the human visual system (HVS).  Typically, these 
approaches involved linear or non-linear compression of the 
tail of the low- and high-ends of the intensity distribution [5] or 
anchoring the scene intensity dynamic range to the statistics of 
the current scene [6].  These suppressions, especially when 
coupled with an adaptive TVG scheme as mentioned 
previously, distort the data and prevent estimation of 
quantitative acoustic metrics from the resulting image.  Fig. 1 
depicts an example beamformed image before Fig. 1(a) and 
after Fig. 1(b) applying the image normalization scheme from 
[6].  The seafloor and the faint target in the upper right hand 
corner of Fig. 1(a) are now clearly visible in Fig. 1(b) once the 
high-end of the dynamic range is compressed. 

While these normalization schemes produce imagery 
pleasing to the human visual system, they distort absolute 
backscattering measurements from the seafloor and target.  
Here we seek to invert the sonar equation for synthetic aperture 
sonar (SAS) images to estimate backscattering strength. The 
scattering due to seafloor roughness and inhomogeneities is 
quantified by the scattering cross section per unit area per unit 
solid angle (heareafter called the “scattering cross section” or 
“cross section”). When converted to decibels, it is called 
scattering strength. This quantity is independent of 
measurement system and geometry, apart from the usual 
dependence of scattering strength on grazing angle, which in 
SAS images shows up as a range-dependent intensity. Inverting 
the sonar equation removes the large-scale intensity changes 
that are due to the measurement system, and reduces the 
dynamic range in a predictable way, as opposed to the 
empirical TVG methods described above. 

Scattering strength is proportional to the mean intensity of 
the scattered field resulting from an interaction with a patch of 
seafloor [7]. The narrowband sonar equation typically used to 
describe scattered field behavior can be shown to apply to 
broadband SAS sonar systems found on unmanned underwater 
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vehicles (UUV). This extension is shown for the two 
dimensional case as outlined by work completed by Olson and 
Lyons [8], which concluded that the mean intensity of the 
scattered field can be compared across systems having varying 
bandwidths, so long as the center frequency is held constant. 
An overview of the SAS beamforming process implemented to 
obtain absolute scattering strength levels from the data is 
presented, along with the methodology for processing 
subsequent imagery to calculate average scattering strength as 
a function of grazing angle. A description of the data set 
provides context for discussion of the scattering strength 
analysis. Results are shown that compare measurements of 
overlapping sections of seafloor and conclusions are drawn. 

II. SCATTERING MEASUREMENTS 

A. The Narrowband Sonar Equation 
The scattered field measured by a sonar system depends on 

the imaging geometry, system parameters, and seafloor 
properties. When observed from a UUV platform, the 
transmitter and receivers are close to one another and can be 
considered to be a monostatic geometry. In Olson et al [9], a 
method to estimate the scattering cross section for each pixel in 
a SAS image was detailed. In that reference, the calibration 
method was based on system parameters that were estimated in 
several different ways. The element beampatterns were 
measured in the laboratory, but the overall source strength and 
receiver sensitivity was estimated by comparing data to a 
scattering model with known inputs. This method 
automatically took into account all multiplicative constants in 
the sonar equation, and therefore the method was able to be 
simplified. The method used here is based entirely on 

laboratory measurements of the sonar parameters, and 
estimates of sonar location from on-board navigation 
instrumentation and micronavigation [10] and requires a more 
rigorous accounting of all the variables. We have therefore 
altered the calibrated processing, resulting in the following 
estimate of per-pixel scattering cross section: 

 

where  is the unaveraged scattering cross section of the ith 
pixel,  rij is the range from the jth sensor to the ith pixel, vij is 
the received voltage from the jth sensor delayed for the ith 
pixel, sr is the receiver voltage sensitivity in V/Pa, s0 is the 
source level in Pa m, α is the frequency dependent absorption 
coefficient in radians per meter, and c is the sound velocity. 
The transmitted pulse length is , and the factor amf takes into 
account the gain if a matched filter is used to compress the 
pulse.  is the transmitter vertical directivity pattern, and  

 is that of the receiving transducer. The output of the 
initial stages of the beamforming process is represented by the 
variable qi, for pixel i. In the beamforming stage, Eq. (2), the 
sonar equation has been inverted for each channel before 
beamforming. Eq. (1) accounts for the change in energy due to 
beamforming. In Eq. (2), j represents an individual sensor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                                                           (b) 

 
Figure 1. The beamformed image before (a) and after (b) applying the image normalization scheme from (Cook 2007).  The seafloor and the faint 
target in the upper right hand corner of (a) are now clearly visible in (b) once the high-end of the dynamic range is compressed. 
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channel, and the subscript ij represents variables that depend 
on both pixel location and sensor location. The reference angle, 
θ0, represents the depression angle of the main response axis 
and  θij the grazing angle from the jth sensor channel to the ith 
pixel.  The factor  represents the angular beamwidth of a 
single array element, so that  is the azimuthal dimension 
of the ensonified area. The parameter  takes into account both 
the partially coherent gain of the beamforming stage, as well as 
a conversion of the azimuthal resolution between a single 
sensor channel and a weighted linear array. The weights 
applied to the synthetic aperture for each pixel are specified by 

, and the coherent gain is removed from the beamformed 
image. 

B. Broadband Effects 
In the above analysis, the narrowband sonar equation was 

employed, although broadband frequency modulated pulses are 
commonly used in SAS systems. It is key to understand any 
effect of using a broadband signal on scattering strength 
estimates. We report result from Olson and Lyons [10], in 
which the Helmholtz-Kirchhoff integral equation was solved 
for a rough surface over a large frequency band. Time-domain 
signals were formed through Fourier synthesis, and Monte-
Carlo estimates of scattering strengths were formed for 
different spatial resolutions. In Fig. 2, we plot scattering 
strength for a pressure-release rough surface following a one 
dimensional power law with a spectral strength of 〖10〗^(-
5)m, and a spectral exponent of 2. The simulations used a 
center frequency of 100 kHz (the center frequency of the 
system used in Olson et al [8], which motivated [10]) and 
various bandwidths. From this figure, no discernable 
dependence on bandwidth is observed. This independence of 
scattering strength on pulse length for power law roughness 
spectra indicates that the narrowband sonar equation is 
appropriate. Although this simulation was performed for a one-
dimensional roughness spectrum, we expect that the same 
relationship holds for isotropic two-dimensional roughness. 
Measurements in anisotropic environments may not have the 
same relationship, which we will note later in our analysis. 

III. DATA SETS AND RESULTS 

A. Overview 
 The narrowband sonar equation was used to estimate σ ̃ for 
data collected off the coast of Panama City, FL in 2012. This 
data set is of particular importance for our purposes because it 
was collected with many overlapping tracks, allowing for 
independent measurements over the same seafloor swaths. This 
collection geometry allows the comparison of scattering 
strength for the same patch of seafloor measured from 
disparate azimuthal angles. The data collection comprised 
lawnmower tracks in 18.8 – 19.8 m of water depth in an 
operation area understood to be predominantly sand. This 
minimal change in depth over the experimental area enables 
the assumption of small large-scale seafloor slope in the image. 
The runs processed for this analysis were of undisturbed 
seafloor sections and did not contain any intentionally 
positioned targets or objects of interest. 

Several examples of calibrated images are presented in 
Figs. 3-5 and display backscatter strength in decibels. In Fig. 3 
(a) and (b), the two images depict a similar section of seafloor 
having approximately 80% of overlap for the full swath. 
Distinguishing features of this bottom section are discernable 
in each image. These images were acquired from the same 
SAS array at vehicle headings that differed by 5°. Individual 
pixels from these data files were averaged in the across track 
(range) dimension and analyzed as a function of the 
corresponding grazing angle, then plotted as shown in Fig. 3 
(c). These results correspond to the images (a) and (b) and 
show close agreement in averaged scattering levels having a 
mean difference of approximately 0.08 dB across applied 
grazing angles. Also shown in dotted line is the empirical 
Lambert curve, defined for the monostatic condition in 
equation 3. 

where μ is an empirically determined constant equal to -20 dB 
for this scene. This value is consistent with other values of the 
Lambert parameter for sandy seafloors summarized in Fig 12.3 
of Jackson and Richardson [7]. Scattering strength values 
presented were calculated based on pixel sections depicted in 
the corresponding images.. 

