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ABSTRACT

Potassium dihydrogen phosphate (KH2PO4, or commonly called KDP) crystals 

can be grown to large sizes and are used for many important devices (fast optical 

switches, frequency conversion, polarization rotation) for high powered lasers. The 

nonlinear optical material has a wide intrinsic transparency range.  Intrinsic point defects 

are responsible for several short-lived absorption bands in the visible and ultraviolet 

regions that affect high-power pulsed laser propagation.  The primary intrinsic defects 

have been experimentally detected in KDP using electron paramagnetic resonance 

(EPR) experiments.  The defect models established thus far include (i) self-trapped 

holes, (ii) oxygen vacancies, and (iii) hydrogen vacancies. In this research, the quantum 

chemistry Gaussian software program was successfully used to establish the atomic 

displacements forming the potential well to "self-trap" the hole in an otherwise perfect 

region of the crystal.  The Gaussian results provide isotropic and anisotropic 

hyperfine predictions for the self-trapped hole and simulated EPR spectra (using 

EasySpin) are in excellent agreement with prior experimental work.  A cluster approach 

was used in this work and discussion of cluster size and approach for modeling of 

defects in KDP will be presented.  This research further develops the understanding 

of the overlap of spin density on neighboring ions in KDP and the resulting nuclear 

hyperfine values which can be compared to EPR data. The best approach 

determined by the modeling of self-trapped holes is also applied to the cation and anion 

vacancy problems.  Work was performed on the DOD's High Performance Computer 

(WPAFB). 
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INVESTIGATIONS OF POINT DEFECTS IN KH2PO4 CRYSTALS 

USING AB INITIO QUANTUM METHODS  

I. Introduction

This dissertation describes a computational ab initio investigation of point defects 

in potassium dihydrogen phosphate (KH2PO4) crystals. The short notation of KDP is often 

used for these crystals. Quantum chemistry software from Gaussian, Inc. [1] is used to 

model several point defects in KDP, including self-trapped holes, oxygen vacancies, and 

hydrogen vacancies. The problems of modeling defects in KDP are explored by comparing 

results obtained using the unrestricted Hartree-Fock (UHF) method, Moeller-Plesset (MP) 

perturbation method, and density-functional theory (DFT) methods available in Gaussian. 

A primary goal of these investigations is to determine hyperfine parameters, both isotropic 

Fermi contact values and anisotropic dipole-dipole matrices, and determine the local lattice 

relaxation and bond-distance changes that occur due to the localized defect.  

KDP is a nonlinear optical material often used to produce the second, third, and 

fourth harmonics of high-power near-infrared lasers. A few characteristics that make KDP 

crystals a suitable candidate for frequency conversion are a transparency range extending 

from 0.1765 to 1.7 µm, birefringence resulting in a negative uniaxial crystal 𝑛𝑜 > 𝑛𝑒, and

suitable magnitudes of the nonlinear optical coefficients [2]. Fourth-harmonic frequency 

generation has been achieved with KDP when exposing it to a 1.053 micron laser [3].  

Harmonics of a 1.064 micron Nd:YAG laser may also be produced with KDP, at 2𝜔 (532 

nm), 3𝜔 (355 nm), and 4𝜔 (266 nm). These capabilities make KDP an ideal crystal for 

shifting laser light from near-infrared to visible and ultraviolet wavelengths [4]. Because 
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they can be grown to large sizes, KDP crystals are used for frequency conversion of large-

diameter, high-power laser beams [5-10]. 

The presence of optically active defects in KDP crystals can negatively impact their 

performance in nonlinear applications. Thus, it is important to identify and characterize the 

types of defects that occur in KDP crystals. When exposed to intense laser beams, defects 

in KDP can change their charge state and produce broad transient optical absorption bands 

in the visible and ultraviolet regions of the spectrum. This darkens the crystal and hinders 

device performance [11]. Point defects in specific charge states are thought to be 

responsible for initiating damage in KDP crystals during illumination with intense 

femtosecond and nanosecond laser pulses [12-18]. 

The self-trapped hole is the primary focus of this dissertation because it is the most 

fundamental intrinsic defect in KDP crystals. This defect was challenging to correctly 

model using quantum chemistry methods, and it took a considerable amount of trial and 

error before acceptable results were obtained and understood. EPR experiments suggested 

that a self-trapped hole could be produced during an x-ray irradiation at 77 K [19-22]. The 

hyperfine results from these EPR experiments led to a proposed model for the self-trapped 

hole in which the hole is primarily shared by two oxygen ions, with overlap onto their two 

nearest-neighbor hydrogen ions and one nearest-neighbor phosphorus ion [19-22]. Having 

two oxygen ions share a self-trapped hole was not the only possible explanation of the EPR 

spectra, thus the model proposed by the experimentalists needed to be verified using 

quantum chemistry methods.  Modeling this defect determines which oxygen ions share 

the hole and reveals the nature of the lattice relaxation that allows the hole to be self-

trapped. Self-trapped holes, localized on one oxygen ion, have been reported in TiO2 and 
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β-Ga2O3 crystals. Self-trapped holes shared by two oxygen ions have been reported in 

CdWO4 crystals and amorphous SiO2 [23-25]. In this dissertation, additional modeling 

efforts of defects in KDP include a hydrogen vacancy, and different oxygen vacancies. 

Experimental EPR results are available for each of these defects, thus allowing 

comparisons with computational outputs [19-22].  

Chapter 2 reviews the literature on past investigations that experimentally 

characterized KDP defects using EPR, including proposed specific models. Prior KDP 

defect simulations using quantum chemistry methods are presented. Chapter 3 describes 

the Gaussian, Inc. software package and the various ab initio quantum chemistry methods 

that were utilized in this work to model the defects in KDP. Chapter 4 presents the results 

of the computational simulations that modeled small and large KDP clusters for the self-

trapped hole. A variety of methods and basis sets were attempted for small and large 

clusters. This dissertation research began by exploring, for the self-trapped hole, the 

relative magnitudes of the predicted Fermi contact hyperfine values associated with hole 

localization and assessing the degree to which these hyperfine values agree or disagree 

with EPR experiments. Two different MATLAB programs were explored to convert the 

isotropic and anisotropic outputs produced by the Gaussian DFT program to hyperfine 

splittings when the magnetic field is along the c direction in the crystal. These c-direction 

splittings can then be directly compared to experimentally observed EPR spectra. 

