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Abstract

This research focused on the numeric simulation of unstable laser resonators with high

gain media. In order to accomplish the research, the modes and eigenvalues for various

bare cavity resonator were computed followed by modes of a resonator in the presence

of gain. Using a Fourier Split Step Method in a Fox and Li iteration scheme, different

laser outputs for various laser cavities with gain were computed. Various parameters

defining positive branch confocal unstable resonators were chosen corresponding to

four studies. The four studies focused on modifying laser cavity Fresnel number,

gain medium parameters, gain cell position, and gain cell length from a baseline laser

cavity geometry. It was observed that the highest laser cavity efficiencies occurred

when the laser cavity had a Fresnel number greater than 7 and was positioned at the

back larger mirror of an unstable resonator. Longer gain cell lengths were found to

correspond to higher beam qualities. Beam quality was found to be inversely related

to laser efficiency. A theory for modifying simple laser models based upon a mode

volume was derived and supported the results of the gain wave-optic simulations.
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NUMERICAL SIMULATION OF UNSTABLE LASER RESONATORS

WITH A HIGH GAIN MEDIUM

I. Introduction

To maintain aerial supremacy, the Air Force requires the next generation of

weapons to be superior to current technology. High Energy Laser Systems (HELS)

are a future type of weapon system with the potential of ensuring United States Air

Force (USAF) superiority on the battlefield. To support this endeavor, the focus of

the dissertation research will be on the numerical modeling of Diode Pumped Alkali

Laser (DPAL) systems, a contending technology for high energy lasing applications.

The following chapter summarizes the reasoning behind the future importance of

HELS within the Air Force, the history of DPAL weapon system development, the

basics of DPAL operation, an example DPAL system that will be used throughout the

rest of the document, a summary of previous DPAL modeling efforts, and the specific

thrust of this research in modeling unstable resonators with a high gain medium.

A Requirement for Diode Pumped Alkali Laser (DPAL) Systems

In order to understand the need for DPAL technology, one must understand the

history of laser technology. The laser was initially created in 1960 using a ruby

lasing material. Since then, many different forms of lasers have been developed for

a wide variety of applications, including sensing, communication, fabrication, and

defense. For the purpose of this research, the focus will be on the last example with

the idea of the laser being used as a defense/attack weapon. A weapon that uses

either electromagnetic or sonic energy to kill or disable a target is a Directed Energy

1



weapon. The military has long been interested in a Directed Energy weapon that

would either be used synergistically with modern kinetic energy weapons (munitions,

missiles) or fielded as a solo device[1]. The reason behind this interest lies within the

three promises of electromagnetic Directed Energy weapons:

• The promise of precision strike

• The promise of speed of light delivery

• The promise of an unlimited magazine

The Department of Defense (DoD) is very interested in the capability to deliver

maximum destruction at a precise point. A high power laser system would further

this capability to place destructive energy on a target many miles away, limited fun-

damentally by the diffraction of the light across the intervening distance following

the far-field Airy Disk pattern, given by

θ =
1.22λ

D
, (1)

where λ is the wavelength of the associated light which tends to be on the order of

1 µm and D is the aperture of the optical system output which tends to be on the

order of ≈ 10 cm. Equation (1) means that light from the hypothetical device is still

focusable to under a meter at a distance 50 miles away from the device. This range

of HELS, make them ideal for long range strategic applications, such as missile, base

or aircraft defense[2].

The next promise of directed energy weapon systems is the capability of speed of

light delivery on a target. Any energy delivered using the electromagnetic spectrum

travels at the maximum speed of any known object in the universe. The speed of

light greatly outstrips any convectional munition and even unconventional ones. By
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comparison, hypersonic vehicles travel a little over a hundredth thousandth the speed

of light. In other words, compared to directed energy, every other munition remains

still on the battlefield.

Finally, directed energy promises the logistical dominance of an unlimited maga-

zine. Lasers and other directed energy weapons may easily be powered electrically,

which means that the cost of firing a directed energy weapon is essentially a few

dollars for a shot. Lasers could be the key to winning the logistics battle in future

wars.

Although directed energy systems hold much promise, they are also plagued by

their own inherent issues. The first is that in regards to warfare, electromagnetic

weapons are centuries behind kinetic weapons in terms of battlefield usage, meaning

that tactics and strategies for warfare will need to be updated for proper use of

Directed Energy weapon systems. Directed energy is also a new technology, leading to

an initially large research and development cycle to deliver on the promises described

above. Prior research systems, in the form of chemically pumped lasers, did not

deliver on the unlimited magazine promise of HELS. They were also dangerous to

operate, using chemicals for the laser gain that tended to not only be toxic, but had

to be vented directly into the environment to work properly. Newer systems, such as

fiber and solid state lasers deliver on the promise of an unlimited magazine, but fail

to provide the power output needed to truly be lethally effective at a distance. These

newer systems tend to deliver energy on the order of a tens of kilowatts where an

effective system would require at least 50 − 100 kW output power to be effective on

the battlefield. The reasoning behind this lack of power output usually comes from

thermal management issues occurring at the lasing source (and other less pronounced

effects occurring with these lower powered sources). From the current impasse seen
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between these two systems, DPALs emerged as a contender into the Directed Energy

environment.

A Quick History of Diode Pumped Alkali Laser (DPAL)

Optically pumped alkali systems were originally proposed as one of the first laser

systems in 1958[3]. The system employed potassium pumped optically using a potas-

sium lamp that was filtered to remove red radiation. Although theoretically feasible,

the actual laser ran into difficulties in production because of the reactiveness of the

alkali and the inability to get a strong violet source to excite the potassium vapor.

Due to these difficulties, alkali systems were not the first lasing system, but were ex-

perimentally verified in 1962 by a cesium alkali laser pumped with a helium lamp[4].

Rabinowitz’s system[4] was the first gaseous laser that utilized optical pumping, but

despite this first, the experiment had a low output power of 50 µW for an 800 W pump

power input. The low efficiency was understandable because of the wide spectrum

associated with the optical pump and low system pressure (∼ 4 Torr) available for

widening the potassium absorption line. After the development of narrower pumps,

the potential gain of alkali systems were realized with a series of “cavity-less” cesium

and rubidium experiments completed by Sharma and Bhaskar in 1981[5]. The overall

power output of the lasing system was low, but paved the way for the current incar-

nation of the optically pumped alkali systems present currently. Alkali systems were

still pursued because of their high quantum efficiencies, 95.3% for cesium, 98.1% for

rubidium, and 99.6% for potassium, compared to a typical 76% operating efficiency

associated with Nd:YAG which had a similar efficiency for almost all other solid state

laser media[6]. However, the laser systems with an alkali media overall power output

would remain low until lasers replaced flash lamps for optical pumping in 2003.
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In 2003, William Krupke filed a patent[7] for a new laser system consisting of

an alkali vapor buffered with rare-gases and hydrocarbons. The lasing system was

dedicated to the first three energy levels of alkalis, 2P3/2, 2P1/2, and 2S1/2, with helium

presented as a buffer gas to facilitate the spin transition between 2P3/2 and 2P1/2. The

largest innovation was the use of a titanium sapphire laser to pump the gain medium

which increased the efficiency of the system. The actual system created by Krupke

had a 54% conversion efficiency compared to the pump[8]. However, in the actual

experiment, ethane was added to the system. The use of hydrocarbons are only

required for a cesium alkali because of the energy difference of the 62P3/2 → 62P1/2

fine-structure mixing transition. Hydrocarbons are not a requirement for DPAL using

rubidium or potassium as the alkali material. The study by Krupke and Beach was

also the first to have demonstrated a parameter scan across pump power despite a

20% output coupling associated with the cavity[9].

Since Krupke’s initial demonstration, DPAL systems have become a prime candi-

date for the future of lasing systems representing a quick path forward toward high

power applications that require high beam quality.

What is a Diode Pumped Alkali Laser (DPAL)

The goal of this research is further investigation of the basic physics within the

various components of the DPAL system, with the end goal of determining method to

increase system performance. An understanding of the DPAL system may be gained

from looking individually at two structures within the laser system

1. The Gain Medium

2. The Resonator

A diagram of the layout of these two system structures are shown in figure 1.
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Figure 1. DPAL system layout, with the gain medium, marked in blue, with the laser
cavity along the ẑ axis, and the pump propagated along the ẑ axis. The mirrors in the
diagram indicate an unstable resonator structure.

The gain medium used for this research is a uniform mixture of helium and va-

porized rubidium. As in other laser systems, the gain medium of the DPAL converts

pump energy to lasing energy. The optical energy is provided by laser diodes tuned

to the alkali transition wavelength. Lasing then occurs by the transition of alkali

atoms from an excited state to a ground state through the emission of photons. The

overall structure of this interaction between energy states for rubidium is pictured in

figure 2. The picture illustrates the cycle followed by DPAL systems starting with a

pump from 2S1/2 → 2P3/2 using an optical diode pump. The pump is then followed

by a rapid collisional spin orbit relaxation, from 2P3/2 → 2P1/2, driven by collisions

between atoms of the buffer gas and the alkali gas. The final transition consists of

the lasing transition from 2P1/2 → 2S1/2, resulting in a photon. A further discussion

of transitions, specifically the rates associated with those transitions are presented in

chapter IV.

The other major component of a DPAL system is the laser resonator. For a

typical DPAL system, the resonator consists two facing mirrors on an optical axis

parallel to the lasing direction. Due to the large gain per unit length associated with

DPAL and the intended strategic use of a DPAL system, the focus of this dissertation

research will be on unstable resonators versus the stable resonator used within many
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Figure 2. Three-level energy diagram for rubidium lasing interaction.

other laser systems. Stability in regard to a laser cavity references the tendency of

photons to remain within the cavity per pass through the gain medium. Unstable

resonators are made to allow photons to exit the cavity quickly and have good mode

discrimination making them ideal for high gain media.

The Laser Resonator

In prior work concerning analysis of the DPAL, the focus of the work has not

involved high powered wave-optic calculations. Hager[10, 11] assumed uniform intra-

cavity intensities for the pump and laser. In his papers, he analyzed the steady-state

gain and laser power out for narrowband[10] and broadband[11] optical pumps. Addi-

tional work concerning low power and a laser cavity mode has also been looked at by

Endo in a series of wave optic simulations starting with his discussion of broadband

wave optic simulation [12], followed by a further discussion of his wave optics code

in unstable resonators[13], a discussion on transverse input pump shape[14], and a

final paper that analyzed basic fluid effects on the beam quality for cesium DPAL[15].
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Within these simulations, Endo used a gain wave-optic simulation to calculate the

beam shape in an unstable resonator. However, Endo kept his simulations confined

to the low power input/output scenarios.

Further work in modeling DPAL has also been completed by Barmashenko and

Han[16, 17, 18, 19, 20, 21, 22] in modeling the thermal effects caused by the collisionaly

mixing in an alkali. These simulations have dealt with both static and dynamic fluids

within the cavity. Throughout the various studies, significant temperature gradients

were observed for the static cases. These temperature gradients lead to the presence of

significant phase variations within the beam of the laser. The dynamic cases focusing

on fluid flow indicate that by flowing the fluid at a velocity greater then 5 m
s , the

temperature gradients found in the static case may be mitigated[16].

Further work has been performed by Gavrielides[23] on analyzing unstable res-

onators with the inclusion of gain. However, for the previous work assumed a gain

medium with a homogeneous effect on the laser along the axis of propagation. This re-

search seeks to expand the understanding of the above models with a focus on relating

the intracavity mode intensity of an an unstable resonator with both efficiency and

beam quality. In order to accomplish this goal, an analysis of the methods typically

used in determining the laser modes for bare cavities stable resonators was performed

to analyze the strengths and weaknesses of said models. In addition, two unstable

resonator cavities from the literature were chosen to further verify the models followed

by an analysis of the losses for a positive branch confocal unstable resonator. The

results of these bare cavity studies are addressed in chapter III. After the bare cavity

models were analyzed, a gain medium was included to the wave-optics simulations

in chapter IV. The gain wave-optics simulations were simplified with the use of a

uniform pump for excitation of the laser medium. This choice was to simplify the

problem in order to better find the underlying effects of coupling between the gain
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medium and the transverse laser mode. Amplified Spontaneous Emission (ASE) was

also ignored for all simulations to also keep the models simple. After establishing a

baseline case, four different studies were performed involving varying Fresnel num-

ber, laser gain medium parameters, gain cell position and gain cell length. These four

studies determined the effects of the intracavity transverse mode distribution on the

laser cavity’s output efficiency and beam quality.
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II. Basic Theory

Paraxial Propagation

In order to properly model the unstable resonator, two numeric methods will be

used for determining bare cavity modes for laser resonators. From these methods,

a single method will be chosen to determine the steady-state laser intensity distri-

bution throughout the cavity when gain is present within the system. The next few

subsections will be used to derive the Helmholtz wave equation, the Green’s Function

associated with the Helmholtz Wave equation, the paraxial wave equation and finally

the integral form of the paraxial wave equation. The reason for this derivation is

that all methods that will be used in the discussion of the field within a bare cav-

ity are essentiatlly different discretization schemes associated with the paraxial wave

equation’s integral form. Throughout the derivation it will be assumed that ẑ is the

direction of propagation.

Deriving the Helmholtz Wave Equation .

The wave equations for light propagation start with Maxwell’s equations:

∇ · E⃗ =
ρ

ϵ
(2)

∇ · B⃗ = 0 (3)

∇× E⃗ = −∂B⃗
∂t

(4)

∇× B⃗ = µJ⃗+ µϵ
∂E⃗

∂t
(5)

where E⃗ and B⃗ are vectors representing the electric and magnetic fields, ρ is a charge

density and J⃗ is the current density, ϵ and µ are the permittivity and permeability of

the surrounding medium.
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Applying the vacuum case, ϵ = ϵ0, µ = µ0, ρ = 0, and J⃗ = 0, allows rewriting

equations (2), (3), (4), and (5) to

∇ · E⃗ = 0 , (6)

∇ · B⃗ = 0 , (7)

∇× E⃗ = −∂B⃗
∂t

, (8)

∇× B⃗ = µ0ϵ0
∂E⃗

∂t
. (9)

Applying an additional curl to both sides of equations (8) and (9) gives

∇×
(
∇× E⃗

)
= −∇× ∂B⃗

∂t
, (10)

∇×
(
∇× B⃗

)
= µ0ϵ0∇× ∂E⃗

∂t
. (11)

Using the double curl vector identity for a general vector A⃗,

∇×
(
∇× A⃗

)
= ∇

(
∇ · A⃗

)
−∇2A⃗ , (12)

equations (10) and (11) become

∇
(
∇ · E⃗

)
−∇2E⃗ = −

∂
(
∇× B⃗

)
∂t

, (13)

∇
(
∇ · B⃗

)
−∇2B⃗ = µ0ϵ0

∂
(
∇× E⃗

)
∂t

. (14)
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Equations (6) and (7) may be used within (13) and (14) above to deduce the wave

equations for the electric and magnetic fields in free space

∇2E⃗ = µ0ϵ0
∂2E⃗

∂t2
, (15)

∇2B⃗ = µ0ϵ0
∂2B⃗

∂t2
, (16)

where one can recognize µ0ϵ0 = 1
c2

with c representing the speed of light in a vac-

uum. Since equations (15) and (16) have the same structure, solutions to both wave

equations will be identical in free space and may be calculated from a general wave

equation where E⃗ and B⃗ are represented as Ψ⃗ combining (15) and (16) into

∇2Ψ⃗− 1

c2
∂2Ψ⃗

∂t2
= 0 . (17)

Equation (17) may be broken into temporal and spatial parts using separation of

variables,

Ψ⃗(x, y, z, t) = ψ⃗(x, y, z)ϕ⃗(t) . (18)

The use of this technique allows for the separation of the time-dependent component

of Ψ, ϕ from the spatial-dependent component, ψ⃗. The splitting allows equation (17)

to be written as
1

ψ⃗
∇2ψ⃗ =

1

c2ϕ⃗

∂2ϕ⃗

∂t2
. (19)

In order for equation (19) to be true across independent variables, both sides of the

equation must be equal to a constant, allowing equation (19) to be broken into a

system of equations, one a Partial Differential Equation (PDE) and the other an
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Ordinary Differential Equation (ODE)

1

ψ⃗
∇2ψ⃗ = −k2 , (20)

1

c2ϕ⃗

∂2ϕ⃗

∂t2
= −k2 . (21)

Equation (21) has the solution

ϕ⃗ = ϕ⃗0e
i(ωt+δ) . (22)

Equation (22) represents the general solution of time where the solution gives insight

in the link between the temporal, ω, and spatial, k frequencies of the wave in free

space
ω

c
= k . (23)

Also identified are the temporal phase shift (δ) and the amplitude ϕ⃗0, making equation

(22) a general solution to equation (21). Equation (20), may be written as the PDE

∇2ψ⃗(⃗r) + k2ψ⃗(⃗r) = 0 , (24)

which is known as the Helmholtz wave equation.

Developing the Paraxial Wave Equation.

The spatial wave function, ψ(x, y, z), in equation (24) may be factored into two

parts, one involving the field variation due to the optical frequency dependence of the

field and an envelope function, U(x, y, z)[24]

ψ(x, y, z) = U(x, y, z)eikz . (25)
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Using equation (25) allows for rewriting equation (24) as

∇2
TU +

∂2U

∂z2
+ 2ik

∂U

∂z
= 0 . (26)

In the case of a laser beam, it is important to recognize that the fields associated

with the wave equation are highly collimated. Collimation implies very little spherical

nature to the wave and that the field will go to zero of the axis of propagation. A

consequence of the lack of spherical nature to the wave means that the envelope func-

tion, U , identified in equation (25) varies slowly as a function of z. Mathematically,

the slow variation of U is known as the paraxial approximation or

∣∣∣∣∂2U∂z2
∣∣∣∣≪ ik

∣∣∣∣∂U∂z
∣∣∣∣ . (27)

The paraxial approximation allows for the Helmholtz wave equation of U to be

simplified to

∇2
TU + 2ik

∂U

∂z
= 0 , (28)

which is known as the paraxial wave equation. The PDE is parabolic and will depend

on boundary conditions in the transverse direction and an initial condition represent-

ing the field[25]. Solving equation (28) gives the solution for the envelope function

of the field and the intensity distribution and phase of the envelope function is the

same as that of the field,

ψ⋆ψ = U⋆U . (29)

Equation (29) indicates that once the field envelope function is solved, the volumetric

mode of intensity of the field shall be the same.
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Converting the Paraxial Wave Equation to Integral Form.

A Laplace Transform applied in the ẑ axis allows for a simplification of the three

variable PDE (28),

Lz

[
∇2
TU
]
+ 2ikLz

[
∂U

∂z

]
= 0 , (30)

by making use of the Laplacian identity of the partial derivative in respect to z,

Lz

[
∂U

∂z

]
= −U(x, y, 0) + sLz[U ] ,

equation (30) is then reduced to a two variable partial differential equation

∇2
TLz[U ] + 2iksLz[U ] = 2ikU0 , (31)

where the source term U(x, y, 0) = U0. The application of a Laplace transform has

allowed a PDE of three partial derivatives of x, y, and z to be reduced to a PDE

of two partial derivatives. The overall structure of equation (28) remains the same

in Laplace transform space, but now contains a source term based upon the wave

equation at location z0. The paraxial wave equation’s integral form will provide the

wave equation at a distance along the axis, z, based upon the value of the wave

equation at an initial location, z0.

Applying a two-dimensional Fourier Transform in x and y allows for Equation

(31) to be rewritten as

Fx,y

[
∇2
TLz[U ]

]
+ 2iksFx,y[Lz[U ]] = 2ikFx,y[U0] , (32)

and simplified using the Fourier Transform identity

Fx,y

[
∇2
TLz[U ]

]
=
(
k2x + k2y

)
Fx,y[Lz[U ]] , (33)
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to an algebraic function

Fx,y[Lz[U ]] =
2ik

2iks− k2x − k2y
Fx,y[U0] . (34)

The traditional cost of replacing the “analytic” computation of equation (28) is re-

captured in the “analytic difficulty” of applying the inverse Fourier Transform to

equation (34) shown in

Lz[U ] = F−1
x,y

[
2ik

2iks− k2x − k2y
Fx,y[U0]

]
. (35)

Writing out the Fourier transform and the inverse Fourier transforms give

Lz[U ] =

1

2π

∫∫ ∞

−∞

2ikei(kxx+kyy)

2iks− k2x − k2y

[
1

2π

∫∫ ∞

−∞
U(x′, y′, z)e−i(kxx

′+kyy′) dx′ dy′
]
dkx dky , (36)

for which coordinates x and y at the source coordinates have been relabeled as x′ and

y′. kx and ky have also been identified as the angular spatial frequencies. kx and ky

are not dependent on x′ and y′ allowing one to rewrite the order of the two integrals

in equation (36) to

Lz[U ] =

1

4π2

∫∫ ∞

−∞
U(x′, y′, z)

[∫∫ ∞

−∞

2ik

2iks− k2x − k2y
ei[kx(x−x

′)+ky(y−y′)] dkx dky

]
dx′ dy′ . (37)

The inner integration in equation (37) is a Green’s function in Laplace Transform

space and should be solved prior to solving equation (37). The Green’s Function,
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G(x⃗, x⃗′, s), for the integration in equation (37) is

G(x⃗, x⃗′, s) =
1

4π2

∫∫ ∞

−∞

2ik

2iks− k2x − k2y
ei[kx(x−x

′)+ky(y−y′)] dkx dky , (38)

and using a change of coordinates:

kx = η cos (ξ)rx = (x− x′) = r cos (θ)

ky = η sin (ξ)ry = (y − y′) = r sin (θ)

⇓

k2x + k2y = η2 dkx dky = η dη dξ

(39)

simplifies equation (38) to

G(r, θ, s) =
1

4π2

∫ ∞

0

∫ 2π

0

2ik

2iks− η2
eirη[cos (ξ) cos (θ)+sin (ξ) sin (θ)]η dξ dη . (40)

Using a trigonometric identity, equation (40) becomes

G(r, θ, s) =
1

4π2

∫ ∞

0

∫ 2π

0

2ik

2iks− η2
eirη cos (ξ−θ)η dξ dη , (41)

and the identity associated with the Bessel function

Jn(x) =
1

2π

∫ 2π

0

eixη cos (ξ−θ) dξ , (42)

allows the Green’s function to be rewritten as

G(r, θ, s) =
1

2π

∫ ∞

0

2ik

2iks− η2
J0(ηr)η dη . (43)
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Equation (43) may be rewritten using the Bessel function identity,

J0(ηr) =
1

2

[
H1

0 (ηr) +H2
0 (ηr)

]
,

H2
0 (−ηr) = −H1

0 (ηr) ,

(44)

into an integral equation with limits of integration from −∞ to ∞

G(r, θ, s) =
1

2π

∫ ∞

−∞

ikη

2iks− η2
H1

0 (ηr) dη , (45)

which allows for the solution to be computed with Cauchy’s residue theorem and

fractional decomposition. The Green’s function of equation (37) is therefore

G(r, θ, s) =
kH1

0

(√
ks(1 + i)r

)
2

. (46)

Placing equation (46) into equation (37) gives the integral form of equation (28) in

Laplace transform space,

Lz[U ] =

∫∫ ∞

−∞
U(x′, y′, z)

kH1
0

(√
ks(1 + i)r

)
2

dx′ dy′ . (47)

Equation (47) is also the solution to the paraxial wave equation in response to a source

at z. However, the solution would be much more useful if converted from Laplace

transform space into coordinate space. The conversion may be performed either with

the inverse Laplace Transform (Bromwich Integral) on the right hand side,

U(x, y, z +∆z) =
k

2

∫∫ ∞

−∞
U(x′, y′, z)L −1

z

[
H1

0

(√
ks(1 + i)r

)]
dx′ dy′ , (48)
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or by recognizing that the Laplace transform,

Lz

[
− ik

2π∆z
e

ikr2

2∆z

]
= −ik

π
K0

[√
ksr(1− i)r

]
, (49)

and the identity

K0(z) =
iπ

2
H1

0 (i∆z) , (50)

may be used together to rewrite the inverse Laplace Transform term in equation (48)

to be

U(x, y, z +∆z) =
ik

2π∆z

∫∫ ∞

−∞
U(x′, y′, 0)e

ik[(x−x′)2+(y−y′)2]
2∆z dx′ dy′ , (51)

which is the integral form for the envelope function associated with the field.

