
 
 
 
 

 ARL-TR-8852 ● NOV 2019 
  
 
 
 

 
 
 
Physical Robot Swarm Testbed at ARL: 
Specifications and Experimental Design 
Possibilities 
 
by James Humann, Kimberly A Pollard, Susan G Hill, Oluseyi A 
Ayorinde, Ashley N Foots, and Suya You 

 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 

Disclaimers 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed.  Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8852 ● NOV 2019 

 

 
 
Physical Robot Swarm Testbed at ARL: 
Specifications and Experimental Design 
Possibilities 

 
James Humann 
Vehicle Technology Directorate, CCDC Army Research Laboratory 

 
Kimberly A Pollard, Susan G Hill, and Ashley N Foots 
Human Research and Engineering Directorate, CCDC Army Research Laboratory 

 
Oluseyi A Ayorinde and Suya You 
Sensors and Electron Devices Directorate, CCDC Army Research Laboratory 

 
 
 
 
 

 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

November 2019  

2. REPORT TYPE 

Technical Report 

3. DATES COVERED (From - To) 

1 October 2018–30 September 2019 

4. TITLE AND SUBTITLE 

Physical Robot Swarm Testbed at ARL: Specifications and Experimental 

Design Possibilities 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

James Humann, Kimberly A Pollard, Susan G Hill, Oluseyi A Ayorinde, Ashley 

N Foots, and Suya You 

5d. PROJECT NUMBER 

 

5e. TASK NUMBER 

 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

CCDC Army Research Laboratory 

ATTN: FCDD-RLV-V 

2800 Powder Mill Road, Adelphi, MD 20783‐1138 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-TR-8852 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

ORCID ID(s): James Humann, 0000-0003-3858-3873; Kimberly A Pollard, 0000-0002-5849-1987  

14. ABSTRACT 

The Arena for Indoor Research on Swarm-Human Interaction Performance (AIRSHIP) testbed is a human–swarm interaction 

testbed located at ARL-West in Los Angeles, California. It currently features 10 small quadcopter unmanned aerial vehicles 

with indoor localization capability, open-source firmware, and communication with a native PC client. A physical testbed was 

deemed necessary for human–multirobot interaction studies because it would accurately reflect the human 

psychophysiological response to interaction with physical robots, the variability and stochasticity of environmental factors, 

and true hardware constraints on proposed algorithms. This report details the current status and future vision for AIRSHIP. 

We developed the testbed with a focus on enabling research in these areas: user interfaces, interaction modalities, agent 

hardware and algorithms, system scalability, and human variability. A set of possible scenarios for human subjects studies is 

also given, such as search and rescue, monitoring, and construction. 

15. SUBJECT TERMS 

swarms, multirobot systems, human–agent teaming, human–system interactions, human performance 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

38 

19a. NAME OF RESPONSIBLE PERSON 

James Humann 
a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(310) 448-5393 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures v 

1. Introduction 1 

1.1 Purpose of Report 1 

1.2 ARL Swarms Project 1 

1.2.1 Associated ICT Project 2 

1.2.2 Need and Concept for Swarm Testbeds 3 

1.3 Related Work 4 

2. Components and Capabilities Available in AIRSHIP 7 

2.1 Mini-UAVs 7 

2.2 Payloads 8 

2.3 Other Assets 10 

2.4 3-D Printing to Support Physical Testbed 11 

2.5 Testbed Location and Customization Options 13 

3. General Classes of Potential Experiments 13 

3.1 User Interfaces 13 

3.1.1 UI Appearance and Modalities 14 

3.1.2 Swarm Inputs and Outputs 16 

3.2 Hardware and Algorithms 17 

3.3 Scaling and Scalability 18 

3.4 Human Variability 19 

4. Possible Experiment Scenarios 20 

4.1 Scenarios 20 

4.1.1 Initial Toy Demo: Tic-Tac-Toe 20 

4.1.2 Search and Rescue, Search and Disarm, Foraging 21 

4.1.3 Construction 21 

4.1.4 Collaborative Scene Reconstruction 22 

4.1.5 Coordinating Swarm and Ground Users 22 



 

iv 

4.1.6 Building Monitoring 22 

4.1.7 Predator and Prey 23 

4.2 Summary of Scenarios 23 

5. Discussion and Conclusions 24 

6. References 25 

List of Symbols, Abbreviations, and Acronyms 29 

Distribution List 31



 

v 

List of Figures 

Fig. 1 ICT’s human–swarm interaction virtual testbed, showing wildfire map, 
simulated drones, and virtual human spokesperson that interacts with 
the user via natural language................................................................. 3 

Fig. 2 AURORA-XR interface with example feeds and camera angles ......... 5 

Fig. 3 MIX testbed’s OCU interface ............................................................... 6 

Fig. 4 Screenshot of simulation (Humann and Pollard 2019), showing three 
fixed-wing UAVs, four quadrotor UAVs, and two operators 
cooperating to perform a surveillance task ........................................... 6 

Fig. 5 Crazyflie in flight in Los Angeles office .............................................. 9 

Fig. 6 Crazyflie being piloted through aerial ring ......................................... 10 

Fig. 7 Full suite of 10 Crazyflies ................................................................... 10 

Fig. 8 Left: propeller guard being 3-D printed on LulzBot Taz 6. Right: 
complete propeller guard (skirt material is scrapped after printing). .. 12 

Fig. 9 3-D-printed positioning anchor stand ................................................. 12 
 

  



 

1 

1. Introduction 

1.1 Purpose of Report 

The purpose of this report is to describe a physical testbed for human–swarm 

interaction research at the US Army Combat Capabilities Development Command 

(CCDC) Army Research Laboratory West (ARL-West) in Los Angeles, California, 

and present opportunities for future capabilities and experiments using this testbed. 

This has come about because of the FY19 ARL swarms project, which was part of 

a Department of Defense-funded effort to examine humans interacting with 

swarms. 

1.2 ARL Swarms Project 

The ARL swarms project described here is a joint effort of ARL’s Vehicle 

Technology Directorate (VTD); Sensors and Electron Devices Directorate (SEDD, 

now the CCDC Data & Analysis Center [DAC]); and Human Research and 

Engineering Directorate (HRED). We define a swarm as a group of fully or largely 

autonomous agents interacting in a collective fashion to perform a task. In our 

working definition, we will also occasionally reference scenarios wherein agents 

are operating cooperatively but not necessarily as a collective whole (e.g., when 

robots are assigned individual tasks that form the building blocks of the cooperative 

goal). These are often called multiagent or multirobot systems. The group of agents 

may be homogeneous or heterogeneous. 

