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Non-equilibrium Statistical Mechanics and Curvature
Tryphon T. Georgiou1 and Allen R. Tannenbaum2

Abstract The project led to new insights on fundamental bounds on the work needed for far-from-equilibrium
transitions. The motivation for the work has been to obtain Landauer-type limits for information processing
by real-life (engineering or biological) systems. Additional motivation from an engineering standpoint is the
desire to design optimal and robust control schemes to effect transition of thermodynamic systems (possibly
of interacting particles) between target states. The project aimed to quantify the cost of transitions in geo-
metric terms, and obtain bounds for least amount of work required for such transitions. Related advances
and insights are reported on steering stochastic systems in transitioning between specified states – these in-
clude results on Gaussian mixture models, quantum systems and quantum evolutions of matrix-valued (i.e.,
non-commutative) probability distributions, systems with mean-field interaction, and stochastic evolutions
on discrete spaces (robust routing of single commodity network flows). The report highlights the main re-
sults on the topic of thermodynamics which has been the driving concept of the funded project.

1. Forward

In recent years, it has become increasingly apparent across several fields that “far-from-equilibrium
fluctuations are more interesting than one might have guessed (Jarzinsky, 2011 [1]). Indeed, in statistical
thermodynamics, Jarzynski’s Equality and Crook’s Fluctuation Theorem have opened up new ways to under-
stand non-equilibrium thermodynamics, and new insights have been gained by focusing on the probability
of trajectories of stochastically excited systems (thermodynamic ensembles). The basis for these develop-
ments has been a “large-deviations rationale” where minimizing the relative entropy between probability
laws on path spaces of thermodynamic systems provides an organizing principle–a concept going back al-
most half a century to E.T. Jaynes. In fact, even earlier, the effect of large fluctuations on observed statistics
of thermodynamic systems was considered by Erwin Schrödinger in 1931/32, in an attempt to explain quan-
tum mechanics as a consequence of random classical fluctuations. More recently, several recent authors,
including the PIs, sought to understand such thermodynamic transitions via stochastic control techniques
via a deep link between work and relative entropy of between probability laws that dictate the randomness
under different transition control protocols. It is this circle of ideas and tools that laid out the ground for this
project.

The aim of the project has been to understand and quantify the cost of thermodynamic transitions and
explain the character of fluctuation-dissipation relations in geometric terms. More specifically, probability

1Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
2Departments of Computer Science and Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
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laws can be seen as points in the so-called Wasserstein space P2 – an infinite dimensional metric space
equipped that resembles a Hilbert manifold. Thermodynamic transitions can now be seen as paths in this
metric space, and the cost of transference between states can be quantified in terms of its length in the
Wasserstein metric (W2). As it turns out, there is a deep and, at the same time, precise connection be-
tween distances between probability distributions (with finite second order moments, i.e., in P2) and the
relative entropy between the two. Thus, probabilistic and information theoretic concepts acquire geometric
significance.

In this project we sought to explore the connection between thermodynamics, more specificically, work
performed by stochastic particles and Wasserstein geometry, in order to quantify the energy cost of a transi-
tion under a specified control protocol as well as the optimal (minimal) cost for transition between thermo-
dynamic states. These contributions are detailed in [2].

2. Statement of the problem studied

We consider damped stochastic systems in a controlled (time-varying) quadratic potential and study
their transition between specified Gibbs-equilibria states in finite time. By the second law of thermody-
namics, the minimum amount of work needed to transition from one equilibrium state to another is the
difference between the Helmholtz free energy of the two end-point states and can only be achieved by a
reversible (infinitely slow) process. We sought to compute the minimal gap between the work needed in a
finite-time transition and the work during a reversible one. We also sought to compute the required work
for transitions in the case of multidimensional systems, i.e., having a state-vector of high dimension. Un-
der this general model, stochastic particles of thermodynamic ensemble are thought to obey the stochastic
differential equation

dx(t) = −Q(t)x(t)dt+ σdw(t), x(0) = x0, (1)

with x ∈ Rn andw a standard (Rn-vector-valued) Wiener process representing a thermal bath of temperature
T ; the parameter

σ =
√

2kBT .

This in fact is a vector-valued Ornstein-Uhlenbeck process. Here kB is the Boltzmann constant [3], the
Hookean force field −Q(t)x(t) is the gradient of a time-varying quadratic Hamiltonian

Ht(x) = H(t, x) =
1

2
x′Q(t)x, (2)

and the controlled parameterQ(t) = Q(t)′, t ∈ [0, tf ], is scheduled so as to steer the system from a specified
initial distribution for x0, to a final one for xf , over the specified time window. The random variables x0, xf
are taken to be Gaussian with zero mean and covariances Σ0,Σf , respectively. That is, the distributions
of the state at the two end points have probability densities are ρ0 = N (0,Σ0), ρf = N (0,Σf ), or more
explicitly,

ρi(x) =
1

(2π)n/2|Σi|1/2
e−

1
2
x′Σ−1

i x, i ∈ {0, f},

and we seek to determine the minimum amount of work needed to effect the transition.