B. Analysis  
The approach outlined above was applied to the larger set 

of data to determine whether calibrated scattering strength is 
consistent for different collection geometries in the 2012 test 
data. This initial analysis of the calibrated processing focused 
on establishing repeatability of measurements taken separately 
but over similar sections of seafloor.  The study also serves to 
establish a baseline from which future work can be analyzed 
and seeks to determine when scattering strength measurements 
from calibrated SAS images can be appropriately applied. 

 

 

 
Figure 2. Result of numerical simulation of the time-domain scattering 
cross section estimated for different pulse spatial resolution,  
compared to the acoustic wavelength, . Results for a pure frequency 
domain simulation at the center frequency were also performed. 
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Data were examined from 110 port-side images. Of these 
data files there were 42 instances where the images comprised 
seafloor sections exhibiting a nominal 60% or more of overlap. 
Mean difference of scattering strength in dB was compared for 
a relevant range of grazing angles. This was done for images 
acquired from similar vehicle heading, defined as within +/- 
10°. Analysis was also performed for images with opposing 
heading, defined as vehicle heading difference > 170°. 

Complete image files were trimmed in both the across track 
and along track axis to discard potential edge effects. 
Scattering strength values for each file were then averaged in 
the along track dimension. Grazing angles were calculated 
from vehicle position and image coordinates. Overall, the 
scattering strengths calculated via calibrated processing 
described above showed a 0.82 dB difference when repeat pass 
data was acquired under similar reflection pose and a 1.32 dB 
difference when acquired at opposite reflection pose, or 
azimuth angle. These differences represent the mean scattering 
strength at system relevant grazing angles and are shown in 
Table 1: 

Additionally for all pose scenarios the less overlap that 
existed between swaths, the greater the difference in scattering 
measurements i.e. images having less similar sections had less 
similar scattering strengths, a result depicted in Table 2: 

In instances where the truncated image appeared 
homogeneous, calibrated scattering strengths were similar even 
if acquired at different azimuth angles. Fig. 4 depicts the 
robustness in scattering strength measurements encountered 
when acquisition geometries varied according to a heading 
difference of 180°. This result supports the acoustic 
understanding that a diffusely scattered field lacks 
directionality. 

Swaths where the seafloor was discernably anisotropic 
(primarily directional ripples) showed large scattering strength 
differences. An example is shown in Fig. 5. The pockmarked 
bottom and rippling structure presented an interface that gave 
rise to an incident field highly dependent on vehicle acquisition 
geometry. Since the entire image was used to estimate the 
average scattering strength, systematic changes, such as the 
relative pixel fraction of the image composed of ripples, 

 
(a) 

 
(b) 

 
 

TABLE 1. 
 Sample Size 

 
Mean Absolute 
SB Difference 

(dB) 
Same Vehicle Heading 

(Difference < 10°)  
24 0.82 

Opposite Vehicle Heading 
(Difference > 170°) 

18 1.32 

 

TABLE 2. 
Nominal % Overlap Mean Scattering Difference 

(dB) 
60-69 1.21 
70-79 0.91 
80-89 0.63 

 

 

 
 

(c) 
 

Figure 3. The calibrated image obtained during initial acquisition (a) and 
(b) the calibrated image processed during subsequent vehicle run. 
Scattering strength results from both compared to Lambert Curve (c). 
 

 
        

 



 

pockmarks, and homogeneous sand may be responsible for the 
discrepancy in Fig. 5(b). Analysis using smaller image patches 
may reveal more consistency across imaging geometry. This is 
an opportunity for future research. 

IV. CONCLUSION 
A calibrated beamformer was developed and utilized to 

generate scattering strength measurements for individual pixels 
contained within SAS data files. The narrow band sonar 
equation formed the basis for this process and was shown to be 
extendable to broadband sonar systems through numerical 
simulation and the processing of sonar data from a 2012 sea 
test. The acquisition of multiple overlapping sections of 
seafloor provided an opportunity to assess the calibrated 
process for conformity to established acoustic principles. 
Analysis demonstrated that absolute scattering strengths 
approximated documented results for like bottom types, and  

 

review of multiple images indicated that similar seafloor 
sections (as defined by approximate percentage of overlap) 
have similar scattering strengths. Further, measured scattering 
strength differences are inversely proportional to percentage 
overlap. Anisotropic surface types presented highly variable 
scattering strengths when changes to vehicle geometry were 
introduced, whereas homogenous surface types were robust to 
changes in measurement when analyzed from various azimuth 
angles. 
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Figure 4. The calibrated image (a) and (b) scattering strength results from both compared to Lambert Curve. 

 

                          
(a)                 (b) 

 
Figure 5. The calibrated image (a) and (b) scattering strength results from both compared to Lambert Curve. 
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Resolution Dependence of Scattered Field

Contemporary high-resolution sonar systems use broadband pulses and long real or1

synthetic arrays to achieve high resolution for mapping and target detection tasks.2

The spatial resolution of these systems can approach the acoustic wavelength, and3

it is important to understand any affects this situation might have on quantitative4

measures of the scattered field, such as the scattering cross section or scintillation5

index. In this work, we numerically investigate the dependence of these two acous-6

tic measures on pulse length (or equivalently bandwidth) using rough surfaces with7

power-law spectra. Using the boundary element method and Fourier synthesis, we8

found that there is no resolution dependence of the scattering cross section. We found9

that the scintillation index increases as resolution increases, grazing angle decreases,10

and spectral strength increases. This trend is confirmed for center frequencies of 10011

kHz and 10 kHz, as well as for power law spectral exponents of 1.5, 2, and 2.5. The12

hypothesis that local tilting at the scale of the acoustic resolution is responsible for13

intensity fluctuations was examined. It was found that local tilting is responsible in14

part for the fluctuations, but other effects, such as non-local multiple scattering and15

shadowing likely also play a role.16

a)dolson@nps.edu
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Resolution Dependence of Scattered Field

I. INTRODUCTION17

Theoretical treatment of wave scattering from rough interfaces is generally performed18

using an incident plane wave, which by definition has a single direction and frequency, and19

exists over infinite spatial extent. However, experimental measurements of the scattered20

field typically employ broadband pulses to achieve high spatial resolution - desirable for21

seafloor mapping or target detection. Performance of such systems typically depends on22

the mean scattered intensity of the scattered field from the seafloor, and more generally its23

probability density function. The mean intensity is usually characterized in terms of the24

scattering cross σ section per unit area per unit solid angle, σ (hereafter referred to as the25

“cross section”, “scattering cross section,” or “scattering strength” for the decibel version.).26

Variability in the scattered intensity is often characterized using the scintillation index, SI27

(Ishimaru, 1978; Lyons et al., 2009; Tatarski, 1961).28

The scattering cross section is defined as the ratio of the scattered intensity to the incident29

intensity, normalized by propagation effects, as well as the energy flux of the incident acoustic30

wave. For some finite resolution systems at low grazing angles, this definition may be31

simplified to (Jackson and Richardson, 2007, p. 32),32

σ =
A

r2
s

〈|ps|2〉
|pi|2

(1)

where A is the ensonified area, rs is the distance between a resolved patch of area A on the33

seafloor (or any rough surface, generally), pi is the incident pressure, and ps is the scattered34

pressure measured by the system. Note that this definition is valid only for geometries with35

well-defined incident and scattered field directions. Strictly, this definition of the scattering36
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Resolution Dependence of Scattered Field

cross section is only true in the limit as the ensonified area becomes large compared to all37

length scales of interest (i.e. outer scale of the rough surface, or the acoustic wavelength),38

since plane waves interact with the entire rough surface. It has been demonstrated (Gauss39

et al., 1996; Henyey et al., 1995), that for finite resolution systems, the scattering strength is40

independent of pulse length - a consequence of Parsevals’ theorem (Oppenheim et al., 1999,41

p. 60) and linear time-invariance, and thus generally valid. However, if the properties of42

the ensemble of rough surfaces vary with resolution, the scattering environment has very43

strong frequency dependence, or is time-varying, then the measured scattering strength may44

depend on resolution. For high-resolution systems, it is plausible that the ensemble used45

to estimate the scattering cross section may change as a function of resolution, and has46

potential to cause a resolution dependence of the scattering cross section.47

The interface scattering cross-section characterizes the mean scattered power from an48

interface, but a more general property of the scattered field is the probability density function49