Combining team members’ experience in vehicle technology, sensors/machine 

vision, processor chips and power consumption, human factors, and 

perceptual/cognitive psychology led to insights on human–swarm interaction and 

the impetus to build a human–swarm interaction testbed. A major insight from our 

collaboration was the fact that power needs, chip limitations, and sensor abilities 

may significantly impact human performance or human response with swarms or 

other multiagent systems, but they are rarely adequately considered in models of 

human-autonomy–swarms interaction. To advance research and lay groundwork 

for continued exploration in these and related areas, the ARL swarms team created 

a physical swarms testbed at ARL-West: the Arena for Indoor Research on Swarm-

Human Interaction Performance (AIRSHIP). This testbed will allow research on 

how interfaces, physical constraints, human factors, and their interactions affect 

human–swarm task performance and human psychological/physiological 

responses. To accommodate a broad range of experimental possibilities, the testbed 
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is highly customizable for a range of task scenarios, number and diversity of 

autonomous assets, and inherent and imposed physical constraints. 

Insights from our discussions and literature reviews, from the virtual testbed 

developed by the Institute for Creative Technologies (ICT), and from modeling 

work (e.g., Humann and Pollard 2019) highlighted the need to develop a physical 

testbed for addressing human–swarm interaction research questions. In our design 

of the testbed, we aimed for the following characteristics: indoor, small, portable, 

highly customizable, and flexible to accommodate a wide range of experiments. 

Here we describe the existing capabilities of the AIRSHIP testbed and elucidate the 

kinds of experiments that can be performed in such a physical testbed, given the 

hardware and software currently available, as well as future possible enhancements 

to the testbed. 

1.2.1 Associated ICT Project 

An allied project on human–swarm interaction is being performed by ICT, an Army 

University Affiliated Research Center (UARC) governed by the University of 

Southern California. This project is researching the use of a natural language 

dialogue interface with a virtual human spokesperson, which acts as an 

intermediary between the human operator and the swarm. With input and guidance 

from ARL, ICT created a simulation-based testbed in which to collect natural 

language data from users as they interact with the virtual spokesperson and with 

the swarm. 

The simulation-based testbed runs a virtual search and rescue scenario in which the 

human user commands a heterogeneous team of unmanned aerial and ground 

vehicles (UAVs and UGVs, respectively). In the simulation, a small town is 

threatened by encroaching wildfire, and town residents must be saved by harnessing 

the UAVs and UGVs in different ways. For example, some residents are lost and 

must be instructed to follow a drone to safety. A UGV must be dispensed to remove 

a road blockage. A “stubborn couple” cannot be saved unless the human 

commander patches his or her voice through a nearby drone and talks to the couple 

personally. A virtual human spokesperson is available to act as an intermediary 

between the human commander and the autonomous vehicles, but the human can 

also instruct the assets individually. The wildfire spreads over time, and the goal is 

to rescue as many town residents as possible. The different residents and other 

challenges can be distributed randomly across the town map, and modifications can 

be made to change the number of available assets, the speed and direction of the 

encroaching wildfire, and to add further challenges (such as loss of a UAV). The 

human commander uses a voice microphone and two computer screens to interact 
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with the system. One screen displays the virtual human spokesperson, and the other 

screen displays a map of the town. (See Fig. 1 for the commander’s workspace.) 

The progress of the fire is visible on the map if the participant has assigned some 

of their UAVs to provide overwatch. The drones’ behavior and virtual human 

spokesperson’s behavior are controlled by two Wizards of Oz behind the scenes. 

An early version of this testbed was described in Chaffey et al. (2019). 

 

Fig. 1 ICT’s human–swarm interaction virtual testbed, showing wildfire map, simulated 

drones, and virtual human spokesperson that interacts with the user via natural language 

1.2.2 Need and Concept for Swarm Testbeds 

Virtual testbeds have many advantages, including portability, rapid modification, 

and in some cases lower cost. However, the human response to simulated robot 

swarms differs from the human response to physical robot swarms. This was shown 

by Podevijn et al. (2016a, 2016b), where psychophysiological markers of stress 

were elevated when interacting with physical robots compared to simulated robots. 

Interacting with larger swarms versus smaller swarms yielded a similar pattern 

(Podevijn, et al. 2016a; Podevijn et al. 2016b). 

A virtual swarm may appear identical to a virtual representation of a real swarm, 

provided the commander is not physically collocated with the actual agents. 

However, in many scenarios human commanders and other interacting humans 

would be at the tactical edge and on site with the robotic agents. Findings derived 

from virtual simulated swarms for these scenarios may not be entirely 

representative of findings with actual physical swarms and are perhaps best 

considered preliminary findings until replicated in a physical swarm testbed.  
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Another reason to use a physical swarm testbed is to better include real-world 

challenges of working with robotic agents—namely, their physical needs and 

limitations. Heterogeneous teaming simulations can easily make unrealistic 

assumptions about flight time, power usage, mechanical robustness, payload 

capacity, camera resolution, and so on. When these unrealistic assumptions are 

implemented in the simulation, the result is a scenario that fails to replicate many 

of the significant challenges in human–multiagent teaming. We acknowledge that 

careful consideration of these parameters can allow them to be implemented more 

faithfully in simulations, and we also acknowledge that our physical testbed cannot 

completely replicate all these issues. For example, using tiny, low-cost, portable 

UAVs comes with the caveat that they cannot be flown outside. Actual weather 

effects therefore cannot be included in our testbed. However, our testbed innately 

provides realistic physical constraints on flight time, power usage, payload 

capacity, mechanical robustness, and so forth.  

A variety of virtual and physical heterogeneous teaming testbeds have been 

developed for different experimental purposes. We will highlight a few key 

examples in the following section. 

1.3 Related Work 

In this section, we provide a noncomprehensive overview of research projects with 

multirobot/swarm testbeds that can examine human–swarm interaction 

performance. A comprehensive review is outside the scope of this report, so here 

we only provide details of projects closely related to or in collaboration with ARL 

research. 