From a controls perspective, the problem amounts to covariance control of bilinear systems. Indeed,
the dynamics are driven by the product of the control input Q(t) times the state x(t). By adjusting the
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quadratic potential, it is possible to steer the system from one Gaussian distribution to another in finite time
tf . When this is the case, we are interested in the optimal control strategy (Q(t), t ∈ [0, tf ]) that minimizes
the required control energy.

2. Background to the problem statement

It is well known that the minimum control energy must be greater than the Helmholtz free energy
difference ∆F between the two states (second law of thermodynamics). The important element in the
problem formulation is the emphasis on the transition taking place over a finite interval [0, tf ], hence it falls
within the context of non-equilibrium thermodynamics.

Starting with the works by Jarzynski [4, 3] and Crooks [5], new insights began to shed light on the
precise amount of work required for such finite-time transitions. Most famously, the Jarzynski equality

e−β∆F = E{e−βW}, (3)

relates the equilibrium quantity ∆F (free energy difference between equilibrium states) to an averaged non-
equilibrium quantity (exponential of the work; see our discussion below) over possible trajectories of the
system in any finite-time transition. Throughout, E{·} denotes the expectation on the path space of system
trajectories and

β = (kBT )−1,

where again T represents temperature of the heat bath and kB the Boltzmann constant; β has units of
“inverse-work.” The Jarzynski identity holds for arbitrary time-dependent driving force and not necessarily
gradient of a quadratic potential. This type of result has led to a number of so-called Fluctuation Theorems
in the literature, some of which have profound implications in biology and medicine [6, 7, 8].

Although the Jarzynski equality is quite remarkable, it doesn’t provide an explicit gap between the free
energy difference ∆F and the average work W = E{W}. This gap is essential if we would like to find an
optimal strategy with minimum work to move a thermodynamical system from one state to another. Fol-
lowing up on the Jarzynski equality, the authors of [9, 10] analyze the minimum energy control problems in
the cases of a Brownian particle dragged by a harmonic optical trap through a viscous fluid, and of a Brow-
nian particle subject to an optical trap with time dependent stiffness, in both overdamped and underdamped
setting. Further, in [11, 12], the authors provide an optimal solution that relates the work dissipation to a
Wasserstein distance. It can be viewed as a stronger version of the Second Law of Thermodynamics for
certain Langevin stochastic processes in finite-time.

The present project and the work that has been carried out relates to the work in [11, 12] as well as in
[9, 10]. Compared to [11, 12], our approach gives a control-theoretic account to the fluctuation type results
in the case for Gaussian distributions. In addition, we provide an alternative proof for general cases with
connections to the gradient flows with respect to the Wasserstein geometry [13]. The major difference to
[9, 10] is that we consider the general multivariable case.

3. Summary of most important results

We begin by providing a brief account on Monge-Kantorovich Optimal Mass Transport (OMT) so as to
introduce needed notation and concepts. We refer the reader to [14] for complete details as well as historical
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background and modern applications of the relevant theory. The significance of OMT in nonequilibrium
thermodynamics stems from the fact that energy dissipation appears to be captured in geometric terms by a
concept of length that OMT provides for “curves” in the space of probability distributions, i.e., parameter-
ized families of probability distributions that characterize the state trajectory of a thermodynamic system.

3a. Optimal mass transport

Consider two probability measures ρ0, ρ1 on Rn. In the Kantorovich’s formulation of OMT with
quadratic cost, one seeks a joint distribution π ∈ Π(ρ0, ρ1) on Rn ×Rn, referred to as “coupling” of ρ0 and
ρ1, that minimizes the total cost, and so that the marginals along the two coordinate directions coincide with
ρ0 and ρ1, respectively, that is,

inf
π∈Π(ρ0,ρ1)

∫
Rn×Rn

‖x− y‖2π(dxdy). (4)

OMT has also an elegant stochastic control formulation, which reads as

inf
u

E
{∫ 1

0
‖u(t, x(t))‖2dt

}
(5a)

ẋ(t) = u(t, x(t)) (5b)

x(0) ∼ ρ0, x(1) ∼ ρ1. (5c)

This amounts to seeking a feedback control strategy (i.e., control u that is a function of the state x) requiring
minimum energy that drives the state of an integrator from an initial probability distribution ρ0 to a terminal
probability distribution ρ1, through a path of distribution ρt, for t ∈ [0, tf ].