(pdf) of the pressure or its complex magnitude, termed the envelope pdf. The envelope pdf is50

connected to performance of target detection systems, and has potential for remote sensing of51

the environment using high resolution systems (Lyons et al., 2009, 2016; Olson et al., 2019).52

The pressure due to scattering from a rough, homogeneous interface with Gaussian height53

statistics has commonly been assumed to follow a Gaussian distribution for the real and54

imaginary components, and a Rayleigh distribution for its complex magnitude (Jakeman,55

1980)). In this situation, the scintillation index, or normalized intensity variance is unity.56

For heavy-tailed statistics (with more frequent large amplitude events), the scintillation57

index is greater than unity.58
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Resolution Dependence of Scattered Field

Arguments for Rayleigh distributed scattered pressure magnitude follow from the assump-59

tion of a large number of independent surface elements contributing to the scattered field60

(Abraham and Lyons, 2002; Jakeman, 1980). So long as the ensonfied area of a Gaussian,61

homogeneous rough interface is large (so there are many independent scatterers contributing62

to the field), this assumption holds true. Another argument for Rayleigh magnitudes follows63

from perturbation theory and the interpretation in terms of Bragg scattering. In this frame-64

work, the scattered pressure is proportional to the amplitude spectrum of the roughness65

evaluated at the Bragg wavenumber, 2kw cos(θi), where kw is the acoustic wavenumber in66

the water column, and θi is the incident grazing angle. If the surface has Gaussian statistics67

in the spatial domain, then the wavenumber components will have a Rayleigh distributed68

envelope via the central limit theorem. Since the the acoustic pressure magnitude is directly69

proportional to the acoustic spectrum at the Bragg wavenumber, it follows that the envelope70

pdf will be Rayleigh distributed as well.71

Contemporary high-resolution seafloor imaging systems, such as synthetic aperture sonar72

(SAS) have spatial resolutions on the order of the center wavelength. Small resolution cell73

sizes may result in ensembles that vary with the resolved area of the seafloor, thereby causing74

a departure from Rayleigh statistics. The resolution dependence of SI has implications for75

target detection performance, synthetic aperture autofocus algorithms (e.g. (Marston and76

Plotnick, 2015)), and preprocessing algorithms for SAS images (Williams, 2015).77

It was observed in (Lyons et al., 2016) that measurements of the scintillation index from78

SAS images of homogeneous random rough interfaces had a strong dependence on range,79

which was interpreted as a result of modulation of the local slope by roughness components80
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at the scale of the acoustic resolution or larger. This interpretation corresponds to the81

composite roughness model (Jackson et al., 1986b; McDaniel and Gorman, 1983). Combined82

with interpretations in (Lyons et al., 2016), this results in a dependence of the scintillation83

index on the acoustic resolution, the underlying pixel statistics, range (through grazing84

angle), as well as roughness spectrum parameters. These interpretations, while plausible,85

suffer from a lack of experimental confirmation.86

In this paper, we examine the question of whether there is a dependence on resolution of87

the scattering cross section and scintillation index. Since the cross section is strictly defined88

for incident and scattered plane waves, a finite resolution version must be used, which is89

detailed below. When discussing the cross section, it is always noted whether we mean the90

plane wave version or finite resolution approximation. The acoustic resolution is defined as91

the full width half maximum spatial extent of the square of the incident pulse envelope, and92

is equal to ∆X = c/(2aBw), where ∆X is the spatial resolution of the pulse1, 1/(2aBw) is93

the temporal resolution of the pulse in the backscattering direction, Bw is the 3dB full width94

bandwidth of the transmitted pulse, and c is the wave speed. The constant a depends on95

the shape, or point spread function of the pulse used.96

These questions were investigated through numerical solution of the Helmholtz-Kirchhoff97

integral for the scattered pressure using the boundary element method (BEM) (Sauter and98

Schwab, 2011; Wu, 2000) using pressure-release boundary conditions. This method is similar99

to that used by (Thorsos, 1988). Fourier synthesis was used to construct the broadband100

scattered pressure at various spatial resolutions, and metrics were computed based on the101

scattered time-domain pressure. Comparisons were made to the ensemble averaged cross102

6
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section performed in the frequency domain (i.e. computed at a single frequency, which is a103

good approximation of the plane wave case). These simulations were performed for center104

frequencies of both 100 kHz and 10 kHz, and for one dimensional rough surfaces with power105

law spectra, whose parameters are the spectral strength and spectral exponent.106

Through these numerical experiments, it was found that the scattering strength does not107

vary as a function of bandwidth for the parameters investigated in this study. The error108

of this comparison is within the Monte Carlo error of this study. For scintillation index we109

found that it becomes greater than one as resolution increases, grazing angle decreases, and110

spectral strength increases. Specifically, for larger spectral exponents, the scintillation index111

is more sensitive to changes in spectral strength, resolution and grazing angle.112

We first present an overview of the geometry and roughness statistics in Sec. II. The113

integral equations and discretization methods are given in Sec. III, and the incident field in114

Sec. IV. Methods to estimate the scattering cross section and scintillation index are given115

in Sec. V. We give a discussion on how the parameters of the numerical simluations were116

selected in Sec. VI. Results are presented in Sec. VII, with a discussion and some preliminary117

hypotheses given in Sec. VIII. Conclusions are given in Sec. IX118

II. GEOMETRY AND ENVIRONMENT119

The geometry of the scattering problem is presented in Fig. 1. The problem takes place120

in two dimensions with position vector r = (x, z). The rough interface is defined as z = f(x)121

and is shown as the thick black line in this figure. In this figure, the nominal incident and122

scattered wave directions are shown with their grazing angles and nominal wave vectors.123

7
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FIG. 1. caption

The sound speed in the upper medium is c, which is taken to be 1500 m/s, but our results124

can be applied to other sound velocities by performing the appropriate dimensional scaling.125

The acoustic frequency is f , and is related to the wavenumber k = 2πf/c. Simulations126

are performed at a center frequency f0, and bandwidth BW . The center wavelength and127

wavenumber are λ0 and k0 respectively128

The rough interface is assumed to have wide-sense homogeneity (spatial stationarity) and129

a Gaussian pdf. Its second order properties can be completely described by its autocovari-130

ance function,131

B(x) = 〈f(y)f(y + x)〉 (2)

and power density spectrum132

W (K) =
1

2π

∫
B(x)eiKx dx. (3)

8



Resolution Dependence of Scattered Field

Several second-order properties of this spectrum are useful for the analysis performed in this133

paper. In particular, the root mean square (rms) height, h2 is given by134

h2 =

∞∫
−∞

W (K) dK = B(0). (4)

The rms slope s2 is135

s2 =

∞∫
−∞

K2W (K) dK =
∂2B(x)

∂x2

∣∣∣∣
x=0

. (5)

The power density spectrum used in this work is the truncated power law,136

W =
w

|K|γ
, (6)

for kl ≤ |K| ≤ ku, and zero otherwise. The spectral strength is w with units of m3−γ
137

and γ is the dimensionless spectral exponent. The lower wavenumber cutoff is kl = 2π/L,138

where L is the outer scale. The upper wavenumber cutoff is ku = 2π/`, where ` is the139

inner scale. Random realizations are produced from this power spectrum using the Fourier140

synthesis technique detailed in (Thorsos, 1988). Since f(x) is a real function, both positive141

and negative wavenumbers are included in the Fourier integral. We identify the outer scale142

with the length of the rough surface, and the inner scale with the sampling interval of the143

rough surface realization.144

For the power-law form used here, the non-dimensional mean square slope and mean145

square height are146

s2 =
2k3−γ

0 w

3− γ

[(
ku
k0

)3−γ

−
(
kl
k0

)3−γ
]

(7)

k2
0h

2 =
2k3−γ

0 w

γ − 1

(
kγ−1

0

kγ−1
l

− kγ−1
0

kγ−1
u

)
. (8)
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These parameters have been expressed in a form where the terms outside and inside the147

parentheses are dimensionless. Although the upper wavenumber is set by the discretization148

interval, δx, the way in which the rough surfaces enter into the acoustical simulations may149

be subject to an effective upper limit, kueff = 2π/`eff , where `eff is an effective inner scale.150