A versatile virtual reality (VR) testbed for human–multiagent interaction is the 

Accelerated User Reasoning for Operations, Research, and Analysis (AURORA)-

XR interface, which is under development by ARL for the Internet of Battlefield 

Things (Dennison et al. 2019). AURORA-XR currently features a virtual city block 

with an array of sensors and agents that can virtually detect movement of virtual 

friendlies and adversaries. The human commander can pull up views from the 

visuospatial perspective of different sensors and unmanned vehicles via virtual 

camera feeds and virtual sensor data. This setup can be seen in Fig. 2. The 

simulation can be modified for the performance of different simulated tasks and is 

proposed to be used by HRED for studies of training humans in skills relevant for 

human–agent teaming (e.g., uncertainty quantification and visuospatial perspective 

taking). 

A main goal of AURORA-XR is to serve as a visualization tool and off-site 

collaboration tool (via AURORA-NET), wherein multiple humans at different 
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locations can simultaneously interact with the sand-table representation in VR to 

engage in collaborative decision-making for multi-domain operations. 

 

Fig. 2 AURORA-XR interface with example feeds and camera angles 

The Mixed Initiative Experimental (MIX) testbed (Barber et al. 2008) combines 

simulations of unmanned vehicles and cameras with an Operator Control Unit 

(OCU) interface, shown in Fig. 3, that allows the user to control the unmanned 

systems. The OCU is customizable, and the underlying autonomy simulator 

software (Unmanned System Simulator [USSIM]) can be used to simulate a variety 

of mission types with varying levels of automation, including reconnaissance, 

target identification, and route-planning scenarios. MIX has been used in a variety 

of studies, and modified OCUs for intelligent agents have been the subject of 

extended research as well (Chen and Barnes 2014; Barnes et al. 2015). 
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Fig. 3 MIX testbed’s OCU interface 

In our ongoing work (Humann and Spero 2018; Humann and Pollard 2019), we use 

a virtual testbed to design appropriate algorithms for human–UAV interaction and 

choose an appropriate team size. The tool can simulate any number of humans, 

quadrotor UAVs, and fixed-wing UAVs. Humans are simulated with realistic 

effects from fatigue and workload. The humans and autonomous assets perform a 

surveillance mission, where a field must be swept with cameras for possible dangers 

such as vehicles and fires (performed by the fixed-wing UAVs) before the points 

of interest are photographed (quadrotor UAVs) and finally analyzed to assess the 

threat level (humans). From this analysis, the payoff of adding assets to the system 

can be analyzed in terms of the overall accuracy and speed of assessing the field. 

An example screenshot of the simulation is shown in Fig. 4. 

 

Fig. 4 Screenshot of simulation (Humann and Pollard 2019), showing three fixed-wing 

UAVs, four quadrotor UAVs, and two operators cooperating to perform a surveillance task 
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There are two ongoing efforts at ARL involved with multiple, distributed intelligent 

assets that are developing testbeds for future work. The first is the Distributed 

Collaborative Intelligent Systems and Technology (DCIST) collaborative research 

alliance. This project will “create Autonomous, Resilient, Cognitive, 

Heterogeneous Swarms that can enable humans to participate in a wide range of 

missions in dynamically changing, harsh, and contested environments” 

(www.dcist.org). The DCIST performers have discussed building a testbed (virtual 

and/or physical) to test intelligent systems algorithms. While many of the 

participating academic institutions have their own testbeds for individual research 

use (e.g., Pickem et al. 2017), a goal of the DCIST testbed is to enable integrated 

experimentation of research products from across partner sites. 

The second ongoing effort at ARL is a potential testbed for exploring human 

interaction with intelligent systems combining different human-interaction 

modalities with reinforcement learning, called the Cycle-of-Learning framework 

for autonomous systems (Waytowich et al. 2018; Goecks et al. 2019). They have 

implemented a simulation to explore the use of human demonstration to improve 

intelligent system capabilities (in the cited case, a small quadcopter UAV). They 

plan to continue research on reinforcement learning for joint interactions on a 

physical testbed using Crazyflie UAVs. 

Researchers affiliated with USC and ICT have demonstrated coordinated behavior 

of multiple robots in ongoing research (Tran et al. 2018), flying up to 49 micro 

UAVs simultaneously and autonomously (Preiss et al. 2017). They have also 

demonstrated user interactions among up to three humans and six UAVs navigating 

through rooms in close proximity to each other (Phan et al. 2018). 

2. Components and Capabilities Available in AIRSHIP 

In this section, we provide a description of physical components available in the 

AIRSHIP testbed. 

2.1 Mini-UAVs   

The foundation of the AIRSHIP testbed is a group of mini-UAVs. Currently we 

have 10 Crazyflies, manufactured by BitCraze. These are very small 

(approximately 92 mm across) commercial off the shelf mini-quadcopter UAVs 

with small plastic propellers, suitable for flying in indoor spaces. They weigh 27 g 

with a battery, and their payload capacity is limited to about 15 g, which is enough 

for a tiny camera or other very small electronic payload. Out of the box, these mini-

UAVs have onboard gyroscopes to sense tilt and barometers to provide rough 

altitude sensing. The Crazyflies can communicate with a CrazyRadio antenna via a 
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2.4-GHz radio. The battery life is approximately 15 min when flying without a 

payload. Adding payload quickly reduces battery life. Figures 5–7 show the 

Crazyflie hardware in flight and the suite of 10 available aircraft. 

Crazyflies are very simple to assemble and connect to a smartphone app for 

rudimentary control. Within approximately 1 h, a user can build the UAV, install 

the Crazyflie PC client, and begin flying via a video game controller (gamepad). In 

its default state, the Crazyflie is self-leveling but cannot hold position or altitude. 

Thus, manual flight requires a considerable amount of skill to maintain steady, 

precise flight. A typical user will require approximately 4 h of practice time to be 

able to reliably fly manually. 