The computational modeling of the self-trapped hole in KDP demonstrated that the 

hole was equally shared between two oxygen ions on one PO4 unit with overlap onto the 

two far hydrogen ions. This is in contrast to the empirical model proposed by Stevens et 

al. [19] that placed the self-trapped hole on the two oxygen ions that had the close hydrogen 
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ions. It was not possible for Stevens et al. to say with great certainty, via experiment, which 

oxygen-hydrogen pairs the self-trapped hole was located on. With electronic structure 

methods, in this dissertation, it was possible to visualize and quantify on an individual atom 

basis which oxygen-hydrogen pairs the defect was localized on.  

The distribution of atoms, electrons, molecular orbitals, the spin density, and the 

relaxation that defects have within a material can be visualized and understood with 

computational methods. Chapter 5 provides a discussion of the graphical depiction of the 

electronic structure of KDP, primarily using the tool GaussView to visualize molecular 

orbitals and the electron density from the spin SCF density. Chapter 6 describes 

preliminary hydrogen and oxygen vacancy simulations using the lessons learned from 

Chapter 4. The research described in this dissertation was successful in modeling the self-

trapped hole defect, the hydrogen-vacancy defect, and a variety of oxygen-vacancy defects. 

The appendices provide mathematical derivations, MATLAB code used in analyzing 

hyperfine spectra, example input files for Gaussian, and hyperfine output from completed 

simulations. 
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II. Potassium Dihydrogen Phosphate (KDP) 

2.1 Crystal Structure and Ferroelectricity  

Potassium dihydrogen phosphate (KDP) crystals have a structural phase transition 

at 123 K which affects their ferroelectric properties. Ferroelectric materials exhibit 

spontaneous electric polarization which may be influenced by an externally applied electric 

field. The KDP crystals are paraelectric (meaning, they exhibit a nonlinear polarization 

with an applied electric field) above 123 K and are ferroelectric (the polarization will 

exhibit hysteresis as a function of applied electric field) below 123 K. The terms 

paraelectric and ferroelectric also go by the terms disorder-phase and order-phase, 

respectively. Modeling the wave functions and vibrational properties of the hydrogen ions 

in KDP using quantum chemistry methods has been an active area of research in recent 

years [21, 26-28]. The goal of these efforts has been to explain the origin and nature of the 

ferroelectricity in KDP. There have also been numerous experimental studies at various 

temperatures using x-ray and neutron diffraction [29-31].  The focus of these studies, above 

and below the phase change at 123 K, was on the behavior of the hydrogen ions that connect 

the basic PO4 units. These units consist of a central phosphorus ion surrounded by four 

oxygen ions. There is a hydrogen ion near each oxygen ion. The hydrogen ion is located 

along the line joining two oxygen ions, with the two oxygen ions being on neighboring 

PO4 units. This hydrogen ion links the two adjacent PO4 units, as seen in Figure 2.1.  
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. 2Figure 2.1. Two neighboring PO4 units and the hydrogen ion that connects them are 

depicted looking along the z direction at the x,y plane for the (a) paraelectric and (b) 

ferroelectric phase. The image in (a) demonstrates the 𝜹 separation between the distance 

between the two potential wells that can be occupied by the hydrogen ion. The image in 

(b) depicts the two possible locations for the hydrogen after settling into either its near or 

far position at low temperatures.  

 

A unique feature of the KDP crystal is the probabilistic nature of the wave function 

describing the bonds between a hydrogen ion and the two oxygen ions that it links. A 

hydrogen ion located between two oxygen ions associated with different PO4 units will 

have equal probability of occupying either side of a double potential well above 123 K, 

which ascribes a distance of 1.26 Å between the hydrogen ion and either one of its 

neighboring oxygen ions [26]. This corresponds to the top two units in Figure 2.1.a.  Below 

this temperature, the hydrogen ion will remain in one of the wells, i.e., close to one oxygen 
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ion at a distance of 1.06 Å or far from the other oxygen ion at a distance of 1.44 Å. This 

corresponds to the bottom two units in Figure 2.1.b. Minimizing the energy requires that 

two hydrogen ions are close to two of the oxygen ions within a PO4 unit and two hydrogen 

ions are far from the remaining two oxygen ions. Below 123 K, the KDP crystal has an 

orthorhombic structure with space group Fdd2 (𝐶2𝑣
19). Above this temperature the KDP 

crystal has a tetragonal structure with space group 𝐼4̅2𝑑 (𝐷2𝑑
12). 

When KDP goes from its high temperature paraelectric phase to its low temperature 

ferroelectric phase, it develops an electric polarization along the c axis [30, 31]. The 

direction of the polarization depends on which two of the four neighboring hydrogen ions 

have bonded with the oxygen ions in the PO4 unit. There are competing theories as to the 

mechanism that allows the hydrogen ions to assign themselves to their particular quantum 

well, both during the paraelectric and ferroelectric phase, with one of the theories 

suggesting that quantum tunneling is occurring. Studies have also been conducted on the 

influence of the host lattice on the settlement of the hydrogen ions with ammonium 

dihydrogen phosphate (NH4H2PO4 or ADP), which is the ammonia analogue of KDP [27]. 

Similar to KDP, ADP has a hydrogen bridge that exhibits ordering at low temperature thus 

bringing the ADP structure to a ferroelectric geometry. Isotope effects were observed for 

both materials when substituting deuterium for hydrogen, thus supporting the “geometrical 

model” that demonstrates the settlement of hydrogen ions into their respective positions as 

a direct function of temperature and its effect on the vibrational properties of the lattice 

[27].  