Using the definition of the envelope function in equation (25), equation (51) may

be rewritten to calculate the field of an initial intensity distribution at point z at an

axial distance ∆z as

ψ(x, y, z +∆z) =
ikeik∆z

2π∆z

∫∫ ∞

−∞
ψ(x′, y′, z)e

ik[(x−x′)2+(y−y′)2]
2∆z dx′ dy′ . (52)

Equation (52) is the Huygen’s integral calculated for the paraxial approximation,

also known as the Fresnel diffraction integral[24]. As stated previously, because of

the equivalence in the phase and intensity of the envelope function and field, equation

(51) will be used as the primary method to propagate the field along the ẑ axis.

Steady-State Bare Cavity

The Fresnel diffraction integral shown in equation (52) propagates the field in the

ẑ direction. In operator notation equation (51) would act as an operator propagating
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the field for a certain length, ∆z, and is written as

Px,y[U(x
′, y′)] = − ik

2π∆z

∫ ∞

−∞

∫ ∞

−∞
e

ik
2∆z [(x−x′)

2+(y−y′)2]U(x′, y′) dx′ dy′ . (53)

Any simulation techniques of the beam traversing the laser cavity involve the appli-

cation of this propagation operator. The form of the above operator shall be modified

for the different simulation techniques to take advantage of various properties of the

simulation methods. However, the propagation operation is only a part of the calcu-

lation, the full propagation of the laser also involves the use of a reflection operator

Ri[U(x, y)] = H(x, y)ei
k
2π

∆R(x,y)U(x, y) , (54)

where ∆R(x, y) is the off axis geometric difference from the position of the mirror

and mirror curvature and H(x, y) is a function representing the apodization caused

by the finite extent of the mirror. For a spherical mirror, the additional phase shift

applied transversely to the field is the function

∆Ri
(x, y) = sgn(Ri)

(
|Ri| −

√
R2
i − x2 − y2

)
, (55)

allowing equation (54) to be written for spherical mirrors as

Ri[U(x, y)] = H(x, y)e
i k
2π

sgn(Ri)
(
|Ri|−

√
R2

i−x2−y2
)
U(x, y) . (56)

If the distance from the axis is small compared the the curvature of the mirror,

|Ri| −
√
R2
i − x2 − y2 ≈ x2 + y2

2Ri

, (57)
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the reflection operator may then be approximated with

Ri[U(x, y)] = H(x, y)e
isgn(Ri)

k(x2+y2)
4πRi U(x, y) . (58)

The propagation of a laser through a resonator is shown in figure 3. The steps for

the transverse laser field traveling through the cavity involve an initial application of

the effects of mirror 1, propagation of the distance, ∆z, from mirror 1 to mirror 2,

the application of mirror 2 effects and the return propagation from mirror 2 to mirror

1. The complete propagation acts to transform the the envelope function, U(x, y),

to a final new envelope function, U ′(x, y). When represented mathematically the full

transformation is

U ′(x, y) = PR2PR1U(x, y) . (59)

Originally, Fox and Li[26] recognized that the steady field will have a steady

volumetric profile within the lasing cavity. The only difference will be a complex

scalar, γMode, applied for each transit in the cavity. A transverse field intensity which

displays a steady volumetric profile is defined as a transverse cavity mode of the laser

resonator[24]. If the initial envelope of the transverse field, U , represents a cavity

mode then equation (59), becomes

U ′
Mode = γModeUMode . (60)

Fox and Li, in the same paper, also recognized that the loss associated with a mode

of the cavity, αloss will be

αloss = 1− |γMode| , (61)
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ŷ
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a2
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∆z

Figure 3. An example picture of the unstable resonator illustrating the setup of the
cavity geometry for the rest of the document. R1 and R2 are the radii of curvature of
the mirrors, a1 and a2 are the respective radii of the circular mirrors, and ∆z is the
separation beween the mirrors.

and the phase shift experienced by a mode for each pass in the resonator, ϕshift is

ϕshift = angle(γMode) , (62)

where the angle operator calculates the phase of the complex eigenvalue. The ϕshift

may be used with the longitudinal mode[27] of the laser to calculate the frequency of

the cavity mode

ν =
( c

2∆z

)[
q +

(
ϕshift

2π

)]
. (63)

The definition of the transverse mode of a laser resonator presented in this section

will be continually used throughout the research presented in this document. The

definition applies for both bare cavity cases and in cases where a gain medium is

added to the bare cavity.

Determining Cavity Modes with the Direct Eigenvector Method (DEM)

In his Prony method paper, Siegman[27] also recognized that the operations in

equation (59) could be considered matrix operations and that the modes of the cavity
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and the complex scalar in equation (60) multiple were the respective eigenmodes

and eigenvalues of the matrix. Siegman then simplified the problem with cylindrical

azimuthal symmetry, allowing for the Fresnel integral to be written as a function of

a single coordinate, determined by choosing a particular azimuthal mode. However,

as will be seen in a future section, to make such a simplification, the back mirror has

to be treated as having infinite mirror extents.

More recently, Yuanying [28] recognized that modern computers possessed enough

processing power to directly evaluate the complete operation defined in equation (59)

for two dimensions. Numerically, the propagation from mirror 1 to mirror 2 is,

U⃗m = Am,nU⃗n , (64)

where U⃗ is a one dimensional vector quantity representing the transverse field with

n representing the components of the field at mirror 1 and m are the components at

mirror 2. Am,n is then a matrix defined by

Am,n = R 1
2
,2Pm,nR 1

2
,1. (65)

Likewise, the return propagation is defined by

U⃗n = An,mU⃗m , (66)

where

An,m = R 1
2
,1Pn,mR 1

2
,2 . (67)

The complete propagation is defined as

AFull Pass = An,mAm,n , (68)
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where AFull Pass is a n× n matrix representing the full propagation of the transverse

envelope function through the cavity. As stated above, the final cavity output field,

U⃗′
1, is defined by the input field, U⃗1 at mirror 1 is the operation

U⃗′
1 = AFull PassU⃗1 . (69)

In practice, the input and output vectors are treated as abstract concepts and are

only used for determining the elements of AFull Pass. As stated previously, the different

eigenvalues of AFull Pass are the complex scalars defined by Fox and Li in equation (60),

and the eigenvectors of AFull Pass are the cavity modes.

For bare-cavity calculations, DEM can determine cavity modes with a single iter-

ation. Unlike typical Fox and Li iterator methods that shall be covered in the next

sections, DEM offers the potential to solve every cavity mode present within the bare

cavity along with their respective losses and phase shift per pass in a single iteration.

However, the method, while very effective in determining every mode of an unstable

resonator tends to be computationally intense. For example, two two-dimensional

mirrors sampled 20 times along each coordinate, require two grids of 400 elements

each leading to AFull Pass containing over 160000 complex values. If sampling along

each coordinate is quadrupled to have 80 elements, there will be over 40 million com-

plex values. Therefore, The scaling of the problem goes as O(N4), where N is the

sampling along each coordinate represents a computational difficulty in using DEM

to calculate scenarios requiring high grid resolution.

Discretizing the Propagation.

Using DEM requires the scheme presented for the matrix computation to be prop-

erly discretized. The propagation operation representing the propagation from a grid,
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n,m to grid p, q becomes

Up,q =
ik

2π∆zp,qn,m

N,M∑
n=1,m=1

e
− ik

2∆z
p,q
n,m

(ρp,qn,m)
2

r′n,m1
p,q∆r′∆θ′Un,m. (70)

where the definition

ρp,qn,m =

√
(∆xp,qn,m)

2 + (∆yp,qn,m)
2 , (71)

was used to simplify equation (70). At this point, one identifies the geometry that will

be present within the problems of the simulation. In order to prevent the artifacts

associated with imposing a rectangular grid structure on circular mirrors, a cylindrical

coordinate system was used for the DEM calculation meaning that ∆x ∆y, and ∆z

in equation (71) were defined as

∆xp,qn,m = rp,q1n,m cos(θp,q1n,m)− r′n,m1
p,q cos(θ′n,m1

p,q) ,

∆yp,qn,m = rp,q1n,m sin(θp,q1n,m)− r′n,m1
p,q sin(θ′n,m1

p,q) ,

∆zp,qn,m = ∆z1n,mp,q .

(72)

In actual practice, it is important to define Up,q as covariant vector that is pq in

size (the two variables are to remind that there are two coordinates present within the

system), Un,m a contravariant vector that is nm in size, and Ap,qm,n a rank two tensor

with pq columns and nm rows. k is the wavenumber, and rn,m is the transverse vector.

Discretizing Mirror Effects.

Previously in section , the scheme for handling the mirror was derived to get the

mirror operator mention in equation (56). The operator may be discretized as

Γn,m = e−2ik∆n,m , (73)
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with ∆n,m identified as

∆n,m = sign(R11n,m)

[
|R11n,m| −

√
R2

11n,m − (r′n,m)
2

]
. (74)

Combined Discretization.

Combining the above discretizations into one complete operation nets a rank two

tensor, Ap,qn,m, which was defined earlier as the matrix corresponding to the half prop-

agation of the field in the system, with

Ap,qm,n =
ikeik∆z

p,q
n,m

2π∆zp,qn,m
Γn,m1

p,qe
− ik

2∆z
p,q
n,m

(ρp,qn,m)
2

r′n,m1
p,q∆r′∆θ′ , (75)

giving a the representation of the half pass from the initial mirror, with coordinates

corresponding to n and m to the second mirror, with coordinates as p and q, of

Up,q = Ap,qn,mU
n,m . (76)

In order to complete the trip through the cavity, the entire pass may be com-

pleted with the propagation from n and m to p and q followed by the corresponding

propagation/mirror operation going from p and q back to n and m. Represented in

discretized notation the complete trip becomes

Un,m
New = An,mp,q A

p,q
n,mU

n,m , (77)

where

An,mp,q =
ikeik∆z

n,m
p,q

2π∆zn,mp,q
e

ik

2∆z
n,m
p,q

(ρm,n
p,q )

2

rp,q1
n,mΓp,q1

n,mδrδθ . (78)
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and all parameters are defined as

ρn,mp,q =

√
(∆xn,mp,q )2 + (∆yn,mp,q )2

Γp,q = e−2ik∆p,q ,

∆p,q = sign(R21p,q)

[
|R21p,q| −

√
R2

21p,q − (rp,q)
2

]
,

∆xn,mp,q = r′
n,m

1p,q cos
(
θ′
n,m

1p,q
)
− rp,q1

n,m cos(θp,q1
n,m) ,

∆yn,mp,q = r′
n,m

1p,q sin
(
θ′
n,m

1p,q
)
− rp,q1

n,m sin(θp,q1
n,m) ,

∆zn,mp,q = ∆1n,mp,q ,

(79)

where δr and δθ are the respective resolutions of the radial and azimuthal coordinates.

The two operations may then be combined with simple matrix multiplication to

become

ATot
n,m
n,m = An,mp,q A

p,q
n,m . (80)

As stated above, this final operation represents the total propagation of the envelope

function through the cavity. The eigenvectors of the combined tensor in equation (80)

are the modes of the cavity, conveniently in the coordinate basis that was originally

used to define θm,n and rm,n. The eigenvalues of equation (80) represent the scaling

of the envelope function for each pass associated with corresponding modes.

Fox and Li Iteration

Although DEM is an excellent method for solving for all cavity modes in a single

calculation, the memory requirements for the method can quickly overwhelm modern

systems. Fox and Li iterative calculations may be used to solve equation (60) for

only the least-loss mode with a decreased computational difficulty. Each laser cavity

mode, UMode experiences different losses per pass through the cavity. Simulating

the cavity propagation for an initial “guess” transverse envelope function, U , and

27



then renormalizing leads to a transverse envelope function with less content that is

not associated with the lowest loss cavity mode. Iterating the above process multiple

times leaves a transverse envelope function whose form does not change for additional

passes. Per the definition of cavity mode, this converged transverse function is the

lowest loss cavity mode. The eigenvalue is then the complex scalar renormalization

applied to the field. A simulation is considered converged when the transverse field

profile remains constant for successive passes. The above procedure has come to be

known as Fox and Li iteration, named for it’s initial use in Fox and Li’s 1961 paper

for calculating laser modes in laser resonators possessing mirrors of finite extent[26].

Fox and Li iteration tends to be computationally lighter than DEM, especially

because the propagation operation mentioned in equation (53) may be rewritten as

single or a series of Fast Fourier Transform (FFT) operations. However, the iterative

method may become computational intense for cases where the losses between the

first and second lowest loss cavity modes are small. For unstable resonators, the

difference in losses between the first and second mode tend to be large for most cavity

configurations, leading to convergence within a hundred passes through the cavity.

However, the stable resonator, where the losses for various cavity modes have small

differences compared to each other, required at least four thousand passes within the

cavity.

Another reason to use Fox and Li iteration within the cavity comes from the

recognition that the lighter computational load associated with the iteration allows

for the eventual addition of gain within the cavity. DEM could be used for such

techniques, but the time and memory requirements would be prohibitive compared

to the Fox and Li iteration computation cost.

Fox and Li iteration requires all operations defined in equation (59), but the prop-

agation operation may be handled differently to take advantage of different compu-
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tational simplifications and to also enable certain grid configurations for the system.

Angular Spectrum Method (ASM) and Fresnel Forward Propagator (FFP) are the

two propagation methods that were used for this research and are discussed in the

next two subsections followed by a subsection discussing some of the constraints of

the methods.

The Fresnel Forward Propagator (FFP) .

FFP starts with expanding equation (53),

Px,y[U(x
′, y′)] = − ik

2π∆z
ei

k
2∆z [x2+y2]

∫∫ ∞

∞
U(x′, y′)ei

k
2∆z [x′

2+y′2]e−i
k
∆z

[xx′+yy′] dx′ dy′ .

(81)

From the expansion, one may recognize the integral is a Fourier Transform

Ffx′ ,fy′
[f(x′, y′)] =

∫∫ ∞

∞
f(x′, y′)e−i

k
∆z

[xx′+yy′] dx′ dy′ , (82)

operating on a function

f(x′, y′) = U(x′, y′)ei
k

2∆z [x′
2+y′2] . (83)

The Fourier Transform moves the field from a coordinate space at x′ and y′ to the

frequency space defined as

fx′ =
k

2∆z
x , (84)

fy′ =
k

2∆z
y . (85)

As Schmidt[29] recognized, the above frequency definitions require the grid have a

certain sampling if the grid resolution between propagation planes is constant. The
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grid resolution, δ, is then a function of the sampling, N , the laser angular spatial

frequency, k, and the propagation distance, ∆z,

δ =

√
2π∆z

Nk
. (86)

From the above definitions, one may rewrite equation (81) into a complete operation

Px,y[U(x
′, y′)] = − ik

2π∆z
ei

k
2∆z [x2+y2]F

[
U(x′, y′)ei

k
2∆z (x′

2+y′2)
]
. (87)

The Angular Spectrum Method (ASM) .

Much like FFP in the previous section, ASM starts with rewriting the Fresnel

integral defined in equation (53). However, instead of separating terms, the integral

may be rewritten as a convolution of the source function, U and the exponential

propagation function,

Px,y[U(x
′, y′)] = − ik

2π

∫ ∞

−∞

e
ik

2∆z [(x−x′)
2+(y−y′)2]

∆z
U(x′, y′) dx′ dy′ , (88)

or more easily seen as

Px,y[U(x
′, y′)] = − ik

2π

[
e

ik
2∆z [(x−x′)

2+(y−y′)2]

∆z
∗ U(x′, y′)

]
. (89)

The relationship between convolution and the Fourier Transform[25] may be used to

rewrite equation (89)

Px,y[U(x
′, y′)] = F−1

[
F

[
ke

ik
2∆z [(x−x′)

2+(y−y′)2]

2iπ∆z

]
F [U(x′, y′)]

]
, (90)
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where the first Fourier Transform is known as the propagator. In order to simplify

the calculation, the propagator may then be transformed analytically

F

[
e

ik
2∆z [(x−x′)

2+(y−y′)2]

∆z

]
= e

i∆z
2k [k2x+k2y] , (91)

where the angular spatial frequencies, kx and ky are used to define frequency space.

Equation (90) may then be rewritten with equation (91) to develop the ASM propa-

gation operation

Px,y[U(x
′, y′)] = F−1

[
e

i∆z
2k [k2x+k2y]F [U(x′, y′)]

]
. (92)

Unlike FFP, ASM does not place a constraint on sampling versus resolution.

However, it does require additional considerations to prevent aliasing within both the

spatial coordinate grid and the spatial frequency grid. The next subsection will be

dedicated to analyzing the grid requirements for both propagation methods, with an

additional focus applied to ASM.

Resolution Requirements.

The overall goal of the research was to understand the effects of varying param-

eters of unstable resonators, specifically that of the positive branch confocal stable

resonator, and understanding the effects of that variation on mode loss and the mode

shape. Therefore, in order to use both FFP and ASM for such a calculation, it is

important to identify grid constraints for the positive branch confocal resonator much

as Schmidt did for the general case [29] using geometric optics.
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Minimum Sampling Required by Geometry.

To determine the minimum sampling associated with a problem requires analyzing

the propagation of U from an initial plane to a final plane separated by a distance

∆z. A picture of this simple propagation is shown in figure 4, giving definitions to

∆z, M , a, fx,max, and α.

From the figure, α can be seen to follow the relationship

2(Ma+ a)

2∆z
= tan(α) ≈ α . (93)

The α approximation follows from the paraxial limit used in both propagation schemes.

In the spatial frequency coordinate, the relationship between kx,max and k also has

the relationship with α,
kx,max

k
= sin(α) ≈ α . (94)

Based upon requirements of the Nyquist frequency[30], a relationship exists between

kx,max and the minimum spatial coordinate resolution δx

1

2δx
≥ fx,max , (95)

π

δx
≥ kx,max , (96)

π

kδx
≥ kx,max

k
. (97)

Combining equations (93) and (94) along with the Nyquist Criteria gives a con-

straint on the minimum resolution of the optical grid based upon the problem geom-

etry
π

kδx
≥ 2(Ma+ a)

2∆z
, (98)
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Ma a

fx,m
ax

α

Figure 4. Propagation of U from an initial plane to a final plane, with the extent of
the field being assumed to be the size M . Figure has been tailored from an illustration
from Schmidt’s Numerical Simulation of Optical Wave Propagation[29].

which may be rewritten in terms of Fresnel number, Nf, and the geometric magnifi-

cation, M , of the problem
1

δx
≥ 2(M + 1)Nf

a
. (99)

For the purposes of large scale simulation, the resolution should be rewritten in terms

of the total grid extent. The total grid extent be a function of the size of the largest

mirror’s radius, Ma defined in figure 4 with the relationship

∆x = 2GBandMa , (100)

where GBand scales the total grid extent as a function of the size of the large mirror.

By multiplying both sides of equation (99) by 2GBandMa

GBand2Ma

δx
≥ 4MaGBand(M + 1)Nf

a
, (101)
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and then recognizing that the sampling, Nx is the ratio of the total grid extent to the

grid resolution,

Nx =
∆x

δx
, (102)

equation (99) may be rewritten as

N ≥ 4GBand

(
1 +

1

M

)
M2Nf . (103)

Equation (103) may then be rewritten as a function of the outer Fresnel number,

Nf,O, which is the Fresnel number associated with the larger mirror of the cavity and

has the relationship

Nf,O =M2Nf , (104)

simplifying equation (103) and tying the computational difficulty with the outer Fres-

nel number,

N ≥ 4GBand

(
1 +

1

M

)
Nf,O . (105)

Minimum Sampling Required by Optical Grid.

The above constraint is motivated purely by the cavity geometry. There is also a

requirement generated by propagating the field in the optical grid. The propagation

through the optical field is shown in figure 5.

From the picture, one may define an extent of illumination, Dillum, as a function

of radius of the largest plane of optical interaction. The largest plane occurs for the

large mirror which has a radius of Ma. The maximum angle for which the field will

be transmitted, αmax, and the propagation distance, ∆z. may then be used to define

the extent of illumination

DIllum = 2Ma+ 2αmax∆z . (106)
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Figure 5. Propagation of the field from an initial to a final plane showing the total
grid extents of the final plane as based upon the maximum spread angle, αmax. Figure
has been tailored from an illustration from Schmidt’s Numerical Simulation of Optical
Wave Propagation[29].

The optical grid’s total extent, ∆xTot, must be large enough to support the illuminated

image. The usage of a Fourier Transform for the propagation means that as if the

field illuminates a larger area than the total grid extent, the image will be wrapped

around the other side of the transverse grid. Recognizing this places a constraint on

the total grid extent

∆xTot ≥
2Ma+ 2a+ 2αmax∆z

2
=Ma+ a+ αmax∆z . (107)

Applying the definition for total grid extent mentioned in equation (100) allows for

the constraint to be written as

2GBandMa ≥ a(1 +M) + αmax∆z , (108)
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where αmax is related to the maximum extent of the frequency grid, ∆kx, and is also

related to the resolution of the spatial grid,

∆kx =
π

δx
. (109)

The relations (109), (102) and (100) allow for αmax to be rewritten as,

αmax =
Nλ

4GBandMa
. (110)

Finally, one may use the constraint for the total optical grid extent to be

∆xTot ≥ (1 +M)a+
Nλ∆z

4GBandMa
, (111)

and rewriting ∆xTot as a function of cavity parameters and solving for N , gives the

requirement on sampling to be

N ≤ 2G2
Band4Nf,O −

(
1 +

1

M

)
4GBandNf,O . (112)

Constraint (112) is a light constraint which only applies for ASM. FFP already

includes the constraint by requiring

N = 4G2
BandNf,O . (113)

Maximum Sampling Required by Problem Geometry.