For autonomous maneuvers, the UAVs are configured to respond to commands 

through Python, but this is not of much use without stable autonomous flight. For 

this, the UAVs will rely on the arena’s position system. The Loco Positioning 

System (LPS) includes eight wall-mounted anchors that demarcate the boundary of 

a flight zone. Onboard, the Crazyflies use LPS decks to communicate with the 

anchors. Since the anchor positions are known and constant, the UAVs can use the 

Two-Way Ranging (TWR) or Time Difference of Arrival (TDoA) protocol to 

triangulate the position of the deck. Choosing between the two algorithms requires 

a tradeoff between accuracy and scalability: TWR can achieve tighter accuracy but 

is limited to one Crazyflie at a time as it relies on precisely timed two-way 

communication with the anchors, whereas TDoA can support multiple 

simultaneous UAVs with 10-cm position accuracy with one-way broadcasting from 

the anchors. 

The control software is custom firmware supplied by the manufacturer, but it is 

fully open source, allowing us to modify it at will. It runs on a STM32 

microcontroller unit at 168 MHz. There are packages available to integrate the 

controller and positioning system with ROS (Robot Operating System) (Hönig and 

Ayanian 2017), which is a standard open-source operating system for robotics 

research and is used in other ARL research (Bonial et al. 2017; Lukin et al. 2018), 

allowing opportunities for cross-compatibility with other existing projects. 

2.2 Payloads 

Due to weight restrictions, the payloads are limited to a maximum of one or two of 

the capabilities listed in this section for each UAV. Current payloads and 

capabilities include the following: 

 Loco Positioning deck: allows UAV to localize itself in 3-D space for 

autonomous flight. 
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 Flow deck: visual flow sensor and altitude sensor to autonomously hold 

position in 3-D space. 

 Multiranger deck: allows detection of large objects in front/back/left/right 

of the UAV. 

 LED ring: ring of multicolored programmable LED lights; these can be used 

to visually indicate to the user the individual identity of the UAV, the 

battery or flight time status, or any other UAV attribute. 

 Wireless charging deck: Qi-compatible wireless charging; this allows the 

UAVs to charge themselves by returning to their home base with no need 

for a human to plug them in. 

 Micro camera: lightweight visual light camera with built-in antenna for 

analog video broadcast. It has a 120° field of view and can be mounted in 

any orientation but cannot be moved during flight. 

By varying the payloads of each mini-UAV, a heterogeneous swarm can be created 

where different UAVs have different capabilities. Payloads can be mounted, 

unmounted, and remounted to different individual mini-UAVs. By mixing and 

matching the payloads, a wide variety of different capabilities and distribution of 

capabilities can be achieved to model different human–swarm interaction task 

scenarios. 

Payload capacity may be expanded by in-house modification of Crazyflies to add 

extra propellers. We also possess a “Big Quad deck,” which is a beta product from 

Bitcraze allowing the Crazyflie controller and accessories to control larger 

quadcopter form factors. Thus, there are options to expand on the Crazyflie using 

3-D-printed structures while maintaining compatibility with the same software 

systems, sensors, and controllers. 

 

Fig. 5 Crazyflie in flight in Los Angeles office 



 

10 

 

Fig. 6 Crazyflie being piloted through aerial ring 

 

Fig. 7 Full suite of 10 Crazyflies 

2.3 Other Assets 

Other possibilities include expanding the testbed to incorporate a more 

heterogeneous range of autonomous agents. Candidate assets may include other 

commercial off the shelf robots, such as the Softbank Robotics NAO humanoid 

robot, or Clearpath Jackal UGV. Additional UGVs and UAVs can also be 

constructed with the aid of the onsite 3-D printer.  

The NAO is a small humanoid-form robot designed for educational purposes and 

robotics research. The NAO takes commands from a PC client and can perform a 

variety of tasks such as walking, picking up objects, and transporting objects. It can 



 

11 

also be programmed to follow speech commands and to generate speech. The NAO 

is fitted with cameras and is capable of some rudimentary onboard image 

recognition. 

The Jackal is a 17-kg off the shelf 4-wheeled UGV that can carry significantly 

larger payloads than the mini-UAVs. A Jackal or similar UGV can be outfitted with 

payloads such as an RGB camera, infrared Light Detection and Ranging 

(commonly, LIDAR) obstacle-sensing capability, or a remote-control system. It can 

be controlled using an Robot Operating System-based system and/or with a game 

controller. Training for manual control is simpler than that for full manual control 

of a UAV. 

Under construction is a larger UAV with 5-inch propellers that will use the same 

chip sets as the Crazyflies so that it can be controlled using the same software and 

related equipment. The payload capacity remains to be tested but is estimated to be 

250 g. In addition, with a scalable Loco Positioning system, more standard 

Crazyflies can always be added to the swarm. 

2.4 3-D Printing to Support Physical Testbed 

We currently have a LulzBot Taz 6 3-D printer on site, which can print pieces up 

to 280 × 280 × 250 mm. Pieces can be designed using engineering software such 

as SolidWorks, advanced 3-D modeling software such as Blender, or more 

lightweight programs like Paint 3D, which is built into the Windows OS. Pieces 

commonly designed and printed include mounting brackets and adapters for 

different payloads, support and protective structures, bodies for new or adapted 

UAV models, landing and charging pieces, mounts for positioning anchors, or 

structures for the testbed’s environment. Options are virtually limitless. With an 

indoor environment, easy-to-print but less durable materials like PLA can be used. 

For example, we have designed and printed propeller guards for the mini-UAVs. 

These guards prevent the propellers from coming into contact with walls, floors, 

environment structures, or other robots. In the event of a collision, the propeller 

guard takes the stress of the impact, sparing the fragile propeller pieces. See Fig. 5 

and Fig. 8.  
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Fig. 8 Left: propeller guard being 3-D printed on LulzBot Taz 6. Right: complete propeller 

guard (skirt material is scrapped after printing). 

We have also used the 3-D printer to design and manufacture custom stands for the 

positioning anchors. The anchors must be held at least 15 cm away from surfaces 

or the metal poles of the testbed netting cage, and must be in a vertical orientation. 

Our current stand design is shown in Fig. 9. While the Crazyflie manufacturer does 

offer a stand file ready for 3-D printing, their design assumes the stand is connected 

to a floor or ceiling, not a vertical pole as in our setup, so the ability to design and 

3-D print custom parts has been vital to enabling the AIRSHIP testbed’s full 

functionality. We are in the early stages of designing landing ramps for our wireless 

battery chargers. This will enable the UAVs to land at charging sites and charge 

themselves; the ramps will guide them into the proper position as they land.  