Koval et al. [26] performed ab initio DFT calculations and customized self-

consistent model calculations (whereby they added a quadratic wave-function dependent 
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term to the hydrogen potential) to observe the different quantum well structures of KDP 

and DKDP (deuterated KDP, with deuterium substituting for the hydrogen ions). Their 

findings demonstrated the importance of mass on the location of the hydrogen or deuterium 

ion within the quantum well. The deuterium ion, which is heavier than the hydrogen ion, 

is much more likely to be situated within a well-defined double peak probability 

distribution, whereas a hydrogen’s probability distribution is more localized with a central 

peak. The lighter hydrogen can move more quickly between the two closely spaced 

locations as a function of time, thus “smearing” the probability density between the two 

potential wells. This is seen in Figure 2.2 which demonstrates the different wave functions 

for the hydrogen and deuterium ions in KDP and DKDP as a function of distance, 𝛿, in 

units of Angstroms.  
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Figure 2.2. Calculated wave functions for  hydrogen (red dashed lines) and deuterium (solid 

black lines) in a paraelectric P2O8H7 KDP cluster, representing the dual potential well of 

deuterium and the smeared potential well of the hydrogen ion that connects the two PO4 

units. (a) The top left was from an ab initio DFT simulation, and the (b) top right figure is 

from a customized self-consistent model. (c) The bottom plot is the wave function peak 

separation distance 𝜹 as a function of effective mass µ [26, 27]. Figure reprinted with 

permission from the publisher of Reference [26]. 

 

Sub-plot (c) in Figure 2.2 is depicted for a fixed DKDP potential and geometry (blue 

squares), and the circles represent the gradual increase in separation distance as mass 

increases, with subscript H representing hydrogen and D representing deuterium. The 

effective mass µ is given in units of proton mass, mp.  

When considering the low-temperature orthorhombic KDP crystal structure in the 

present dissertation, the hydrogen ions are rigidly held in place either in the near position 
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or far position. In other words, these ions are locked into a potential well at zero degrees 

Kelvin and are not jumping between two positions. For the high-temperature tetragonal 

cluster where the hydrogen ion probability is smeared in a potential well between two 

locations, the hydrogen ion is taken to be at the mid-point position, which is the averaged 

position between the two oxygen ions under thermal motion. 

2.2 Previous Studies of Point Defects in KDP Crystals (1963-1998) 

For KDP crystals to be successfully used in nonlinear applications involving high-

power lasers such as those at the National Ignition Facility (NIF) (a facility located at 

Lawrence Livermore National Laboratory) they must be able to survive intense laser pulses 

without incurring surface and bulk damage. The presence of defects in the crystals will 

initiate laser-induced damage. Free electrons and holes generated by incident photons can 

be trapped at existing defects or can form new defects.  These point defects formed by 

intense laser beams will lead to the formation of unwanted absorption bands in the visible 

and ultraviolet regions [11].  

One of the earliest electron paramagnetic resonance (EPR) studies that investigated 

defects in KDP was by Hughes and Moulton [32]. After an x-ray irradiation at 77 K, they 

observed an EPR spectrum with a g value near 2.0 and a pair of EPR lines with an isotropic 

hyperfine splitting of 32 Gauss attributed to a 100% abundant I = 1/2 nucleus. The 

responsible nucleus was identified as 31P. These defects were found to be unstable above 

77 K. An earlier study of this same defect by DuVarney and Kohin [33] used EPR on x-

ray irradiated KDP to attribute the anisotropy of the g factor to the localization of the spin 

density on an oxygen ion with 1% of the spin density in the 3s orbital of the adjacent 

phosphorus atom. McMillan and Clemens [34] also measured a 32 Gauss hyperfine 



11 

 

splitting with EPR for this defect in KDP and suggested that 0.9% of the unpaired spin was 

in a phosphorus atom 3s orbital. Exchange core polarization was postulated to be the 

dominant contribution to this hyperfine interaction [34]. In Chapter 4 of this dissertation, 

this estimate is validated by comparing the calculated Fermi contact value of the 

phosphorus to the expected value for a Fermi interaction if the electron had been located 

100% within a 3s orbital, supporting the theory that exchange core polarization is a primary 

contributor.  

Demos et al. subjected KDP crystals to pulsed 355 nm laser irradiation [35] and 

used Raman spectroscopy to observe a transient change in the internal vibration mode of 

the PO4 units at 915 cm-1. This effect was attributed to the generation of defects or localized 

impurity clusters which cause transient absorption on the time scale of 1.6 ±0.4 ps. Time 

measurements done by Davis et al. [11] demonstrated the relevance of the hydrogen ions 

that link the PO4 units to these defects. They explored the defect physics associated with 

hydrogen in KDP and illustrated proton transport processes [11]. Their experiments used 

gigawatt-power UV irradiation at 266 nm from a Nd3+:YAG regenerative amplifier, a Q-

switched Nd3+:YAG laser, and sub-picosecond probe pulses at 308 nm to investigate both 

KDP and DKDP crystals. The 266 nm light caused two-photon inter band absorption and 

the generation of electron-hole pairs. Frequency conversion to 4𝜔 and two-photon-induced 

absorption between 200–700 nm was investigated by Marshall et al. using the same 

experimental methods [37].  

According to Davis et al., the induced defects have a non-exponential decay 

behavior which can be described by one-dimensional or semi-one-dimensional transport 

models. Their results had an erf(√𝜏𝑑/𝑡) behavior where 𝜏𝑑 is a decay time constant and t 
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is time [11]. Defects in DKDP decayed slower than defects in KDP, on the order of 42.2 

ms versus 20.5 ms, respectively. This difference in decay time was attributed to isotope 

effects. These investigators refer to Defect A and Defect B (after having been initially 

labeled as 𝜋–type and 𝜎-type polarized optical absorption, respectively). Defect A is a hole 

trapped adjacent to a hydrogen vacancy, and Defect B is the self-trapped hole. The Defect 

A (the 𝜋–type polarized defect) had a broad peak centered near 510-550 nm, and Defect B 

(the 𝜎–type polarized defect) had two broad peaks centered near 390-410 nm and 510-550 

nm. Additional results describe similar behaviors in rubidium dihydrogen phosphate 

(RDP), ADP, and potassium dihydrogen arsenate (KDA) [11].  