The variation of phase across the optical grid also places a maximum sampling

constraint on the problem[29]. In spatial coordinates, the phase variation is the phase

factor imparted on the field by the mirror. According to the mirror operation present
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in equation (58), the phase factor, ϕR, is

ϕR = k
x2

2R
. (114)

Schmidt[29] and Goodman[30] recognize the local frequency space variation, kloc is

the gradient of the phase used within the propagator,

kloc = ∇ϕ , (115)

and applying equation (115) to the phase factor of the mirror gives the local variation

of the frequency grid caused by the problem geometry, kloc,x,

kloc,x =
kx

R
. (116)

Applying the Nyquist Criterion to the localized frequency gives the constraint

ka

R
≤ π

δx
, (117)

and applying the relationship between the resolution and the total grid extent gives

N ≥ 4kGBanda
2

2πR
. (118)

Finally, by recognizing that the radii of curvature of positive confocal mirrors is

related to the geometric magnification and then applying the definitions in equations

equation (178) give,

N ≥
4GBand

(
1− 1

M

)
Nf,O

2
. (119)
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Maximum Sampling Required by Optical Grid.

If the sampling of a simulation is increased without modifying the corresponding

optical field extents, problems may occur in frequency space due to a lack of resolution.

This requirement requires that the local k value, kloc,k, needs to vary less than half

the total grid extent, in this case written as Nδx

kloc,k ≤
Nδx
2
. (120)

From equation (92), the phase in the propagator is defined as

ϕk =
∆z

2k
k2x . (121)

Using the definition with equation (121) inside equation (115) allows for equation

(120) to be written as
π∆z

kδx
≤ Nδx

2
. (122)

Applying the previous definition for total grid extents allows for rewriting (122) as

N ≤ 4G2
BandNf,O . (123)

Much as the minimum sampling constraint in equation (112) was identified as a light

constraint, equation (123) is also a light constraint that will only apply to ASM,

because FFP already induces the hard constraint,

N = 4G2
BandNf,O . (124)
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Using all Constraints.

For large scale simulations, having constraints based on the number of samples

makes the computational complexity vary depending on parameter. However, consid-

ering the use of Fourier Transforms within the problem means that the best compu-

tational performance occurs for simulations which have sampling of N = 2l where l is

a positive integer. Meeting all constraints and keeping a factor of 2 number of sam-

ples is difficult. The difficulty in dealing with sampling of multiple problem may be

handled by instead recasting the constraints above in terms of the additional spatial

extent beyond the optical area, GBand. Rewriting all constraints in terms of GBand

gives the final system constraints

GBand ≥

√
N

4Nf,0

, (125)

GBand ≥ 1

4

(1 + 1

M

)
+

√(
1 +

1

M

)2

+ 8

(
N

4Nf,0

) , (126)

GBand ≤ 1

1 + 1
M

(
N

4Nf,0

)
, (127)

GBand ≤ 2(
1− 1

M

)( N

4Nf,0

)
, (128)

As indicated in Schmidt[29], propagating multiple times only modifies one equa-

tion (125)

GBand ≥
√
Rz

√
N

Nf,0

, (129)

where Rz is defined as the ratio of the step length, ∆zi compared to the propagation

length

Rz =
∆zi
∆z

. (130)
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For bare cavity simulations, propagation will only occur once between the mirrors,

Rz = 1. Figure 6 is an example plot of the constraints in equations (125), (126), (127),

and (128) representing a positive branch confocal unstable resonator. The plot treats

the lower bound of GBand by using the more restrictive of equations (127) and (128).

Likewise, the upper bound of the plot is the most restrictive constraints of (125) and

(126) Figure 6 also indicates a value of N
Nf,O

below which the equations (125), (126),

(127), and (128) may not be true. This cross-over of the upper and lower bounds

indicates a minimum value of N
Nf,O

required for the simulation. In other words, there

is a minimum sampling required for a simulation driven by the laser cavity’s outer

Fresnel number. Figure 6 also defines an ideal GBand, based on being 10% greater

than the lower constraint, which was used for the bare cavity simulations in a bare

cavity eigenvalue study at the end of chapter III.
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Figure 6. Example requirements on GBand which bookmarks the available band size of
the system. The upper band represents the maximum value of GBand and lower band
gives a minimum value of GBand required to eliminate aliasing.
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III. Simulation of the Bare Cavity Laser Resonator

There is no analytic expression that can completely express the modes of a laser

cavity with finite apertures. For the a stable laser resonator, the aperture size is

assumed to be infinite in size allowing for the analytic derivation of the modes for

a stable laser resonator cavity. Usually this assumption works fairly well and the

modes of a stable resonator are well approximated by the analytic solution with an

infinite aperture size. Unfortunately the diffraction due to a limited aperture size

always effects the modes of an unstable resonator cavity, requiring that the mode

always be computed with bare cavity numeric methods. This chapter is dedicated to

the analysis of these bare cavity numeric methods, which were previously described

in chapter II.

The first section of the chapter is dedicated to a brief discussion of laser resonator

stability followed by a section concerning testing of the three methods covered in

chapter II, for a stable half-symmetric cavity layout. The testing was performed to

compare the numeric method calculations against the stable cavity mode predicte by

analytic techniques. Following the comparison of the numeric methods and the stable

resonator is a brief discussion of geometric loss expected for unstable resonators. After

this discussion of unstable resonator cavities, the methods were again compared with

each other and a result Yuanying’s[28] results for an unstable resonator calculation.

Following the discussion, the general unstable resonator results is a definition followed

by a study of a positive branch confocal unstable resonator described in papers by

Siegman and Sziklas[31, 32]. The final bare cavity study involved Siegman’s eigen-

value method, which is defined and then used to calculate and compare eigenvalue

predictions from Siegman’s 1970 Prony paper[27], DEM, and Fox and Li Iteration us-

ing ASM as a propagator for a variety of positive branch confocal unstable resonators.
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The discussion will begin by defining some of the terminology of laser resonators and

about stability of those resonators.

What is the Stability of a Laser Resonator?

Previously within the document, the stability of laser resonators has been men-

tioned as a differentiator between resonators. However, what classifies the difference

between a stable and unstable resonator has yet to be mentioned. This section is

dedicated to defining laser resonator stability. The qualitative characteristic in dif-

ferentiating stable and unstable resonators is the repetition of the mode intensity

distribution per pass through a laser resonator for mirrors with infinite extent. If

the the intensity distribution of the propagating field is reproduced for every pass

within the laser resonator, then the system is considered stable, otherwise it is unsta-

ble. Further definition requires a geometric analysis of mode propagation in a system

similar to that shown in figure 7.

The geometric ray optics starts with a picture of wave propagation much like

the one given by Siegman[24], and illustrated in figure 8, where one sees that the

relationship between the transverse position of a wave, x, and its change in transverse

position, x′, are related axially by the operation of an ABCD matrix

x2
x′2

 =

A B

C D


x1
x′1

 . (131)

As shown in figure 8, the ABCD matrix, may be written as a cumulative effect of all

operations performed by the field[34]. The combined propagation operations for the

field as it passes through the generalized laser resonator system illustrated in figure 7
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Figure 7. Spherical mirror resonator with respective mirror radii of R1 and R2 and
width 2a1 and 2a2 with a mirror spacing of ∆z. The illustration is a duplicate with minor
changes to symbols of Gordon’s picture of a cavity from his paper on the equivalence
relations for spherical mirror resonators[33].

ẑ
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ŷ
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C D
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(x1, x
′
1)

(x2, x
′
2)ρ(x1

, x2)

Figure 8. An illustration of the ABCD geometric optical propagation through the
cavity. The figure is a rough replication of Siegman’s illustration from his textbook,
Lasers[24], used to discuss a geometric analysis of paraxial wave optics.
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is A B

C D

 =


(
1− 2∆z

R1n

)(
1− 2∆z

R2n

)
− 2∆z

R2n
2∆z
n

(
1− ∆z

R1n

)
4∆z
R1R2n

− 2
R2

− 2
R1

1− 2∆z
R1n

 , (132)

for which n is the index of refraction of the material in the laser resonator, ∆z is the

distance between mirrors, and R1 and R2 are the radii of curvature of the mirrors. One

may recognize that the matrix in equation (132) will always have a determinant of 1.

The eigenvalues, γi, of the ABCD matrix in equation are (132) are also recognized as

the transverse growth factors that the field experiences for each pass through a laser

resonator cavity and may be written as

γ1, γ2 = m±
√
m2 − 1 , (133)

where m is

m =
(A+D)

2
= 2

(
1− ∆z

R1

)(
1− ∆z

R2

)
− 1 . (134)

Using the previously qualitative definition for stability, a stable system requires

|λ1|, |λ2| = 1. In order for this to be true, a stable system requires the discrimi-

nant in equation (133) to be imaginary or zero, or that m2 ≤ 1. A stable resonator

will therefore have the following relationship for cavity parameters

0 ≤
(
1− ∆z

R1

)(
1− ∆z

R2

)
≤ 1 , (135)

or

0 ≤ g1g2 ≤ 1 , (136)
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where the definition of g1 and g2 are

g1 = 1− ∆z

R1

, (137)

g2 = 1− ∆z

R2

. (138)

Figure 9 is a stability diagram indicating in gray laser resonator stability parameters,

g1 and g2, representing a stable resonator configuration.

Understanding Cavity Resonator Parameters

Due to the parameter-scan nature of the research, many equivalent numbers were

used as dimensionless quantities for the simulation. This section derives and defines

three of those dimensionless quantities.

Gordon[33] summarized the equivalence relations for a bare laser cavity by drawing

equivalence relations from Fresnel integral propagator. He summarized the integral

equations as

γ1U1(x1) =

√
ik

2π∆z

∫ a2

−a2
K(x1, x2)U2(x2) dx2 , (139)

γ2U2(x2) =

√
ik

2π∆z

∫ a1

−a1
K(x2, x1)U1(x1) dx1 , (140)

to describe the propagation of field of a strip mirror defined by a single coordinate,

x1, to a strip mirror defined by another single coordinate, x2. Equations (139) and

(140) contain a kernel function, defined as

K(x⃗1, x⃗2) = K(x⃗2, x⃗1) = e−i(
k

2∆z )[g1x21+g2x22−2x1x2] , (141)
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Figure 9. The stability diagram highlighting bare cavity laser resonator parameters
which will give stable laser cavity behavior.
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for which both the mirror and propagator operations defined in equations (58) and

(53) have been wrapped into the g1 and g2 parameters defined in equations (137) and

(138).

Making the system dimensionless requires the following two substitutions for the

single dimension variables in equations (139), (140) and (141),

xi = aiξi for i = 1, 2 , (142)

and

vi(ξi) = ui(ξi)
√
ai for i = 1, 2 . (143)

When these dimensionless units are applied, they transform equation (141) into

K(ξ1, ξ2) = K(ξ2, ξ1) = e−i(πNcol)[G1ξ21+G2ξ22−2ξ1ξ2] , (144)

with equations (139) and (140) becoming

γ1v1(ξ1) =
√
iNcol

∫ 1

−1

K(ξ1, ξ2)v2(ξ2) dξ2 , (145)

γ2v2(ξ2) =
√
iNcol

∫ 1

−1

K(ξ2, ξ1)v1(ξ1) dξ1 . (146)

The three dimensionless quantities defined in equations (145) and (146) are defined

as

Ncol ≡
a1a2k

2π∆z
, (147)

G1 ≡ g1

(
a1
a2

)
, (148)

G2 ≡ g2

(
a2
a1

)
, (149)
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where a1 and a2 may be related by the geometric magnification of the system

a2 =Ma1 . (150)

The collimated Fresnel number, Ncol, will be an important parameter defining the

number of fringes seen within the output wave of an unstable resonator. The col-

limated Fresnel is related to two other important parameters measuring the Fresnel

number, Nf, based upon the small mirror

Nf =
ka21
2π∆z

, (151)

and the outer Fresnel number

Nf,O =
ka22
2π∆z

. (152)

In general, Fresnel numbers measure the number of Fresnel zones or ripples across

a diameter. The Fresnel number, defined in equation (151), is very important in

determining the losses of cavity modes in the stable and unstable resonator. The outer

Fresnel number, defined in equation (152), is useful for determining the computational

effort that is required for different simulations. A final Fresnel number called the

equivalent Fresnel number, NEq, which will be defined later for the unstable resonator

is used to determine multi-modal competition within unstable resonator cavities.

Comparing the Methods to the Analytic Solution for a Stable Resonator

In order to ensure that the eventual analysis with gain included is giving correct

results, the methods will be verified against prior calculated results. These prior

results range from being analytic, in the case of the stable resonator, to numeric, in

the case of the unstable resonator.
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This section will devote itself to the solution of the stable resonator with both

DEM and the Fox and Li Itreation using both the FFP and ASM. The reason for the

analysis is that the stable resonator has analytic solutions which are defined by the

transverse electric and magnetic fields, TEMm,n, where m and n identify the mode

number. These solutions for a plane z are the Hermite-Gaussian modes,

ψn,m(x, y) =

(
2

π

)1/2(
ei[(2n+1)ψx(z)+(2m+1)ψy(z)]

2n+mn!m!wx(z)wy(z)

)1/2

Hn

( √
2x

wx(z)

)
Hm

( √
2y

wy(z)

)
e
−ikz−i kx2

2Rx(z)
−i ky2

2Ry(z)
− x2

wx(z)
− y2

wy(z) , (153)

where Hn(x) is a Hermite polynomial of degree n, Ry and Rx are the curvatures of

the wave respective of x and y, wx and wy are the respective beam waists in x and y,

and ψx and ψy are the respective x and y phase shifts.

The Bare Cavity Half-Symmetric Resonator.

Figure 10 illustrates the stable resonator shown for the analysis of the numeric

methods. The specific layout used for the simulation was the half-symmetric confocal

resonator, defined by a concave and flat mirror ensemble, with the distance between

the mirrors, ∆z, set to be half the radii of curvature of the concave mirror. This

specific stable resonator is equivalent in configuration to the stable negative branch

confocal resonator. However, its position on the stability diagram places is at g1, g2 =

1, 1
2

which is assumed to be more stable in relation to the actual stable negative branch

confocal configuration located at g1, g2 = 0, 0, which is close to an unstable regime.

The increased stability associated with the half-symmetric confocal resonator prevents

minor numerical error, associated floating point and round-off, from causing unstable

answers to develop in the numeric analysis system.
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∆z = 5m

λL = 10.6µm

Figure 10. Geometry of the half-symmetric confocal resonator.

The mode present in the system should be the Hermite-Gaussian solution defined

in equation (153), with a minimum beam waist located at the flat mirror. The

analytic Hermite Gaussian TEM0,0 Mode is shown in figure 11. The next lowest loss

analytic mode, TEM0,1, is then shown in figure 12. These analytically determined

modes may then be compared with the results from the three different calculation

methods highlighted in chapter II. The above analytic solutions do not take account

of the finite radii of the circular mirrors. The losses due to diffraction associated with

limited extent of the mirrors will modify the solution from the methods, so that the

actual mode will be different than the predicted modes above by a small extent. The

radii of extent of the mirrors in figure 10 are

a1 = 0.8 cm ,

a2 = 1.8 cm ,

(154)

with the radii of curvature of the concave mirror is R2 = 10m and a mirror distance of

∆z = 5m. The assumed wavelength of the radiation between both mirrors is 10.6µm

corresponding to a CO2 laser, which was chosen to compare to previous papers by

Siegman, Sziklas, and Yuanying [27, 31, 32, 28] published on the unstable resonator.

These dimensions were chosen to coincide with a cavity representing a system with
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Figure 11. Contour plots of the TEM0,0 mode of as predicted by the analytic analysis
of a stable resonator.
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Figure 12. Contour plots of the TEM0,1 mode of as predicted by the analytic analysis
of a stable resonator.
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Nf = 1.201 which was calculated to give an appropriate mode loss that will lead

to TEM0,0 being the dominate mode of the cavity while minimizing the diffractive

effects of limited mirror extent.

Comparison of Analytic, Direct Eigenvector Method (DEM), Fresnel

Forward Propagator (FFP), and Angular Spectrum Method (ASM)

Calculated Results.

As stated previously, DEM calculates all the modes associated with the bare cavity

stable resonator. For the stable resonator, contour plots of the transverse intensity

and phase at the flat mirror are shown in figure 13 of the least-loss mode, TEM0,0.

Contour plots of the second least-loss mode’s, TEM1,0, intensity and phase are also

presented in figure 14. From both of the contour plots one may see good agreement

between DEM and the analytic methods. However, there was a minor discrepancy

with the contour plots of phase due to the limited extent of the mirrors simulated.

The absolute value of the eigenvalues determined with DEM are pictured in figure 15.

Roughly three regimes exist within the plot of eigenvalue as a function of the least

loss mode, the first representing a gradual slight decrease in the eigenvalues which

come about due the most of the energy of the modes being contained within the the

mirror. The next region has a much larger increase in loss as the mode increases

when the mode is larger than can be supported by the mirrors. Finally, the region

representing the limit of associated with numerical error located at the end of the

curve. The eigenvalues are color coded to highlight that there are degenerate cavity

modes possessing the same eigenvalue. This degeneracy is due to the radial symmetry

of the mirrors.

The TEM0,0 mode were also numerically calculated with the FFP and ASM meth-

ods and are shown in the contour plots in figure 16 and figure 17 respectively. In
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Figure 13. Contour plots of the TEM0,0 mode predicted by DEM for the half-symmetric
confocal stable resonator. The red line indicates the edge of the outcoupling mirror,
the transverse field in the red circle is not transmitted out of the cavity.
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Figure 14. Contour plots of the TEM1,0 mode predicted by DEM for the half-symmetric
confocal stable resonator. The red line indicates the edge of the outcoupling mirror,
the transverse field in the red circle is not transmitted out of the cavity.
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Figure 15. The absolute value of the eigenvalue plotted against mode number, where
mode numbers are defined by the lowest loss to the greatest loss mode. Eigenvalues
next to each other sharing a color indicate degenerate modes with the same eigenvalue.

55



both cases, there is rough agreement with the TEM0,0 modes previously calculated

with DEM and the analytically determined modes. Due to the nature of Fox and Li

iteration methods, only the least loss mode of the stable resonator was calculated.

In order to further verify the solutions, the two-dimensional intensity information

is also plotted as a one-dimensional function of radius in figure 18. One may notice

a couple of important take-aways from the figure, the first is that all three modes do

not match the analytic solution for a stable mode and the second is that all three

methods match each other. The difference suggests that the methods are capturing

a real physical effect. As mentioned previously, the analytic solution to the problem

does not consider the diffraction effects associated with a finite mirror. By changing

the size of the mirror and then recalculating the mode using ASM for each mirror size

one can verify that the mode calculated through numeric methods will approach the

mode calculated analytically. Figure 19 shows that as the radii of the small mirror, a1

is increased, the predicted cavity mode converges to the analytic solution of the system

for ASM, indicating that the differences between the mode computed numerically with

DEM, ASM, and FFP and the computed analytically is the apodization caused by

the finite extent of the mirrors.

Furthermore, the effects of diffraction on the least loss mode may be approximated

by multiplying the intensity of the TEM0,0 mode by the “jinc” function defined by

Goodman in his book, Introduction to Fourier Optics[30],

I(x, y) = PTote
−2( r

w)
2

[
2wJ1

(
πr
w

)
πr

]2
, (155)

where J1 is the first order Bessel function. The “jinc” function was identified by

Siegman as the Farfield apodization of a circular aperture, and was used to approxi-

mate the Farfield of a diffracted stable resonator. In this research, it may be used to

approximate the diffractive effects of the small mirror with an example comparison
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Figure 16. Contour plots of the TEM0,0 mode predicted by FFP for the half-symmetric
confocal stable resonator. The red line indicates the edge of the outcoupling mirror,
the transverse field in the red circle is not transmitted out of the cavity.
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Figure 17. Contour plots of the TEM0,0 mode predicted by ASM for the half-symmetric
confocal stable resonator. The red line indicates the edge of the outcoupling mirror,
the transverse field in the red circle is not transmitted out of the cavity.
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Figure 18. The comparison of DEM, FFP, and ASM methods against the analytic
solution for the half-symmetric stable resonator.
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Figure 19. A series of ASM results of the mode intensity indicated that as the radii of
the small mirror is increased, the mode calculated with ASM approaches the analytic
solution of the system.
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shown in figure 20. When comparing figure 20 with figure 18, many features are found

to be shared between the ideal and diffracted mode example and the comparison of

the numeric and analytic modes. Two regions within the output mode seem to be

shared between both simulations. The first occurs a little prior to the beam waist of

the TEM0,0 mode, with a difference observed between the ideal and diffracted modes

of approximately 4% for both the numeric and analytic mode comparison as well as

for the ideal and diffracted example. The second difference occurs at a radial distance

that is twice the beam waist of the system, with a small bump that is approximately

0.1% the normalized intensity. These similarity of differences and the change in the

mode predicted by ASM as the radius of the small mirror is varied further indicates

the differences between the the mode calculated with ASM, FFP, and DEM and the

Hermite-Gaussian Modes of a stable resonator are due to the diffraction induced by

the finite mirror extent of the numeric simulations.

The Unstable Resonator

Stable laser resonators are desired because of the low cavity diffractive losses that

occur when the mirrors are no longer assumed to be infinite. The lack of apodization in

the system also means that stable laser resonators are well understood, with transverse

fields following the Hermite-Gauss Modes[35]. However, stable resonators tend to have

mode competition as the Fresnel number of the cavity increases. The simple stable

resonator layout illustrated above also requires any output to be transmitted through

the output coupler, which means that absorption of laser radiation within the output

coupler may become a problem in higher power systems.

These problems may be dealt with by using an unstable resonators. Siegman[36]

summarized the beneficial properties of unstable resonators in three parts:

1. Capability to have large mode volumes
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(b) The Difference in Normalized Intensity of
ideal Gaussian mode and a “diffracted” mode.

Figure 20. The comparison of an ideal Gaussian mode compared to a “diffracted”
mode. The difference between the two is similar to the one shown in figure 18.

2. Adjustable diffractive output coupling

3. Discrimination of higher order transverse modes

which are ideal for high power, high gain laser resonators. He also recognized a

specific class of unstable resonators which have a collimated beam output, the confocal

resonators.

Due to the ever-increasing transverse fill of the mode per pass in the laser cav-

ity, aperture effects will play a role in understanding the properties of an unstable

resonator. In fact, methods to determine unstable resonator modes have been built

using the diffraction caused by the apodization[37, 38] of the output mirror. As the

geometric optics helped in achieving understanding regarding stable cavity laser op-

eration, unstable cavity laser operation may also be understood through geometric

optics. A helpful parameter for understanding an unstable cavity is the geometric

loss.

The shape of the mirrors in an unstable resonator will determine the geometric

loss of the cavity. In an actual wave-optic analysis of a system, geometric loss will

be coupled with diffractive losses allowing for the determination the total loss of the
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cavity. Verdeyen[39] provides excellent illustrations of this loss shown in the initial

pass of the laser through the cavity, displayed in figure 21, and the return pass of the

radiation through the cavity, displayed in figure 22.

