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ML-Enabled System
We define an ML-enabled system as a software system that relies on one or more ML 
software components to provide required capabilities

Operational Environment

ML-Enabled System

<<Software Component>>
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Software
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Trained Model

Runtime

Monitoring

Tools
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Data

A trained model(s) 
is wrapped as a 
special type of 

Software 
Component called 
an ML Component 

ML component 
receives  

(processed)  
operational data 

from one software 
component …

… and generates an 
insight that is 
consumed by 

another software 
component.

Runtime Monitoring 
Tools in the 
operational 

environment obtain 
and react to  

measures produced 
by the ML-Enabled 

System
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Elements of ML-Enabled Systems
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We define 
elements of ML-
enabled systems 
as the non-
human entities 
involved in the 
training, 
integration and 
operation of ML-
enabled systems.



5AAAI FSS 2019 – Mismatch in ML-Enabled Systems
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public 
release and unlimited distribution. 

Task and

Purpose

Training Computing Environment
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Choice
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Training
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ML-Enabled
System
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Assumed
Alignment between

Elements A and B (not a
complete set)

A B

Motivation/Hypothesis

Very little existing guidance because development of ML and 
AI capabilities is still mainly a research activity or a stand-
alone project, with the exception of large companies

Many of the 
challenges for 
deploying ML-
enabled systems 
into operational 
environments is 
due to mismatch 
between elements 
of ML-enabled 
systems 
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Operational Environment

ML-Enabled System

<<Software Component>>
ML Component

Software

Component A

Software

Component B

Insight

Trained Model

Runtime

Monitoring

Tools

Operational

Data

Examples of Mismatch

Poor system 
performance 

because 
computing 

resources for 
model testing 
different from 

operational 
computing 
resources 

(computing 
resource 

mismatch)

Poor model accuracy because model training 
data different from operational data (data 
distribution mismatch)

Large amounts of glue code because trained 
model input/output very different from 
operational data types (API mismatch)

Tools not set up to detect 
diminishing model accuracy, 
which is the “goodness” metric 
defined for the ML component
(metric mismatch)

System failure due to poor 
testing — developers not 
able to replicate testing 
done during model 
training (test environment 
mismatch)
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Integrate
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ML-Enabled
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Test ML-
Enabled
System 

Repeat until all tests pass

ML-
Enabled
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Testing
Tools

Test Data

Problem: Multiple Perspectives

ML-enabled systems typically involve three 
different and separate workflows

• Model training
• Model integration
• Model operation

… performed by three different sets of 
stakeholders ...

• Data scientists
• Software engineers
• Operations staff

… with three different perspectives

Raw Data

Feature Engineering
(including data preparation

and cleansing)

Model
Training

Repeat until satisfied with quantity 
and quality of trained models

Model
Selection

Candidate
Models

Trained Model

Training
Data

Test Data

Untrained Model

Data Scientist Perspective

Software Engineer Perspective

Operations Perspective
Operational Environment
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Problem: Mismatch between Assumptions made by each 
Perspective

For an operational system to 
produce appropriate results, all of 
these elements and assumptions 
must remained aligned.
As each element evolves 
independently and at a different 
rhythm, this increases the risk of 
unintentional mismatch arising over 
time.

Model Choice

Operational DataMismatch

Late discovery of mismatch results in

System delivery delays due to rework
Incorrect results
Poor system performance
Mission failure

Trained Model

Implicit
Assumptions

Implicit
Assumptions

System

Components

Implicit
Assumptions

Operational

Environment

Training Data
Implicit

Assumptions

Implicit
Assumptions

Implicit
Assumptions
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Longer-Term Vision: Codified assumptions and 
tools exist that allow many types of mismatch to be 
prevented and/or detected, at design time and 
runtime
Contribution of this Project:  Develop descriptors 
for elements of ML-enabled systems by

• eliciting examples of mismatch from practitioners
• formalizing definitions of each mismatch in terms 

of data needed to support detection
• determining sources and validation mechanisms 

for this data
• identifying potential for using this data for 

automation of mismatch detection

Solution: Mismatch Detection and Prevention in ML-Enabled 
Systems

ML-Enabled
System Element 

Descriptors

codiifed in

XML
Machine-readable

Automated
Mismatch
Detectors

Design time and
runtime

System
Stakeholders

Information,
Awareness,

Evaluation, ...

used by

Model Choice

Operational DataTrained Model
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System
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Simple Example Using Descriptors for Mismatch Detection
Training Data: A1: Data Distribution = Trained Model: A7: 

Accuracy = 92%

Test Data: A2: Data Distribution = 

Machine Learning Component: A5: Required Accuracy = 90%

Data Scientist trains model and fills in descriptor 
values for distribution of the training data (Attribute 
TrD-A1) and accuracy of the trained model 
(Attribute TM-A7)

1. Software Engineer receives the trained model 
and verifies that the accuracy of the trained model 
(Attribute TM-A7) is greater than the required 
accuracy (Attribute MLC-A5) 

(MLC-A5 <= TM-A7)
2. Software engineer integrates and tests the trained 

model. Measured accuracy for available test data 
is 65%.