The intrinsic nature of the point defects was suggested in the studies of the optical 

properties by Dieguez et al. [37]. They conducted optical absorption and luminescence 

experiments on KDP and DKDP that had been by subjected to an x-ray irradiation. They 

used the annotation “𝜋 polarized defect” in KDP for a “proton vacancy hole center”. This 

was assigned for absorption bands at 510 nm and 550 nm and a thermoluminescence glow 

peak at 123 K. They assigned the annotation “𝜎 polarized defect” in KDP for absorption 

bands at 390 and 550 nm and a glow peak at 73 K.  

Understanding defects in KDP can assist crystal growers in eliminating or 

neutralizing the mechanisms associated with defect formation. The high-power lasers that 

are used for inertial confinement fusion research require large KDP crystals that are grown 

to at least 50 cm x 50 cm x 50 cm. The KDP crystals can be grown at fast rates, such as 40 

mm/day, or slow rates, such as 5 mm/day, although the faster growth of KDP tends to 

introduce more defects than the slower growth rate [38]. 
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2.3 Previous Studies of Point Defects in KDP Crystals (1998-2003) 

Extensive research identifying defects in KDP has been reported [19-22, 39] using 

EPR at West Virginia University. Defects identified in these studies include the self-

trapped hole, an interstitial hydrogen atom, a hole trapped next to a hydrogen vacancy, a 

silicon impurity, and an oxygen vacancy. The oxygen vacancy can take on several variants, 

and each one is thought to be due to the different positions of nearby cation vacancies, such 

as a missing hydrogen or potassium ion. The oxygen vacancy combined with a cation 

vacancy is known as a divacancy complex.  

The hole next to a hydrogen vacancy and the self-trapped hole are created in the 

KDP crystals by exposure to x rays or a 266 nm laser. As demonstrated by Setzler et al. 

[39], free electrons and holes are generated during the irradiation. A portion of these 

electrons and holes immediately recombine to restore the original lattice, but a few of these 

electrons allow a hydrogen ion to move into an interstitial position and become a hydrogen 

atom by trapping an electron. At the same time, a similar number of holes are trapped on 

oxygen ions and form the defects referred to as a hole next to a hydrogen vacancy and a 

self-trapped hole. The crystal remains electrically neutral during these processes, as the 

number of trapped electrons must equal the number of trapped holes. Chirila et al. [21, 22] 

show that the appearance of these defects in KDP are responsible for the broad, transient 

(less than one second) optical absorption bands in the visible and ultraviolet regions of the 

electromagnetic spectrum.  

The self-trapped hole is given the designation (H2PO4)0 and corresponds to “Defect 

B” or “𝜎–type polarized defect” mentioned in Section 2.2 of this dissertation. EPR spectra 

for the self-trapped hole in KDP and DKDP are shown below in Figure 2.3. This figure 
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also shows the 31 Gauss phosphorus hyperfine interaction due to a hole trapped on an 

oxygen ion adjacent to a hydrogen vacancy. This defect is given the designation (HPO4)- 

and corresponds to the notations “Defect A” or “𝜋–type polarized defect” mentioned in 

Section 2.2 of this dissertation.  

 

 

Figure 2.3. EPR spectra of the self-trapped hole for KDP and DKDP and the hydrogen 

vacancy for KDP. The 31 Gauss hyperfine separation is due to the adjacent phosphorus 

atom, and the pair of triplets is due to the two neighboring hydrogen ions which each have 

3.2 Gauss hyperfine values. Figure reprinted with permission from the publisher of 

Reference [19]. 

 

 Self-trapped holes shared by two anions have been observed in alkali-halide 

crystals, where two adjacent halide ions trap a hole in the resulting 𝜎 antibonding orbital 

(𝜎 orbitals are explained in detail in Chapter 5 of this dissertation) at cryogenic 

temperatures, after having relaxed towards one another to produce a shallow potential well 
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[40]. The halide ions, such as fluorine or chlorine, have a single negative (1-) charge. A 

hole trapped by a single halide, thus forming a halide atom, has not been experimentally 

observed or computationally predicted for these types of crystals, such as for LiF, NaCl, 

KCl or KBr [41]. This behavior is different for oxides, where the oxygen ions have a doubly 

negative (2-) charge. It is common to observe a trapped hole on one oxygen, and it is 

uncommon to have a self-trapped hole between two oxygen atoms [42]. An exception to 

this, other than KDP, is amorphous SiO2, where the hole is shared by two oxygen ions [42].  

In previous research [21], preliminary quantum chemistry simulations using 

unrestricted Hartree Fock and Moeller-Plesset perturbation theory for small, 41-atom, KDP 

clusters were performed. These efforts used the limited processing capability of a personal 

computer to run simulations with small basis sets (ie: STO-3G and 6-31G – an explanation 

of basis sets follows in Chapter 3), along with the small cluster, due to the limitations in 

computational processing capabilities. Only tetragonal (ie: paraelectric phase) KDP 

clusters were considered, and potassium ions were not included, thus limiting the 

usefulness of the results. The self-trapped hole is only stable at very low temperatures when 

the KDP crystal is in the orthorhombic state. Realistic modeling of the self-trapped hole 

must start with the orthorhombic KDP structure.  

The results of the 41-atom tetragonal cluster electronic structure calculations 

conducted in Reference [22] demonstrated a localization of the self-trapped hole on two 

oxygen ions and their neighboring hydrogen ions, for the self-trapped hole. This research 

also demonstrated Fermi contact values ranging from -45 to -306 Gauss for the central 

phosphorus ion and Fermi contact values for both of the hydrogen ions that shared the hole 

as equally ranging from -3 to -13 Gauss. As a beginning point for the present research, the 
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tetragonal cluster results of Reference [22] were verified in Chapter 4, Section 4.1. 

Significant advances were then made by considering orthorhombic clusters, large 

structures including potassium ions, and various quantum methods including DFT. Most 

important, lattice relaxation was allowed in the present work.  