Roughness components with wavenumbers much greater than k likely have an insignificant151

effect on the scattered field, making the effective upper limit much less than that defined152

by the surface sampling. RMS height is insensitive to the upper cutoff, and more sensitive153

to the low-wavenumber cutoff. RMS slope is sensitive to the upper cutoff, and insensitive154

to the lower cutoff, so long as it is sufficiently small. To make the upper limit explicit, we155

will use the notation s` to denote the rms slope computed using ku = 2π/` for some length156

scale `.157

III. INTEGRAL EQUATIONS AND DISCRETIZATION158

We perform this study numerically using a discretized form of the 2D Helmholtz-Kirchhoff159

integral equation for Dirichlet boundary conditions (Thorsos, 1988). Although our motiva-160

tion for this work is seafloor scattering, the assumption of a Dirichlet boundary allows us to161

focus solely on the role of the rough interface. For a single frequency, this integral equation162

is163

p (rp)Cp = pi (rp) +

∫
S

∂p (rs)

∂ns
Gk (|rs − rp|) dS, (9)

where Cp is 1/2 on the rough interface, unity in the fluid medium above the rough interface,164

and zero below the interface. pi is the incident pressure, p is the total pressure, and ∂p/∂n165

10
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is the total pressure normal derivative. rp = (xp, zp) is a point in space, rs = (xs, zs) is a166

point on the rough surface, and Gk(R) = (i/4)H
(2)
0 (kR) is the 2D free-space Green function167

(Devaney, 2012, p. 6), where H
(2)
0 (z) is the zeroth-order Hankel function of the second168

kind. Note that this integral equation can also describe electromagnetic scattering from 1D169

corrugated surface with perfectly conducting boundary conditions subject to an incident170

wave with TM (p) polarization (Toporkov et al., 1998).171

The scattering problem is solved in two steps. First, the point rp is taken to the boundary.172

Application of the boundary conditions results in the equation173

−
∫
S

∂p (rs)

∂ns
Gk (|rs − rp|) dS = pi (rp) (10)

This equation is numerically solved for ∂p/∂n on the surface. Once this quantity is known,174

Eq. (9) is then evaluated with rp in the far field.175

Numerical solution of Eq. (10) is performed by discretization of the integral equation176

using boundary element method (Sauter and Schwab, 2011; Wu, 2000). In particular, we177

use piecewise linear basis functions to approximate ∂p/∂n, and collocation to compare the178

true and approximate solution at discrete points. These two methods convert the integral179

equation into a linear system,180

V y = b, (11)

where y is the solution vector consisting of the basis function coefficients used in the approx-181

imation for ∂p/∂n, and b = pi evaluated at the discrete collocation points rm = (xm, zm).182

The matrix V has elements183

Vmn = −
∫
Gk (|rm − rs|)φ(ξn(rs)dS (12)
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Here, φ(η) is a linear basis function defined on the interval η ∈ [−1, 1] - a symmetric184

triangular function centered at zero with a maximum of 1. Outside of the interval, φ is zero.185

The function ξn maps the basis function centered at the n-th point from physical space, rs186

to the η domain. In this case, the basis functions are centered at the same collocation points187

rm, resulting in a square matrix. Integration is carried out using Gauss-Legendre quadrature188

(Abramowitz and Stegun, 1972). Due to the weak singularity in the Green’s function, the189

diagonal elements of the matrix are computed using a sixteen point quadrature rule combined190

with a variable transformation whose Jacobian exactly cancels the singularity (Wu, 2000).191

Nonsingular matrix elements were computed using an eight point quadrature rule. LAPACK192

routines were used to solve the linear system using LU decomposition and back substitution193

(Anderson et al., 1999).194

Collocation points are defined on the rough surface, (xm, zm) with equal spacing, δx on195

the horizontal axis. From these points, a cubic spline approximation is used to construct196

a continuous and smooth surface. This interpolation forces the surface normal, and thus197

∂p/∂n to be continuous, which improves the convergence rate of the discretization of the198

integral operator (Atkinson, 1997).199

Once the surface pressure normal derivative is found, it is propagated to the field using200

Eq. (9) with rp in the far field. In this work, the field points are equally spaced intervals of one201

degree at radius R. The far field radius is defined to be about 25 times the Rayleigh distance202

from the surface, d2/λ0. This criterion for the far-field is quite conservative (Jackson and203

Richardson, 2007, Appendix J), (Lysanov, 1973; Winebrenner and Ishimaru, 1986), although204

it enables the use of asymptotic expansions for the Hankel function.205
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IV. INCIDENT FIELD206

The incident fields used in this work are broadband pulses whose spatial dependence is207

an approximation of a plane wave. The nominal direction of the incident wave vector are208

specified as vectors in Fig. 1. Their lengths vary due to the broadband nature of the field,209

although the center wave vectors can be defined at the center frequency by the expressions210

k0i = (k0ix, k0iz) and k0s = (k0sx, k0sz). The components are defined in terms of the grazing211

angles θi and θs (with respect to the horizontal axis) by212

k0ix = −k0 cos θi k0sx = k0 cos θs (13)

k0iz = −k0 sin θi k0sz = k0 sin θs (14)

The center wavenumber k0 is defined by an average of the wavenumber weighted by power213

spectrum of the transmitted source214

k0 =

∞∫
−∞

kS2(f) df, (15)

where S(f) =
∫
s(t) exp(−i2πft) dt is the linear (amplitude) spectrum of the transmitted215

pulse, s(t). The transmitted pulse used here was a complex exponential multiplied by a216

Gaussian envelope, with the form s(t) = p0 exp (−t2/τ 2 + iω0t), where τ is a parameter of217

the pulse length, and ω0 is the center angular frequency, related to the center frequency, f0218

by f0 = ω0/(2π). The factor p0 is the pressure at the center of the pulse envelope and is219

included to make the dimensions consistent, taken to be 1 Pa in this work.220

The temporal resolution of the pulse, ∆τ is defined by the duration of the pulse envelope221

between its half power points. For the Gaussian pulse used, this quantity can be obtained222
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by solving the equation exp (−(∆τ/2)2/τ 2) = 1/
√

2, resulting in ∆τ = τ
√

2 ln 2. This223

definition of the temporal resolution results in a full width half power bandwidth of BW∆τ =224

2 ln(2)/π ≈ 0.44. For reference, if a rectangular function with full width of BW is used225

for S(f), then BW∆τ ≈ 0.88. The same relationship is obtained if constant envelope226

pulse of length ∆τ is used. Although the rectangular pulse has a larger time-bandwidth227

product, the Gaussian pulse has no appreciable sidelobes in the time-domain, but requires a228

computational bandwidth much larger than BW to approximate a true Gaussian function.229

Broadband fields are synthesized from single frequency approximations of a plane wave.230

This narrowband field is the extended Gaussian beam developed in (Thorsos, 1988) that231

provides tapering to guard against edge effects entering into the scattering calculation. The232

form of this field (adapted to our time convention) is given by233

p(r) = exp
(
−iki · r (1 + w(r))− (x− z cot θi)

2) , (16)

where234

w(r) = (kg sin θi)
−2
[
2 (x− z cot θi)

2 /g2 − 1
]
, (17)

and g is a width parameter of the incident field. For broadband simulations, Eq. (16) is235

used for each frequency. Since the Gaussian function has an infinite domain of support, it236

must be truncated to use in numerical simulations.237

The function w (r) improves the agreement between the numerical solution of the238

Helmholtz-Kirchhoff integral equation and its normal derivative. Discrepancies between239

these two solutions can result because the incident field satisfies the Helmholtz equation240

approximately to order (kg sin θi)
2 (Thorsos, 1988). Good agreement between the two solu-241
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tions was observed when kg sin θi is large. Therefore, to analyze low-grazing angles, (which242

are important to contemporary synthetic aperture sonar systems, e.g. (Bellettini and Pinto,243