Based upon the setup of figure 23, the following relationship must be true for the

initial pass
1

(r1 + 1)∆z
− 1

r2∆z
=

2

R2

, (156)

where r1 is the normalized distance of the image plane from the mirror. r1 is normal-

ized by the distance between the mirrors, ∆z, and the radius of curvature of second

mirror, R2. Equation (156) may be rewritten using the definition of g2 in equation

(138) to be
1

(r1 + 1)
− 1

r2
= 2(g2 − 1) . (157)

Conversely, the return pass described in figure 22, is related to the stability definition

in equation (137) by
1

(r2 + 1)
− 1

r1
= 2(g1 − 1) . (158)

x̂

ẑŷ

R1 R2

P1 P2
M1

M2

a1 a2

∆z

Figure 21. Pictoral description of initial radiation pass through the cavity. The fig-
ure is from Verdeyen’s Laser Electronics textbook[39], specifically from the chapter
concerning unstable resonators.
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Figure 22. Pictoral description of return radiation pass through the cavity. The fig-
ure is from Verdeyen’s Laser Electronics textbook[39], specifically from the chapter
concerning unstable resonators.
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ẑŷ
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Figure 23. Cavity geometry in the unstable resonator, notice that the distance of im-
aged points from the mirror are described in normalized units ∆zr1. The figure is from
Verdeyen’s Laser Electronics textbook[39], specifically from the chapter concerning
unstable resonators.
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The symmetry displayed in r1 and r2 allows for equations (157) and (158) to be

written as a system of equations defined by the stability parameters

r1 =

[
1− (g1g2)

−1]1/2 − 1 + g−1
1

2− g−1
1 − g−1

2

,

r2 =

[
1− (g1g2)

−1]1/2 − 1 + g−1
2

2− g−1
1 − g−1

2

,

(159)

where r1 and r2 are now recognized to be the distances to the cavity’s virtual sources,

which are inherent to the mirrors in the system. The above geometries indicate that

the reflected power going from one mirror to the other is the solid angle of the reflected

power over the total angular extent of the wave. Therefore, the power reflected on

the initial pass is going to be

Γ2 =
solid angle of M2 with origin at P1

angular extent of wave originating at M2

,

=

πa22
4π(r1+1)2d2

πa22
4πr21d

2

,

=
r21

(r1 + 1)2
,

(160)

and for the return pass the amount reflected will be

Γ1 =
solid angle of M1 with origin at P2

angular extent of wave originating at M1

,

=

πa22
4π(r2+1)2d2

πa22
4πr22d

2

,

=
r22

(r2 + 1)2
.

(161)
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The product of the survival factors, Γ1 and Γ2, defined in equations (160) and (161)

is the total fraction of power, Γ, that survives a round-trip

Γ2 = Γ1Γ2 =

[
r1r2

(r1 + 1)(r2 + 1)

]2
, (162)

or more simply

Γ = ± r1r2
(r1 + 1)(r2 + 1)

. (163)

Equation (159) then allows for the cavity survival to be defined by the product of

g1g2,

Γ = ±
1−

[
1− (g1g2)

−1]1/2
1 +

[
1− (g1g2)

−1]1/2 . (164)

If 0 < g1g2 < 1 the quantity in the square root of equation (164) is imaginary, which

means that there is no loss predicted by geometric optics for a stable resonator with

non-transmissive mirrors. The sign of g1g2 gives two different branches for equation

(164)

Positive Branch Negative Branch

g1g2 > 1 g1g2 < 0

Γ =
1−

[
1− (g1g2)

−1]1/2
1 +

[
1− (g1g2)

−1]1/2 Γ =

[
1− (g1g2)

−1]1/2 − 1[
1− (g1g2)

−1]1/2 + 1

(165)

which may then be rewritten in terms of the product of g1g2

g1g2 =
(Γ+1)2

4Γ
g1g2 = − (1−Γ)2

4Γ
. (166)

The above equation allows for the addition of loss contours to figure 9 displayed

in figure 24. For which the geometric loss of the cavity increases as the stability

parameters of the cavity increase.
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Figure 24. g1g2 stability plot including the losses represented in contours along the
plot.

Yuanying’s Unstable Resonator

After verifying the methods with the stable resonator, the methods were applied

to the topic of this research, unstable laser cavities. Unfortunately, the unstable res-

onator as indicated prior has modes that are not easily expressed in terms of analytic

functions. In order to further verify the simulation methods, the modes predicted by

the three methods for two different previously published unstable resonator config-

urations were compared with each other and the results previously published. The

first resonator was pulled from Yuanying’s 2004 paper[28] in which he pioneers the

2D expansion of the DEM originally investigated by Siegman in his Prony Paper[27].

Further discussion of the results associated with that method will be discussed in

section .
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Yuanying’s simulation involved looking at an Unstable Resonator resonator for

stability parameters

g1 = 1.525 ,

g2 = 0.740 .

(167)

The actual dimensions of the layout are illustrated in figure 25. Yuanying solved the

above cavity configuration using DEM. He then propagated the cavity mode to the

farfield. The farfield prediction was then qualitatively compared to experiment.

For the comparison of the three mode calculation methods, the cavity mode con-

figuration based on Yuanying’s reported cavity configuration were calculated. The

transverse mode intensities at the back mirror were compared as functions of radius.

The picture of this comparison is figure 26, which also includes Yuanying’s original

published results.

The three different methods had good agreement with one another, with a max-

imum disagreement that was less than 2% of the normalized intensity, attributed

to minor aliasing observed in the FFP method. However, the results did not agree

with the simulation results presented in Yuanying’s paper[28]. It is believed that the

difference between the published results and our calculations is due to an issue with

x̂

ŷ

ẑ

R2 = 12.1m

R1 = −6ma2 = 25mm

a1 = 10mm

∆z = 3.15m

λL = 10.6µm

Figure 25. Geometry of the Yuanying unstable resonator.
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Figure 26. A comparison radial field intensity for the Yuanying unstable resonator
simulated output using FFP, ASM, and DEM, for field on the back mirror. Also
plotted are the results originally published by Yuanying[28].

the geometries mentioned within the paper. Further extrapolation of the cavities ge-

ometry is difficult due to the non-analytic nature of unstable resonator systems. The

survival factors calculated with all three methods were identical, having a value of

|γ0| = 0.682. Unfortunately, Yuanying did not publish his survival factor calculated

with his two-dimensional DEM.

Confocal Resonators

Confocal resonators are a specific type of laser resonator which have the special

property for which the laser output field will always have a transversely uniform phase

front from the system. In order for the flat phase front to be achieved, the focal

points of the two mirrors within the system must sum to the separation between

those mirrors[40]

∆z = f1 + f2 =
R1

2
+
R2

2
, (168)

where fi and Ri are mirror i’s respective focal points and radii of curvature and ∆z is

the distance between mirrors. Translating equation (168) into a requirement on the
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g1 and g2 parameters defined in equations (137) and (138) gives

2 =
1

1− g1
+

1

1− g2
, (169)

which when solved for g2 as a function of g1 allows marking the confocal resonators

on figure 9, shown in figure 27. Equation (168) may be rewritten in terms of products

2− 2∆z

R1

= 1 +
R2

R1

, (170)

and

2− 2∆z

R2

= 1 +
R1

R2

, (171)

which when the definition of equations (137) and (138) are applied gives

2g1 = 1 +
R2

R1

, (172)

2g2 =

(
1 + R2

R1

)
R2

R1

. (173)

Multiplying equations (172) and (173) together give

g1g2 =

(
1 + R1

R2

)2
4R1

R2

. (174)

Comparing equation (174) with equation (166) identifies that the survival factor of

a confocal resonator is dependent on the ratio of the radii of curvature for a positive

branch unstable resonator

Γ2 =

(
R1

R2

)2

. (175)

Looking at the geometry of the system shown in figure 23, the geometric magnifica-

tion, M , of the cavity per pass is defined as the inverse of the survival factor, which
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Figure 27. The stability diagram highlighting bare cavity laser resonator parameters
which will give stable laser cavity behavior. The negative and positive branches of the
confocal requirement are shown in red.

69



for a positive branch confocal resonator is

−
(
R2

R1

)
=M , (176)

and for the negative branch is

−
(
R2

R1

)
=M . (177)

The geometric magnification may be used to completely define the resonator radii of

curvature for the positive branch confocal resonator

R1 =
2∆z

(1−M)
,

R2 =
2M∆z

(M − 1)

(178)

and

R1 =
2∆z

(1−M)
,

R2 =
2M∆z

(M − 1)

(179)

for the negative branch confocal resonator.

For the high power applications the positive branch confocal resonator is preferred

for use as a laser resonator. The preference is due to a focal point occurring within the

cavity of a negative branch confocal resonator[24] which may cause problems within

a cavity with the introduction of a gain. The positive branch confocal resonator will

produce a collimated output beam, much like a confocal telescope acting in reverse.
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Siegman’s Unstable Resonator

Siegman’s simulation involved looking at a positive branch confocal unstable res-

onator. The dimensions of the resonator are shown in figure 28. Siegman and Sziklas

solved the resonator twice using Fox and Li analysis with an ASM propagator [32]

and a propagator involving as Hermite-Gauss Basis [31]. The Hermite Gaussian Basis

numerically smoothed over the results removing striations associated with the unsta-

ble resonator, and was more computationally intensive then ASM, leading Siegman

to abandon the Hermite-Gauss Basis techniques for ASM. A comparison of the three

methods is shown in figure 29, showing excellent agreement between the three meth-

ods with a difference of less than 2% of the normalized intensity. The methods also

agreed qualitatively with the results present in Szikla’s and Siegman’s paper[32]. A

direct comparison with Siegman would have been performed, but Sziklas presented

the mode in a three-dimensional plot making it difficult to perform a direct com-

parison. The eigenvalues calculated with all three methods was |γ| = 0.5634 which

agreed with the calculation performed by Siegman and Sziklas. A contour plot of

the intensity and phase of the transverse mode at the output coupler is present in

figure 30, illustrating some interesting features associated laser modes present in a

confocal resonator. The phase of the mode at the cavity exit is flat, demonstrating

x̂

ŷ

ẑ

R2 = 13.3m

R1 = −5.33ma2 = 23.0mm

a1 = 9.2mm

∆z = 4m

λL = 10.6µm

Figure 28. Geometry of the Siegman unstable resonator.
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Figure 29. A comparison radial field intensity for the Siegman unstable resonator
simulated output using FFP, ASM, and DEM.
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Figure 30. Contour plots of the bare cavity field output of the Siegman unstable
resonator simulated with DEM. The red line indicates the edge of the outcoupling
mirror, the transverse field in the red circle is not transmitted out of the cavity.
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the collimated nature of a confocal laser cavity. The layout of the intensity within the

cavity also shows ringing throughout the mode occurring from the diffractive effects

of the smaller mirror shown in figure 28.

The Phase on the Outcoupling Mirrors

An interesting facet of the confocal unstable resonator was the collimated phase

observed in the resonator output and pictured in figure 30. Due to the collimated

output of the system, the phase of the field incident on the outcoupling mirror will

not be uniform transversely on the mirror surface. The difference between the two

is counterintuitive to the understanding built with stable resonators. For example,

in figure 31 one sees the the phase on the outcoupling mirror is uniform across the

mirror surface.

Applying the same analysis of the output wave phase for the Siegman unstable

resonator in figure 32, shows that the the phase of the forward traveling wave is not

uniform across the outcoupling mirror. However the combination of the phases of the

forward traveling wave incident on the outcoupling mirror and the backward traveling

mode reflected from the outcoupling mirror are constant. The constant phase of both

waves combined on the mirror edge uphold the boundary conditions imposed by the

mirrors on the magnetic and electric fields on the system.

A question that arises concerning the non-constant phase of a wave incident on the

mirror is, “Why is the phase of the forward traveling wave incident on the outcoupler

mirror uniform for a stable resonator, but nonuniform for an unstable resonator?”

This question may be answered by observing the phase of the output of a stable

resonator when the outcoupler mirror is a much smaller size than the TEM0,0 mode.

The phases of such a resonator are shown in figure 33. Along the mirror the one-

way incident wave’s phase is observed to no longer be uniform across the smaller
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Figure 31. A comparison of the phases of the output field for the half-symmetric
confocal stable resonator described in figure 10, the forward and backward traveling
field on the actual mirror surface, and the addition of the phases of the forward and
backward waves on the mirror edge. The front mirror and back mirror radii, a1 and
a2, are also displayed.

outcoupler mirror surface. Based upon these results, it is recognized that the non-

uniformity of the phase observed in both figure 33 and in figure 32 is due to the

diffraction associated with mirror apodization.

The Equivalent Fresnel Number

Siegman identifies that the unstable resonator mode is a superposition of the mag-

nifying and demagnifying wave solutions for an unstable cavity[24]. The parameters

of the demagnifying solution may be seen from the geometry in figure 34. The phase

imparted by the radii of the mirrors R0 and R1 is

∆0 =
2π

λ

[
|R0| −

√
R2

0 − a2
]
,

∆1 =
2π

λ

[
|R1| −

√
R2

1 − (Ma)2
]
,

(180)

74



0.0 0.5 1.0 1.5 2.0 2.5 3.0
x (cm)

3

2

1

0

1
Ph

as
e 

(R
ad

ia
ns

)

a1 a2

+z Wave Exiting Mirror
+z Wave on Mirror

z Wave on Mirror
Combined Phase of z and +z
 waves on Outcoupler

Figure 32. A comparison of the phases of the output field for the Siegman unstable
resonator described in figure 28, the forward and backward traveling field on the actual
mirror surface, and the addition of the phases of the forward and backward waves on
the mirror edge. The front mirror and back mirror radii, a1 and a2, are also displayed.

which may be approximated with

∆0 =
πa2

λR0

,

∆1 =
πM2a2

λR1

.

(181)

Both phase variations must be the same, ∆0 = ∆1, for the mirrors to have an equiv-

alent effect on the magnifying and demagnifying fields. Therefore, R1 = M2R0 and

R2 must be equal to the summation of R1 and the propagation distance, ∆z

R2 = R1 +M∆z , (182)

or

R2 =M2R0 +M∆z . (183)
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Figure 33. A comparison of the phases of the output field for the half-symmetric
confocal stable resonator with a much smaller outcoupling mirror compared to the one
described in figure 10, the forward and backward traveling field on the actual mirror
surface, and the addition of the phases of the forward and backward waves on the
mirror edge. The front mirror and back mirror radii, a1 and a2, are also displayed.

R0

2a

∆0

R1 =M 2R0

2Ma

∆1

Figure 34. The spherical curvature of a wave from the outcoupling mirror to the back
mirror. The magnifying spherical wave has a M2 term, due to the relationship with the
spherical curvature to the overall size of a. The picture is a duplication of the one used
by Siegman in his Lasers textbook[24] for describing the equivalent Fresnel number.
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However, in order to have R2 replicate the wave for multiple trips, it also must be

the same as R0. Which means that

R0 =M2R0 +M∆z , (184)

and R0 is solved to be

R0 =
M∆z

1−M2
. (185)

R0 is negative due to the curvature representing the converging solution of the res-

onator. The demagnifying solution will be highly dominated by diffraction effects due

to the demagnification constantly shrinking the beam to the point where diffraction

effects imparted by the aperture growing to dominate the magnifying wave solution.

The relative phase difference between the magnification and demagnification solution

is used to define the equivalent Fresnel number, Neq,

|∆ϕMag −∆ϕDemag|
∣∣∣∣
x=a

=
πa2

|R0|λ
= 2πNeq . (186)

Equation (186) may be solved for equivalent Fresnel number to get

Neq =
π(M2 − 1)a2

M∆zλ
=
π(M2 − 1)Ma2

M2∆zλ
=

(M2 − 1)

M2
Ncol . (187)

The equivalent Fresnel number, due to its characterization of the relationship between

the demagnifying and magnifying solution’s phase becomes an important number

when analyzing multimodal behavior of unstable resonators.

Siegman’s Single Dimension Direct Eigenvector Method (DEM)

The final comparison of methods for research and prior work was chosen to be

a study of the absolute value of cavity eigenvalues as a function of varying Fresnel
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number. The comparison was between prior research performed by Siegman[27], Fox

and Li iteration using ASM, and DEM. Due to the hard grid constraint, FFP was

not included within this analysis.

To compare the modes to Siegman’s simplified DEM method[27] required re-

deriving the method in order to recalculate the comparison. Originally, Siegman

used the Prony Method to compute the eigenvalues of the matrix operation. How-

ever, computation has advanced since the work was originally performed in 1970,

meaning that the Prony method used to calculate eigenvalues is no longer required

to solve the simplified DEM problem.

Siegman assumes circular resonator modes and then splits the envelope function

into azimuthal and radial components,

Unl(r, θ) = φnl

(r
a

)
e−ilθ , (188)

where the indices n and l are the radial and azimuthal indices, φnl is the nth radial

eigenfunction corresponding to the lth azimuthal index. By separating the azimuthal

function, the DEM problem is greatly simplified in determining the cavity mode.

For a symmetric laser cavity, the radial eigenfunctions have a propagation kernel

γ1,n,lφ(x) = il+12πNf

∫ 1

0

yJl(2πNfxy)e
−i(πNfg)(x2+y2)φ(y) dy , (189)

where Jl is Bessel function of order l, Nf is the Fresnel number, g is the stability

parameter associated by the small mirror The single propagation represents the full

travel through the cavity. The circular eigenfunction is orthogonal if written as a

function x1/2φ(x), ∫ 1

0

xφnlφml dx = δmn . (190)
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Siegman recognizes presence of the oscillatory Bessel Function, Jl(2πNfxy), re-

quires a sampling of at least eight units per fringe in the cavity, meaning that the

computational effort is roughly O(N2) versus O(N4) computation effort associated

with the two-dimensional DEM.

Throughout the rest of Siegman’s paper the equivalent Fresnel number, Neq, is

used versus the Fresnel number, because the equivalent Fresnel number defines the

eigenvalues associated with the changing cavity better than the Fresnel number.

Based upon equations (164), (175), and (176), g may be related to the geometric

magnification of the positive branch confocal resonator cavity

M = g +
(
g2 − 1

)1/2
, (191)

with the equivalent Fresnel number being related to g by

Neq = Nf

(
g2 − 1

)1/2
. (192)

Asymmetric Circular-Mirror Unstable Optical Resonator.

After deriving the above symmetric relationship, Siegman breaks geometric sym-

metry by generating equivalence relationships between the asymmetric problem’s vari-

ables and the variables defined within the symmetric problem.

The complete eigenmode may be calculated from two coupled integral equations

γ1φ1(x) = il+1

(
2π

λ∆z

)∫ a2

0

yJl

(
2πxy

λ∆z

)
e−i(

π
λ∆z )[g1x2+g2y2]φ2(y) dy , (193)

γ2φ2(y) = il+1

(
2π

λ∆z

)∫ a1

0

zJl

(
2πyz

λ∆z

)
e−i(

π
λ∆z )[g1z2+g2y2]φ1(z) dz . (194)

If the mirror radius a2 is larger than the mode size of the mirror so that φ2(y) ≈ 0

for y ≥ a2 then the second integral’s upper bound may be considered to be ∞. With
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this assumption and a Bessel function identity presented by Bateman[41] equations

(193) and (194) may be combined into

γ1γ2φ(x) = il+1

(
πa21
g2λ∆z

)∫ 1

0

yJl

(
πa21xy

λg2∆z

)
e
−i

(
πa21

2g2λ∆z

)
(2g1g2−1)(x2+y2)

φ1(y) dy ,

(195)

where g1, g2 and the Fresnel number associated with mirror 1, Nf,1, may be combined

to form the generalized parameters defined in the symmetric case

Nf =

∣∣∣∣Nf,1

2g2

∣∣∣∣ , (196)

g = |1− 2g1g2| , (197)

|γ| = |γ1γ2| , (198)

Neq = Nf,1

[
g1
g2
(g1g2 − 1)

]1/2
. (199)

Although the magnitude of γ versus the magnitude of the product of γ1 and γ2 is a

simple relationship, the actual relationship between γ and γ1γ2 is more complex due

to the phase associated with the eigenvalues. Taking the stability parameters g1 and

g2 into account lets the complex value of γ be defined

γ =



γ1γ2 (g1g2 > 1, g2 > 0)

γ⋆1γ
⋆
2 (g1g2 > 1, g2 < 0)

(−1)l+1γ⋆1γ
⋆
2 (g1g2 < 0, g2 > 0)

(−1)l+1γ1γ2 (g1g2 < 0, g2 < 0)

. (200)
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Bare Cavity Eigenvalue Study Results

Using the Siegman method presented in the previous section, DEM, and ASM, a

study was performed comparing eigenvalues for a resonator system. A baseline ge-

ometry defined in figure 35 was used across multiple simulations were ran for positive

confocal resonator arrangements with a set geometric magnification of M = 2. The

wavelength was chosen to be λ = 10.6µm to represent a CO2 laser, and the separation

between mirrors, ∆z = 4m was held constant. The front mirror radius was varied in

order to modify the equivalent Fresnel number. The back mirror radius was set to

be 1.1Ma. The reason that the back mirror is a little larger than Ma is to duplicate

the assumption of an infinitely sized back mirror for Siegman’s Prony Method.

The survival factors of the resonator modes as a function of equivalent Fresnel

number are displayed in figure 36. The results demonstrate the relationship of mode

crossover occurring at integer equivalent Fresnel numbers. The least-loss laser cavity

modes experienced the least loss for cavity geometries corresponding to half integer

equivalent numbers. Compared to the results originally presented by Siegman[27],

the curves presented in figure 36 have much more structure then their counterparts,

but are more reminiscent of later results[24].

Shrinking the back mirror to be Ma, the eigenvalues are modified as shown in

figure 37. The difference between the survival factors in figure 37 and figure 36

are recognized to be the diffractive losses of the back mirror. As Siegman noted in

Lasers[24], diffractive losses have a larger impact on the unstable resonator compared

to the stable resonator leading to the differences in the magnitude of the eigenvalues

calculated for the cavity being large.
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Figure 35. The geometry of used for the eigenvalue study as a function of NEq. M was
held at 2 throughout the eigenvalue study.
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Figure 36. The absolute value of the eigenvalue associated with the per pass field
propagation through the laser cavity as a function of the cavity equivalent Fresnel
number. The eigenvalues are for a cavity with a back mirror 10% larger than Ma.
The eigenvalues were calculated with Siegman’s DEM covered in , the two-dimensional
DEM, and Fox and Li iteration.
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Figure 37. The absolute value of the eigenvalue associated with the per pass field prop-
agation through the laser cavity as a function of the cavity equivalent Fresnel number.
The eigenvalues are for a cavity with a back mirror equal to Ma. The eigenvalues were
calculated with Siegman’s DEM, the two-dimensional DEM, and Fox and Li iteration.
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IV. Gain in the Cavity

Although analyzing the modes of a bare cavity provide insight into the unstable

resonator, an important aspect of laser design to understand how the cavity mode

couples into the gain of a laser system. In the following sections, this coupling is

analyzed using a gain wave-optic simulation. The first section derives and defines the

simulation techniques used to handle the field propagation through the gain medium.

The simulation method will then be used to perform four separate studies involving

the variation of cavity parameters from a defined baseline cavity arrangement and gain

medium. In order to measure beam quality throughout the studies, VPIB, which is

a measurement of beam quality comparing the cavity power output against an ideal

Gaussian laser output is defined and used within all of the studies. In order have

comparison for the calculated system efficiency, Hager’s Model[10, 11] is presented.

A new simplified model, which includes the effects of the unstable resonator mode is

also presented, accounting for the differences between the results of the gain wave-

optics simulation and the Hager model.