The oxygen vacancy is a trapped-electron defect in KDP crystals, and thus is very 

different from the trapped-hole defects previously investigated in this dissertation. Garces 

et al. [20] has described experimental EPR observations of oxygen-vacancy defects in KDP 

with phosphorus hyperfine splitting values ranging between 552 to 757 Gauss. Figure 2.4 

shows the EPR spectra for the defects with hyperfine splittings of 757, 733, 690, 647, and 

552 Gauss. These different oxygen vacancy spectra are attributed to an additional vacancy 

being located near the oxygen vacancy, such as a missing hydrogen. A potassium vacancy 

could also be near the oxygen vacancy, since there are six different potassium positions 

nearby. The (PO4)3 units are replaced by a unit with an oxygen vacancy during the growth 

process of the KDP crystal to form a (PO3) unit, and once the atom is removed, an electron 

becomes trapped after an x-ray irradiation, forming a (PO3)2 unit.  
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Figure 2.4. Five variations of the (PO3)2 oxygen vacancy, with 31P hyperfine splittings of 

757, 733, 690, 647, and 552 Gauss. Figure reprinted with permission from the publisher of 

Reference [20]. 

 

The research introduced from Reference [22] in the preceding pages also pursued 

preliminary efforts to model the oxygen vacancy defect using the same 41-atom tetragonal 

cluster that was used for the self-trapped hole, described previously. The document does 

not specify what method and basis set were used. The results documented Fermi contact 

terms before and after optimization for the central phosphorus and the remaining three 

oxygen ions of the central PO4 unit. These results gave Fermi contact values of 586 and 

619 Gauss for the central phosphorus ion, -23 and -18 Gauss for the oxygen ion “paired” 
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with the oxygen vacancy, -26 and -22 Gauss for the oxygen ion located “beneath” the 

oxygen vacancy, and -13 and -9 Gauss for the remaining oxygen of the central unit [22]. 

These values are all listed before and after geometry optimization respectively, and the 

geometry optimization had allowed the three oxygen ions in the central unit to move.   
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III. Quantum Chemistry Using Gaussian  

 

Gaussian is quantum chemistry software used to calculate the electronic structure 

of molecules and solids. Wave functions are described using Gaussian orbitals (as opposed 

to Slater-type orbitals), and a wide variety of physical phenomena, such as molecular 

orbital distributions for crystal defects and intermolecular bonds in biological structures, 

can be simulated. Examples of a 1s Slater-type function and 1s Gaussian-type function, 

centered at 𝑅𝐴, are shown in Equation 3.1 and Equation 3.2,  

𝝓𝟏𝒔
𝑺𝑭(𝜻, 𝒓 − 𝑹𝑨) = (

𝜻𝟑

𝝅
)

𝟏

𝟐
𝒆−𝜻|𝒓−𝑹𝑨|,              Eq. 3.1 

𝝓𝟏𝒔
𝑮𝑭(𝜶, 𝒓 − 𝑹𝑨) = (

𝟐𝜶

𝝅
)

𝟑

𝟒
𝒆−𝜶|𝒓−𝑹𝑨|𝟐 ,                             Eq. 3.2 

 

where 𝜁 and 𝛼 are the Slater and Gaussian orbital type exponents, respectively [43]. The 

exponents of each function will determine the physical nature of the wave function, with a 

Gaussian-shaped distribution being defined for 𝜙𝐺𝐹 and a shape given by double-sided 

exponential decay curves meeting in the middle to give a sharp peak for the Slater-type 

function. Problems are set up by defining an initial spatial arrangement of the participating 

atoms and then choosing an appropriate quantum method and a specific basis set. 

Generally, multiple functions (1s, and/or 2p, 3d, etc.) are represented in a basis set {𝜙𝜇}. 

The orbital type exponents are numbers that are greater than zero, which vary depending 

on the selected basis set, and are a way to define whether a basis function is small and 

dense (with a large orbital type exponent) or large and diffuse (with a small orbital type 

exponent). A primary feature of the present research is a comparison of results from 
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ENDOR and EPR experiments with hyperfine values calculated using electronic structure 

methods. These comparisons lead to a better understanding of the defect’s electronic 

structure.    

The three main quantum methods that have been considered in the present 

investigations of defects in KDP are density functional theory (DFT), unrestricted Hartree 

Fock (UHF), and unrestricted Moeller Plesset (UMP) theory. “Unrestricted” means that an 

open shell model is utilized versus a closed shell approach, which then allows the study of 

defects with an unpaired spin. The closed shell approach places two electrons (one spin-up 

and one spin-down) into a single orbital, whereas the open shell approach places each spin-

up electron into an alpha orbital and each spin-down electron into a separate beta orbital. 

Spin up is associated with positive spin density, and spin down is associate with negative 

spin density.   

As the quantum methods increase in complexity, their implementation requires 

increasing amounts of computational time and resources, in particular when larger basis 

sets are used. The basis sets that were considered in this research project include 6-31G, 6-

31++G, 6-31+G(d), and 6-31++G(d,p) [44-53] for UHF, UMP, and DFT simulations [54-

58], and for DFT, various iterations of the hybrid functional B3LYP and ωB97XD [59-61] 

were attempted. A variety of additional basis sets optimized for DFT were tested, but their 

results were not optimal, and they are not elaborated on in the later sections of this 

dissertation. For instance, EPR-II and EPR-III were used on specific ions of interest, such 

as hydrogen, while keeping basis sets like 6-31G on the remaining ions. Additionally, basis 

sets optimized for DFT such as N07 [62] for EPR calculations and correlation consistent 

basis sets Aug-cc-pV*Z [63] were tested.  



21 

 

Basis sets are used to represent the electronic wave functions that the quantum 

chemistry program uses to compute eigenvalues and to spatially restrict or distribute 

electrons. The basis set 6-31G can be used with either UHF, UMP, or DFT methods. 6-

31G is considered to be a split valence basis set, in which two or more functions are used 

for a valence orbital. 6-31G specifically has two valence orbitals represented by a 

contraction of three and one primitive Gaussian function, as indicated by the “31G”. This 

is referred to as a valence double-zeta basis set. The “6” represents the contraction of 6 

primitives for the core (a primitive is another word for an uncontracted Gaussian exponent, 

as depicted by Equation 3.2).  The 6-31++G basis set includes doubly diffuse functions, 

indicated by the “++”, which increase the spatial extent for a given ion by adding a diffuse 

Gaussian function to both heavy atoms and hydrogen atoms. Lastly, 6-31++G(d,p) 

represents a polarized basis set that adds p-functions to hydrogen atoms and d-functions to 

heavy atoms. Increasing the size of basis sets by including more polarization and diffuse 

functions may increase the accuracy of the calculations by lowering the overall energy of 

the cluster [64].   