 

Fig. 9 3-D-printed positioning anchor stand 
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2.5 Testbed Location and Customization Options 

ARL-West has one large room (14 × 14 × 10 ft) that can be used for quadcopter 

assembly and testing. In addition, there is a portable drone cage with mounting 

points for the positioning anchors that can be set up in larger rooms or common 

areas. Two 10- × 10- × 10-ft cages are available, with enough netting to create a 

continuous space up to 30 × 10 × 10 ft at a maximum. This flexibility and portability 

allow the testbed to accommodate different experimental scenarios and make it 

available for demonstrations at different locations and events. 

The available spaces can be modified at will to accommodate the setup of a 

particular experimental scenario. For example, model “buildings” or landscape 

features can be set up to create a miniaturized version of a city or battlefield for 

surveillance, detection, monitoring, or search tasks. Complex terrain can be set up 

for mapping or image stitching tasks. Size scaling can vary based on the needs of 

the particular experiment. Software can also be used to modify the travel speed of 

the robots so that the time it takes them to cover a particular amount of simulated 

terrain can be made proportional to what might be observed in an asset covering a 

larger outdoor environment. Visible objects and/or infrared beacons can be placed 

in the environment mockups to represent targets or hazards. Manipulable objects 

could be placed in the arena for various tasks as well. Such objects could represent 

items that the swarm assets must move, collect, build with, or physically modify, 

as dependent on the experimental design. 

3. General Classes of Potential Experiments 

A wide variety of experiments could be conducted using the AIRSHIP  

human–swarm testbed. Several general topic areas of interest are explored in this 

section. They involve the areas of user interfaces, swarm inputs and outputs, 

hardware options and design, scalability, and human variability.  

3.1 User Interfaces 

User Interfaces (UI) are the means by which humans and swarm assets (either 

individually or as a collective) communicate with each other.  Traditionally, it has 

been primarily a means for human control and instruction inputs to be sent to the 

assets.  It is also the means for the assets to communicate back to the human(s) with 

status information.   

Swarm UIs can also be thought about in terms of the interaction modalities that a 

human would use to communicate with the swarm. Visual displays are the 

traditional means for presenting information on a UI, but speech and other non-
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speech auditory, gesture, tactile, and haptic displays and controls are all feasible 

and have been shown to be effective for individual asset bidirectional 

communication. For example, Hill (2017) reviewed literature on multimodal 

displays for user–robotic-asset one-on-one interaction. Although human interaction 

with swarm UIs was not specifically addressed, this report does illustrate how 

various sensory modalities can be used for bidirectional information exchange. The 

exact design of the UI, and the most appropriate modalities to be used, will depend 

on the specifics of the task(s) to be performed, the environment and conditions in 

which the task(s) will be performed, the capabilities of the technology itself, and 

the capabilities of the human(s) who will be using the UI.  Since it is a complex 

problem, there is no simple answer, making UI development for human–swarm 

interaction a natural research area to explore in a physical testbed. 

3.1.1 UI Appearance and Modalities 

There are some new ideas for swarm UIs that could be tried in our testbed.  

Although implementing the UI in hardware and software is a considerable 

challenge, once it is available, designing an experiment to assess that concept 

should be fairly straightforward.  General steps for designing a specific experiment 

given a new UI concept are provided in the following list, using an example of a 

new type of gesture control: 

 Define new concept and the associated user interface. Review relevant 

research and development literature for information about past efforts and 

lessons learned. We will consider a gesture interface where control inputs 

are performed via human gesture. 

 Define software and hardware requirements for the next concept UI. For 

gesture study, pick type of gesture (instrument-based [like a glove] or 

camera-based) and define how the signal (from glove or from camera) will 

be processed and fed to the asset as a control signal. 

 Define specifics of the UI—what are the necessary commands and 

information to be exchanged? For example, the need for start/stop/turn-

left/turn-right kinds of instructions. 

 Identify software developers and obtain hardware with which to work. 

 Develop conceptual UI that can be demonstrated and used. 

 Perform tests and pilot studies. 

 Plan human-in-the-loop experiment. Write experimental protocol and get 

approval. 
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 Run experiment when all aspects are ready.  Collect data.  Analyze data.  

Document findings. 

This layout of general steps illustrates the potential complexities of trying out new 

UI concepts. 

There are survey-based approaches to investigating UIs as well.  For example, using 

the current user interfaces that came with the purchased equipment, we could 

explore how people actually use the equipment and collect their thoughts on how 

the current UI could be improved.  We could also hypothesize example tasks that a 

person might need to carry out (sometimes called “use cases”) and have the 

individual participants explore and discuss positive and negative aspects of the 

existing UI for accomplishing the given use case(s), as well as suggest additions 

and improvements to the UI to make it better suited to the given tasks. 

It is also important to gather information on how individuals would like to interact, 

particularly for multimodal interaction.  So, we could propose to individuals that 

we are looking to build speech interfaces that accomplish various use cases.  The 

individuals would describe what they believe they would need to do to accomplish 

those tasks, and then identify the words that they believe should be used and 

mapped to the task execution.   

One way of approaching the use of speech to communicate with swarm assets is to 

use a constrained set of commands, which use limited vocabulary and must be 

trained to both humans and swarm. Humans must learn the constrained vocabulary 

and its meaning. The swarm assets, either collectively or individually, must be 

programmed to take the constrained vocabulary “signals” and translate them into 

specific behaviors. They are not intended to be free usage of language, but are 

developed to simplify the issues of speech recognition (from human to swarm), 

mapping commands to expected behaviors, and even potentially speech generation 

(from swarm to human) (Hill 2017). 

So, we could develop an experiment to capture ideas of needed tasks for given use 

cases, and then obtain a list of possible words or phrases that are preferred for use 

when mapping language commands to expected swarm behaviors. One of the 

challenges will be to describe what the swarm behavior should be for the words and 

behaviors suggested. “Start” or “Begin” or “Fly” might all be suggested as the start 

command, but then one would need to precisely define what it means for the swarm 

to “start.” If we would like the swarm to circle an object, it may be a challenge to 

specifically describe the behavior well enough to solicit appropriate words to use 

as commands. 
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Similarly, we could investigate people’s preferences when using gestures to 

indicate commands. A “circle” gesture might be used to suggest a circle behavior.  