2009; Dillon, 2018; Fossum et al., 2008; Pinto; Sternlicht et al., 2016)), the parameter g must244

grow as θi approaches zero. This requirement can be thought of as enforcing the contraint245

that the angular width of the incident beam (full width half max),246

∆θ =
2
√

2 log(2)

kg sin θi
(18)

should be small compared to θi. When the relative angular width, defined as ∆θ/θi is not247

small, the direction of the incident field is spread over a large range of angles, and is thus248

not well defined.249

V. ESTIMATING TIME-DOMAIN QUANTITIES OF THE SCATTERED FIELD250

The time-domain pressure is computed by251

p(t, θi, θs) =

∞∫
−∞

S(f)p(f, θs, θi)e
i(2πf/c)R+i2πft df (19)

where p(f, θs, θi) is the scattered pressure measured at θs with an incident field having252

frequency f , and incident grazing angle θi. The first term in the exponential removes the253

time delay associated with propagation to the far field, so that the p(t) can be mapped to254

the rough interface. The scattered grazing angle, θs is computed using the location at which255

the pressure is calculated in the far field, θs = tan−1(zs/xs). In practice this integral is256

computed using the fast Fourier transform (FFT).257

An example realization of the scattered pressure the frequency domain is plotted in258

Fig. 2(a). The frequency domain pressure is plotted as the raw scattered pressure, and also259
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weighted by the amplitude spectrum. The time-domain pressure squared after weighting260

by S(f) and an inverse Fourier transform, is plotted in Fig. 2(b). It contains fluctuations261

on the time-scale of the pulse length, as well as deterministic changes due to the incident262

beam used in the Helmholtz integral calculations. The deterministic component must be263

removed before estimating the scattering cross section. This can be performed by dividing264

the pressure magnitude squared by the energy flux density, and multiplying it by 2ρc/ sin θi.265

This quantity is equal to266

ef (x) = exp
(
−2x2/g2

)
×(

1 +
2x cot θ

ikg2
+

4x2 cot2 θi csc2 θi
g2k2

+

+(2x2/g2 − 1)
csc2 θi
g2k2

) (20)

If kg sin θi >> 1, then this expression can be approximated with exp(−2x2/g2). However,267

the full version of Eq. (20) is used in all cases here. The position argument, x is the position268

corresponding to time t in the scattered pressure. It is a function of the incident grazing269

angle and is defined as x(t, θi) = −ct/(2 cos θi). The negative sign is a consequence of the270

definition of the angles in Fig. 1. This coordinate change is used later to map the scattered271

time series to locations on the rough surface.272

To remove effects of the pulse length and cylindrical spreading, the squared magnitude273

is multiplied by r and divided by c∆τ/(2 cos θi). To summarize, the dimensionless scaled274

intensity is defined as275

q(t)2 =
r|p(t)|2

ef (x(t, θi))

2 cos(θi)

c∆τ
(21)

This quantity is plotted in Fig. 2 for size different pulse resolutions.276
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FIG. 2. (color online) Steps to estimate scattering cross section.

The scattering cross-section can be estimated by a simple average of q2,277

σ = 〈q2〉t,Ne . (22)

This ensemble average is over time, t as well as Ne, the number of rough surface realiza-278

tions. Averaging over time was performed after q(t) was decimated to obtain statistically279

independent samples, following (Abraham and Lyons, 2004). Averaging over the roughness280

ensembles is performed to reduce uncertainty in the σ or SI estimate and is achieved by281

concatenating the time series obtained from each realization and averaging the resulting vec-282

tor. In practice, only 95% of the time series from the rough surface is used in the ensemble283
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average, to ensure that edge effects do not contaminate the time series (see the spike at -12284

ms in Fig. 2(b)). An example of q2(t) is plotted in Fig. 2(c) for different resolutions.285

We also examine the scintillation index, SI, which is the variance of the scaled intensity,286

I = q2 divided by the square of the mean intensity (Ishimaru, 1978, p. 437),287

SI =
〈I2〉 − 〈I〉2

〈I〉2
. (23)

The scintillation index characterizes the fluctuations in the scattered field. If SI = 1, then288

the magnitude of the complex pressure (known as the envelope) has a Rayleigh distribution289

and its real and imaginary components are Gaussian. If SI > 1, then the pdf of the scattered290

field is heavy-tailed, which means that there is a higher probability of occurrence of high291

amplitude events compared to the Rayleigh distribution.292

VI. PARAMETERS OF NUMERICAL EXPERIMENTS293

A. Signal Parameters294

The objective of this work is to study the resolution (or bandwidth) dependence of the295

scattered field. Our experiments covered the resolutions typically used in narrowband scat-296

tering experiments (Jackson et al., 1986a; Williams et al., 2002; Williams and Jackson, 1998),297

with the resolution cell on the order of 10 or more wavelengths, down to a value of one wave-298

length, which is on the order of what is achievable by modern SAS systems. We used specific299

values of ∆X/λ = (1, 2, 4, 8, 16). The proportional spatial resolutions correspond to tempo-300

ral resolutions ∆τf0 = (2, 4, 8, 16, 32) at small grazing angles, since ∆X = ∆τ/(2 cos θi) for301

backscattering.302
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High frequency acoustic imaging systems provided the motivation for this work, and thus303

the simulations used a center frequency of 100 kHz. However, the parameters of the simu-304

lation were specified in a non-dimensional fashion. As long as every dimensional quantity305

is scaled properly, results of these simulations should be valid for lower frequencies with306

larger roughness parameters. To check whether the non-dimensional scaling was valid, we307

performed one of the simulations at 10 kHz as well, and scaled the roughness parameters308

accordingly. A sound speed of 1500 m/s was used for all simulations.309

B. Roughness parameters310

Roughness parameters were specified using only two dimensional constants, wavenumber,311

k (through a combination of f0 and c) and spectral strength, w. Three spectral exponents312

were used, γ = 1.5, 2, 2.5, since this parameter has been observed to vary for measured313

seafloor roughness (Jackson and Richardson, 2007, Ch 6). Only cases of γ = 2 were per-314

formed for both 100 kHz and 10 kHz. The γ = 1.5 and γ = 2.5 simulations used a center315

frequency of 100 kHz only.316

It now remains to specify the spectral strength. For γ = 2, we used spectral strengths of317

wγ=2 = (1×10−6, 1×10−5, 2×10−5, 3×10−5, 4×10−5)m, where we have used a subscript on318

the spectral strength to denote that it is used for a specific value of the spectral exponent.319

These values resulted in SI ≈ 1 for the smallest w, and SI > 1 for larger values. These320

values span the smaller end of the roughness measurements with spectral exponent ≈ 2321

summarized in Table 6.1 of (Jackson and Richardson, 2007).322
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It was desired that the simulation parameters were set such that they resulted in similar323

values of SI for different spectral exponents. Based on interpretation that roughness at324

horizontal scales larger than the resolution cause changes in the local slope of the seafloor,325

we set the spectral strengths for γ 6= 2, such that the rms slope (Eq. (7)) was equal across326

different γ. Since pulses with a finite spatial resolution were used, it seems reasonable that327

an effective upper limit kueff is imposed on the rough surface based on the spatial resolution.328

With this requirement, w for other γ (denoted by wγ), were computed using329

wγ = wγ=2(3− γ)
kueff − kl
k3−γ
ueff − k

3−γ
l

(24)

where kl is the lower limit of the wavenumber spectrum, and kueff is the effective upper330

wavenumber limit. We set kueff = 0.5k0 based on the values of ∆X/λ studied here.331

Roughness parameters for the 100 kHz simulations are summarized in Table I. For the332

10 kHz simulations, we chose to keep the same s2 and kh. This condition can be satisfied333

if the spectral strength, surface length, and sampling interval for 100 kHz and γ = 2 are all334

multiplied by 10.335

C. Sampling parameters336

The sampling interval, δx was specified to minimize the discretization error of the integral337

equation. Since very large numbers of independent samples were used, our estimates of the338

scattering cross section had uncertainty of about 0.2-0.3 dB. It was found that an observable339

bias with this uncertainty in the scattering strength occurred if δx/λ0 > 12, which is due to340
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γ w s2
δx s2

∆X s2
2∆X s2

4∆X s2
8∆X s2

16∆X k0h

- m3−γ ◦ ◦ ◦ ◦ ◦ ◦ -

2

1.00e-06 6.40 1.66 1.17 0.83 0.58 0.41 0.95

1.00e-05 19.52 5.23 3.70 2.62 1.85 1.30 2.99

2.00e-05 26.63 7.37 5.22 3.70 2.61 1.84 4.23

3.00e-05 31.55 9.00 6.39 4.52 3.20 2.25 5.18

4.00e-05 35.34 10.37 7.37 5.22 3.69 2.60 5.98

1.5

1.02e-07 14.58 1.95 1.16 0.69 0.41 0.24 0.34

1.02e-06 39.44 6.16 3.67 2.18 1.30 0.77 1.06

2.04e-06 49.31 8.68 5.18 3.09 1.84 1.09 1.51

3.06e-06 54.93 10.59 6.34 3.78 2.25 1.34 1.84

4.07e-06 58.70 12.18 7.31 4.36 2.60 1.54 2.13

2.5

8.26e-06 2.92 1.47 1.23 1.02 0.85 0.70 2.81

8.26e-05 9.16 4.63 3.87 3.22 2.68 2.21 8.87

1.65e-04 12.84 6.53 5.46 4.56 3.78 3.12 12.55

2.48e-04 15.60 7.98 6.68 5.57 4.63 3.82 15.37

3.30e-04 17.87 9.20 7.70 6.43 5.34 4.41 17.75

TABLE I. Roughness parameters used in the simulations. All parameters are listed for f0 = 100kHz

and c = 1500 m/s. Simulations at 10 kHz use the same dimensionless mean square parameters.