The Department of Defense High Performance Computing Modernization Program 

(HPCMP) supercomputers were used to effectively run Gaussian with sufficiently large 

atomic clusters in combination with computationally intensive methods and basis sets. The 

majority of the simulations on the high-performance computers (HPC) were run on the 

servers referred to as Thunder and Garnet, although Garnet was decommissioned during 

the course of this research. Thunder is an SGI ICE X 5.62 petaflops server with 3,216 

standard memory nodes with 36 cores per node [65]. Before proper utilization of all 36 

processors on a node of Thunder, the jobs had typically required at least 24 hours of 
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computational time, in particular when utilizing the UMP method, and up to a week or 

longer when the size of the cluster is larger than 100 atoms. This is still an improvement 

over using a personal computer, which would comparatively take six months for a job and 

could only run one job at a time. In addition to being faster (i.e., three days for a job versus 

six months), the HPC can run hundreds of jobs at a time.  

Time requirements scale on the order of n5, with “n” being the number of basis 

functions for jobs using the UMP2 method [66]. Additionally, memory requirements for 

UMP2 can scale on the order of n3 to n4, and an increase in memory requirement may be 

specified in the header of the Gaussian input files. Gaussian uses one of three algorithms 

depending on the situation: in-core, direct, or semi-direct, each with different memory 

requirements. Memory was manually set to an optimum value of %mem=96GB, or 90% 

of free user memory for a given computer, keeping in mind that the default memory setting 

for Gaussian is 800 MB. The number of nodes had initially ranged between one to ten with 

all 36 processors on each node being utilized. After discovering that Gaussian does not 

scale across nodes, the number of nodes for jobs was set back to one. Previous literature 

indicates that the accuracy of Gaussian simulations increases with increasing size and 

complexity of the quantum method and basis set used [67]. However, lack of parallel 

efficiency limits the ability to use the more complex methods in a timely manner. 

Therefore, for this research the number of nodes was generally less than three nodes, with 

the optimum number of nodes being one in terms of computational efficiency. The default 

number of processors used per node on the HPC is all 36 of the processors, and thus all 36 

processors are used for each node by default. This is specified in the input file by using the 

“%CPU” keyword, and the input files in Appendix C demonstrate the use of this keyword. 
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3.1 Hyperfine Parameters: Measured in Experiment and Calculated by Gaussian 

Spectra obtained in EPR experiments often provide g values and hyperfine values. 

The g values are dimensionless, and the hyperfine parameters are typically expressed in 

units of Gauss (G), MHz, or cm1. For g = 2.0, 1 G is equivalent to 2.8 MHz. The basic 

EPR experiment consists of placing a crystal in a microwave cavity resonating at a fixed 

microwave frequency (usually near 9.4 GHz) and then applying a varying magnetic field 

[68]. In most cases, the sample is cooled to a temperature in the 20-50 K region to maximize 

the signal strength and reduce the effects of unfavorable spin-lattice relaxation times. 

Because of the electron Zeeman effect, the spin-up and the spin-down electrons associated 

with a defect have different energies and populations (for a concentration n of spins) at a 

given temperature T, as illustrated in Figure 3.1.  

 

Figure 3.1. Energy diagram (energy E vertical versus magnetic field B horizontal) 

illustrating the electron Zeeman effect for an S = 1/2 spin system. The M = ±1 transition 

between populations is denoted by the vertical double arrow. The populations are indicated 

on the diagram as well.  
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As the magnetic field is slowly swept across a pre-selected region at a constant rate, 

the spin system will pass through the resonance condition hν = gB0. In this resonance 

condition, h is Planck’s constant, ν is the fixed microwave frequency, g is the “g value” 

that is unique for each defect, the constant  is the Bohr magneton, and B0 is the magnetic 

field at resonance. The resonance condition corresponds to the “flipping” of the spin as the 

microwave photons drive the M = ±1 transition, denoted by the double vertical arrow in 

Figure 3.1. For most EPR studies, the concentrations of defects are less than 1019 cm3 and 

thus the individual defects are well isolated and Boltzmann statistics apply. This means 

that the populations of the spin-up and spin-down states are different, as shown in Figure 

3.1 with the lower energy having a larger population. The different populations cause a net 

absorption of microwave energy when the system passes through the resonance condition. 

When the unpaired electron spin interacts with the spin of a magnetic nucleus (i.e., 

a nucleus with a nuclear spin quantum number I > 0), the spin Hamiltonian must be 

expanded to include these additional hyperfine interactions. This is the case in KDP when 

an unpaired spin primarily localized on the oxygen ions interacts with the nuclear magnetic 

moments of the neighboring phosphorus and hydrogen ions. The total Hamiltonian in 

Equation 3.3 includes the electron Zeeman term, the hyperfine term, and the nuclear 

Zeeman term, where the subscript N represents the nucleus, and 𝑔𝑁 is the nuclear g value:  

𝐻 = 𝛽𝑺 ∙ 𝒈 ∙ 𝑩 + ∑ (𝑰𝒊 ∙ 𝑨𝒊 ∙ 𝑺 − 𝛽𝑁𝑔𝑁𝑰𝒊 ∙ 𝑩)𝑖  .     Eq. 3.3 
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The resulting energy level diagram for an S = 1/2, I = 1/2 spin system is shown in Figure 

3.2. Lowercase 𝑏𝛼 or 𝑏𝛽in this case, are values for the magnitude of the effective magnetic 

field seen by the nucleus, with magnetic quantum numbers 𝑚 ±
1

2
.  

 

Figure 3.2. Energy diagram for an unpaired electron interacting with the nucleus of a 

neighboring ion (S = 1/2, I = 1/2), two-spin system. 