Identifying a gesture for “fly” might be more difficult. One could also imagine that 

there will be differences in suggestions between air and land assets. There might 

also be differences depending on the number of assets within the swarm as well as 

the size of the assets within the swarms.   

How much information to display, and when to display it, are important graphical-

user-interface design choices. Swarm control is often indirect, with a time lag 

between user inputs and the final state of the swarm. Kolling et al. (2015) showed 

that the negative effects of this latency can be mitigated by providing predictions 

of future swarm states to the user. In some cases, researchers have found that 

reporting less information or highly summarized information to the human is 

advantageous (Amelink et al. 2008; Hocraffer and Nam 2017). Human preferences 

and limitations regarding these phenomena can be studied in AIRSHIP. 

3.1.2 Swarm Inputs and Outputs 

Highly related to UI research are questions of inputs and outputs. That is, what does 

the human input to the swarm system and what does the swarm system output to 

the human? Human–swarm inputs and outputs can be quite different from one-to-

one communication, even if the human is communicating with the swarm as a unit.  

Scalable swarm input methods do not require addressing each agent individually. 

Examples are leader, predator, and stakeholder methods (Pendleton and Goodrich 

2013). In the leader method, the user directly controls a single member of the 

swarm. All other swarm members recognize the leader as special and move toward 

its location while maintaining a flocking formation with each other. In predator 

control, the user-controlled robot repels the members of the flock. This method of 

influence is less direct but is adept at splitting the formation into separate flocks, 

which may be beneficial in certain scenarios. Stakeholder control gives the user 

control over a swarm member that is not treated specially by the other members. 

They will continue to flock and assume formations with the stakeholder as they 

would with any other swarm member. 

A careful balance must be struck when determining how much information the 

swarm should return. Requiring too much data from individual robots may negate 

the advantages of a swarm architecture. Swarms are usually chosen to minimize 

communication and dependence on a central hub. Requiring frequent status updates 

and data exchange may raise the communication demands to an unacceptable level. 

The human user can also be overwhelmed if presented with too much data. This 

can of course be filtered out by a good UI, but to minimize communication, it 
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should not be transmitted in the first place. If swarms consist of aerial assets, with 

highly restricted Size, Weight, and Power (SWaP), minimizing data outputs is even 

more crucial. Aggressively cutting down on swarm outputs could restrict human 

knowledge of the position of the swarm, which would rule out some control 

methods like leader or stakeholder control, while still allowing autonomous 

swarming behavior and beacon control (Kolling et al. 2013). 

A concept for a specific experimental design would be interrelated with the choice 

of UI and use case. A skeleton research approach to input/output studies is given 

here:   

 Familiarize subjects with a use case and swarm hardware at their disposal. 

 Have subjects identify possible inputs that they would want to convey to the 

swarm system.  

 Have them describe what it is that they are asking the system to do.   

 Collect the words and phrases, and their intended meanings, that a human 

would use to convey inputs to the system and receive outputs.   

Conceptually, these words and phrases, with associated meanings and descriptions, 

could be used in considering needs for user interfaces. They could also inform 

hardware and communication design to meet only the minimum of input/output 

requirements for operator comprehension. 

Within-swarm sensing and communication is another central aspect in the 

performance of the swarm. We do not discuss it in depth here as we are primarily 

focused on human–swarm interaction, but these human–swarm inputs/outputs are 

coupled with within-swarm interactions (e.g., if decision-making arises as a 

consensus among swarm members, a human’s input is not needed at that time). 

3.2 Hardware and Algorithms 

Swarm hardware and algorithms are highly constrained (Bonabeau et al. 1999; 

Rubenstein et al. 2012; Humann and Jin 2013). The large number of robots makes 

it economically imperative that each robot have simple, inexpensive hardware. In 

addition, UAVs are highly SWaP constrained, underwater vehicles face significant 

communications difficulties, and all battery-powered assets must be judicious in 

their energy usage. For these reasons, experiments that probe the system-wide 

benefits of more sophisticated, complex, or expensive hardware and algorithms will 

be of great interest, as will experiments to examine how humans behave and 

perform under different hardware constraints. 



 

18 

With the ability to modify the software onboard the assets, we can run “hardware” 

experiments in a simulated fashion, by locking out certain hardware features that 

would otherwise be available. For example, to study the effects of constrained 

battery life, we could simply program a robot to cease operations after a preset 

amount of time, rather than physically installing a smaller battery. Thus, we are not 

limited to the inherent single set of hardware constraints imposed by any one asset. 

Our hardware experimental approach is as follows: 

 Have subject perform in a scored test scenario. 

 Repeat performance with varied hardware constraints. 

 Gather data on performance variation as a function of hardware constraints. 

In a similar way, different autonomous algorithms can be programmed into the 

robots, with the simpler algorithms representing restricted computing power. This 

will lead to informed tradeoffs between computational requirements and system 

performance. 

3.3 Scaling and Scalability 

Scaling a system’s size may be advantageous in many scenarios. A scalable system 

can increase or decrease in size (i.e., the number of robots) with costs that are 

proportional to the change in system performance (Bondi 2000; Humann et al. 

2018; Humann and Pollard 2019). For example, in a foraging system if we were 

accustomed to returning 10 units of a resource per robot, we would expect this ratio 

to hold as more robots are added to the system, with no other major costs imposed 

beyond the incremental costs of more robots. An example of a disproportionate cost 

would be a major overhaul to the communication infrastructure if too many robots 

are added to a network. The cost of an extra human operator, or retraining of an 

existing operator, could also be considered a disproportionate cost that would 

hinder the scalability of a system. 

The economic benefits of scalability are the option to increase in size to meet 

increased system demands, or to decrease in size to minimize cost during periods 

of low demand (Humann and Pollard 2019). The research questions of human 

interaction with scalable systems are concerned with human tendencies and 

whether they help or hinder scalability. Some example questions that scalability 

studies could ask are the following: 
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 How many simultaneous data feeds can a subject accurately monitor? 

 How many robotic assets can a subject simultaneously control while 

maintaining good performance? 

 If given a suite of robotic assets, will a subject default to using every 

available asset, or leave some idle to maintain a comfortable workload? 

 Why does system-level performance sometimes decrease when the number 

of available assets increases? 

