
1AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Component Mismatches
Are a Critical Bottleneck to
Fielding AI-Enabled
Systems in the Public
Sector

AAAI 2019 Fall Symposium Series
AI in Government and Public Sector

Grace A. Lewis
Stephany Bellomo
April Galyardt

2AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-1090

3AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

ML-Enabled System
We define an ML-enabled system as a software system that relies on one or more ML
software components to provide required capabilities

Operational Environment

ML-Enabled System

<<Software Component>>
ML Component

Software

Component A

Software

Component B

Insight

Trained Model

Runtime

Monitoring

Tools

Operational

Data

A trained model(s)
is wrapped as a
special type of

Software
Component called
an ML Component

ML component
receives

(processed)
operational data

from one software
component …

… and generates an
insight that is
consumed by

another software
component.

Runtime Monitoring
Tools in the
operational

environment obtain
and react to

measures produced
by the ML-Enabled

System

4AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Elements of ML-Enabled Systems

Task and

Purpose

Training Computing Environment

Model

Choice

Development and Testing Computing

Environment

Operational Computing Environment

Trained

Model

Training

Data

(Sample)

ML

Component

Other

Software

Components

Testing

Tools

Test Data

(Sub-

Sample)

Operational

Data

(Population)

Runtime

Monitoring

Tools

Operational

System

Legend
ML-Enabled
System
Element

We define
elements of ML-
enabled systems
as the non-
human entities
involved in the
training,
integration and
operation of ML-
enabled systems.

5AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Task and

Purpose

Training Computing Environment

Model

Choice

Development and Testing Computing

Environment

Operational Computing Environment

Trained

Model

Training

Data

(Sample)

ML

Component

Other

Software

Components

Testing

Tools

Test Data

(Sub-

Sample)

Operational

Data

(Population)

Runtime

Monitoring

Tools

Operational

System

Legend

ML-Enabled
System
Element

Assumed
Alignment between

Elements A and B (not a
complete set)

A B

Motivation/Hypothesis

Very little existing guidance because development of ML and
AI capabilities is still mainly a research activity or a stand-
alone project, with the exception of large companies

Many of the
challenges for
deploying ML-
enabled systems
into operational
environments is
due to mismatch
between elements
of ML-enabled
systems

6AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Operational Environment

ML-Enabled System

<<Software Component>>
ML Component

Software

Component A

Software

Component B

Insight

Trained Model

Runtime

Monitoring

Tools

Operational

Data

Examples of Mismatch

Poor system
performance

because
computing

resources for
model testing
different from

operational
computing
resources

(computing
resource

mismatch)

Poor model accuracy because model training
data different from operational data (data
distribution mismatch)

Large amounts of glue code because trained
model input/output very different from
operational data types (API mismatch)

Tools not set up to detect
diminishing model accuracy,
which is the “goodness” metric
defined for the ML component
(metric mismatch)

System failure due to poor
testing — developers not
able to replicate testing
done during model
training (test environment
mismatch)

7AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Integrate
Model into

ML-Enabled
System

Test ML-
Enabled
System

Repeat until all tests pass

ML-
Enabled
System

Trained Model

Testing
Tools

Test Data

Problem: Multiple Perspectives

ML-enabled systems typically involve three
different and separate workflows

• Model training
• Model integration
• Model operation

… performed by three different sets of
stakeholders ...

• Data scientists
• Software engineers
• Operations staff

… with three different perspectives

Raw Data

Feature Engineering
(including data preparation

and cleansing)

Model
Training

Repeat until satisfied with quantity
and quality of trained models

Model
Selection

Candidate
Models

Trained Model

Training
Data

Test Data

Untrained Model

Data Scientist Perspective

Software Engineer Perspective

Operations Perspective
Operational Environment

ML-Enabled System

<<Software Component>>
ML Component

Software

Component A

Software

Component B

Insight

Trained Model

Runtime

Monitoring

Tools

Operational

Data

8AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Problem: Mismatch between Assumptions made by each
Perspective

For an operational system to
produce appropriate results, all of
these elements and assumptions
must remained aligned.
As each element evolves
independently and at a different
rhythm, this increases the risk of
unintentional mismatch arising over
time.