The Simulation of the Cavity

The inclusion of gain within the laser cavity requires a few additional calcula-

tion steps compared to the bare cavity simulations using Fox and Li Iteration. The

principle of the simulation is the same, an initial field is propagated in the cavity for

multiple passes until the difference in the volumetric laser, pump, and gain properties

decreases to the order of machine precision. The simulation starts by defining two

different grids, a gain grid and an optical grid. The gain grid is a subset of the optical

grid possessing the same grid resolution as the optical grid, but having different grid

extents, with the gain grid only extending to the axial extents of the gain cell, with
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the optical grid extending across the entire laser resonator. As indicated in figure 38,

the simulation involves the repetition of three primary steps, the pump propagation,

updating the medium’s gain and loss based upon the pump and laser intensity distri-

bution within the cavity, and the laser propagation. The pump propagation consists

of either a wave-optics or scaling code simulation of an input pump intensity distri-

bution chosen by the researcher traveling in one way through the cavity. Updating

the gain consists of calculating the gain for each grid position within the gain cell

in order to appropriately handle the amplification to the laser and loss to the pump

intensity distribution. Finally, the laser is then propagated using wave-optics forward

and backward within the cavity, taking into account the mirror effects at each end of

the cavity. The completion of all three steps indicate a pass of the laser and pump in

the cavity. After many passes, the variation of the spatially dependent gain parame-

ters as well as the spatial distribution of pump and laser intensity become negligible

between successive passes of the calculation. When the variation becomes negligible,

the system is said to have converged on the laser cavity solution.

The following subsections involve a derivation of the wave optics code for the

propagation of the laser and pump followed by the calculation of the gain medium

using a three energy level model.

The Wave-Optics Simulation.

One of the seminal texts regarding numerical propagation of a laser field through

an interacting material is Nonlinear Fiber Optics by Agrawal[22]. In it, he defines

the Fourier Split Step Method (FSSM) based upon the pulse propagation through

fibers. The following subsection uses Agrawal’s[22] and Siegman’s[24] definitions to

determine a wave equation for the propagation of an electromagnetic wave through

material.
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Figure 38. The sequence of events in a single pass for the simulation.

The wave propagation through material may be derived by starting with Maxwell’s

Equations for materials,

∇× E⃗ = −∂B⃗
∂t

, (201)

∇× H⃗ = J⃗+
∂D⃗

∂t
, (202)

∇ · D⃗ = ρfree , (203)

∇ · B⃗ = 0 , (204)

where D⃗ and H⃗ are the respective electric and magnetic fields that deal with free

charge and current, E⃗ and B⃗ are the electric and magnetic fields, and ρfree is the free

charge. E⃗ and B⃗ are related to H⃗ and D⃗ through the following relationships

D⃗ = εE⃗+ P⃗A , (205)

B⃗ = µ0H⃗+ M⃗ . (206)
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The term P⃗A, in equation (205), is a special notation indicating that the polarization

of the atomic line transition of the laser media will be the only polarization present

within the system. All other material effects are assumed to be included within the ε

term, including the field effects of the dielectric outside of the atomic line transition

of the laser medium. Essentially the linear effects on the electric field have been

separated from the nonlinear effects.

The magnetic field associated with bound current M⃗ will be assumed to be zero,

with the magnetic field traveling as if it were in free space. B⃗ is then only related to

H⃗ by the permeability of the magnetic field within a vacuum, µ0.

Combining equations (201), (202), (203), and (204) gives a partial differential

equation for the electric field

∇×∇× E⃗ = −µ0
∂J⃗

∂t
− n2

ind
c2

∂2E⃗

∂t2
− µ0

∂2P⃗′
A

∂t2
, (207)

where µ0ε = n2/c2, and c is the speed of light in vacuum along with n representing

the index of refraction of the material in which the wave is propagated. If the free

current is considered to be a linear function of E⃗

J⃗ = σE⃗ , (208)

the free charge in the system decreases exponentially

∂ρf
∂t

= −σ∇ · E⃗ , (209)
∂ρf
∂t

= −σ
ϵ
ρf , (210)

ρf (t) = ρf,0e
−σ

ϵ
t . (211)
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If σ is large ρf (t) ≈ 0, ∇·D = 0, allowing for the entire wave equation to be written

as

∇2E⃗− µ0σ
∂E⃗

∂t
− n2

c2
∂2E⃗

∂t2
− µ0

∂2P⃗A

∂t2
= 0 . (212)

where P⃗′
A is the polarization that effects growth and decay in the field. P⃗′

A may be

calculated by recognizing that the entire polarization, P⃗A, is coupled to the optical

field traveling within the medium

∂2P⃗A

∂t2
+∆ωA

∂P⃗A

∂t
+ ω2

aP⃗A = κ′E⃗ , (213)

where κ′ is the number of total dipole oscillations associated with the bound field

κ′ =
Nq2e
mε

. (214)

Equation (213) may be recast in Fourier space and then solved to be

P̃A =
κ′

i∆ωAω + (ω2
a − ω2)

Ẽ . (215)

Assuming ωa ≈ ω reduces equation (215) to

P̃A = −i κ′

∆ωAω

1

1 + 2i (ω−ωa)
∆ωA

εẼ . (216)

Splitting the relationship for the polarization, P̃A into real and imaginary parts gives

P̃A = − κ′Ẽ

∆ωAωA


(

2(ω−ωa)
∆ωA

)
1 +

(
2(ω−ωa)
∆ωA

)2 + i
1

1 +
(

2(ω−ωa)
∆ωA

)2
 . (217)

Equation (217) contains the complete effects of the polarization generated by the

medium. The real term corresponds to phase changes induced by the medium and
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the imaginary term represents the growth or decay terms[42] that will effect the

electric field in equation (212), and therefore

P̃ ′
A = − κ′Ẽ

∆ωAωA

 1

1 +
(

2(ω−ωa)
∆ωA

)2
 . (218)

At this point, the definition for κ′

∆ωAωA
may be rewritten as a function of κ and γrad

κ′

∆ωAωA
= Nκ , (219)

where

κ =
3⋆λ3Aγrad

4π2∆ωA
, (220)

γrad =
q2eω

2n3

3⋆ 2πεmc3
, (221)

where the 3⋆ is either 3 for a material made up of fully aligned atoms or 1 for a material

made up of randomly aligned atoms. Normally γrad, is determined experimentally[24]

for a system. Equation (218) is then a function of

P̃A = −iκ∆nεẼ 1

1 +
(

2(ω−ωa)
∆ωA

)2 . (222)

Using equation (222) in (212) and then applying a temporal Fourier transform

gives

∇2Ẽ − iµ0σωẼ +
ω2n2

c2
Ẽ + iµ0ω

2κ∆nεẼ
1

1 +
(

2(ω−ωa)
∆ωA

)2 = 0 . (223)
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Assuming no conduction within the system, σ = 0, equation (223) becomes a new

Helmholtz wave equation, one which includes the effects of the laser medium,

0 = ∇2Ẽ + k2
[
1 + i

1

k
σ(ν)∆n

]
Ẽ , (224)

where σ(ν) is the cross section of interaction between the field and the medium. Based

upon equations (224) and (223), σ(ν) is defined as

σ(ν) =
c2γrad

8πn2ν2A

1

2π

∆νA(
∆νA
2

)2
+ (ν − νA)

2
, (225)

where νA is the line center frequency of the material, ∆νA is the linewidth associated

with the medium, and k is the angular spatial frequency of the radiation in the

material.

Solving the Partial Differential Equation (PDE) - Split Step.

Equation (224) is the PDE which represents the field of optical radiation going

through the gain medium. However, as completed previously in chapter II, the PDE

may be simplified with the paraxial wave assumption. Replacing Ẽ with a more

general wave function, ψ, gives a general wave equation for all scalar field components

∂2ψ

∂z2
= −∇2

Tψ − k2
[
1 + i

1

k
gij(x, y, z)

]
ψ , (226)

where σ(ν)∆n has been rewritten as a function of gain, gij, associated with the

transition i→ j,

gij(x, y, z) = σ(ν)∆n . (227)
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Much as in chapter II, ψ is rewritten as a function of the freespace spatial angular

frequency effects and an envelope function

ψ(x, y, z) = eik0zU(x, y, z) , (228)

where k0 is the angular spatial frequency of the oscillating electric field.

The definition of the envelope function allows for the left-hand side of equation

(226) to be rewritten as

∂2eik0zU

∂z2
=

(
−k20U + 2ik0

∂U

∂z
+
∂2U

∂z2

)
eik0z , (229)

and with the paraxial assumption,

∣∣∣∣2ik0∂U∂z
∣∣∣∣≫ ∣∣∣∣∂2U∂z2

∣∣∣∣ , (230)

becomes,
∂2eik0zU

∂z2
≈
(
−k20U + 2ik0

∂U

∂z

)
eik0z . (231)

Applying this relationship to equation (229) leads to

∂U

∂z
=

i

2k0
∇2
TU +

ik0
2

(
k2

k20
− 1

)
U +

k

2k0
gij(x, y, z)U , (232)

and recognizing the index of refraction as

nind =
k

k0
, (233)

allows equation (232) to be written as

∂U

∂z
=

i

2k0
∇2
TU +

ik0
2

(
n2

ind − 1
)
U +

nind

2
gij(x, y, z)U . (234)
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Finally, if the material has an index of refraction which is approximately one, which

is the case for most gases, equation (234) may be approximated to be

∂U

∂z
=

i

2k0
∇2
TU + ik0(nind − 1)U +

1

2
gij(x, y, z)U . (235)

∂U
∂z

and i
2k0

∇2
TU in equation (235) represent the wave propagation terms of the PDE.

These propagation terms remain the same in a vacuum as well as in a material.

The k0(nind − 1) term are the effects of the medium on the phase of the propagating

optical radiation. Finally, 1
2
gij(x, y, z) represents the effects of the medium on the

propagating radiation’s amplitude. Equation (235) is a parabolic PDE, which means

that it may be solved only by defining boundaries in the transverse direction and an

initial value in the axial direction. Equation (235) must be modified to propagate a

field defined at an initial point, U0 a distance ∆z.

The Fourier Split Step Method.

Equation (235) may be rewritten in terms of two operators

∂U

∂z
= [L+N]U , (236)

where the operators are defined as

L = i
1

2k0
∇2
T , (237)

N = ik0(nind(x, y, z)− 1) +
1

2
nind(x, y, z)gij(x, y, z) . (238)
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Equation (236) represents a first order ODE, which may be generally solved to

propagate the envelope function, U , exactly by

U(x, y, z +∆z) = e
∫ z+∆z
z [L+N]dzU(x, y, z) , (239)

where N may be assumed to vary little across small steps of ∆z. The assumption of

small variation allows equation (239) to be rewritten as

U(x, y, z +∆z) = e∆zLe∆zNU(x, y, z) , (240)

Ignoring L, the effects of N may be applied as a scalar multiplication on U,

U(x, y, z +∆z) = eN∆zU(x′, y′, z) . (241)

If the N operator is ignored, equation (240) may be solved in the spatial frequency

regime,

U(x, y, z +∆z) = F−1
[
eF [L]∆zF [U ]

]
. (242)

Combining both of the solutions together allows for a complete propagation of the

envelope function, U ,

U(x, y, z +∆z) = F−1
[
eF [L]∆zF

[
eN∆zU(x, y, z)

]]
. (243)

However, the entire solution written in equation (243) is not a completely accurate

solution to equation (236). The inaccuracy of this solution is due to the nonequiva-

lence between equation (239) and equation (240), namely,

e[L+N] ̸= eLeN . (244)
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The nonequivalence in equation (244) stems from the fact that the operators L and

N do not commute. By the Baker-Hausdorff formula, the actual multiplication of the

two exponential terms described in (240) are

eL∆zeN∆z = e∆zL+∆zN+ 1
2
∆z2[L,N]+ 1

12
[L−N,[L,N]]∆z3+... , (245)

where the commutation operation is defined as

[a,b] = ab− ba . (246)

Although the terms in the exponential are different, for small ∆z, they are approx-

imately the same. The error generated by the difference goes as the largest term in

equation (245), 1
2
[L,N]∆z2. As has been previously indicated in the literature[22],

modifying (243) to rewrite the exponentials as e 1
2
N∆zeL∆ze

1
2
N∆z removes the 1

2
[L,N]∆z2

error term. Therefore, this research used

U(x, y, z +∆z) = e
N
2
∆zF−1

[
eF [L]∆zF

[
e

N
2
∆zU(x, y, z)

]]
. (247)

instead of equation (243) to minimize the step error in the method to O(∆z3). When

writing out the operators associated with the propagation, the L term is recognized

as the propagator from the ASM

eF [L]∆z = ei
∆z
2k [k2x+k2y] . (248)
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Equation (247) and the definitions in equations (237) and (238) allow for the propa-

gation in a gain medium across a step size of ∆z to be modeled with

PG[U ] = e
1
2
ik0(nind−1)∆ze

1
4
nindgij∆zF−1

[
e
i ∆z
2k0

[k2x+k2y]F
[
e

1
2
ik0(nind−1)∆ze

1
4
nindgij∆zU

]]
.

(249)

Equation (249) defines the Fourier Split-Step Method that was used for research

involving the propagation through a gain medium. It is important to note that if the

gain term is zero, the amplitude of U will not be modified during transit. If in addition

to the gain being zero, the index of refraction is one, then equation (249) reduces to

ASM. Unless performed for multiple different frequencies, FSSM only propagates a

monochromatic beam. Due to the computational difficulty associated with multiple

propagations, the laser in this research was assumed to be monochromatic. Due to the

higher error terms in the propagation through the gain, many successive steps were

taken through the gain medium, as shown in figure 39. The oneway propagation in

each direction involved propagating the field from the mirror to the gain cell followed

by multiple steps within the gain medium and then a propagation from the gain

cell to the mirror. For all simulations within this research, the gain cell propagation

involved 200 steps within the gain medium. Therefore, the full propagation in a single

direction within the laser cavity was a combination of no gain and gain propagations

P[U ] = PNGP
NSteps
G PNG[U ] . (250)

The single pass for the wave-optic propagation is the same as in equation (59), with

the propagation term now made up of gain propagation terms for propagation in the

laser medium and non-gain propagation terms for propagation from the medium to

the mirrors.
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Figure 39. The steps taken in the propagation of the envelope function throughout the
cavity, notice that inside the gain, the field was propagated with FSSM. Outside the
gain the field was propagated with ASM.

Scaling for Simplified Propagation.

Dependent on the cavity layout and beam parameters, characterizing causes of

loss and mode shape within the gain medium can become overly complex. In order

to simplify the simulation and properly attribute cavity behavior to the effects of

the unstable resonator mode, the pump was not propagated using the wave-optics

methods defined above. Instead the assumption of a uniform scaled pump was used

for the system. The propagation within the gain medium for pump was then modified

to be

PG[U(x, y)] = eik0(nind−1)∆ze
1
2
nindgij∆z[U(x, y)] . (251)

Such an approximation is valid if

1

2k0

∣∣∇2
TU
∣∣≪√

(nind − 1)2 +
1

4
g2ij |U | . (252)
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The approximation is valid for the uniform pump configuration used for the studies

presented in this research. For future work involving more complex pump variations,

the pump wave-optics may need to be included in simulation.

Determining the Gain.

The goal of the research was to understand the workings of an unstable laser

resonator in the presence of a high gain medium. As discussed in chapter I, DPAL

is an interesting high gain system that is of great interest to the Department of

Defense (DoD). Therefore, the gain medium that will be used within the simulations

within this research will be an optically pumped alkali material. Based upon previous

work performed by Hager[10, 11], the alkali material investigated was rubidium with

helium used as a buffer gas. Figure 40 is the Grotian diagram for rubidium, showing

the energy levels that will be used for pumping and lasing within the simulation. For

the simulations performed in this research, the only energy levels used for the kinetics

will be the levels related to the pump and lasing transitions.

The Three-Level Kinetics of the Systems.

The three-level model for the rubidium-helium mixture is illustrated in figure 41

where the three levels are defined by the 52P3/2, 52P1/2, and 52S1/2. The primary lasing

series occurs with rubidium optically absorbing radiation on the pump line exciting

atoms from the 52S1/2 → 52P3/2 state, followed by a collision with the helium buffer

gas de-exciting rubidium atoms from the 52P3/2 → 52P1/2 state, and lasing dexciting

rubidium atomr from the 52P1/2 → 52S1/2 state. From this relationship and the

natural relaxation of the two excited modes, the following system of rate equations
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Figure 40. The Grotian diagram for rubidium created using data from the National
Institute of Standards and Technology (NIST) Atomic Spectra Database[43]. The pump
transition, 52S1/2 → 52P3/2, of the DPAL is shown in green. The lasing transition,
52P1/2 → 52S1/2, is shown in blue.
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Figure 41. Three-level kinetic model of the rubidium gain medium.

may be defined as

dn1

dt
= B31n3 −B13n1 +B21n2 −B12n1 + Γ31n3 + Γ21n2 , (253)

dn2

dt
= −B21n2 +B12n1 − Γ21n2 + k32nmixn3 − k23nmixn2 , (254)

dn3

dt
= −B31n3 +B13n1 − Γ31n3 − k32nmixn3 + k23nmixn2 . (255)

where Bij represents the optical transition rates from level i → j, ni is the number

density for level i, kij are the collisional transfer rate between fine structure states

from i → j, nmix is the number density of the buffer gas, and Γij are the natural

dexcitations to the ground state. Some of these parameters are recognized to be

related to one another due to conservation of number density and photon energy at

chemical equilibrium,

B13 = 2B31 , (256)

k23 = 2e−θk32 , (257)
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where θ is ∆E
kbT

, T is the temperature of the gain medium, kb is Boltzmann’s constant,

and ∆E is the energy difference between the fine structure mixing levels. The Bij

rate is recognized to be a function of the photon density and the cross section of

interaction of those photons the gain media, σ21 and σ31, allowing for the definition

of the optical transition rates as

B21 = σ21
Ψ

hpνl
, (258)

B31 = σ31
Ω

hpνp
. (259)

where Ψ is the two-way intensity of the laser radiation, Ω is the two-way intensity of

the pump radiation, σij are the cross sections of the photon atom interaction, νl is

the optical frequency of the laser, νp is the optical frequency of the pump, and hp is

Planck’s Constant. k32 is recognized as the rate of reaction for the n3 → n1 transition,

and when combined with the helium density, nHe, becomes the fine structure mixing

rate

γmix = k32nHe . (260)

The above definitions for the Bij rates assume the laser and the pump are narrow-

banded around the line center of the gain medium for both lasing and pump inter-

actions. Using these definitions, equations (253), (254), and (255), may be rewritten

as

dn1

dt
= σ31

Ω

hpνp
(n3 − 2n1) + σ21

Ψ

hpνl
(n2 − n1) + Γ31n3 + Γ21n2 , (261)

dn2

dt
= −σ21

Ψ

hpνl
(n2 − n1)− Γ21n2 + γmix

(
n3 − 2e−θn2

)
, (262)

dn3

dt
= −σ31

Ω

hpνp
(n3 − 2n1)− Γ31n3 − γmix

(
n3 − 2e−θn2

)
. (263)
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Many of the terms in equations (261), (262), and (263), need to be further defined

in order for use in the simulation. For example, Γ21 and Γ31 are the dexcitation rates

for the energy levels and are driven by spontaneous emission of photons and collisional

dexcitation with an energy levels to the ground state. Therefore, the dexcitation rates

are defined by

Γ21 =
1

τ21
+ k21nHe , (264)

Γ31 =
1

τ31
+ k31nHe , (265)

where τij is the optical relaxation time for the transition of i → j. The second

term is the rate of collisional dexcitation to the ground state. Typically the rate of

collisional dexcitation for these energy levels is very small compared to the relax-

ation time meaning the collisional dexcitation may be ignored for steady state DPAL

operation[10].

The optical cross section, previously defined in equation (225) in terms of the a

Lorentzian lineshape requiring the center-line frequency and the bandwidth of the

line absorption. The centerline frequency is defined by

νij =
∆Eij
hp

, (266)

for which ∆Eij is the difference in energy between both of the transition states which

may be determined from figure 40. The absorption bandwidth, ∆νij, is related to the

relaxation time and the pressure broadening experienced in the material

∆νij =
1

2πτij
+ Γij,TP , (267)
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where P is the pressure of the system and Γij,T is the temperature dependent optical

transfer rate, defined by

Γij,T = Γij,Tref

(
T

Tref

)ξij− 1
2

, (268)

where the Tref is the reference temperature and ξij is a fit of the temperature to

temperature, T . Γij,Tref is defined by a measured cross section, measured at Tref

Γij,Tref = σij,Tref

√
8

πµkbTref
, (269)

where µ is the reduced mass of collisions in the system, which for the mixture of rubid-

ium and helium, is determined from the atomic mass of helium, mHe, and rubidium,

mRb,

µ =
mRbmHe

mRb +mHe
. (270)

Another important rate to define is the collisional dexcitation rate, k32, determined

empirically by Gallagher in his 1968 paper[44]. The relationship for the rubidium

mixture is defined as

k32 = vrel

[
k32,1Γ(5)

(
2kBT

µv2ref

)3

+ k32,2Γ

(
5

2

)(
2kBT

µv2ref

)1/2
]
, (271)

where vrel is the relative speed given by

vrel =

√
8kbT

πµ
. (272)

An important modification to γmix was found by Sell[45], who discovered the impor-

tance of a constant 3-body collision term, k3b, modifying γmix to be

γmix = k32nmix + k3bn
2
mix . (273)
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Solving the Rate Equations.

The complete simulation, as indicated in figure 38, is ran until the cavity reaches

a steady-state. The assumption of a steady-state solution to the gain wave-optics and

the relatively high fine-structure mixing rates, γmix ≈ 0.1−2.0 ns, allow for equations

(261), (262), and (263) to be solved by treating the system of differential equations

as steady state,
dn1

dt
=

dn2

dt
=

dn3

dt
= 0 . (274)

The steady-state condition allows equations (261), (262) and (263) to be written as

a linear system of equations,

0 = σ31
Ω

hpνp
(n3 − 2n1) + σ21

Ψ

hpνl
(n2 − n1) + Γ31n3 + Γ21n2 , (275)

0 = −σ21
Ψ

hpνl
(n2 − n1)− Γ21n2 + γmix

(
n3 − 2e−θn2

)
, (276)

0 = −σ31
Ω

hpνp
(n3 − 2n1)− Γ31n3 − γmix

(
n3 − 2e−θn2

)
. (277)

which when combined with a requirement that the density of all states must add up

to the density of rubidium, nRb,

nRb = n1 + n2 + n3 , (278)

allowed for the calculation of n1, n2, and n3 for the steady-state condition. The

densities of atoms occupying each energy state may then be used to calculate the

gain in the 2 → 1 and 3 → 1 transition lines,

g21 = σ21(ν21)(n2 − n1) , (279)

g31 = σ31(ν31)(n3 − 2n1) . (280)
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These gains may then be used in the wave-optics calculation. The evaluation of the

cross sections at line center indicates that the simulations conducted in this research

were all performed at the narrowband limit.

The index of refraction used for the gain medium was calculated using the Gladstone-

Dale coefficient for helium and the helium number density

n = 1 + ξHemHenHe , (281)

where ξHe = 3.49 × 10−5 m3

kg is the Gladstone-Dale coefficient[46] for helium and nHe

is the helium number density, calculated from the system pressure and temperature

using the ideal gas law,

nHe =
PHe

kbT
. (282)

Baseline Case Simulation

When analyzing the mode of an unstable resonator in relation to a cavity there are

many different parameters which may be varied. To facilitate the research concerning

the gain medium, analysis will involve having a defined baseline case and modifying

parameters singly away from the baseline case. Figure 42 and figure 43 define the

parameters associated with the baseline case. There are a few differences between the

baseline case for the cavity with gain, and the calculations in chapter III, primarily

the inclusion of a gain medium that drives other considerations with the laser design.