Units for each parameter are given in the second row. The rms slope is reported using the upper

limit computed with the sampling interval for the rough surface, as well as using the acoustic

resolution. The rms height is insensitive to the upper limit and the values given in the table use

the surface sampling.
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discretization error. A conservative value of δx/λ0 = 15 was therefore used to minimize this341

bias.342

Our focus in this work is moderate to low grazing angles. The lower limit to the grazing343

angles that can be reliably estimated is set by the surface length, which in turn is set by the344

memory limitations and acceptable number of CPU hours used. These latter constraints345

limited us to g = 250λ. At the center frequency, the relative angular width for that value of346

g was about 3.5% at 10◦ grazing angle. Lower frequencies are more of a problem, since for a347

constant value of g, decreasing the frequency will increase the angular width of the field. At348

the lower 6 dB down point of the largest bandwidth signal used (equivalent to 0.844f0), the349

angular width for g = 250λ was approximately 4.2◦ at a nominal angle of 10◦ grazing angle.350

With these angular widths, 10◦ was taken to be an acceptable, if conservative, lower limit351

to the grazing angles that can be reliably estimated in this work. Lower angles result in a352

larger relative angular width which increases quadratically with θi. In choosing the surface353

length, we increased g to 400λ and did not observe any change in the behavior of σ or SI354

above 10◦. Grazing angles less than 10◦ likely require fast approximate methods to solve the355

integral equation, such as the fass multipole method (Liu, 2009), or heirarchical matrices356

(Hackbusch, 2015).357

The total rough surface length, L was set to 4.5g to allow the incident field taper to decay358

sufficiently at the edges of the computational domain. For the proportional bandwidths359

studied in this work, these surface parameters resulted in surfaces with N = 16, 875 points.360

The matrix V resulting from this discretization required 4.3 GB of memory storage for361

double precision complex numbers.362
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FIG. 3. Scattering Strength comparison. 100 kHz, γ = 2

The frequencies required for the largest bandwidth simulation ∆τf0 = 2, spanned approx-363

imately 0.2 f0 to 1.8 f0. This computational bandwidth was about seven times the largest364

3dB bandwidth used for the Gaussian spectrum. Using a frequency spacing of δf = c/(3L),365

the number of frequencies per simulation was approximately 6000. Simulations were per-366

formed on the Hamming high performance computing cluster at the Naval Postgraduate367

School.368

VII. RESULTS369

We present results for backscattering strength as a function of grazing angle, θi, resolution370

∆X, and spectral strength, w, in Fig. 3 for f0 = 100 kHz and γ = 2. Finite resolution371

scattering strength as well as the frequency domain version is plotted on the vertical axis,372

with grazing angle on the horizontal axis. Each resolution is plotted as a different color,373

with the frequency domain version as a black dashed-dot line. Results for different spectral374

strengths are on the same figure since they are well separated from one another, with the375

smallest w corresponding to the lowest scattering strength.376
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The angles are limited to a lower limit of 10◦ grazing angle due to finite surface length,377

and an upper limit of 70◦, due to the difficulty in estimating the cross section near vertical378

using broadband pulses (Hefner, 2015; Hellequin et al., 2003). To compare these results more379

closely, the broadband cross section is divided by the frequency-domain cross section and the380

dB value taken. This quantity, which we call the dB error, is plotted in Fig. 4. For all cases381

in these figures, there is insignificant difference between the apparent cross section in the382

time domain, and the frequency-domain cross sections for most w. At the largest spectral383

strength, some systematic oscillations as a function of θi are present, but cannot be easily384

disentangled from the rapid Monte-Carlo fluctuations. Other than that case, all differences385

appear to be random and within the uncertainty of the Monte-Carlo simulations. This is386

the expected result using Parseval’s theorem, discussed in (Gauss et al., 1996; Henyey et al.,387

1995), and confirms that broadband signals can successfully be used to estimate scattering388

strength from a power-law seafloor with spectral exponent γ = 2.389

The scintillation index for this case is plotted in Fig. 5 for broadband signals as well390

as the single frequency case. Each spectral strength is plotted in its own subfigure, and391

each resolution has its own line within the subfigure. The vertical axis is SI, and the392

horizontal axis is grazing angle in degrees. The narrowband result is approximately unity393

for the entire angular domain shown, for all spectral strengths. This is the expected result394

if the central-limit theorem is employed, or if the scattered field is well-described in terms of395

Bragg scattering. For the broadband signals, there is a profound dependence on resolution,396

with the scintillation index increasing as the resolution cell becomes small. This behavior397

can be seen in the example realization shown in Fig. 2(c). As ∆X becomes small, the398
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intensity peaks become higher, even though q2 is normalized by the ensonified length of the399

interface. Additionally, holding resolution constant, the scintillation index increases as the400

grazing angle becomes small, monotonically for this case. For most broadband cases, SI401

asymptotically approaches unity as grazing increases to its upper limit.402

However, for the highest resolution cases, ∆X/λ = {1, 2}, and the largest spectral403

strengths, this high angle asymptote is greater than one, indicating that for all angles ex-404

amined here, scattered complex pressure magnitude is non-Rayleigh. In (Lyons et al., 2016)405

a K distribution was required to describe the pdf of the scattered field at moderate grazing406

angles, which agrees with this result. The Monte-Carlo fluctuations are significantly less407

than the difference between the high-angle SI asymptote and unity, indicating that this is a408

statistically significant finding. We also note that (Lupien, 1999) has observed non-Rayleigh409

scattering for broadband scattering from rough surfaces with a power-law exponent of γ = 3,410

but statistical tests barely rejected the Rayleigh distribution. That analysis did not remove411

the effect of the Gaussian taper, so the conclusions are not comparable to the present work.412

Narrowband and broadband scattering scattering strength and scintillation index were413

also computed for 10 kHz, γ = 2, and spectral strengths that were ten times the value in414

the previous section. The relative resolution, ∆X/λ was held constant, but consequently415

the resolution ∆X was a factor of 10 larger. These parameters were chosen such that the416

dimensionless second-order quantities were the same as in the previous 100 kHz simulations.417

It was found that the scattering strengths, scattering strength dB error, and the scintillation418

index were the same for the 10 kHz and 100 kHz cases, to within Monte-Carlo fluctuation.419

This set of simulations was performed to verify that characterizing the simulations non-420
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dimensionally was valid. Since plots for the 10 kHz case do not add significantly new421

information, they are not shown here. These results indicate that departure from Rayleigh422

statistics is not isolated to high-frequency imaging systems, and may occur in in lower-423

frequency sonar systems as well, so long as the seafloor has the appropriate roughness424

parameters.425

The spectral exponent was changed to γ = 1.5 to examine the effect of changing the shape426

of the power spectrum. New values of w were used, specified in Table I. Again, the scattering427

strength is the same whether computed at the center frequency, or using broadband pulses428

in the time domain. Scattering strength comparisons and the dB error are not shown. The429

scintillation index is plotted in Fig. 6, and it depends on angle, resolution, and spectral430

strength, as in the previous two cases. The SI curves were expected to behave similarly for431