Model Choice

Operational DataMismatch

Late discovery of mismatch results in

System delivery delays due to rework
Incorrect results
Poor system performance
Mission failure

Trained Model

Implicit
Assumptions

Implicit
Assumptions

System

Components

Implicit
Assumptions

Operational

Environment

Training Data
Implicit

Assumptions

Implicit
Assumptions

Implicit
Assumptions

9AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Longer-Term Vision: Codified assumptions and
tools exist that allow many types of mismatch to be
prevented and/or detected, at design time and
runtime
Contribution of this Project: Develop descriptors
for elements of ML-enabled systems by

• eliciting examples of mismatch from practitioners
• formalizing definitions of each mismatch in terms

of data needed to support detection
• determining sources and validation mechanisms

for this data
• identifying potential for using this data for

automation of mismatch detection

Solution: Mismatch Detection and Prevention in ML-Enabled
Systems

ML-Enabled
System Element

Descriptors

codiifed in

XML
Machine-readable

Automated
Mismatch
Detectors

Design time and
runtime

System
Stakeholders

Information,
Awareness,

Evaluation, ...

used by

Model Choice

Operational DataTrained Model

Explicit
Assumptions

Explicit
Assumptions

System

Components

Explicit
Assumptions

Operational

Environment

Training Data
Explicit

Assumptions

Explicit
Assumptions

Explicit
Assumptions

10AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Simple Example Using Descriptors for Mismatch Detection
Training Data: A1: Data Distribution = Trained Model: A7:

Accuracy = 92%

Test Data: A2: Data Distribution =

Machine Learning Component: A5: Required Accuracy = 90%

Data Scientist trains model and fills in descriptor
values for distribution of the training data (Attribute
TrD-A1) and accuracy of the trained model
(Attribute TM-A7)

1. Software Engineer receives the trained model
and verifies that the accuracy of the trained model
(Attribute TM-A7) is greater than the required
accuracy (Attribute MLC-A5)

(MLC-A5 <= TM-A7)
2. Software engineer integrates and tests the trained

model. Measured accuracy for available test data
is 65%.

3. Software engineer runs test data through the
“Data Distribution Analysis Tool” and discovers
that the distribution of the test data (Attribute TeD-
A2) is different from the distribution of the training
data (Attribute TrD-A1), which could be the cause
of the accuracy differences.

dX

i2Labels

(Xi �Npi)2

Npi
> T

<latexit sha1_base64="UnAN8zLiv6kQ+bBssrjbUynIPnU=">AAACI3icbZDLSgMxFIYzXmu9VV26CRahLiwzVVBcSNGNC5EKvUGnHTJppg1NMkOSEcow7+LGV3HjQiluXPguppeFtv4Q+PjPOZyc348YVdq2v6yl5ZXVtfXMRnZza3tnN7e3X1dhLDGp4ZCFsukjRRgVpKapZqQZSYK4z0jDH9yO640nIhUNRVUPI9LmqCdoQDHSxvJyV66KuZdQ6FIBXcmTe+QTptK004VuIBFOCk2PwlP4EHn0pFNKkzGk8BpWvVzeLtoTwUVwZpAHM1W83MjthjjmRGjMkFItx450O0FSU8xImnVjRSKEB6hHWgYF4kS1k8mNKTw2ThcGoTRPaDhxf08kiCs15L7p5Ej31XxtbP5Xa8U6uGwnVESxJgJPFwUxgzqE48Bgl0qCNRsaQFhS81eI+8gko02sWROCM3/yItRLReesWHo8z5dvZnFkwCE4AgXggAtQBnegAmoAg2fwCt7Bh/VivVkj63PaumTNZg7AH1nfP2o8o3M=</latexit>

Formalization Used by Data Distribution
Analysis Tool (Chi-square test)

11AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Technical Approach:
Information Gathering

1. Identify examples of mismatches and
their consequences via interviews,
workshops, and other mechanisms

2. Identify attributes for describing
elements of ML-enabled systems

• Mining descriptions from GitHub
repositories that contain ML models

• Literature survey
• Gray literature review

ML-Enabled

System Element

Attributes (from

literature)

Google

Search

Engine

Gray

Literature

Review

Interviews and

Workshops

Google

Scholar

Literature

Survey

GitHub

Repository

Filtering

and

Analysis

ML-Enabled

System Element

Attributes (in

practice)

Mismatches and

Consequences

Practitioners

(Google, Uber, FDA,...)

12AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Technical Approach: Analysis
3. Mapping between mismatches and attributes

• For each mismatch, what is the set of attributes needed for
detection, expressed as a predicate over identified attributes

4. Gap analysis
• Which mismatches do not map to any attribute (and vice versa)?
• What additional attributes are necessary for detection?

5. Data source and feasibility analysis
• For each attribute, what is the data source, it is feasible to collect,

how can it be validated, and is there potential for automation?

An = Attribute n

ML-Enabled
System Element
Attributes (from

literature)

ML-Enabled
System Element

Attributes (in
practice)

Mismatches and
Consequences

ML-Enabled
System Element

Descriptors
(v0.1)

[XML Schema]

Mapping between
Mismatches and

Attributes
(v0.1)

[Spreadsheet]

Mapping
between

Mismatches and
Attributes

Gap Analysis

Data Source
and Feasibility

Analysis

Descriptor
M

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 Am
Mismatch 1 X X X A1 + A2 > A5
Mismatch 2 X X A8 = A12
…
Mismatch N X X Chi-Square(A4, A14)

FormalizationOperational
Data

Mismatch

Descriptors
Untrained

Model
Trained
Model

Training
Data

System
Components

Operational
Environment

13AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

ML-Enabled
System Element

Descriptors
(v0.1)

[XML Schema]

Mapping between
Mismatches and

Attributes
(v0.1)

[Spreadsheet]

Mapping
Validation

[Target = 90%
agreement]

Data Source
and Feasibility

Validation
[Target=90%
agreement]

Small Scale Demonstration
of Automated Mismatch

Detection
[Target=2-3 mismatches for

1 project]

Instances of ML-
Enabled System

Element
Descriptors

(v0.1)
[XML]

ML-Enabled
System Element

Descriptors
(v1.0)

[XML Schema]

Mapping between
Mismatches and

Attributes
(v1.0)

[Spreadsheet]

Instances of ML-
Enabled System

Element
Descriptors

(v1.0)
[XML]

Practitioners
(Google, Uber, FDA, ...)

Technical Approach: Evaluation

6. Mapping validation with practitioners
• Target is 90% agreement on the definition

of the mapping between mismatches and
sets of attributes

7. Data source and feasibility validation with
practitioners
• Target is 90% agreement on data sources

and collection feasibility for attributes

8. Small Scale Demonstration of Mismatch
Detection
• Target is to identify 2-3 mismatches in a

project that can be detected via automation
and develop scripts that can detect the
mismatch

14AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Applications of Project Results

• Definitions of mismatch can serve as checklists as ML-enabled systems are developed
• Recommended descriptors provide stakeholders (e.g., program offices) with examples

of information to request and/or requirements to impose
• Means identified for validating ML-enabled system element attributes provide ideas for

confirming information provided by third-parties
• Identification of attributes for which automated detection is feasible defines new

software components that should be part of ML-enabled systems

15AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Points for Discussion

1. Is mismatch one of the challenges that you have experienced when deploying ML-
enabled systems into production settings?

2. Do you have examples of mismatch that you can share?

Additional Slides

17AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Data Scientist Perspective

The goal of the data scientist is to create a Trained Model from an Untrained Model, plus
some collection of Training Data.
In the best case, they have some notion of the Operational Data and the requirements and
assumptions of the ML-Enabled System in which the trained model will be integrated.

Raw Data

Feature Engineering
(including data preparation

and cleansing)

Model
Training

Repeat until satisfied with quantity
and quality of trained models

Model
Selection

Candidate
Models

Trained Model

Training
Data

Test Data

Untrained Model

Data scientists focus
on the statistics

• Work in an
exploratory
process

• Main objective is
high confidence
in produced
insight (e.g.,
classification
results)

18AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineer Perspective

Software engineers assemble an ML-Enabled System from a number of Software
Components, some of which contain a Trained Model.
They generally have some notion of what kind of Operational Data they are targeting, but
they may not ask the same questions that a data scientist would have looking at the same
data.

Software engineers focus on
getting correct software
components integrated to
serve mission

• Focus on typical software
concerns: functional
correctness +
performance, security,
maintainability, ...