The lasing and pumping wavelength are much shorter for lasing in an alkali medium,

whereas, the bare cavity simulations involved a lasing wavelength corresponding to a

CO2 laser, 10.6µm in order to better compare to work previously performed. As ob-

served from equation (151), decreasing the wavelength increases the Fresnel number
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λP = 780.24 nm
∆ν = 100.0MHz
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ẑ

R2 = 8m

R1 = −4ma2 = 4.37mm

a1 = 2.18mm

∆z = 2.0m

λL = 794.98 nm

Figure 42. Diagram of the laser, pump, and lasing cavity parameters for the baseline
case simulation.

associated with the cavity, also increasing the computational effort required to simu-

late the cavity. For this reason, the square cavity mirrors in figure 43 were chosen in

order to enable the simulation of the higher Fresnel number cavity. The baseline case

cavity dimensions were chosen to simulate a cavity with a geometric magnification of

two and a Fresnel number of three. The mirrors were chosen to have an aspect ratio

of 9
10

to differentiate between the different modes in the transverse direction. The

blue region in figure 42 and figure 43 represents the pumped gain region. Even though

the pumped gain was chosen to only extend partially in the transverse directions, the

gain grid was chosen to extend transversely over the complete optical grid.

The gain cell parameters and the pump intensity were chosen to ensure good laser

operation and be a reasonable facsimile for a real system. However, the simulations

do not include heating of the gain medium or fluid effects within the cavity. Pressure

and temperature are defined quantities used to model the fine structure mixing and

the pressure broadening associated with the rubidium alkali material and were not

allowed to vary during the simulation. The simulations also did not include the effects

of Amplified Spontaneous Emission (ASE) in the gain wave-optics simulation, which

may impact the gain available for lasing in a real system.

The optical grid in the baseline case had a sampling of Nx, Ny = 512, 512, with a

total grid size of ∆xGrid,∆yGrid = 5.09 cm, 5.09 cm. The gain medium had a sampling
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Figure 43. Diagram of the lasing medium parameters in the square mirror lasing cavity
for the baseline case simulation.

of Nz = 200, with two more planes included for the optical grid to represent the

mirror planes. Prior to the simulation with the gain medium, Fox and Li iteration

was used to calculate the bare cavity mode of the laser resonator. The bare cavity

output mode’s phase and intensity are shown in figure 44. One may immediately

recognize that an intuitive feel for the mode is almost nonexistent, which will remain

consistent throughout the cavity analysis. The gain cavity simulation following all

three of the cycles indicated in figure 38 was ran until simulation convergence occurs.
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Figure 44. Contour plots of the output normalized intensity and phase for the baseline
configuration located at the smaller outcoupling mirror. The red line indicates the edge
of the outcoupling mirror, the transverse field in the red circle is not transmitted out
of the cavity.
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Convergence is defined as the point where enough simulation iterations have occurred

for the residual for the laser, pump, gain populations, and pump have ceased changing.

Residuals are the normalized difference in the sum of a field value between each step

defined mathematically for a general parameter, u,

∆un =

∑
i,j,k

∣∣∣∣uni,j,k∣∣− ∣∣un−1
i,j,k

∣∣∣∣∑
i,j,k

∣∣un−1
i,j,k

∣∣ , (283)

where i, j, and k are the indices corresponding to the spatial grid and n is the simu-

lation step, with each step corresponding to a simulated pass in the cavity. Figure 45

displays the residuals of the variables defined in table 1 as a function of simulation

step. Throughout the simulation, n1, n2, and n3 are calculated within figure 38,

from these values the gain applied to the field,

γ = e
1
2
g21δz+i(nind−1)δz , (284)

where δz is the ẑ resolution, defined by

δz =
∆zG

Nz − 1
. (285)

Residual of Cavity Variable of Residual (u)
Population in the n1 State ∆n1

Population in the n2 State ∆n2

Population in the n3 State ∆n3

The attenuation of the pump ∆γPump
The attenuation of the laser ∆γLaser

The pump field ∆UPump
The laser field ∆ULaser

Table 1. The definition of the residuals calculated in a simulation and shown in figure 45.

107



0 100 200 300 400
Steps

10 14

10 9

10 4

101
N

or
m

al
iz

ed
 R

es
id

ua
ls n1

n2
n3

Pump

Laser
UPump
ULaser

Figure 45. The normalized residuals as a function of simulation cycle through the
cavity with each step corresponding to a full operation of simulation events pictured
in figure 38.

Figure 46 indicates |γ| is close to one indicating that the laser experiences a gain that

is close to the gain threshold of the cavity system. The predicted gain threshold or the

gain required to overcome cavity losses is geometric analysis is gth = 3.4657 and the

measured threshold of the cavity is gth = 3.6919 indicating that there is more loss from

the diffractive mode being propagated through the medium versus the the expected

loss of the geometric mode. Another interesting feature of the gain medium is the

presence of features outside the pumped laser medium, indicating that diffraction from

the mirrors is actually moving laser energy outside of the pumped area. Outside of

the pumped area, the gain is highly absorptive acting as a window for the laser beam.

The field intensity in both directions were also calculated the side profile of the laser

traveling in the −ẑ and +ẑ directions are shown in figure 47 and figure 48 respectively.

Figure 47 shows the field spreading during travel across the gain, even though the

length of the gain cell is shorter than travel across the entire cavity. Surprisingly,

the mode in figure 48 also shows a slight growth to the laser mode, even though the

beam is collimated in the geometric limit. Another feature in the laser comparing

−ẑ to +ẑ travel is recognizing that the intensity in the −ẑ direction reaches a larger

108



7.5 5.0 2.5 0.0 2.5 5.0 7.5
z(cm)

2

1

0

1

2

x(
cm

)

0.95

0.96

0.97

0.98

0.99

1.00

|
La

se
r|

Figure 46. A xz slice along y = 0 of the amplitude of the gain profile for the baseline
configuration, taking only within the gain cell.
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Figure 47. A xz slice along y = 0 of the laser intensity traveling in the −ẑ direction for
the baseline configuration, taking only within the gain cell.
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intensity than the +ẑ direction. Such differences in the intensity distribution may be

explained by the intensity density in the transverse direction on average being less

in the −ẑ direction than in the +ẑ direction. The difference in intensity distribution

may be explained by understanding that the expanding −ẑ beam is smaller than the

+ẑ in the transverse direction, consistent with the geometric picture of the positive

branch confocal unstable resonator. A transverse xy slice of the +ẑ field intensity

and phase located at the outcoupling mirror is shown in figure 49. Immediately, one

may recognize that the pictured intensity with the inclusion of gain in figure 49a does

not match the normalized intensity calculated for the bare cavity mode in figure 44a.

The differences are due to the presence of the gain medium, which has the effect of

increasing the distribution of the mode intensity away from the axis of propagation.

Such an effect may be attributed to the cavity interaction between the gain medium

and laser field. Interestingly, the difference does not seem to be present in the phases

pictured in figure 49b and figure 44b. Both show a similar distribution across the

aperture exit and retain a relatively flat phase front indicating a collimated output

from the cavity.

From the intensity at the outcoupling mirror, shown in figure 49, the farfield

beam may be calculated by propagating the apodized outcoupled beam from the

laser a distance of ∆z to the farfield. By assuming a farfield distance,

∆z ≫ k

2

(
x′

2
+ y′

2
)
, (286)

the beam may be propagated through Fraunhofer diffraction[47], which is a modifi-

cation of the Fresnel integral mentioned in equation (53) to

U(x, y, z +∆z) =
ik

2πz
e

ik[x2+y2]
2∆z

∫∫ ∞

−∞
e

−ik[xx′+yy′]
∆z U(x′, y′, 0) dx′ dy′ . (287)
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Figure 48. A xz slice along y = 0 of the laser intensity traveling in the +ẑ direction for
the baseline configuration, taking only within the gain cell.
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Figure 49. Contour plots of the output intensity and phase for the baseline configuration
located at the smaller outcoupling mirror. The red line indicates the edge of the
outcoupling mirror, the transverse field in the red circle is not transmitted out of the
cavity.
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Equation (287) be rewritten as a single Fourier transform from the spatial coordi-

nates at x′ and y′ to “frequency space” coordinates which correspond to a transverse

coordinates in the farfield defined by

kx =
kx

δz
, (288)

ky =
ky

δz
. (289)

The farfield beam located at a distance of ∆z = 10000m is displayed in figure 50.

An immediate observation from the farfield is that the intensity striations shown

in figure 49 have disappeared as the field has moved into the Fraunhoffer regime. A

good question at this point is, “How much power is contained within a radius within

the farfield?” In order to answer this question requires the definition of another

quantity, the Vertical Power in the Bucket (VPIB).

Vertical Power in the Bucket (VPIB).

The VPIB is a comparison between the lowest-order Hermite Gaussian Mode

based upon the laser aperture output[48] and the actual laser output in the farfield.

The lowest order mode, based upon equation (153), at the location of the beam waist
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Figure 50. Contour plots of the intensity and phase for the baseline configuration
located in a farfield location approximately 10000m from the laser cavity exit.
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is

U0,0(x, y) =

(
2

π

)1/2(
1

wx,0wy,0

)1/2

e
−
(

x
wx,0

)2

−
(

y
wy,0

)2

. (290)

For the comparisons made concerning the research presented in this document, the

reference beam was given the initial beam waist

wx,0 =
a2,x
3
,

wy,0 =
a2,y
3
,

(291)

where a2,x and a2,y are the radii of the large mirror of the cavity. These beam waists

were chosen in accordance with Siegman’s principle in choosing[49] the aperture to

contain at least 99.99% power in the output of the ideal laser. The ideal beam is

then simulated as a reference beam. Both the reference beam and the actual cavity

power output are propagated the same distance, ∆z = 10000m into the farfield

using equation (287). The intensity of the farfield reference beam and the laser

resonator cavity output are then solved as a function of radial intensity. The power

contained within the radius for both the reference beam and propagated beam are

both calculated. Figure 51 indicates that a radius is calculated for the reference beam

corresponding to the power contained within the first radial beam waist of an ideal

Gaussian beam, which corresponds to 86.4% of the power in the ideal beam. The

VPIB is then the fraction of output power of the system’s actual farfield intensity,

contained within the first radial beam waist of an ideal Gaussian beam. In other

words, the VPIB is the ratio of a Gaussian power in the bucket measurement over

the total power output from the system, or

VPIB =
PIBGauss

PTot
. (292)
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Figure 51. Total power contained within a radius r for an idealized gaussian mode and
the total power contained within a radius r for an example cavity output. The VPIB
is defined as the ratio of the power in the bucket of the ideal gaussian over the total
power output of the cavity PIBGauss
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For the results displayed in figure 50, the VPIB is a fraction of 78.86% of the cavity

output. Considering the central obscuration associated with the cavity geometry, the

baseline case has a fair amount of power delivered compared to a resonator with a

similar Gaussian beam with a beam waist a third of the large mirror radii. For the

baseline case, the VPIB calculation is a simplified number compared to the contour

plot displayed in figure 50. However, when large studies are pursued in the following

sections the simplified VPIB allows for broad analysis within each study.

A Study Modifying Fresnel Number

The first study associated with this analysis of the cavity with gain is similar to

the study bare cavity eigenvalue study in chapter III. The laser cavity baseline given

in the prior section had the smaller outcoupling mirror extent varied to analyze many

different cavity Fresnel numbers. The larger back mirror and pump extent were also

scaled the same as the outcoupling mirror in order to prevent diffractive losses. The

Fresnel number associated with the x dimension of the small mirror was varied from

1 → 10 with sampling done for every eighth of a Fresnel number.

Figure 52 displays the overall change in efficiency as the Fresnel number is varied.

Efficiency was calculated as the percentage ratio of the laser power output from the

outcoupling mirror to the total pump power added to the cavity,

ηEff =
PLaser,Out

PPump,In
. (293)

As the Fresnel number increases the efficiency of the the system approaches an asymp-

totic value of 51% corresponding to the efficiency that one would expect to occur for

the geometric mode of the laser resonator. The efficiency curve is not smooth due to
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Figure 52. The efficiency as a function of the cavity Fresnel number. The variation in
Fresnel number was achieved by scaling the transverse extents of the front and back
mirrors while keeping all other parameters chosen for the baseline case constant.
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the mode’s volumetric shape changing as the Fresnel number of the unstable resonator

was modified.

The VPIB variation as Fresnel number is increased is shown in figure 53, showing

an inverse relationship between VPIB and Fresnel number. Such a relationship is

due to a higher structure associated with the cavity mode as the Fresnel number is

increased. Much as in the stable resonator the higher the cavity mode, the lower the

VPIB measured.

A conclusion drawn from these results is that beam quality and efficiency of the

laser system tend to act antagonistically against each other for the positive branch

confocal unstable resonator. Applications involving the farfield propagation of an

unstable resonator output field for a high gain system need to be tailored to maximize

the total power output on target. The total power on target is a scaled value of both

efficiency and VPIB for ideal propagation from the laser to the target. Therefore,

both efficiency and VPIB have equal weighting for system design purposes where the

goal is to have power on the target located in the farfield of the laser.

Analyzing the Effect of Mode-Gain Coupling

The results presented in the study varying Fresnel number indicate that the ef-

ficiency increase proportionally to the cavity Fresnel number. The reason for this

general growth is related to change in the transverse intensity distribution coupling

with the distribution of gain within the laser cavity. For cavity modes which have

an intensity transversely distributed close to the axis of propagation, there is de-

creased efficiency compared to cavity modes more uniformly distributed across the

gain medium. In order to quantify the relationship of the intensity distribution within

the gain medium, two different parameters are defined in the next few subsections.

The first is the Volumetric-Fill Coefficient, which is defined using the laser intensity
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Figure 53. The VPIB as a function of the cavity Fresnel number. The variation in
Fresnel number was achieved by scaling the transverse extents of the front and back
mirrors while keeping all other parameters chosen for the baseline case constant.
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propagation through a gain medium. The next parameter is the Mode-Fill Coeffi-

cient, which is a parameter which translates the Volumetric-Fill Coefficient to scale

Hager’s[10, 11] simplified laser model.

Determining the Volumetric-Fill Coefficient.

The Volumetric-Fill Coefficient comes from the idea that laser resonator modes

will not equally fill the gain medium, and therefore will not couple with the gain

medium in the same way as if the mode filled the cavity in its entirety. In the case

where the laser intensity is allowed to fill the gain region transversely for the entire

length of the gain medium, the Volumetric-Fill Coefficient should have a value of one.

In cases where this is not true, the Volumetric-Fill Coefficient, Γ, is defined as

Γ = Volume of mode normalized intensity coupled with the gain . (294)

The scale change of intensity as a function of propagation distance, may be written

as an ODE,
dI(x, y, z)

dz
= gij(x, y, z)I(x, y, z) , (295)

where gij is the distribution of gain in the medium for the i → j optical transition,

Integrating the transverse area gives

∫∫
dI(x, y, z)

dz
dx dy =

∫∫
gij(x, y, z)I(x, y, z) dx dy . (296)

The integral on the left hand side of equation (296), may be rewritten as

PSheet =

∫∫
I(x, y, z) dx dy , (297)
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which then may be used to rewrite equation (296) to

1

PSheet

dPSheet(z)

dz
=

∫∫
gij(x, y, z)I(x, y, z) dx dy∫∫

I(x, y, z) dx dy
, (298)

which has a general solution

PSheet(z +∆z) = PSheet(z)e
∫ z+∆z
z

∫∫
gij(x,y,z)I(x,y,z)dxdy∫∫

I(x,y,z)dxdy
dz
. (299)

The exponential in equation (299) may then be rewritten as a function of the

average gain over the length traveled multiplied by an unidentified coefficient,

PSheet(z +∆z) = PSheet(z)e
gij,avgΓ∆z , (300)

where

Γ =
1

∆zG

∫ z+∆zG

z

∫∫
gij(x, y, z)I(x, y, z) dx dy

gij,avg
∫∫

I(x, y, z) dx dy
dz . (301)

Γ may also be approximated with a volumetric average,

Γ =

∫∫∫
G gij(x, y, z)I(x, y, z) dx dy dz

1
VG

∫∫∫
G gij(x, y, z) dx dy dz

∫∫∫
G I(x, y, z) dx dy dz

. (302)

Γ is recognized as the Volumetric-Fill Coefficient and is able to be calculated from

equation (302). The gain may be calculated from the γ reported by the gain wave-

optic simulations by

g21 =
2

δz
ln(|γ|) (303)

where δz is the z resolution of the gain medium, and the intensity of the cavity

calculated from

I =
ε0c0
2

|U |2 . (304)
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The Volumetric-Fill Coefficient indicated in equation (302) only highlights optical

propagation in one direction through the medium. Therefore, the baseline case re-

quires the definition of two Volumetric-Fill Coefficients, one indicating the field propa-

gation from +ẑ → −ẑ, Γ−, and the other indicating field propagation from −ẑ → +ẑ,

Γ+. Both Volumetric-Fill Coefficients are then defined as

Γ− =

∫∫∫
G gij(x, y, z)I

−(x, y, z) dx dy dz
1
VG

∫∫∫
G gij(x, y, z) dx dy dz

∫∫∫
G I

−(x, y, z) dx dy dz
, (305)

Γ+ =

∫∫∫
G gij(x, y, z)I

+(x, y, z) dx dy dz
1
VG

∫∫∫
G gij(x, y, z) dx dy dz

∫∫∫
G I

+(x, y, z) dx dy dz
. (306)

where I−(x, y, z) and I+(x, y, z) are the intensities of the backward and forward trav-

eling fields respectively.

Measuring the Volumetric-Fill Coefficients for the cases covered in the Fresnel

number study allows for one to see the relationship between the Volumetric-Fill Co-

efficient and the Fresnel number associated with the positive branch confocal unstable

resonator cavity. Figure 54 is a plot of the Volumetric-Fill Coefficient as a function

of Fresnel number. An initial positive trend is observed for Γ− and Γ+ as Fresnel

number increases with the growth of the Volumetric-Fill Coefficients ceasing after

NF = 7. The positive trend also roughly follows the trend of the increasing efficien-

cies shown in figure 52 for both Γ− and Γ+. Although Γ− and Γ+ both tend to follow

the same trend, there are differences between both Volumetric-Fill Coefficients. This

difference begs the question, “How do the Volumetric-Fill Coefficients actually relate

to the output efficiency of the cavity?”

Comparing to Hager.

The question may be answered by modifying a simplified laser model, developed

by Hager[10, 11], to include the effects of the Volumetric-Fill Coefficients. In order
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Figure 54. The Volumetric-Fill Coefficients for the forward, Γ+, and backward, Γ−,
traveling fields as functions of varying the Fresnel number of the baseline case.
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to accomplish the modification of Hager’s Model, this subsection will be devoted

to developing Hager’s original model, modifying the model with a scaled Mode-Fill

Coefficient, ηMode, based upon the Volumetric-Fill Coefficients, and then determining

the Mode-Fill Coefficient for the Volumetric-Fill Coefficients in figure 54.

In his work, Hager calculates the intracavity laser intensity based upon the laser

intensity output. He does this by assuming the cavity geometry in figure 55. Within

the picture, Hager assumed all of the intensities filled the cavity uniformally, which

is not consistent with the unstable resonator intracavity mode.

Hager’s intracavity intensity is recognized as a function of the intensities entering

the gain cell I−2 and I+2 averaged for the propagation of the intensity through the gain

cell

ψ =
1

∆zG
I−2

∫ ∆zG

0

eg21z dz +
1

∆zG
I+2

∫ ∆zG

0

eg21(∆zG−z) dz ,

=

(
eg21(∆zG) − 1

g21∆zG

)(
I+2 + I−2

)
.

(307)

The intensities entering the gain cell are also recognized to be functions of the output

laser intensity

I−2 =
tr

1− r
ILaser , (308)

I+2 =
ILaser

t(1− r)eg21∆zG
, (309)

(
r
r−1

)
ILaser = I−1tI−1 = I−2eg21∆zGI−2 = I−3I−4 = tI−3

I+1 = I−4 tI+1 = I+2 eg21∆zGI+2 = I+3 I+4 = tI+3

I+4 (1− r) = ILaser

∆zG

Figure 55. The original relationship for cavity position given by Hager[10] in his paper.
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meaning equation (307) may be rewritten as a function of the output laser intensity

ψ =

(
eg21∆zG − 1

g21∆zG

)
t2reg21∆zG + 1

t(1− r)eg21∆zG
ILaser . (310)

Hager[11] recognized ψ is related to the total lasing rate, L through the relationship

L = g21
ψ

hpνL
. (311)

For steady-state operation, the gain in the cavity has to increases the field enough to

match the losses of the field for an entire pass through the cavity. The value for this

gain is known as the gain threshold. For the scenario in figure 55 is defined by

gth =
1

∆zG
ln

(
1√
rt2

)
. (312)

Steady-state operation of the cavity also requires that the energy density contained

within the cavity stays steady. A consequence is the energy density added by the

pump must be the same as the energy density removed by the laser. Therefore, the

rate of pumping in the cavity,

P =
Ip

hνp∆zG

[
1−

∫ ∞

−∞
fp(ν)e

σ31(ν)(n3(Ω)−2n1(Ω))∆zG

]
− Γ31n3 − Γ21n2 , (313)

must be equal to the rate of lasing. Using equation (310) for the intracavity intensity

and combining equations (311) and (313) with the assumption L = P allows for the

calculation of the output laser intensity from the input pump parameters

ILaser = Ip
νL

νp

[
1−

∫ ∞

−∞
fp(ν)e

σ31(ν)(n3(Ω)−2n1(Ω))∆zG dν

]
TC,Orig

− (Γ31n3 − Γ21n2)hpνL∆zGTC,Orig . (314)
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where

TC,Orig =
t(1− r)egth∆zG

(t2regth∆zG + 1)(egth∆zG − 1)
. (315)

For implementation equation (314) was simplified in the paper [11] to be

ILaser = IpηqeβTC,Orig − Ith , (316)

where the threshold pump intensity is defined as

Ith = ISηqe

[
σ31∆zG

(
n3 + n2

Γ21

Γ31

)]
TC,Orig , (317)

the saturation intensity, defined at line center of the alkali medium, is

IS =
hpνp

σ31
Γ31 , (318)

the quantum efficiency is

ηqe =
νL

νP
, (319)

and the coupling of the pump intensity to the cavity is

β =

[
1−

∫ ∞

−∞
fp(ν)e

σ31(ν)(n3(Ω)−2n1(Ω))∆zG dν

]
. (320)

A volumetric fill coefficient was added as a fit factor by Hager[10] in his original

paper on the method,

ILaser = ηModeIpηqeβTC,Orig − ηModeIth . (321)

In order to calculate ηMode, the illustration in figure 55 is modified to the one pic-

tured in figure 56. Using the previous definition of the intracavity intensity and the
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(
r
r−1

)
PLaser = P−

1tP−
1 = P−

2eg21∆zGP−
2 = P−

3P−
4 = tP−

3

P+
1 = P−

4 tP+
1 = P+

2 eg21∆zGP+
2 = P+

3 P+
4 = tP+

3

P+
4 (1− r) = PLaser

∆zG

Figure 56. Location of various power sheets for cavity position, modified from figure 55.