 

The A matrix represents the hyperfine interactions with a specific nucleus and can 

be separated into two parts. These are the isotropic Fermi contact interaction term, 𝑎iso, 

multiplied by the identity matrix 𝐼, and the anisotropic dipole-dipole interaction 𝐴𝑎𝑛𝑖𝑠𝑜 

matrix: 

𝑨 = 𝒂𝒊𝒔𝒐𝑰 + 𝑨𝒂𝒏𝒊𝒔𝒐 .               Eq. 3.4 
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The isotropic component (the Fermi contact interaction) of the hyperfine term [42, 69, 70] 

𝑎𝑖𝑠𝑜 is directly proportional to the net unpaired electron spin density at the position of the 

nucleus, 𝜌(𝑟𝑁), 

                                                  𝒂𝒊𝒔𝒐 = (
𝟖𝝅

𝟑
)𝒈𝜷𝒈𝑵𝜷𝑵𝝆(𝒓𝑵) .               Eq. 3.5 

The components of the anisotropic matrix 𝑨𝒂𝒏𝒊𝒔𝒐 depend on the spatial distribution 

of the unpaired spin’s wave function relative to the nuclear magnetic moment, representing 

a classic dipole-dipole interaction:  

𝑨𝒂𝒏𝒊𝒔𝒐 = −𝒈𝜷𝒈𝑵𝜷𝑵 (
𝑰

𝑹𝟑 −
𝟑𝑹∙𝑹

𝑹𝟓 )𝝆(𝒓)𝒅𝝉 .          Eq. 3.6 

The vector R is 𝑹 = 𝒓 − 𝑹𝑵; the vector r is the location of the electron spin density relative 

to the nucleus at the vector 𝑹𝑵; 𝝉 is the direction of the applied magnetic field; and 𝝆(𝒓) 

is the spin density matrix [43].  When the anisotropic matrix is diagonalized, it takes the 

following form:  

𝑨𝒂𝒏𝒊𝒔𝒐 = [
−𝒃 𝟎 𝟎
𝟎 −𝒃 𝟎
𝟎 𝟎 𝟐𝒃

]    .             Eq. 3.7 

In the Gaussian output, the anisotropic hyperfine matrix is presented in the 

recognizable format of Equation 3.6, as three specified diagonal elements, which Gaussian 

labels as: 3𝑋𝑋 − 𝑅𝑅, 3𝑌𝑌 − 𝑅𝑅, and 3𝑍𝑍 − 𝑅𝑅 and three off-diagonal elements, XY, XZ, 

and YZ which are generally non-zero. An example of the anisotropic portion of the 

Gaussian output, reformatted into a table for demonstration purposes, is given in Table 3.1. 
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Table 3.1. Output from Gaussian showing the spin dipole couplings data from which the 

anisotropic component of the hyperfine A matrix is constructed in atomic units. This is a 

three atom subset of data, from a larger set of atoms, meant for illustration purposes.  

Center Spin Dipole Couplings 

3𝑋𝑋 − 𝑅𝑅 3𝑌𝑌 − 𝑅𝑅 3𝑍𝑍 − 𝑅𝑅 XY XZ YZ 

Atom 1 -0.000363 0.000278 0.00084 0.000254 0.000228 0.000637 

Atom 2 0.000071 -0.000008 -0.000063 -0.000254 -0.000220 0.000189 

Atom 3 -0.000234 0.000096 0.000138 -0.000077 -0.000078 0.000367 

 

 

Using the data from Table 3.1, the anisotropic matrix for Atom 1 becomes:  

𝑨𝒂𝒏𝒊𝒔𝒐 = [
−0.000363 0.000254 0.000228
0.000254 0.000278 0.000637
0.000228 0.000637 0.000084

]. 

This matrix is then diagonalized by Gaussian, thus finding its eigenvalues, also known as 

the three principal values of the anisotropic matrix in the direction of the principal axis, for 

each principal value. These principal values and directions of the principal axes are listed 

in the Gaussian output section called “Anisotropic Spin Dipole Couplings in the Principal 

Axis System”.  The directional cosines of the anisotropic spin dipole couplings are given 

in columns for each principal component of the diagonalized anisotropic matrix elements 

and are labeled Baa, Bbb, and Bcc in the Gaussian output file.  This notation is used in 

Chapter 4 of this dissertation. These values of the directional cosines represent the 

orientation of the anisotropic hyperfine matrix relative to the crystal axes. Additional steps 

are described in Chapter 4, Section 4.2.2 to address significant off-diagonal elements of 
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the Aaniso matrix and how to utilize these values for computationally simulating hyperfine 

spectra in the same rotated reference frame as EPR experiment.  

A key feature of Gaussian is geometry optimization, where the energy of the system 

is minimized by finding local minima by varying the positions of atoms. This process was 

used to predict an equilibrium geometry for some of the KDP clusters in this dissertation. 

Two or more of the ions that comprise the central PO4 unit are allowed to move, or relax, 

in order to observe how changes in position affect the electronic structure of the defect. 

This geometry optimization provides a solution that has converged on an energy minimum 

located on the potential energy surface. As the atoms move during the optimization, the 

second derivative of the energy with respect to the cluster coordinates is either estimated 

using quasi Newton methods or optionally calculated analytically. At the minimum energy 

the gradient or forces should be zero, and an optimization to a local minimum is considered 

complete when four convergence criteria are met. These four criteria which must all be 

below appropriately set thresholds are first, the root mean square (rms) of the force; second, 

the displacement for the next step; third, the rms of the displacement of the next step; and 

fourth, the force itself.   

3.2 Discussion of the UHF, UMP2, and DFT Quantum Methods  

Pacchioni et al. [71-73] and others [74, 75] have explored the merits of using 

Moeller Plesset perturbation theory to localize defects, such as the AlO4 defects in SiO2 

crystals, as well as examining the demerits of using DFT for these simulations. Their 

unrestricted 2nd order Moeller Plesset (UMP2) calculations predicted a localized hole on 

one oxygen ion for the AlO4 defect, thus matching experimental hyperfine coupling data. 

In contrast, their DFT simulations using functionals incorrectly predicted the hole would 
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be localized on two oxygen ions for AlO4, which did not agree with the data from 

experiments. This significant difference in predicted models was attributed to the fact that 

Moeller Plesset perturbation theory does explicit electron correlation calculations, whereas 

DFT approximates these effects through functionals. Another example is the delocalization 

by DFT of excess electron density over all surface cerium atoms in CeO2, which disagrees 

with experiment [73]. The correct spin localization in this latter case is achieved by 

implementing UHF and UMP2 theory [73].  