Integrate
Model into

ML-Enabled
System

Test ML-
Enabled
System

Repeat until all tests pass

ML-
Enabled
System

Trained Model

Testing
Tools

Test Data

19AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Operations Perspective

Operations staff monitor the performance of the ML-Enabled System, but often without
deep insight into its structure — Software Components (including ML components)
Operations staff also deploy and maintain the Operational Environment and the sources of
Operational Data

Operations staff focus on
monitoring operational results
and failures

• More attuned to crashes and
bugs than statistical drift in
input as operational
conditions change

• Do not have information to
determine if an insight
produced by the system is
correct

Operational Environment

ML-Enabled System

<<Software Component>>
ML Component

Software

Component A

Software

Component B

Insight

Trained Model

Runtime

Monitoring

Tools

Operational

Data

20AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Sample Attributes Extracted from
GitHub

Trained Model: datumbox/datumbox-framework-zoo
• Pre-trained models for Datumbox Machine Learning Framework. http://www.datumbox.com/

Untrained Model: microsoft/LightGBM
• A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision

tree algorithms, used for ranking, classification and other machine learning tasks. It is under the umbrella of the DMTK
(http://github.com/microsoft/dmtk) project of Microsoft.

Language Runtime Dependencies

Accuracy Metrics

Tree maximum depth
(Algorithm-specific attribute)

Search String Repos*

“machine learning” + ”trained model” 63

“machine learning” + system 1,685

“machine learning” + model 7,994
* Requires additional filtering prior to analysis

http://www.datumbox.com/

21AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Sample Attributes Extracted from Literature Survey

[Amershi 2019]

“Each model is tagged with a provenance tag that
explains with which data it has been trained on and

which version of the model. Each dataset is tagged with
information about where it originated from and which

version of the code was used to extract it (and any
related features).”

Trained Model
• Training Data
• Model

Version
Data Set
• Provenance
• Data

extraction
code version

• Features“A second possible strategy is to focus on detecting
changes in prediction behavior as they occur. One such

method was proposed in [12], in which a high
dimensional visualization tool was used to allow
researchers to quickly see effects across many

dimensions and slicings. Metrics that operate on a slice
by-slice basis may also be extremely useful.”

“Oftentimes, a prediction from a machine learning model
ma is made widely accessible, either at runtime or by
writing to files or logs that may later be consumed by
other systems. Without access controls, some of these

consumers may be undeclared, silently using the output
of a given model as an input to another system.”

[Sculley 2015]

Accuracy Metrics

ML Software
Component
Consumers

We have access to some of these authors

22AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Sample Attributes Extracted from Gray Literature

https://eng.uber.com/tag/michelangelo/ https://eng.uber.com/machine-learning-data-workflow-management/

Accuracy Metrics

Model Unique
Identifier

Search String: trained model "machine learning" description

23AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Descriptor(s) Example(s)
<?xml version="1.0" encoding="UTF-8"?>
<descriptor name="TrainedModel">

<model-details>
<name>Smiling Detection in Images</name>
<developer>Google and the University of Toronto</developer>
<date>2018</date>
<version>v1</version>
<type>Convolutional Neural Net</type>
<description>Pre-trained for face recognition then fine-tuned with cross-entropy loss for binary smiling classification</description>

</model-details>
<intended_use>

<primary-intended-uses>
<primary-use>Fun applications, such as creating cartoon smiles on real images</primary-use>
<primary-use>Augmentative applications, such as providing details for people who are blind</primary-use>
<primary-use>Assisting applications such as automatically finding smiling photos</primary-use>

</primary-intended-uses>
<primary-intended-users>

<user>Younger audiences</user>
</primary-intended-users>
<out-of-scope-uses>

<out-of-scope-use>Emotion detection or determining affect</out-of-scope-use>
<out-of-scope-use>Smiles were annotated based on physical appearance, and not underlying emotions</out-of-scope-use>

</out-of-scope-uses>
</intended_use>
<factors>

<groups>
<group>gender</group>
<group>age</group>
<group>race</group>
<group>Fitzpatrick skin type</group>

</groups>
…

</descriptor>

Sample descriptor created from a text example in [Mitchell
2019]
• Not representative of our research results
• Example in paper is not machine readable (i.e., in XML)