Volumetric-Fill Coefficient in equation (299) allows for the intracavity intensity to be

rewritten as

ψ =
1

∆zGΓ−AG
P−
2

∫ ∆zG

0

egthz dz +
1

∆zGΓ+AG
P+
2

∫ ∆zG

0

egth(∆zG−z) dz ,

=

(
egth(∆zG) − 1

gth∆zG

)(
P+
2

Γ+
+
P−
2

Γ−

)
,

(322)

where the gain has been assumed to be the steady state threshold value and that the

power in a sheet is spread equally over the gain medium. By following through the

same calculation as performed above with the recognition that

ILaser =
PLaser

AG
, (323)

a new final equation for the laser output intensity is

ILaser = IpηqeβTC − Ith
TC

TC,Orig
, (324)

where coupling coefficient has been modified to be

TC =
t(1− r)egth∆zG(

t2rΓ−−1egth∆zG + Γ+−1
)
(egth∆zG − 1)

. (325)
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From equation (324), ηMode is the ratio of the modified coupling coefficient with the

original coupling coefficient

ηMode =
TC

TC,Orig
,

=
t2regth∆zG + 1

t2rΓ−−1egth∆zG + Γ+−1 ,

(326)

and by using the definition given in equation (312) along with the assumption that

t = 1 for window transmission, allows ηMode to be written as

ηMode =

√
r + 1

√
rΓ−−1 + Γ+−1 . (327)

Applying equation (327) to the Volumetric-Fill Coefficients calculated in figure 54

allows for ηMode to be plotted as a function of laser cavity Fresnel number shown in

figure 57. Immediately, one sees the positive trend found in figure 52 is duplicated in

the Mode-Fill Coefficient. There are also some small variations between the trends

in efficiency and ηMode. These are due to the change in real outcoupling of the laser

mode of the system to the outside of the cavity, which modify both the efficiency

predicted from the simplified Hager model in addition to modifying ηMode.

Equation (327) represents not only a method of directly comparing simulation

results to Hager calculations, but also represents a method for predictively calculating

the effects of various internal cavity modes on the Hager calculations. A special case

worth exploration is the geometric mode associated with the positive branch confocal

unstable resonator.
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Figure 57. The Mode-Fill Coefficient, ηMode, as a function of varying the Fresnel number
of the baseline case.
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The Geometric Mode.

If g21 is uniform and larger than or equal to uniform I which only partially fills

the cavity, equations (305) and (306) become

Γ− =
VI−

VG
, (328)

Γ+ =
VI+

VG
. (329)

where VI− is the geometric volume of the intensity of the field traveling from the

outcoupling mirror to the back mirror, VI+ is the geometric volume of the intensity

of the field traveling from the back mirror to the front mirror, and VG is the volume

of the gain available for lasing. Using figure 58, which lays out the geometric mode

path in the cavity, identifies

VI− = VTrapz , (330)

VI+ = VG , (331)

where VTrapz is the volume displayed in figure 59. The shape in figure 59 has a volume

of

VTrapz = axayh+
1

2
(bx − ax)ayh+

1

2
(by − ay)axh+

1

3
(bx − ax)(by − ay)h , (332)

where the dimensions correspond to those within the figure 59. Using the definitions

in figure 58 allows for the following relationships to be identified with the dimensions
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Figure 58. The propagation path of the geometric mode within the positive branch
confocal resonator

x̂

ŷ

ẑ

bx
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ax

ay

Figure 59. The trapezoidal prism represented the geometric laser mode traveling in
the −ẑ direction.
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in figure 59

ax = 2(a1,x +∆z1 tan(θx)) , (333)

ay = 2(a1,y +∆z1 tan(θy)) , (334)

bx − ax = 2∆zG tan(θx) , (335)

by − ay = 2∆zG tan(θy) , (336)

θx = atan

(
a2,x − a1,x

∆z

)
, (337)

θy = atan

(
a2,y − a1,y

∆z

)
, (338)

h = ∆zG , (339)

which means the volume is now

VTrapz = 4

[
a1,x +

∆z1
∆z

(a2,x − a1,x)

][
a1,y +

∆z1
∆z

(a2,y − a1,y)

]
∆zG

+

[
∆zG

∆z
(a2,x − a1,x)

][
a1,y +

∆z1
∆z

(a2,y − a1,y)

]
∆zG

+

[
∆zG

∆z
(a2,y − a1,y)

][
a1,x +

∆z1
∆z

(a2,x − a1,x)

]
∆zG

+
4

3

[
∆zG

∆z
(a2,x − a1,x)

][
∆zG

∆z
(a2,y − a1,y)

]
∆zG . (340)

All of the mirror size dimensions in (340) may be rewritten as a function of the back

mirror spot size, a2,x and a2,y, using the definition of geometric magnification, M , to
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be

VTrapz =

[
1

M
+

∆z1
∆z

(
1− 1

M

)]2
4a2,xa2,y∆zG

+

[
1

M
+

∆z1
∆z

(
1− 1

M

)]
4a2,xa2,y∆zG

+
1

3

[
∆zG

∆z

(
1− 1

M

)]2
4a2,xa2,y∆zG . (341)

Knowing that the volume of the gain region is

VGain = 4a2,xa2,y∆zG , (342)

allows for the calculation of the ratio of the trapezoidal volume over the gain region

as

VTrapz
VGain

=

[
1

M
+

∆z1
∆z

(
1− 1

M

)]2
+

[
∆zG

∆z

(
1− 1

M

)][
1

M
+

∆z1
∆z

(
1− 1

M

)]
+

1

3

[
∆zG

∆z

(
1− 1

M

)]2
(343)

Therefore, the Volumetric-Fill Coefficients for the geometric mode of the positive

branch confocal unstable resonator are

Γ− =

[
1

M
+

∆z1
∆z

(
1− 1

M

)]2
+

[
∆zG

∆z

(
1− 1

M

)][
1

M
+

∆z1
∆z

(
1− 1

M

)]
+

1

3

[
∆zG

∆z

(
1− 1

M

)]2
, (344)
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and

Γ+ = 1 . (345)

The Mode-Fill Coefficient in equation (327), may be simplified geometrically by

recognizing the reflectivity of the cavity outcoupler is

r =
1

M2
. (346)

The Mode-Fill Coefficient for the geometric mode is then defined as

ηMode =
1
M

+ 1
1
M
Γ−−1 + Γ+−1 . (347)

Equation (347) is the scaling constant which modifies Hager’s method to account

for the geometric mode as a very simple calculation. For the baseline case where the

gain cell is defined to be centered between both cavity mirrors is shown in figure 60,

the minimum ηMode occurs when 1
M

≈ 2
5

and a gain cell to cavity ratio of zero. The

maximum ηMode is maximized for the case where 1
M

= 1 which would indicate no

magnification of the system. Counterintuitively, ηMode seems to reach a maximum

for scenarios of 1
M

→ 0. This counterintuitive effect on ηMode is due to the fact that

ηMode is not the Volumetric-Fill Coefficient, but is the way that the Volumetric-Fill

Coefficient couples into the outcoupling. The larger the outcoupling from the cavity,

the smaller the effects of the Volumetric-Fill Coefficient for the −ẑ → +ẑ propagation,

Γ−. If Γ+ is not zero, then ηMode will have a maximum at 1
M

= 0. As seen in figure 61,

moving the gain cell to the large mirror in the baseline case greatly increases ηMode

for all values of 1
M

as well as moving the minimum for ηMode to cases where the size

of ∆zG
∆z

is large. The reasoning behind this may be seen from figure 58 where the

mode has a larger area overall next to the large mirror, so the volumetric fill ratio is

large for I− near the back mirror and can only shrink as the gain cell is increased in
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Figure 60. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is centered between both mirrors.
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length. For the case where the gain cell is located near the small mirror, there ηMode

is much smaller. Again from the picture in figure 58, the size of I− is small meaning

that the mode tends to be small for most values of 1
M

. One should notice that as
∆zG
∆z

→ 1, all the mirror positions approach the same value because at ∆zG
∆z

= 1 all

of the cavity positions are equivalent laser resonator geometries. Before moving onto

the next section, it is important to note that the baseline case defined earlier in the

chapter has a ηMode = 0.794. The baseline case Mode-Fill Coefficient will be helpful

when analyzing the modes for studies varying gain parameters, gain cell position, and

gain cell length.

Adding the predicted geometric mode to figure 54, pictured in figure 63, allows

one to see the predicted geometric Volumetric-Fill Coefficients greatly overestimate

the forward traveling Volumetric-Fill Coefficient, Γ+ and greatly underestimates the

backward traveling Volumetric-Fill Coefficient, Γ−. However, as shown in figure 64,

the geometric mode prediction seems to be the asymptote of the Mode-Fill Coefficient

indicating that effect of the predicted Volumetric Mode Coefficient must be used with

the definition of the Mode-Fill Coefficient given in equation (347) to scale Hager’s

Model to include the effects of the cavity mode.

A Study Varying the Gain Medium Parameters

This study involved singly varying the gain medium operation parameters around

those defined in the baseline case. Input pump intensity, gas pressure, gas temper-

ature, rubidium density within the gas, and laser resonator magnification were all

modified individually from the baseline case. All parameter scans were also com-

pleted for for five different cavity Fresnel numbers, with the cavity Fresnel number

adjusted by modifying only the mirror extents presented in the baseline case. The

results were compared to the unscaled Hager Model and the Hager model scaled by
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Figure 61. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is located at the back mirror.
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Figure 62. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is located at the front mirror.

137



1 2 3 4 5 6 7 8 9 10
Nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Numerically Determined 
Numerically Determined +

Geometrically Determined 
Geometrically Determined +

Figure 63. The Volumetric-Fill Coefficients for the forward, Γ+, and backward, Γ−,
traveling fields as functions of varying the Fresnel number of the baseline case. Also
pictured are the predicted Volumetric-Fill Coefficients for the geometric mode associ-
ated with the positive branch confocal unstable resonator.
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Figure 64. The Mode-Fill Coefficient, ηMode, as a function of varying the Fresnel
number of the baseline case.Also pictured is the predicted Mode-Fill Coefficients for
the geometric mode associated with the positive branch confocal unstable resonator.
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the predicted geometric mode fill. Also compared were the Hager model results scaled

by the Mode-Coefficient actually calculated by the gain wave-optic simulation.

The study began with looking efficiency varying the input pump intensity. The

results of the study are shown in figure 65. The trends between the Hager model

predictions and the gain wave-optic simulations both seem to agree with one another.

Applying the Mode-Fill Coefficient seems to scale Hager to the values calculated from

the wave-optic gain simulation. The minor differences may be attributed to diffrac-

tion being present in the wave-optic simulation versus the scaled Hager simulation.

The overall trend in figure 65 may be explained that as the input pump intensity is

increased, eventually the gain medium will not respond to additional pump due to

the optical processes overwhelming the fine structure mixing of the cavity. If the fine

structure mixing of the three-level process is overwhelmed, the lasing rate may no

longer be increased with the addition of pump intensity, meaning that the efficiency

decreases as pump intensity increases.

The next part of the study involved varying the efficiency of the cavity as a

function of temperature shown in figure 66. As mentioned for figure 65, the use of

the scaled mode gives good agreement between the high Fresnel number wave-optic

gain simulations and Hager’s model. Increasing the temperature causes an overall,

decrease within the system. The trend is due to the decrease in density of the helium

buffer gas due associated with the increase in temperature of the system.

An analysis of the efficiency as a function of pressure is shown in figure 67. As in

the prior cases, the use of the scaled mode gives good agreement between the high

Fresnel number wave-optic gain simulations and Hager’s model. The overall trend

of the laser stems from two competing effects. Higher pressure leads to larger fine-

structure mixing, thereby a greater transition from 52P3/2 to 52P1/2 granting a larger

laser population for the gain medium. However, increased pressure also broadens the
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Figure 65. The efficiency of the laser resonator as a function of modifying the input
pump intensity. Many different Fresnel numbers were calculated using the wave-optic
gain simulation, as well as the unscaled Hager, and the scaled Hager using the predictive
ηMode for the geometric mode within the cavity.
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Figure 66. The efficiency of the laser resonator as a function of modifying the tem-
perature of the cavity. Many different Fresnel numbers were calculated using the
wave-optic gain simulation, as well as the unscaled Hager, and the scaled Hager using
the predictive ηMode for the geometric mode within the cavity.
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natural linewidth absorption of the pump. Such a broadening leads to a smaller pump

absorptive cross-section, meaning that less pump is able to be absorbed by the cavity.

These two trends lead to the combined increase of efficiency as the helium pressure

of the cavity is increased followed by a decrease of the cavity absorption beyond a

certain point.

The next variation of the study involved modifying efficiency by varying the ru-

bidium density of the cavity, which is shown in figure 68. Unfortunately for many

of the lower Fresnel number runs, convergence of the simulation was not able to

be achieved, these were left off of the plot. The lack of convergence could not be

verified to correspond to a physical effect, but may have been due to multi-mode

operation of the system or to the laser “flickering.” Laser “flickering,” is due to the

gain medium initially supporting lasing due to the bleaching of the pump, followed by

a pass in which the laser intensity decreases the gain of the medium along the laser

intensity line, making the gain medium opaque, followed by a pass where the lack of

laser intensity allows the gain to be bleached by the pump once again. This pattern

consistently repeats itself preventing the simulation from converging for these high

values of rubidium density. Another interesting facet of this part of the study was

that unlike the previous segments of the study, the Hager prediction scaled by the

geometric Mode-Fill Coefficient did not match the convergent wave-optic gain simu-

lations after the maximum efficiency was observed. The effects of which are believed

to be caused by a departure of the mode from a geometric layout within the cavity.

Such a departure indicates that the gain in the cavity is very large, leading to a more

“filled” cavity in terms of intracavity intensity. The overall trend may be explained

by additional rubidium allowing for a higher lasing rate by increasing n2 and n1 in

g21. However, too much rubidium prevents the optical bleaching of the cavity by the

142



10 15 20 25
Pressure (Bar)

0

10

20

30

40

50

60

70
E

ff
%

Hager
Hager Scaled with Mode

FSSM - Nf = 1.00
FSSM - Nf = 3.00
FSSM - Nf = 5.00
FSSM - Nf = 7.00
FSSM - Nf = 9.00
FSSM Scaling Hager for Nf = 9.00

Figure 67. The efficiency of the laser resonator as a function of modifying the helium
pressure of the cavity. Many different Fresnel numbers were calculated using the wave-
optic gain simulation, as well as the unscaled Hager, and the scaled Hager using the
predictive ηMode for the geometric mode within the cavity.

pump, leading to the creation of an absorption region within the gain medium. The

absorption region degrades laser output intensity leading to less system efficiency.

The final segment of the study focused on modifying the efficiency by varying the

cavity configuration of the mirrors within the resonator. Figure 69 shows results of the

gain wave-optic simulations compared against the Hager and scaled Hager predictions.

The agreement seen in the prior aspects only occurs for higher values of geometric

magnification. The difference in trends between the gain wave-optic simulations and

the results predicted by Hager and the scaled Hager code may be due to cavity mode

not being indicative of the geometric mode. The overall trend in the magnification

is explained by the decreased Volumetric-Fill Coefficient for the magnifications dis-

played and the increased laser outcoupling for increasing magnification. Also worth

mentioning in figures 65 to 69 are the results of scaling Hager by the individual Mode-

Fill Coefficients directly calculated from the gain wave-optics simulations using the
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Figure 68. The efficiency of the laser resonator as a function of modifying the rubidium
density of gain medium. Many different Fresnel numbers were calculated using the
wave-optic gain simulation, as well as the unscaled Hager, and the scaled Hager using
the predictive ηMode for the geometric mode within the cavity.

highest Fresnel number runs in each study. These scaled Hager results based upon

the gain wave-optics simulation, identify that the differences between the simplified

model proposed by Hager and the gain wave-optics are primarily due to the limited

fill of the cavity mode. The results also indicate that if a Mode-Fill Coefficient is

known ahead of time and used in conjunction with Hager, the system efficiency in-

cluding wave optics may be accurately predicted. The Mode-Fill Coefficient could be

estimated with the bare cavity mode calculations mentioned in chapter III and then

combined with Hager to quickly calculate the actual cavity modes in the presence

of gain. These results also add assurance that as the Fresnel number increases the

predicted Mode-Fill Coefficient in equation (347) should eventually be the Mode-Fill

Coefficient of the cavity.

The gain parameter variation study lead to the development of of the Mode-Fill

Coefficient used to modify the Hager Model to take into account the distribution
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Figure 69. The efficiency of the laser resonator as a function of modifying the the
geometric magnification of the unstable resonator. Many different Fresnel Numbers
were calculated using the wave-optic gain simulation, as well as the unscaled Hager,
and the scaled Hager using the predictive ηMode for the geometric mode within the
cavity.
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of mode intensity throughout the gain cell. By assuming a geometric mode, the

Mode-Fill Coefficient may be used to scale the original Hager model to appropriately

handle the intracavity mode intensity coupling with the gain medium for an unstable

resonator. Further predictions of the geometric Mode-Fill coefficient will be analyzed

in the next two studies focusing on modifying the gain cell position within the cavity

and in adjusting the length of the gain cell.

A Study Varying the Gain Cell Position

From the predictions given in section concerning the geometric mode in the cavity,

the gain cell position should have a large effect in the cavity output. In order to test

this hypothesis, a study analyzing gain cell position was conducted. The position of

the gain cell was varied from the baseline case gain cell position while keeping the

length of the gain cell constant for many different small mirror sizes corresponding to

different Fresnel numbers. The large mirror and pump regions were scaled compared

to the small mirror by a geometric magnification of M = 2.

The resulting efficiencies as functions of gain cell position for the various Fresnel

numbers are shown in figure 70. The general trend seems to indicate that the efficiency

of the cavity increases as the gain cell is moved closer to the back larger mirror of the

cavity. The positive trend, in general, matches the positive trend associated with the

geometric scaling coefficient, ηmode. However, the prediction of the scaling coefficient

greatly overestimates the difference in efficiency change versus the prediction from

the gain wave-optics calculation. Such a difference may be due to differences in

the mode calculated with the gain wave-optics code and the geometric mode. The

trend in efficiency as the position of the gain cell is moved is also more stair-stepped

than the predictions give by the geometric mode scaling. The reason for such stair

stepping may be attributed to the mode hopping as different laser cavity modes
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Figure 70. The efficiency of the laser resonator as a function of modifying the gain cell
location for multiple cavity Fresnel numbers.

become dominant with the changing position of the gain cell in the resonator. As

shown in figure 71, the VPIB of the laser cavity experiences an opposite trend than

the efficiency change shown in figure 70. Both trends move in opposite directions and

are consistent with the antagonistic relationship between beam quality and cavity

efficiency originally presented in the Fresnel number study. The reasoning for the

inverse trend is the same as in the Fresnel number study, as the gain cell cavity is

moved toward the front mirror, a mode with better beam quality becomes dominant

within the cavity. One should note that VPIB varies on the order of 10% as the gain

cell’s position moves from the front mirror to the back mirror, whereas, the efficiency

varies approximately 6%. Dependent on the intended application of a high gain driven

laser, a lower efficiency may be desired for better beam quality leading to an overall

greater amount of power reaching a target in the farfield of the laser.
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Figure 71. The VPIB of the laser resonator as a function of modifying the gain cell
location for multiple cavity Fresnel numbers.

A Study Varying the Gain Cell Length

The predictions concerning the geometric mode in the cavity indicate that length

of the gain cell length in the cavity will have a small effect in the cavity efficiency.

In order to test these effects, a study looking at gain cell length was conducted. The

gain cell had its length, ∆zG, and rubidium density varied. The rubidium density

was varied to keep nRb∆zG constant for all the simulations. The total rubidium in

the cavity was kept constant so that the total gain of the laser cavity would remain

the same no matter how the gain cell length was changed. Different small mirror

sizes were simulated corresponding to different Fresnel numbers as in previous study

modifying gain cell position. The transverse scaling applied to the outcoupling mirror

to modify Fresnel numbers was also applied to the large mirror and pump regions of

the resonator.
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Figure 72. The efficiency of the laser resonator as a function of modifying the gain cell
length for multiple cavity Fresnel numbers. The center of the gain cell was centered
between the mirrors of the laser resonator.

The results measured for efficiency when the gain cell length was modified are

shown in figure 72. The general trend seems to indicate that the efficiency of the

cavity remains roughly flat as a function of length. The flat trend seems to match

predictions of the the geometric scaling coefficient, ηmode, for the mirror position

remaining in the middle of the cavity. The predictions shown in figure 60 show little

change in the mode as ∆zG
∆z

is modified from 0.05 to 0.5, corresponding to the change

in the gain cavity length investigated by the study.

The VPIB shown in figure 73, indicates growth of roughly 3-4% as the gain cell

length is increased within the laser cavity. The growth of VPIB seems to indicate that

as the gain cell is increased in length better beam quality tend to results. However,

the trend in VPIB seems to be approaching a limit as the gain cell is increased in

length throughout the cavity. The VPIB, as indicated in figure 53 also does not

necessarily scale linearly with Fresnel number, but instead tends to hop around. The
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Figure 73. The VPIB of the laser resonator as a function of modifying the gain cell
length for multiple cavity Fresnel numbers. The center of the gain cell was centered
between the mirrors of the laser resonator.

smooth nature of figure 73 suggests that very little “mode hopping” is occurring in

the laser resonator, and may represent a general strengthening of the mode associated

the baseline case parameters for different Fresnel numbers.

The above calculations were repeated for different cavity positions within the

system. A reference to a position in the back of the cell indicates that the back of the

gain cell is located at the back mirror, no matter the cell length. Likewise, a reference

to a position at the front of the cavity indicates that the gain cell is located at the

front mirror, no matter the length of the gain cell. Figure 74 shows the efficiency

as a function of gain cell length when the gain cell is located at the back mirror of

the cavity. As predicted in figure 61, there is a noticeable decrease in efficiency of

the system. However, the predicted decrease in figure 61 is less than the gain wave-

optic simulation results in figure 74. The difference in trends may be due to figure 61
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Figure 74. The efficiency of the laser resonator as a function of modifying the gain cell
length for multiple cavity Fresnel numbers. The center of the gain cell was placed so
that the back of the cell was located at the back mirror of the cavity.

describing the geometric mode of the cavity, while the simulations in figure 74 include

diffraction in their calculation.

Figure 75 displays the same positive trend in figure 73. However, the positive

trend is larger than observed for the gain cell length variation in the case where the

gain cell is present in the middle of the cavity. The increase in VPIB is counter to

the decrease in efficiency from figure 74 and represents a trade-space that must occur

between beam quality and system efficiency.

The final scenario of the cavity is the gain cell positioned at the front of the cell.

Converse to the results shown in figure 74, figure 76 indicates that when the gain cell is

positioned at the front of the cavity, the efficiency increases as a function of cell length.