3. Software engineer runs test data through the 
“Data Distribution Analysis Tool” and discovers 
that the distribution of the test data (Attribute TeD-
A2) is different from the distribution of the training 
data (Attribute TrD-A1), which could be the cause 
of the accuracy differences.

dX

i2Labels

(Xi �Npi)2

Npi
> T

<latexit sha1_base64="UnAN8zLiv6kQ+bBssrjbUynIPnU="></latexit>

Formalization Used by Data Distribution 
Analysis Tool (Chi-square test)
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Technical Approach: 
Information Gathering

1. Identify examples of mismatches and 
their consequences via interviews, 
workshops, and other mechanisms

2. Identify attributes for describing 
elements of ML-enabled systems

• Mining descriptions from GitHub 
repositories that contain ML models

• Literature survey
• Gray literature review

ML-Enabled

System Element 

Attributes (from

literature)

Google

Search

Engine

Gray

Literature

Review

Interviews and

Workshops

Google

Scholar

Literature

Survey

GitHub

Repository

Filtering

and

Analysis

ML-Enabled

System Element

Attributes (in

practice)

Mismatches and

Consequences

Practitioners

(Google, Uber, FDA,...)
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Technical Approach: Analysis
3. Mapping between mismatches and attributes

• For each mismatch, what is the set of attributes needed for 
detection, expressed as a predicate over identified attributes

4. Gap analysis
• Which mismatches do not map to any attribute (and vice versa)?
• What additional attributes are necessary for detection?

5. Data source and feasibility analysis
• For each attribute, what is the data source, it is feasible to collect, 

how can it be validated, and is there potential for automation?

An = Attribute n

ML-Enabled
System Element 
Attributes (from

literature)

ML-Enabled
System Element 

Attributes (in
practice)

Mismatches and
Consequences

ML-Enabled
System Element

Descriptors
(v0.1)

[XML Schema]

Mapping between
Mismatches and

Attributes
(v0.1)

[Spreadsheet]

Mapping
between

Mismatches and
Attributes

Gap Analysis

Data Source
and Feasibility

Analysis

Descriptor 
M

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 Am
Mismatch 1 X X X A1 + A2 > A5
Mismatch 2 X X A8 = A12
…
Mismatch N X X Chi-Square(A4, A14)

FormalizationOperational 
Data

Mismatch

Descriptors
Untrained 

Model
Trained 
Model

Training 
Data

System 
Components

Operational 
Environment
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ML-Enabled
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[Spreadsheet]

Mapping
Validation

[Target = 90%
agreement]

Data Source
and Feasibility

Validation
[Target=90%
agreement]

Small Scale Demonstration
of Automated Mismatch

Detection
[Target=2-3 mismatches for

1 project]

Instances of ML-
Enabled System
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Descriptors

(v0.1)
[XML]

ML-Enabled
System Element

Descriptors
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[XML Schema]

Mapping between
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Attributes
(v1.0)

[Spreadsheet]

Instances of ML-
Enabled System

Element
Descriptors

(v1.0)
[XML]

Practitioners
(Google, Uber, FDA, ...)

Technical Approach: Evaluation

6. Mapping validation with practitioners
• Target is 90% agreement on the definition 

of the mapping between mismatches and 
sets of attributes

7. Data source and feasibility validation with 
practitioners
• Target is 90% agreement on data sources 

and collection feasibility for attributes

8. Small Scale Demonstration of Mismatch 
Detection
• Target is to identify 2-3 mismatches in a 

project that can be detected via automation 
and develop scripts that can detect the 
mismatch
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Applications of Project Results

• Definitions of mismatch can serve as checklists as ML-enabled systems are developed
• Recommended descriptors provide stakeholders (e.g., program offices) with examples 

of information to request and/or requirements to impose
• Means identified for validating ML-enabled system element attributes provide ideas for 

confirming information provided by third-parties
• Identification of attributes for which automated detection is feasible defines new 

software components that should be part of ML-enabled systems
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Points for Discussion

1. Is mismatch one of the challenges that you have experienced when deploying ML-
enabled systems into production settings? 

2. Do you have examples of mismatch that you can share?



Additional Slides
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Data Scientist Perspective

The goal of the data scientist is to create a Trained Model from an Untrained Model, plus 
some collection of Training Data.
In the best case, they have some notion of the Operational Data and the requirements and 
assumptions of the ML-Enabled System in which the trained model will be integrated.