A scalability study would vary the number of robotic assets and look to this number 

for a main effect on the system-level performance of the task. An outline of 

scalability studies is given here: 

 Place subject in control of multiple robots in a scenario that can be scored 

at a system level, independently from the behavior of individual robots. 

 While holding all other variables equal, increase the number of assets 

available to the subject. 

 Collect data on system-level performance as a function of the number of 

robots available. 

Note that many causes can lead to a breakdown in scalability. Just a few from our 

recent review of the subject are task saturation (the task is already being completed 

to near-perfection, so that adding more resources cannot help), operator overload, 

loss of situational awareness, and loss of fine control (Humann and Pollard 2019). 

3.4 Human Variability 

Humans have a variety of traits and states that vary by individual and by situation. 

For example, the human’s amount of past experience, their skill level, and the 

training they have had are all likely to impact how they interact with robots and 

swarms and how well they perform in human-autonomy tasks (Chen and Barnes 

2012; Chen and Barnes 2014). Similarly, relatively stable individual dispositional 

traits, such as personality, are expected to affect interaction behavior and 

performance. A human’s opinions, expectations, trust, mood, alertness/fatigue, 

attention levels, and other factors are also likely to play a role. Exploring the effects 

of these traits and states on human–swarm interaction behavior, and human–swarm 

performance, are promising avenues of research. Furthermore, the effects of the 

autonomous agents on the human are also worth investigating.  
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Human-variability experiments based on traits will be very similar to the other 

experiments listed in this section. They may even be run in parallel, as trait 

information can be collected via surveys before engaging in the experimental task. 

State studies will investigate how different swarming algorithms or task constraints 

affect subjects’ cognitive load, motivation, feelings of trust, and physiological 

indicators of challenge and stress. AIRSHIP provides flexible, modifiable 

capabilities to examine these questions experimentally with real hardware. 

A general outline of study approach might include the following: 

 Select human states and/or traits of interest and identify suitable 

measurement tools (e.g., surveys, eye tracking, and impedance 

cardiography). 

 Have the human interact with the multirobot/swarm scenario, or with 

variations of scenarios. 

 Measure state responses. 

 Measure performance (e.g., by time to task completion, number of errors 

during task, number of subtasks successfully completed). 

 Examine relationships among trait, state, task variations, and/or 

performance variables. 

4. Possible Experiment Scenarios 

A main goal of the testbed is to be highly flexible and modifiable so that it can 

reproduce a wide range of experimental task scenarios for robot research, human 

performance research, and human–swarm interaction research. The customizability 

of the physical environment, of the robot-control software, and of the robot’s 

payload capabilities and combinations leads to a wide variety of possible 

experimental scenarios that can be represented in our testbed. Several example 

scenarios are listed in this section. 

4.1 Scenarios 

4.1.1 Initial Toy Demo: Tic-Tac-Toe 

One early demonstration option is to create an interactive tic-tac-toe game, where 

a user plays against artificial intelligence (AI), and after choosing a square, a drone 

with a blue LED flies to the corresponding space inside a drone cage. Then the AI 

sends a drone with a red LED to its chosen space. The user and AI continue to take 

turns until a winner or draw results. While this would not yet be human–swarm 
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interaction, as the user would be sending commands to only one UAV at a time, it 

would still demonstrate important capabilities that are fundamental to future 

experiments: user interaction, autonomous flight, simultaneous flight of up to nine 

UAVs, close formation flying, and shared human–AI control of the UAVs. 

4.1.2 Search and Rescue, Search and Disarm, Foraging 

Currently, five infrared beacons and receivers (Model VS1838B) are available for 

use in the testbed. These beacons project IR light that is not visible to the human 

eye but can be detected via the receivers onboard a robotic asset. To mimic a search 

and rescue scenario, the IR sensors can be hidden among environment structures 

such as cardboard building mockups, furniture, debris, or other obstacles. If they 

are hidden from a human subject’s line of sight, the subject would then need to rely 

on the robotic assets to locate them. The human would need to use the assets to 

conduct an efficient search pattern, react to unanticipated problems (such as 

simulated UAV failure), and locate the targets. Performance could be scored based 

on time to completion or number of targets found within a prespecified time limit.  

A variant of this task could involve “rescue” of the beacons, perhaps via directing 

a ground robot to pick them up. Some scenarios might require a heavy-duty robot 

(e.g., a Jackal) to push some “debris” out of the way to allow a safe path for other 

assets to reach the target beacon. This simulates search and rescue operations. 

Another variant, foraging, is well-known in the natural world, and many foraging 

algorithms have been created for swarms (e.g., Ostergaard et al. 2001; Kolling et 

al. 2013; Humann et al. 2018). In AIRSHIP, we could test the feasibility of these 

algorithms, and whether they are enhanced or hindered by human interaction. 

4.1.3 Construction 

The UAVs have limited individual payload capacity, but the combined payload 

capacity of multiple UAVs is greater. In this scenario, the human is tasked with 

constructing a barrier, simulating the real-world mission of building a makeshift 

wall to protect against active fire or deploying sandbags to keep back floodwater. 

The UAVs, equipped with 3-D printed hooks, may have to jointly lift pieces of the 

barrier, fly them to the construction site, and deposit them in the proper position. 

With a homogeneous swarm, we could instantiate versions of ant-colony 

construction and stigmergy (Werfel and Nagpal 2006; Calvez and Hutzler 2007). 

For a heterogeneous swarm, more complex structures could be built, like a 

campsite, but the human user would have to understand the individual capabilities 

of the assets and coordinate their operation. Performance could be scored based on 

number or size of structures successfully placed within the time allotted. 
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4.1.4 Collaborative Scene Reconstruction 

Groups of coordinated robots can be used to capture images, analyze them, and 

reconstruct 3-D scenes. Simultaneous Localization and Mapping (SLAM) solutions 

are commonly used for 3-D reconstruction, but are not particularly well suited for 

execution by distributed, autonomous agents. They typically require sensors that 

are in constant communication and computationally expensive optimizations. They 

also do not scale well with the number of agents or size of the map (Chebrolu et al. 

2015; Kurazume et al. 2017). 

In AIRSHIP, we could test mapping algorithms designed for distributed, scalable 

architectures with the aid of human intervention. For these to work, the agents must 

have the ability to select what they are going to reconstruct, and choose a view. 