γ = 2 and γ = 1.5 at ∆x/λ = 2. While SI depends on resolution in a similar fashion, it is432

less than the SI for γ = 2, and is less sensitive to resolution, spectral strength, and grazing433

angle.434

Finally, the spectral exponent was changed to γ = 2.5. The values of spectral strength can435

be found in Table I. Again, the scattering cross section computed at the center frequency and436

using broadband pulses were the same to within the Monte-Carlo error of the simulations,437

and are not shown here. The scintillation index is plotted in Fig. 7, and again depends on438

resolution, spectral strength and grazing angle. As the spectral strength is increased in the439

same proportions as the earlier plots (the second through fifth spectral strengths are 10, 20,440

30, and 40 times the smallest spectral strength respectively), the scintillation index increases441
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much more rapidly than either the γ = 2 and γ = 1.5 cases. For large values of spectral442

strength, the SI has some peaks near 60◦.443

VIII. DISCUSSION444

In the results presented above, we have shown that scattering strength when estimated445

using broadband pulses is indistinguishable from its narrow-band quantity, and is indepen-446

dent of pulse length. This conclusion is not surprising, given the requirements of Parseval’s447

theorem. However, as the pulse length changes, the properties of the ensemble used to448

estimate scattering strength changes as well. It is encouraging to see that although the449

ensemble is changing with respect to resolution (i.e the rough patch within a resolution cell450

is different for each resolution), σ is invariant to pulse length. We expect this result to hold451

for 3D environments as well if the roughness is isotropic. High-resolution systems are able452

to reliably estimate scattering strength, and it may be a stable feature for use in seabed453

classification. However, for highly anisotropic, non-stationary scenarios, such as those stud-454

ied by (Lyons et al., 2010; Olson et al., 2019, 2016), the measured scattering strength may455

depend on pulse length.456

We have also shown that the scintillation index (also called structure (Wang and Bovik,457

2002; Wang et al., 2004), lacunarity (Williams, 2015), or contrast (Marston and Plotnick,458

2015)) is highly dependent on all the parameters studied: resolution, grazing angle, spectral459

strength, and spectral exponent. For moderate to low grazing angles, SI monotonically in-460

creases as grazing angle decreases, resolution cell decreases, and spectral strength increases.461

SI is larger for larger γ. Contrary to scattering strength, SI, and therefore the scatter-462
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ing process in general, is fundamentally different in the frequency and time domains for463

broadband pulses.464

In (Lyons et al., 2016), it was hypothesized that the physical cause of heavy-tailed statis-465

tics in high resolution sonar imagery was local tilting of the seafloor due to roughness wave-466

lengths larger than the acoustic resolution. The scattered amplitude (envelope) was modeled467

as a product between a Rayleigh-distributed random variable (due to sub-resolution rough-468

ness), and a random variable that took into account the scattering cross section of the small469

scale roughness, evaluated at the nominal grazing angle modified by the local slope. Through470

the composite roughness approximation, local tilting (due to large-wavelength roughness471

components) modulates the Rayleigh-distributed field and causes the intensity variance to472

be greater than that of the Rayleigh distribution (i.e greater than unity). An rms slope with473

an upper cutoff of 2π/∆X was used as the input parameter to the composite roughness474

model, which was then used to compute the scintillation index. Given this interpretation,475

SI increases monotonically with rms slope, holding grazing angle constant.476

A broad test of this hypothesis can be performed if we examine the resolution dependence477

of SI at a single angle and single spectral strength, but vary the spectral exponent. If γ is478

large, then the roughness will have less energy at high wavenumbers, and more if γ is small.479

If ∆X is decreased by, eg. a factor of two, then the effective rms slope will change as a480

function of γ. For γ of 1.5, 2 and 2.5 respectively, the effective rms slope will increase by481

a factor of 1.68, 1.41, and 1.19 respectively. Based on this interpretation, we would expect482

SI to be most sensitive to resolution for small γ483
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This comparison is made in Fig. 8, which plots the scintillation index minus a constant484

C as a function of resolution and spectral exponent. Grazing angle is held constant at 20◦,485

and the second-highest values of spectral strength is used. The constant C was specified486

so that at ∆X/λ = 8, each spectral exponent had the same abcissa on the plot, to better487

show the difference in slope. SI is least sensitive to ∆X for γ = 1.5, and most sensitive488

when γ = 2.5. This plot contradicts the hypothesis that rms slope at scales greater than489

the acoustic resolution is the sole driver of intensity fluctuations. Therefore local tilting is490

not, or not the only cause of heavy-tailed statistics. In the following subsections, we first491

examine the local tilting hypothesis in greater detail, and then explore other mechanisms492

that might be driving the SI behavior.493
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A. Examination of the local tilting hypothesis494

We examine the local tilting hypothesis in finer detail first. If this hypothesis is true,495

then the intensity as a function of space (I(t) mapped to x through x = −ct/(2 cos(θ))496

for backscattering), should increase if the large-scale slope at x is negative, and decrease if497

positive. Consequently there should be a statistical correlation between I∆x(x), the intensity498

at a given resolution at position x, and s∆x(x), the slope field low-pass filtered with an upper499

limit of ∆x. This correlation can be quantified in a crude but straightforward manner using500

the Pearson product moment correlation coefficient, ρ, defined by501

ρ(s∆x, I∆x) =
E [s∆x (I∆x − E[I∆x])]√
E [s2

∆x]E [(I∆x − E[I∆x])]
, (25)

where the slope field is assumed to be a zero-mean process, but intensity is not. This502

coefficient quantifies the linear variation between a dependent and an independent variable.503

We test the hypothesis of local tilting by filtering the slope field at different scales and504

forming the correlation coefficient with the intensity at a single resolution. The surface filter505

scale that maximizes the correlation is estimated, and this process is repeated for all acoustic506

resolutions. The acoustic resolution is ∆X, and the surface filter size is ∆Xsurf. If the ∆Xsurf507

that maximizes ρ, which is denoted ∆Xmax, varies in proportion to ∆x, then we can conclude508

1) that slope modulation is responsible in part for the intensity fluctuations, and 2) slopes509

at the scale of the acoustic resolution are responsible in part for the fluctuations.510

The correlation coefficient for parameters of γ = 2, θi = 20◦, and w = 2 × 10−5m is511

plotted in Fig. 9. ∆X is on the horizontal axis, ∆Xsurf is on the vertical axis, and ρ is512

denoted by grayscale. Holding ∆X constant, there is a distinct peak in ρ as a function of513
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FIG. 9. Correlation coefficient as a function of the acoustic resolution, ∆X, and the surface filter

size, ∆Xsurf .

∆Xsurf. The peak value of ρ increases as the acoustic resolution becomes small, indicating514

that the role of slope modulation is greater for smaller resolution cells. Additionally, the515

peak in ∆Xsurf varies with ∆X, indicating the local tilting hypothesis may be correct. This516

plot has a similar structure for other θi, γ, and w.517

∆Xmax, the value of ∆Xsurf that maximizes ρ, as a function of ∆X is plotted in Fig. 10.518

θi is constant at 20◦ grazing angle, each spectral strength is plotted as its own line. The519

different values of γ appear in subfigures. For each spectral strength and exponent, the520

maximum slope correlation scale varies monotonically with the acoustic resolution, except521

for the smallest spectral strength for γ = 1.5. For γ = 2, this trend is approximately linear,522

except for the smallest spectral strength that exhibits a slight negative curvature. The523

smallest spectral strengths for all values of γ resulted in SI ≈ 1. For these situations, local524

tilting is not required to explain the behavior of SI.525
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for each acoustic resolution. Grazing angle has been held constant at 20◦, and each line representes

a different spectral strength. Each subplot contains a different spectral exponent with (a)γ = 1.5,

(b)γ = 2, and (c),γ = 2.5. Dashed black lines have a slope of unity and intercept of zero for

reference.