Both of the above problems have unique solutions under the assumption that the marginal distributions
are absolutely continuous. The square root of the minimum of the cost ((4) or (5)) defines a Riemannian
metric on P2(Rn), the space of probability distributions on Rn with finite second-order moments. This
metric is known as the Wasserstein metric W2 [13, 15, 14, 16]. On this Riemannian-type manifold, the
geodesic curve connecting ρ0 and ρ1 is given by ρt, the probability density of x(t) under the optimal control
policy. This is called displacement interpolation [17] and it satisfies

W2(ρs, ρt) = (t− s)W2(ρ0, ρ1), 0 ≤ s < t ≤ 1. (6)

When the marginals ρ0, ρ1 are Gaussian distributions, the problem has a closed-form solution [18, 19, 20].

3b. Main results: least dissipation control

We consider the stochastic dynamical system in (1). As mentioned earlier, it represents a thermody-
namical system with a quadratic Hamiltonian (2), overdamped and attached to a heat bath that is modeled
by the stochastic excitation dw. The initial state is a Gaussian random vector x0 ∼ N (0,Σ0), i.e., one
having covariance Σ0 and mean E{x0} = 0. The initial distribution is usually taken to be the stationary
distribution with potential remaining constant on (−∞, 0] by keeping Q(t) ≡ Q0 over t ∈ (−∞, 0], in
which case Q0 = σ2

2 Σ−1
0 , but this assumption is not required. We are interested in steering the state to

the terminal distribution N (0,Σf ) through selecting an optimal (least energy) time-varying control matrix
variable Q(·) = Q′(·) satisfying the boundary conditions Q(0) = Q0, Q(tf ) = Qf .
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The control energy (work) delivered to the system along any particular sample path x(·) by the time-
varying potential (2) is

W(Q, x) :=

∫ tf

0

∂H(t, x)

∂t
dt =

∫ tf

0
〈Q̇(t),

∂H(t, x)

∂Q
〉dt,

where 〈X,Y 〉 = tr(X ′Y ). Thus, by averaging over all possible sample paths, we obtain

W := E{W(Q, x)} = E
{∫ tf

0
〈Q̇, ∂H

∂Q
〉dt
}

= E
{∫ tf

0

1

2
〈Q̇(t), x(t)x(t)′〉dt

}
=

1

2

∫ tf

0
〈Q̇(t),Σ(t)〉dt.

Here, Σ(·) is the state covariance which, according to standard linear systems theory, evolves according to
the Lyapunov equation

Σ̇(t) = −Q(t)Σ(t)− Σ(t)Q(t) + σ2I. (7)

The control which consist in selecting Q(·) may be discontinuous, reflecting instantaneous changes in the
Hamiltonian H, in which case, the expression for the work becomes the Lebesgue-Stieltjes integral

W =
1

2

∫ t+f

0−
〈dQ(t),Σ(t)〉, (8)

where 0−, t+f represent limits from below and above, respectively, so as to account for the discontinuities.
Thus, the fundamental problem we deal with is:

Problem 1. Determine a control law
{Q(t) | t ∈ [0, tf ]}

that minimizes (8) subject to (7),
and the boundary conditions Q(0) = Q0, Q(tf ) = Qf ,Σ(0) = Σ0,Σ(tf ) = Σf .

The following result has been obtained and detailed in [2].

Theorem: Problem 1 has a unique minimizer Qopt(·) that is computed as follows:

(i) If Σ0 = Σf , then Wmin = 0 and

Qopt(t) =
σ2

2
Σ−1

0 , Σ(t) = Σ0, for all t ∈ (0, tf ).

(ii) If Σ0 6= Σf , then

Wmin = −σ
2

4
trace log(ΣfΣ−1

0 ) +
1

tf
trace(Σ0 + Σf − 2(Σ

1/2
0 ΣfΣ

1/2
0 )1/2)

5



and

Qopt(t) =
σ2

2
Σ(t)−1 − (Λ(0)−1 + tI)−1

Σ(t) = (Λ(0)−1 + tI)M−1(Λ(0)−1 + tI),

Λ(0) =
1

tf
(−I + Σ

−1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 )

M = Λ(0)−1Σ−1
0 Λ(0)−1.

We remark that the optimal control Q(t) in is continuous function on (0, tf ). The limit values at
t = 0, tf are

Q(0+) =
σ2

2
Σ−1

0 +
1

tf
(I − Σ

−1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )1/2Σ

−1/2
0 )

and

Q(t−f ) =
σ2

2
Σ−1
f +

1

tf
(−I + Σ

1/2
0 (Σ

1/2
0 ΣfΣ

1/2
0 )−1/2Σ

1/2
0 )

respectively. These may not be consistent with the boundary conditions Q(0) = Q0, Q(tf ) = Qf , which
dictates the discontinuities of the optimal control at t = 0, tf . When both the initial and terminal states are
stationary, namely,Q0 = σ2

2 Σ−1
0 , Qf = σ2

2 Σ−1
f , such discontinuities go to zero as the length of time tf goes

to infinity.