The increase in efficiency for Nf = 5 also agrees with the general trend predicted in

figure 62. However, figure 62 greatly overestimates the increase in efficiency found in

the gain wave-optics calculation. The positive trend in efficiency also does not hold

151



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
zG

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79
VP

IB

Nf = 1.00
Nf = 1.25
Nf = 1.50
Nf = 3.00
Nf = 5.00

Figure 75. The VPIB of the laser resonator as a function of modifying the gain cell
length for multiple cavity Fresnel numbers. The center of the gain cell was placed so
that the back of the cell was located at the back mirror of the cavity.
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Figure 76. The efficiency of the laser resonator as a function of modifying the gain cell
length for multiple cavity Fresnel numbers. The center of the gain cell was placed so
that the back of the cell was located at the front mirror of the cavity.
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for the lower Fresnel numbers. There is an observed cross-over occurring for Nf = 3

which has a relatively flat efficiency as a function of cavity length with lower Fresnel

numbers having decrease in efficiency as gain cell length is increased.

Figure 77 agrees with the previous trends observed in figures 73 and 75. Increasing

the length of the gain cell seems generally have a positive effect on the cell beam

quality. However, the Nf = 5 does observe a growing beam quality followed by

a decrease in beam quality for increasing gain cell length. The decrease in beam

quality for this Fresnel number indicates that beam quality is inversely dependent

on the efficiency of the cavity, however further study is required to verify such a

relationship.

The length study indicated that the cell length of the cavity had minor impact

on cavity efficiency roughly mirroring the trends predicted by the geometric Mode-

Fill Coefficient. A decrease in efficiency was noted for increasing the gain cell length

when the cell was positioned next to the back mirror. No change in efficiency as a

function of cell length was observed when the gain cell was positioned at the center

of the cavity. Finally, a slight increase was observed for the higher Fresnel number

simulations when the gain cell was positioned at the outcoupler. Although gain cell

efficiency wasn’t heavily modified for any of the cases of modifying gain cell length,

the beam quality had a positive correlation with an increase in gain cell length. This

positive trend indicates that for system designs requiring good beam quality of a laser

resonator, the gain cell needs to be as large as possible.

The four studies studies presented in the previous section give multiple trends

for the cavity. By varying the Fresnel Number, efficiency was found to increase as

a function of transverse cavity extent, while beam quality was observed to decrease

with an increase in transverse laser cavity extent. The next study focused on varying

gain parameters, such as intensity and rubidium density, and comparing the overall
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Figure 77. The VPIB of the laser resonator as a function of modifying the gain cell
length. Many different Fresnel numbers were calculated using the wave-optic gain
simulation. The center of the gain cell was placed so that the back of the cell was
located at the front mirror of the cavity.

trends with the simplified Hager model. The agreement in trends was observed to

be good, with the Mode-Fill Coefficient accounting for the differences between the

efficiency predicted by the gain wave-optics calculation and the Hager model. The

third study involved modifying the gain cell position within the laser resonator with

the highest predicted efficiencies corresponding to a gain cell positioned near the back

mirror of the cavity and the best beam quality corresponding to a gain cell positioned

at the outcoupling mirror. Finally, the fourth study involved modifying the gain cell

length, with a longer gain cell always having a positive effect on beam quality of the

laser resonator. The response of the efficiency for high Fresnel numbers was roughly

the same as the trends observed in figures 60 to 62.
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V. Summary, Conclusions, and Future Work

The goal of the research was to provide better understanding of the interaction

between high gain medium and the unstable laser resonator through numerical sim-

ulation. In order to accomplish the goal, numerous studies were conducted using a

variety of numerical methods. This chapter focuses on the summarization of those re-

sults, followed by conclusions associated with those results, and ends with a discussion

of future work that may follow on this research.

Summary of Work

Initially for the bare cavity all studies dealt with the comparison of three methods,

two of them being different Fox and Li iteration propagation schemes and the third

being DEM. The methods were used to calculate the least loss cavity modes for three

different bare cavity configurations. The first configuration was the half symmetric

stable configuration, chosen for its analytic solution. Agreement was established

between all three methods and the mode calculated by all three methods matched

the analytic solution with the addition of diffraction. The second cavity configuration

involve recreating Yuanying’s[28] predicted mode for his unstable resonator. The

least loss mode predicted from all three methods matched each other, but did not

match the results published in the Yuanying’s original paper. Finally, the last cavity

configuration simulated replicated the results from Siegman and Sziklas[31, 32] chosen

positive branch confocal unstable resonator. Good agreement was achieved by all

three numerical methods and also was achieved with the published results.

After the initial bare cavity mode comparisons, Fox and Li iteration using ASM

and DEM were chosen to recalculate the eigenvalues previously calculated by Siegman[27].

Siegman’s method for calculating the modes was implemented for the comparison.
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The equivalent Fresnel number of the system was modified by scaling the radii of the

front mirror in a positive branch confocal resonator. The back mirror radii was also

modified by the same scaling with laser wavelength and the distance between mirrors

held constant. Fox and Li iteration and DEM provided numerical predictions for the

eigenvalues which compared well with each other but did not match the predictions

of Siegman’s method. However, by increasing the size of the back mirror to be 110%

more then the predicted geometric magnification lead to good agreement between

both methods and Siegman’s method. After the eigenvalue analysis, Fox and Li it-

eration with ASM propagation was chosen to be the most promising candidate for

calculating the mode of a resonator when gain is included.

ASM was re-derived as a FSSM to numerically simulate the propagation of the field

within a gain medium. A rubidium optically pumped laser medium was used as the

high gain laser medium with the rate equations determined from the kinetic processes

associated with the 52S1/2, 52P1/2, and 52P3/2 levels. In the process of a calculation, a

uniform pump would be scaled across the gain medium in a single direction. After the

pump was “propagated”, the steady-state population as a function of position within

the gain cell was computed using corresponding laser and pump intensity through the

cell. The laser was then propagated using FSSM, forward and backward in the cell.

The entire simulation process was then iterated until the difference in laser intensity,

gain, and pump intensity were negligible for each successive iteration.

Using the combined gain wave-optic simulation, four studies were performed to

better understand the the relationship between the unstable resonator and high gain

medium. All studies were based off of a single baseline case involving a positive branch

confocal unstable resonator, with specific laser, pump, and gain criteria. Each of the

studies involved modifying one of a few of the parameters from this baseline case.
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The initial gain study focused on the change in efficiency, VPIB, as a function of

Fresnel number. The study found that that efficiency generally increased as Fresnel

number increased, but approached an asymptotic limit after a Fresnel number of 6.

Conversely, VPIB decreased as Fresnel number increased, indicating that the cavity

modes associated with lower Fresnel numbers have lower beam quality. The efficiency

increase was assumed to be related to the laser cavity mode’s coupling with the gain

medium. Modifying Hager’s simple model for steady-state DPAL operation with a

Mode-Fill Coefficient. The assumed relationship between the intracavity intensity

distribution and the gain medium was defined with the Mode-Fill Coefficient and was

also measured for the study.

The second gain study focused on analyzing the efficiency of the system as a

function of various gain parameters. The study involved using Hager’s Model[10, 11]

to compare against the gain wave-optics simulation. The trends predicted by Hager

were also observed occurring for the gain wave-optics simulation, but had an obvious

scaled difference. The scaled difference was attributed to the mode-fill coefficient

discussed by Hager, ηMode. The scaling between both methods of determining the

laser cavity efficiency motivated an analytic determination of ηMode for geometric

modes. Good agreement was established between both the results of the gain wave-

optic simulations and the scaled Hager Model was established.

The third gain study involved varying the position of the gain cell in the laser

cavity and analyzing the effects on efficiency and VPIB. Efficiency was found to

increase as the gain cell was moved to the back mirror in the unstable resonator and

decrease as the cell was moved toward the output cell of the cavity. The trend of

efficiency versus cell position was predicted by the ηMode determination for geometric

modes, but the predicted extent of the efficiency change was much larger than that

observed in the gain wave-optic simulations. VPIB was observed to vary inversely
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compared to efficiency with the best system beam quality observed with the gain cell

positioned at the outcoupling mirror and the worst beam quality when the cell was

placed next to the back mirror of the laser cavity.

The final gain study involved modifying the length of the gain cell and observing

the effect on efficiency of the laser. The rubidium density was also modified so that

the overall amount of rubidium contained within the gain cell would not change for

different gain cell lengths. As predicted by the analytic geometric mode scaling, the

efficiency calculated by the gain wave-optic simulation remained roughly constant no

matter the length of the gain cell. However, the VPIB was observed to increase as

the gain cell length was increased. The gain cell was then repositioned at the back of

the laser resonator and the gain cell length variation was repeated, overall there was

a decrease observed with the efficiency of the gain cell as the length was increased

for a gain cell positioned at the back of the resonator. This trend was the similar to

the trend predicted by the geometric ηMode. As in study one, the beam quality acted

inversely to the increase in efficiency with greater beam quality observed for longer

gain cell lengths. Finally, the cell was positioned at the front of the laser resonator

and the gain cell length was again varied. For large Fresnel numbers the efficiency of

the system increased in a trend similar to that predicted by the geometric Mode-Fill

Coefficient. However, the increase did not hold true for the smaller Fresnel number

cases, with a decrease observed for Fresnel numbers less than Nf,x = 3. Beam quality,

however, was observed to always increase, indicating that increasing cavity length will

always have a positive effect on beam quality in the system.

Conclusions

Throughout all gain studies, the shape of the volumetric mode made a large

difference in the field exiting the laser cavity. As indicated by the results of the
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Fresnel number study in chapter IV, the overall efficiency of the cavity approaches the

efficiency associated with the geometric mode as Fresnel number increases. However,

as Fresnel number was increased there was a linear decrease in the beam quality of

the output mode. For actual applications, these results suggest that when both power

output and beam quality of the laser cavity are important the ideal Fresnel number

for a laser cavity would be Nf,x = 7, representing the highest efficiency to be gained

by increasing Fresnel number of the system, while also preventing the degradation of

beam quality as Fresnel number increases. For situations in which beam quality is

not a concern, the cavity Fresnel number should be at least Nf,x = 7 or larger to have

maximum efficiency due to the volumetric modal distribution. For studies concerning

gain medium parameters, the trends observed between gain wave-optic simulation

and the ideal case[10, 11] where the intracavity laser intensity filled the gain medium

equally were the same. This duplication of trends indicate that the volumetric shape

of the mode acts as a scalar multiple to the ideal case.

Compared to an ideal case for which the mode was assumed to fill the cavity,

the actual volumetric fill of the positive branch confocal unstable resonators mode

could have either small or large degradations on cavity efficiency. The largest degra-

dation occurred for laser cavity geometries with the gain cell positioned closest to the

outcoupling mirror for the geometric mode. Likewise, the least amount of efficiency

degradation was associated with the gain cell of a system located at the opposite mir-

ror of the cavity. Conversely, beam quality tended to be best for a gain cell position

located at the outcoupling mirror and worse for a gain cell positioned at the back

mirror. Therefore, a suggestion from this study for future laser design is that if adap-

tive optics are present in a system decreasing the necessity of beam quality, the ideal

location of the gain cell would be in front of the back mirror of the cavity to ensure

the greatest laser resonator efficiency. However, if adaptive optics are not available,
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the laser cavity needs to be evaluated with a gain wave-optics code to determine the

best efficiency and beam quality trade-off for the system.

Although position of the gain cell had a large influence on the cavity efficiency,

varying the gain cell length was found to have very little effect on the efficiency of

the cavity for the case of a cavity position located in the middle of the laser resonator

mirrors. However, increasing the gain cell length without changing the overall amount

of rubidium within the gain cell did increase beam quality in the laser cavity resonator

output. These results indicate that if beam quality is a concern for the laser system,

the cavity length should be at least half the size of the laser resonator to ensure

maximum quality in the output beam.

A simple model based on the definition of the mode-fill coefficient, ηMode, found in

equation (347) and illustrated in figures 61 and 62, was used to further explore laser

efficiency as it depends on gain cell position and length. For cases where the gain cell

was located at the back and front mirrors of the laser resonator, increasing the gain

cell length reduced the efficiency for the gain cell at the back mirror and increased the

efficiency for the gain cell at the front mirror. When beam quality is not a concern,

the gain cell should be positioned at the back mirror with a gain cell length no more

than 10% of the entire laser cavity length to ensure maximum system efficiency.

Every conclusion mentioned should be tempered with the two caveats mentioned in

the introduction and in chapter IV. The first is that the gain wave-optics simulations

were performed with a uniform pump which did not experience wave-optic effects in

the medium. A real-world system would not have such an ideal pump configuration.

The second caveat is that Amplified Spontaneous Emission (ASE) was also ignored

within the wave-optic simulations. ASE may have a large impact on the conclusions

mentioned above, specifically those indicating that limiting the length of the gain

cell within the laser resonator increases system efficiency because the effects of ASE
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will be strongest when the gain cell length is on the same order or smaller than the

transverse dimensions of the gain cell.

Future Work

The research performed has some very natural follow-ons, the first being a further

analysis of the shape of the gain region and beam quality and mode output. The gain

region shape may be modified by the pump placed into the cavity. A survey of the laser

cavities with a variety of pumped area sizes would be helpful in further understanding

the laser intensity coupling with the gain medium. Other distributions of the uniform

pump should also be considered, such as a pumped region that is circular in the cavity.

Another important series of cases involve scenarios where the pump is no longer

uniform, starting with a transverse pump intensity distribution which Gaussian in

nature. Other pump configurations with transverse pump intensities distributed on

the mirror edges should also be analyzed.

After the initial uniform pump configurations are completed, the simulations need

to be performed with the pump treated with a full gain wave-optic simulation in or-

der to have more realistic pump configuration. Following the inclusion of wave-optic

treatment of the pump means that the initial pump intensity should be treated with

a randomized phase. To better model a realistic system, the pump should be mod-

eled with multiple Gaussians in the plane transverse to the direction of propagation.

Multiple simulations should be performed with each of the Gaussians having a ran-

domized tilt and defocus to establish a statistical surrogate pump that could represent

a real optically pumped system.

Currently, the laser extent experiences a highly absorptive transverse boundary

condition due to the limited transverse extent of the pump. However, other boundary
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conditions should be attempted to include reflective boundary conditions to represent

the edges of a duct.

Further studies involving cavity geometry should be completed. Specifically, look-

ing at cavity efficiency and beam quality as a function of the back mirror size for

many different front Fresnel numbers. Investigating configurations that are not on

the positive branch confocal unstable resonator should also be attempted in order to

better understand alternate cavity configurations which may have better efficiencies

compared to the positive branch confocal unstable resonator.

Increasing the fidelity of the gain wave-optic simulation should also be attempted

in future work. ASE should be added to the physics of the model to test whether the

conclusions in this research remain true for more real-world simulations, specifically

the increase in efficiency as the length of the gain cell is shrunk, which has the highest

liklihood of being effected by ASE in a real-world high gain system. Heat flow from

the pumping/lasing process should be used to update the gain medium calculations.

Eventually, the heat flow should be modeled in a Navier-Stokes method to understand

the turbulence generated by the pump/lasing cycle within the gas which makes up the

gain fluid. Such a task would require the inclusion of Computational Fluid Dynamics

(CFD) of the laser medium as an additional step in figure 38.
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Appendix A. The Circular Mirror Studies

Originally, the gain wave-optic studies were intended to have circular mirrors

similar to the bare cavity calculations performed in chapter III. However, the required

computational grid used for FSSM was Cartesian. The rectangular grid structure

imposed on the circular mirror did not make a large difference for the bare cavity

simulations, but became problematic for simulations including gain. For low Fresnel

numbers, Nf < 2 simulations were able to converge, however the modes for larger

Fresnel numbers tended to not have simulation residuals converge. Therefore, after

the completion of a few low Fresnel number studies for circular resonator mirrors,

the baseline case was modified to use rectangular mirrors. The following contents of

this appendix are the original low Fresnel number studies completed for the circular

mirrors .

Circular Baseline Case Geometry

From figure 42 and figure 43, the circular baseline case was the same as the

baseline case defined in chapter IV, except for the circular mirrors and lower Fresnel

number, Nf = 1, associated with the cavity. The circular mirrors did not vary in

the azimuthal direction, but did have a rectangular gain medium geometry. The gain

medium and pump were limited to be the size of the back mirror in the transverse

λP = 780.24 nm
∆ν = 100.0MHz
IP = 20.0 kW

cm2

x̂

ŷ

ẑ

R2 = 8m

R1 = −4ma2 = 2.52mm

a1 = 1.26mm

∆z = 2.0m

λL = 794.98 nm

Figure 78. Diagram of the laser, pump, and lasing cavity parameters.
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direction outside of which the cavity was treated as a vacuum. The optical grid

in the baseline case had a sampling of Nx, Ny = 256, 256, with a total grid size of

∆xGrid,∆yGrid = 1.61 cm, 1.61 cm. The gain medium had a sampling of Nz = 200,

with two more planes included for the optical grid to represent the mirror planes. The

gain region and optical grid had the same resolution of δx, δy = 0.062mm, 0.062mm.

The bare cavity output mode’s phase and intensity are shown in figure 80. Both the

phase and intensity of the circular mode are more intuitive in mode shape versus the

bare cavity case for the rectangular resonator. The mode is circular in nature with a

lack of azimuthal dependence.

Including the gain lead to the transverse xy slice of the +ẑ field intensity and

phase located at the outcoupling mirror to be modified to the contour plots shown

in figure 81. The output field now has a rectangular features caused by the cavity

mode’s propagation through a transversely rectangular gain medium.

The farfield intensity and phase calculated with are shown in figure 82. The

rectangular nature displayed by the output mode of the field in figure 81 seems to

completely disappear within the farfield of the cavity, indicating the rectangular in-

tensity of the cavity was actually a near field feature added by the rectangular nature

ẑ

x̂

ŷ
R2

a2

∆z

∆zg = 20 cm

∆xg = 5.55mm
∆yg = 5.55mm

PHe = 10.0Bar
nRb = 2.5× 1013 1

cm3

T = 450K
R1

a1

Figure 79. Diagram of the lasing medium parameters in the circular mirror lasing
cavity.
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Figure 80. The normalized intensity and phase for the baseline configuration located
at the smaller outcoupling mirror in the +ẑ location for a bare cavity. The red line
indicates the edge of the outcoupling mirror, the transverse field in the red circle is
not transmitted out of the cavity.
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Figure 81. The intensity and phase for the baseline configuration located at the smaller
outcoupling mirror in the +ẑ location. The red line indicates the edge of the outcoupling
mirror, the transverse field in the red circle is not transmitted out of the cavity.
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Figure 82. The intensity and phase for the baseline configuration located at a farfield
location approximately 10000m from the laser cavity exit.
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of the gain medium. Such a near field distribution will have large effects on the output

efficiency of the cavity.

A Study Varying Gain Parameters

The study discussed in chapter IV concerning gain parameter variation for the

rectangular mirror case was completed for low Fresnel numbers with the circular mir-

rors. Prior to looking at the results of the study, the Volumetric-Fill Coefficients must

be recalculated using the geometric mode volume associated with circular mirrors in

a rectangular gain medium.

The Circular Geometric Mode.

Based upon section , the Mode-Fill coefficient is still consistent with equation

(347), however the Volumetric-Fill coefficient is modified because the geometry is

now circular path in the cavity, helps identify the modes of the intensity of the cavity

have volumes
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π
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(
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and

VI+ =
π

4
4a2∆zG . (349)
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Therefore, the Volumetric-Fill Coefficients are identified as

Γ+ =
π

12
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, (350)

and

Γ+ =
π

4
. (351)

Using the new cavity Volumetric-Fill Coefficients and (347), ηMode may be recalculated

for the new mode geometry.

As performed in gain parameter study completed for the rectangular mirror res-

onator, figure 83 represents the Mode-Fill Coefficient for the gain cell being an equal

distance between each mirror, figure 84 represents the Mode-Fill Coefficient for the

gain cell being positioned at the back mirror, and figure 85 represents the Mode-Fill

Coefficient for the gain cell being positioned at the outcoupling mirror. All of the

Mode-Fill Coefficients seem to have the same overall trend as those presented in the

rectangular gain parameter study. However, the maximum Mode-Fill Coefficient is no

longer equal to one. The difference is due to the size of the back mirror not matching

the transverse area of the the pump of the cavity.

Much as the gain study for rectangular mirrors, this study measured system ef-

ficiency as a function of input pump intensity, temperature, pressure, and rubidium

density. The results are shown in figure 86, figure 87, figure 88, and figure 89 respec-

tively. All the trends observed in these results were previously observed and docu-

mented for the rectangular cavity. However, the overall efficiencies of these scans are

lower representing due to the smaller Mode-Fill Coefficients versus the results pre-
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Figure 83. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is centered between both mirrors.
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Figure 84. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is located at the back mirror.
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Figure 85. The Mode-Fill Coefficient, given by equation (347), as a function of gain and
inverse geometric magnification. The gain cell is located at the front mirror.
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sented in the rectangular gain parameter study. The agreement between the scaled

Hager model and the gain wave-optic simulations seems to be less complete. The

difference may be explained by looking at figure 81a. The transverse mode is not the

circular geometric mode expected from a positive branch confocal unstable resonator,

the actual mode is much larger indicating that the geometric mode’s Volumetric-Fill

Coefficients are smaller then the Volumetric-Fill Coefficients associated with the real

cavity mode.

As previously observed in the rectangular gain parameter study, there is also excel-

lent agreement between the Hager efficiency scaled by the measured mode coefficient

and the gain wave-optics calculated efficiency of the resonator. This agreement fur-

ther supports the use of the calculated geometric Mode-Fill coefficient in determining

the system efficiency as Fresnel number increases.

A Study Varying the Gain Cell Position

Much as in the rectangular gain cell position study, a study of efficiency and

VPIB in relation to gain cell position was accomplished for low Fresnel numbers with

circular mirrors. The results measured for efficiency when the gain cell position was

modified are shown in figure 90 and the VPIB when the gain cell position was modified

are shown in figure 91. The same trends were observed as were observed as in the

rectangular position study with the largest efficiency and lowest VPIB occurring when

the gain cell is positioned next to the back mirror. The opposite being true when the

gain cell is positioned next to the outcoupling mirror. The variance of the VPIB and

efficiency for the circular mirror layout versus the rectangular cavity layout are due to

the circular mirror study being limited to lower Fresnel numbers due to convergence.
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Figure 86. The efficiency of the laser resonator as a function of modifying the input
pump intensity. Many different Fresnel numbers were calculated using the wave-optic
gain simulation, as well as the unscaled Hager, and the scaled Hager using the predictive
ηMode for the geometric mode within the cavity.
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Figure 87. The efficiency of the laser resonator as a function of modifying the tem-
perature of the cavity. Many different Fresnel numbers were calculated using the
wave-optic gain simulation, as well as the unscaled Hager, and the scaled Hager using
the predictive ηMode for the geometric mode within the cavity.
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Figure 88. The efficiency of the laser resonator as a function of modifying the helium
pressure of the cavity. Many different Fresnel numbers were calculated using the wave-
optic gain simulation, as well as the unscaled Hager, and the scaled Hager using the
predictive ηMode for the geometric mode within the cavity.
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Figure 89. The efficiency of the laser resonator as a function of modifying the rubidium
density of gain medium. Many different Fresnel numbers were calculated using the
wave-optic gain simulation, as well as the unscaled Hager, and the scaled Hager using
the predictive ηMode for the geometric mode within the cavity.
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Figure 90. The efficiency of the laser resonator as a function of modifying the gain cell
location. Many different Fresnel numbers were calculated using the wave-optic gain
simulation.
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