For the other spectral exponents, the dependence of ∆Xmax on ∆X is also mostly linear,526

but has some negative or positive curvature. A line with unit slope and zero intercept is527

also plotted for reference. Although there is some departure from linearity, the monotonic528

dependence of ∆Xmax on ∆X indicates that, to within a proportionality constant, slopes at529

or larger than the resolution scale account for a significant part of the intensity fluctuations.530

Since the slopes are generally less than unity, this proportionality constant is less than unity,531
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a result that prompts further study into this effect. This plot provides evidence that the532

local tilting hypothesis is one component of the intensity fluctuations.533

B. Other effects534

We have shown through the correlation coefficient that local tilting is in part responsible535

for the intensity fluctuations, but cannot be the sole origin. The effect of local tilting is536

modeled physically using the composite roughness approximation (Jackson et al., 1986b;537

McDaniel and Gorman, 1983), in which the roughness is split into large-scale and small-538

scale components. Perturbation theory is applied to the small-scale component, and the539

Kirchhoff approximation to the large-scale component. When the grazing angle is small, the540

Kirchhoff approximation becomes inaccurate, and multiple scattering and shadowing can541

become important (Liszka and McCoy, 1982). Based on the analysis in (Thorsos, 1988),542

shadowing of the incident field is important when the incident grazing angle is comparable543

to the rms slope angle. Multiple scattering is expected to be important, when the incident544

or scattered angles are comparable to twice the rms slope angle. Shadowing of the scattered545

field is important when the scattered grazing angle is comparable to the rms slope angle.546

In multiple scattering, the incident field interacts with distant parts of the rough surface547

(defined as portions outside the resolution cell) multiple times before being radiated back to548

the acoustic medium (Liszka and McCoy, 1982). Multiple scattering would cause an additive549

component of the field with a lower amplitude and larger effective ensonified area than the550

field due to the surface within the resolution cell. If the effective region of multiple scattering551

were large enough, then scattered field would have contributions from many independent552
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locations, driving the statistics toward a Rayleigh distribution. Coherent combination of the553

field scattered by the surface roughness located within the resolution cell (including tilting),554

and the multiply scattered field would then result in a smaller SI than just scattering from555

within the resolution cell (Johnson et al., 2009; Lyons et al., 2009; Watts, 1987).556

Based on the analysis in (Thorsos, 1988, 1990), the Kirchhoff approximation fails due to557

the presence of multiple scattering when there is significant energy in the roughness spectrum558

at scales smaller than the wavelength. For power-law surfaces, a surface with a small spectral559

exponent has more high-frequency energy than one with large spectral exponent. Therefore,560

simulations with γ = 1.5 should have more significant multiple scattering than simulations561

with γ = 2 or 2.5, and consequently the SI should be lower due to a large effective multiple562

scattering region. Since we observe this trend in these numerical simulation, we believe that563

this interpretation based on multiple scattering is a likely cause of the smaller scintillation564

indicies seen for γ = 1.5, and a lower sensitivity to the acoustic resolution. At this time,565

this hypothesis cannot be confirmed more specifically, but requires further research.566

Shadowing is also important when the grazing angles become small. A shadowing correc-567

tion, which is essentially the expected value of the ratio of illuminated to the total surface568

area, has been derived by (Wagner, 1967). A simplified form of this approximation is widely569

used in the literature (Jackson et al., 1986b; Thorsos, 1988, 1990) that depends on only570

grazing angle and rms slope. This approximate form is based on very rough surface, and571

vanishing correlation length, which seems to be useful for surfaces with a Gaussian roughness572

spectrum. However the assumption of a vanishing lengths scale is inappropriate for power573

law spectra, as they exhibit long-range correlation (Mandelbrot and Ness, 1968) when the574
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hurst exponent, H = (γ − 2)/2 > 1/2. A consequence of long-range correlation is that the575

local mean tends to a non-zero value, even though its expected value is everywhere zero.576

Thus if the surface has a local maximum, it may stay below that local maximum for some577

distance before returning to it. Consequently at low grazing angles, the shadows cast by578

local maxima can be quite long on power-law surfaces, especially when energy is concen-579

trated in the low-wavenumber portion of the spectra, as it does for large γ. In terms of the580

scintillation index, the geometric interpreting of shadowing causes parts of the surface to581

be either illuminated, or not. This binary effect will increase the variance of the intensity,582

leading to a higher scintillation index. Since we observe much higher scintillation indices583

for γ = 2.5 (H = 3/4), and these surfaces also have larger rms roughness due to their584

concentration at low wavenumbers, we believe that shadowing is a likely contributor to the585

scintillation index. As before, this hypothesis cannot be confirmed here, but requires more586

detailed analysis.587

A physically accurate theoretical model that includes all of these effects is evidently588

required to predict the scintillation index at low grazing angles. Such a model is, at this589

time, not available, and is a fruitful opportunity for future research. We have noted that the590

usual form of the shadowing correction for the intensity may be inappropriate for power-law591

surfaces, especially when the spectral exponent is large, and the more general version derived592

in (Wagner, 1967) may be required. The independence of the scattering cross section on593

resolution established here imposes a useful constraint. Any theoretical model that breaks594

apart the solution of the exact integral equation into physically interpretable phenomena595

(such as tilting, shadowing, or multiple scattering) must also satisfy this constraint.596
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IX. CONCLUSION597

In this work Fourier synthesis combined with numerical solution of the Helmholtz integral598

equation has been performed to analyze the scattered field in terms of the scattering cross599

section and scintillation index. We have examined the dependence of these two quantities on600

acoustic resolution to understand the effects that modern high-resolution acoustic imaging601

systems have on quantitative measurements of seafloor scattering. We have found that for602

power-law surfaces, the scattering strength is independent of pulse length, which indicates603

it is a stable quantity to use across measurement systems with different geometries. The604

scintillation index depends strongly on pulse length. The behavior of SI on pulse length605

indicates that scattering is fundamentally different in the time and frequency domains, and606

that further research is needed to understand (or predict) intensity fluctuations in high607

resolution broadband sonar systems.608

Although simulations were performed in two dimensions, these results may be present in609

three dimensions as well, if the roughness spectrum is assumed to be isotropic. The exact610

values of the scintillation index will be different for 3D environments, as the rms slope is611

calculated differently, and out of plane effects may be important.612

Heavy-tailed, or non-Rayleigh scattering is commonly observed in scattering measure-613

ments and is usually attributed to nonstationary, or patchy environments (Abraham and614

Lyons, 2004; Lyons et al., 2009). Heavy-tailed statistics have been observed in seemingly615

homogeneous seafloors by (Lyons et al., 2016), and these numerical simulations have ver-616

ified that statistically homogeneous surfaces can produce heavy-tailed statistics when in-617
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terrogated by a broadband high-resolution system. The composite roughness model used618

in (Lyons et al., 2016) was investigated, and found that it is in part responsible for inten-619

sity fluctuations. Other sources of fluctuations, such as shadowing and multiple scattering620

may be required to fully predict the scattered field. Further research is required to fully621

understand this aspect of seafloor scattering.622

We note a few consequences of heavy-tailed statistics arising in high-resolution systems623

in homogeneous roughness environments. Heavy-tailed statistics are a significant source of624

false alarms in acoustic target detection systems. Since scintillation index increases at low625

angles, long range systems may suffer from decreased performance. The benefit of high626

resolution systems, more pixels per target, may be offset due to the increased false alarms.627

There may be some benefits of resolution dependence of the pdf of the scattered field.628

Some autofocus algorithms for synthetic aperture systems (e.g. (Blacknell et al., 1992; Cal-629

low, 2003; Marston and Plotnick, 2015)), use the scintillation index, or contrast as their cost630

function. If the acoustic field is entirely due to point scatterers, as is commonly assumed631

(Brown et al., 2017), then the pdf of the scattered field will be Rayleigh for all resolutions.632

If an autofocus algorithm is applied, and the point spread function of the imaging algorithm633

becomes smaller, then the field will still be Rayleigh and contrast will not increase. There-634

fore, an autofocus algorithm based on SI or lacunarity will not be sensitive to the focus,635

unless there are discrete scatterers in the scene. However, as show in this paper, SI is a636

strong function of resolution for homogeneous power law surfaces, especially at low grazing637

angles. Improving the focus at low grazing angles will lead to an increase in SI, and thus638

the autofocus algorithm will be more sensitive to the actual degree of focus.639
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Median filters are often used to “remove” the speckle or intensity fluctuations from acous-640

tic or electromagnetic images before use in remote sensing or target detection algorithms641

(e.g. (Williams, 2015, 2018) and references therein). Although the scattering cross section,642

which uses the arithmetic mean of the intensity, is insensitive to resolution, the median is643

not, since the median is highly dependent on the probability density function. Thus either644

the cross section can be used as a resolution independent quantity that has a large vari-645

ance, or its variance can be reduced with the consequence that the pixel intensity will no646

longer be directly related to scattering strength. Other methods of speckle reduction, such647

as multilook, must be used if a reliable estimate of scattering strength.648
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