Raw Data

Feature Engineering
(including data preparation

and cleansing)

Model
Training

Repeat until satisfied with quantity 
and quality of trained models

Model
Selection

Candidate
Models

Trained Model

Training
Data

Test Data

Untrained Model

Data scientists focus 
on the statistics

• Work in an 
exploratory 
process

• Main objective is 
high confidence 
in produced 
insight (e.g., 
classification 
results)
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Software Engineer Perspective

Software engineers assemble an ML-Enabled System from a number of Software 
Components, some of which contain a Trained Model.
They generally have some notion of what kind of Operational Data they are targeting, but 
they may not ask the same questions that a data scientist would have looking at the same 
data.

Software engineers focus on 
getting correct software 
components integrated to 
serve mission

• Focus on typical software 
concerns:  functional 
correctness + 
performance, security, 
maintainability, ...

Integrate
Model into

ML-Enabled
System

Test ML-
Enabled
System 

Repeat until all tests pass

ML-
Enabled
System

Trained Model

Testing
Tools

Test Data
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Operations Perspective

Operations staff monitor the performance of the ML-Enabled System, but often without 
deep insight into its structure — Software Components (including ML components) 
Operations staff also deploy and maintain the Operational Environment and the sources of 
Operational Data

Operations staff focus on 
monitoring operational results 
and failures

• More attuned to crashes and 
bugs than statistical drift in 
input as operational 
conditions change

• Do not have information to 
determine if an insight 
produced by the system is 
correct

Operational Environment

ML-Enabled System

<<Software Component>>
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Sample Attributes Extracted from 
GitHub

Trained Model: datumbox/datumbox-framework-zoo
• Pre-trained models for Datumbox Machine Learning Framework. http://www.datumbox.com/

Untrained Model: microsoft/LightGBM
• A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision 

tree algorithms, used for ranking, classification and other machine learning tasks. It is under the umbrella of the DMTK 
(http://github.com/microsoft/dmtk) project of Microsoft.

Language Runtime Dependencies

Accuracy Metrics

Tree maximum depth 
(Algorithm-specific attribute)

Search String Repos*

“machine learning” + ”trained model” 63

“machine learning” + system 1,685

“machine learning” + model 7,994
* Requires additional filtering prior to analysis

http://www.datumbox.com/
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Sample Attributes Extracted from Literature Survey

[Amershi 2019]

“Each model is tagged with a provenance tag that 
explains with which data it has been trained on and 

which version of the model. Each dataset is tagged with 
information about where it originated from and which 

version of the code was used to extract it (and any 
related features).”

Trained Model
• Training Data
• Model 

Version
Data Set
• Provenance
• Data 

extraction 
code version

• Features“A second possible strategy is to focus on detecting 
changes in prediction behavior as they occur. One such 

method was proposed in [12], in which a high 
dimensional visualization tool was used to allow 
researchers to quickly see effects across many 

dimensions and slicings. Metrics that operate on a slice 
by-slice basis may also be extremely useful.”

“Oftentimes, a prediction from a machine learning model 
ma is made widely accessible, either at runtime or by 
writing to files or logs that may later be consumed by 
other systems. Without access controls, some of these 

consumers may be undeclared, silently using the output 
of a given model as an input to another system.”

[Sculley 2015]

Accuracy Metrics

ML Software 
Component 
Consumers

We have access to some of these authors
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Sample Attributes Extracted from Gray Literature

https://eng.uber.com/tag/michelangelo/ https://eng.uber.com/machine-learning-data-workflow-management/

Accuracy Metrics

Model Unique 
Identifier

Search String: trained model "machine learning" description
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Descriptor(s) Example(s)
<?xml version="1.0" encoding="UTF-8"?>
<descriptor name="TrainedModel">

<model-details>
<name>Smiling Detection in Images</name>
<developer>Google and the University of Toronto</developer>
<date>2018</date>
<version>v1</version>
<type>Convolutional Neural Net</type>
<description>Pre-trained for face recognition then fine-tuned with cross-entropy loss for binary smiling classification</description>

</model-details>
<intended_use>

<primary-intended-uses>
<primary-use>Fun applications, such as creating cartoon smiles on real images</primary-use>
<primary-use>Augmentative applications, such as providing details for people who are blind</primary-use>
<primary-use>Assisting applications such as automatically finding smiling photos</primary-use>

</primary-intended-uses>
<primary-intended-users>

<user>Younger audiences</user>
</primary-intended-users>
<out-of-scope-uses>

<out-of-scope-use>Emotion detection or determining affect</out-of-scope-use>
<out-of-scope-use>Smiles were annotated based on physical appearance, and not underlying emotions</out-of-scope-use>

</out-of-scope-uses>
</intended_use>
<factors>

<groups>
<group>gender</group>
<group>age</group>
<group>race</group>
<group>Fitzpatrick skin type</group>

</groups>
…

</descriptor>

Sample descriptor created from a text example in [Mitchell 
2019]
• Not representative of our research results
• Example in paper is not machine readable (i.e., in XML)