Then they must plan trajectories to arrive at that view, ensuring that there are no 

collisions with other swarm members (Milani and Memo 2016). Finally, the 3-D 

reconstruction must be anchored to a globally consistent map that relates all views 

to the real world. This scenario would combine strengths of robots (automated 

planning, aerial mobility, etc.) with strengths of humans (anomaly detection, real 

world context, troubleshooting, etc.) in interesting ways, opening up research into 

how these strengths can best be combined. 

4.1.5 Coordinating Swarm and Ground Users 

Scenarios that require a tight formation of users and the swarm (e.g., entering a 

building), could be studied. These are highly relevant to the military, where in 

future exercises it may be necessary to maintain a precise formation of warfighters, 

vehicles, offensive/defensive autonomous assets, and civilians. Each member of the 

formation will have different motion constraints and interaction modes. 

Simultaneously ensuring safety, speed, and precision will be key. 

These scenarios would be heavily dependent on the user interface and modes of 

communication between human and swarm. With the hardware in AIRSHIP, we 

could re-create and test recent advances in gesture control (Pourmehr et al. 2014), 

recognizing implicit intent (Kelley et al. 2008; Chang et al. 2018), and 

heterogeneous formation keeping (Phan et al. 2018). 

4.1.6 Building Monitoring 

An application that has many parallels in defense and law enforcement is 

monitoring of a building. Assume, for example, that criminals (red team) are known 

to be inside a tall building, and a police team (blue) is waiting for reinforcements 

and formulating a plan. The blue team wants to use UAVs to monitor movement 

inside the building and any attempts to exit the building. There are four exits, facing 
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in the cardinal directions on different sides of the building, so no single UAV can 

monitor all of them simultaneously. Activity will happen in windows as well, such 

as movement, lookouts, and lights turning on and off 

In the lab, this could be represented by a scaled wooden structure with four doors 

and many windows. Automated signals would simulate the activities of the red team 

within the building (e.g., flashing LEDs indicate movement, Quick Response codes 

indicate individuals). The subject could control up to 10 blue-team drones. At least 

four are necessary to monitor all exits. The rest can be deployed however the subject 

wishes to monitor the windows. The subject must constantly multitask, placing 

UAVs, monitoring their video feeds, monitoring battery levels, replacing UAVs 

with low battery levels, recording activity, and so on. This would be very taxing on 

the user but provide a rich set of possible experimental interventions. To score the 

subject’s mission success, he would receive points for successfully identifying 

activities in windows and large penalties for allowing red team members to exit 

unmonitored.  

4.1.7 Predator and Prey  

A common multirobot research problem is the behavior of “predators and prey,” 

(Asher et al. 2018) where the predators attempt to capture the prey (usually by 

surrounding and trapping it). A testbed with 10 UAVs would be ideal for 

predator/prey research experiments, as the user could control either prey (studying 

a human’s perception and understanding of the swarm trying to capture him), or 

predators (studying human control of the swarm under dynamic and time-

constrained missions). In a larger space, the human could also assume the role of 

prey himself to study the effects of stress and human perception when surrounded 

by a swarm. 

4.2 Summary of Scenarios 

The scenarios here represent a wide range of practical civilian and military uses. 

They will challenge the subjects to interact with heterogeneous swarm members, 

maintain situational awareness of a complex dynamic environment, and complete 

objectives under time constraints. All these abilities are critical for developing 

future resilient military systems. 
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5. Discussion and Conclusions 

In this report, we have briefly explained our swarms project and the development 

of AIRSHIP, a physical testbed for swarms/multiagent systems. We discussed the 

hardware and software we currently have available and possible scenarios for 

testing concepts for human–swarm interaction as well as other swarm 

characteristics that could impact human interaction and the ability to conduct 

operations. To fully realize AIRSHIP’s experimental opportunities will take 

considerable thought and planning by interested experimenters.  Our purpose here 

was to lay out possibilities of what might be done with existing resources, to 

identify ideas for future expansion, and to discuss research questions of interest. 

There is much to explore with regard to future use of swarms. There are software 

control elements that are required and can be improved for effective execution.  

Then there are human-factors questions, because the swarm will be used to perform 

tasks for human purposes. No matter how autonomous the technology may be, in 

near-term military scenarios, a human will always at least be involved in setting the 

task, monitoring execution, and receiving status or task completion information. 

Although we have discussed possible tasks and scenarios that could be considered 

within the physical testbed, it will be very important to choose military relevant 

tasks and scenarios in which to work.  Tasks and scenarios do not necessarily need 

to be exact replicas of military missions, but they must have elements that can be 

analogous to what service members will have to perform.  In addition to the tasks, 

we will want to ensure that military-relevant conditions are explored.  For example, 

elements of time pressure, stress, adversarial behavior, and degraded 

communications should be present in studies as they are in military scenarios. 

While AIRSHIP was designed with human–swarm research in mind, it is not 

limited to these multiagent scenarios or even to human-in-the-loop studies. 

Research on human–single-agent teaming, fully autonomous swarming, new AI or 

machine-learning algorithms, or new hardware designs is possible as well. With the 

current expertise at ARL, we have the opportunity to use AIRSHIP to develop 

experiments that cross disciplinary domains, including human sciences, electrical 

engineering, computer science, and systems engineering. We hope that by 

showcasing the testbed we have developed, researchers looking to use hardware to 

gain meaningful insight into human–swarm interactions may be inspired to create 

new experiments they may not have originally envisioned. Additionally, we hope 

to attract researchers who may already have aspirations for moving from theory and 

simulation into hardware, which we could readily provide. 
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3-D 3-dimensional 

AI artificial intelligence 

AIRSHIP Arena for Indoor Research on Swarm-Human Interaction 

Performance 

ARL Army Research Laboratory 

AURORA Accelerated User Reasoning for Operations, Research, and 

Analysis 

CCDC US Army Combat Capabilities Development Command 

DAC Data & Analysis Center 

DCIST Distributed Collaborative Intelligent Systems and Technology 

HRED Human Research and Engineering Directorate 

ICT Institute for Creative Technologies 
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MIX Mixed Initiative Experimental 
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PC personal computer 
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SWaP Size, Weight, and Power 
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