More succinctly, the conclusions of the above theorem with regard to the minimal work that is needed
for the transition can be expressed as follows.

Theorem: For arbitrary marginal distributions ρ0, ρf , provided we are free to change the Hamiltonian in
an arbitrary manner (not requiring it to be quadratic), the minimial work for a thermodynamic transition is
given by

Wmin = ∆F +
1

tf
W2(ρ0, ρf )2.

More generally, for a control protocol that may not necessarily be optimal, the following holds.

Theorem:
W = ∆F +

1

tf

(
lengthW2

({path ρt | t ∈ [0, 1]})
)2
,

where
lengthW2

({path ft | t ∈ [0, 1]})

is the length of the curve {ft | t ∈ [0, 1]} in the Wasserstein space of probability distributions endowed with
the Wasserstein metric.

Thus, “least-work” paths or, more precisely, “least-dissipation” paths correspond to geodesic flows in the
Wasserstein space for the state (probability distribution) of a thermodynamic system. This gives an inter-
esting novel view of the Second Law of Thermodynamics in which dissipation is explicitly characterized in
terms of a transport distance and geometry.

6



To put the above statement in context, recall that for reversible processes, one has

W = ∆F,

while for general processes
W ≥ ∆F.

Such statements are equivalent to the second law of thermodynamics, which states that the total entropy
of an isolated system is nondecreasing. The theorems above provide a stronger lower bound for entropy
production of a finite-time process, and this bound connects thermodynamics and optimal mass transport.
The difference W−∆F is the entropy production, or work dissipation, and denoted Wdiss. The fundamental
lower bound of work dissipation is

Wdiss ≥
1

tf
W2(ρ0, ρf )2,

and is valid for any (irreversible) process evolving in a finite time-interval [0, tf ]. The lower bound is
achieved by the optimal protocol and the corresponding probability density flow is the displacement in-
terpolation between ρ0 and ρf . In our research publication [2], besides a detailed theoretical analysis and
derivation of the results, we present examples of a laser trap of varying center or strength. Finally, the results
also suggest a promising direction to solve constrained thermodynamical control problems.

4. Other research contributions related and supported by the grant

Work under the grant impacted ongoing research that culminated in original contributions that are high-
lighted below.

4a. Network robustness and control

Networks come in all shapes and forms –transportation, communication, power, gene regulatory net-
works, etc. [21]. Yet, one important universal and desirable quality is their ability (or lack thereof) to adapt
and return to equilibrium in response to an external distrubance, or to structural and dynamic changes that
may have taken place, while maintaining functionality [22]. One way to quantify “robustness,” following
[23], is in terms of the rate function from large deviations theory. A key idea relies on the positive correlation
between an increase of curvature and network functional robustness, a fact which may be regarded as a ge-
ometric version of the Fluctuation Theorem as formulated in [23]. Our ongoing work on network efficiency
and robustness has led to the recent publication [24], detailing a probabilistic approach to obtaining efficient
robust routing for a single commodity over a transportation network. Also in [25] we presented a study of
how geometry of transport and a concept of curvature of graphs are applied to gene regulatory networks can
characterize cancer drug response and guide therapy.

4b. Probability flows and control with mean-field interaction

In [26] we explored models of transport where particles/agents experience a mean-field type interaction.
The presence of a mean field, or of more general types of interaction potential, may be used to model a
variety of physical systems. In particular, little is known for thermodynamics of interacting particle systems
and the minimal dissipation in thermodynamic transitions. The work in [26] represents a first attempt to
grapple with relevant issues.
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4c. Fundamentals of system identification

A fundamental problem is to identify linear dynamical relations that may exist between the components
of a continuous-time vectorial process. What is typically available to engineers and scientists is the discrete-
time sampled process (i.e., a time series) of measurements collected at a given finite sampling rate (possibly
nonuniform). The study in [27] considers issues of statistical estimation and, in particular, how to identify
the maximal number of dynamical dependencies between the entries of the process at the finest time scale.
The key point that makes the result significant is that dynamical dependences are masked at the level of the
sampled process, and thereby, it is possible that system identification toolboxes miss the correct number of
dynamical couplings between observed time series as those are obfuscated due to sampling. Modern-day
applications, which aim towards high dimensional data and possibly varying sampling protocols, further
underscore the importance of a careful consideration of how sampling affects dynamical dependencies.
Particular applications to identifying dynamical links in networks between time series at different nodes,
and as a consequence, the structure of the network, are discussed in [27].
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