The research described in this dissertation initially started by utilizing the UHF 

method, and then once access to the HPC was granted, the more computationally intensive 

UMP2 method was included and shown to perform well. The UMP2 method consistently 

demonstrated spin density localization results that matched expectations from experimental 

results as opposed to various DFT methods, which was consistent with the published 

literature of Pacchioni and coworkers discussed in the previous paragraph. Near the end of 

the research conducted in this dissertation, a suitable DFT functional was identified, known 

as ωB97XD, that gave correct hyperfine values and defect localization. This was an 

encouraging development and validated the use of the DFT method. A description of the 

UHF and UMP2 methods are discussed below, and the section concludes with a description 

of the successful ωB97XD functional. 

3.2.1 Hartree Fock and Moeller Plesset Theory 

The unrestricted Moeller Plesset theory is based on unrestricted Hartree Fock 

(UHF). The HF energy equation is represented in Equation 3.8, where the “< >” denote 

bra-kets:  
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𝑬𝑯𝑭 = 𝑬𝑵𝑼𝑪𝑳+< 𝒉𝑷 >  +
𝟏

𝟐
< 𝑷𝑱(𝑷) >  −

𝟏

𝟐
< 𝑷𝑲(𝑷) > .            Eq. 3.8 

The nuclear repulsion energy 𝐸𝑁𝑈𝐶𝐿, the electron density matrix 𝑷, the classical Coulomb 

repulsion term 𝑱(𝑷), and the exchange energy from electrons 𝑲(𝑷) are included. The HF 

Hamiltonian shown in Equation 3.9 is a summation over all electrons indexed by i, where 

𝑣𝐻𝐹(𝑖) represents the electron-electron repulsion which leads to the Coulomb and 

exchange terms,  

𝑯𝟎 = ∑ [𝒉(𝒊) + 𝒗𝑯𝑭(𝒊)]𝒊  .                           Eq. 3.9 

A simple way to describe Moeller Plesset theory for UMP2 is that it incorporates 

the 2nd order perturbation energy correction 𝐸2 for the solution to Schrodinger’s equation 

(𝐸 = 𝐸0 + 𝐸1 + 𝐸2). It is a post Hartree Fock method (where the HF energy is 𝐸 = 𝐸0 +

𝐸1). A more general Hamiltonian [76] includes the original Hartree Fock Hamiltonian term 

H0 from Equation 3.9 and the expanded form of the Moeller Plesset perturbation, P:  

𝑯 = 𝑯𝟎 + 𝑷,              Eq. 3.10 

𝑷 = ∑ 𝒓𝒊𝒋
−𝟏 − ∑ 𝒗𝑯𝑭(𝒊)𝒊𝒊<𝒋  ,                     Eq. 3.11 

𝑯𝟎|𝚿𝟎 > = 𝑬𝟎
𝟎|𝚿𝟎 > .                                   Eq. 3.12 

The eigenvalue 𝐸0
(0)

 represents the zeroth-order perturbation energy as a sum of orbital 

energies, 𝐸0
0 = ∑ 𝜀𝑎𝑎  . The calculation for the first order energy is as follows: 

𝑬𝟎
(𝟏)

=< 𝚿𝟎|𝑷|𝚿𝟎 >                               Eq. 3.13 
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𝑬𝟎
(𝟏)

=< 𝚿𝟎|∑ 𝒓𝒊𝒋
−𝟏 − ∑ 𝒗𝑯𝑭(𝒊)𝒊𝒊<𝒋 |𝚿𝟎 >                 Eq. 3.14 

𝑬𝟎
(𝟏)

=< 𝜳𝟎|  ∑ 𝒓𝒊𝒋
−𝟏|𝜳𝟎 > −< 𝜳𝟎| ∑ 𝒗𝑯𝑭(𝒊)𝒊𝒊<𝒋 |𝜳𝟎 >.       Eq. 3.15 

The Hartree-Fock potential 𝑣𝐻𝐹 may be re-written in terms of its Coulomb operator 𝐽 and 

exchange operator 𝐾. For example, Equation 3.16 demonstrates 𝑣𝐻𝐹 as an effective one-

electron potential operator, with the electron in question being labeled with a number “1” 

𝒗𝑯𝑭(𝟏) = ∑ 𝑱𝒃(𝟏) − 𝑲𝒃(𝟏)𝒃  .                                  Eq. 3.16 

The Coulomb operator (here, expressed in its closed-shell form) takes after the equation 

for a one-electron Coulomb potential 𝑟𝑖𝑗
−1 by representing the two-electron operator as the 

two-electron potential of electron 1 felt by the relative position of electron 2, 𝑟12
−1 [43]: 

𝑱𝒃(𝟏) = ∫𝒅𝒙𝟐|𝝌𝒃(𝟐)|𝟐 𝒓𝟏𝟐
−𝟏 .         Eq. 3.17 

In Equation 3.17, the symbol 𝜒𝑏 represents a spin orbital that is part of a set of spin orbitals, 

from which the single determinant |Ψ0 > = |χ1𝜒2 ∙∙∙ 𝜒𝑎𝜒𝑏 ∙∙∙ 𝜒𝑁 > is formed. In the above 

case, electron 2 is occupying 𝜒𝑏(2).  

In order to define the exchange operator in Equation 3.16, it is useful to have it 

operating on a spin orbital 𝜒𝑎(1), because the exchange operator does not have a 

straightforward classical analog as the Coulomb potential does. Electron 2 in this example 

is “exchanged” with electron 1 and now occupies 𝜒𝑎(2), as seen in Equation 3.18 [43]. For 

comparison, the Coulomb operator is operating on the same spin orbital in Equation 3.19, 

but it keeps electron 1 in 𝜒𝑎(1) and electron 2 in 𝜒𝑏(2):  

𝑲𝒃(𝟏)𝝌𝒂(𝟏) = [∫𝒅𝒙𝟐𝝌𝒃
∗ (𝟐) 𝒓𝟏𝟐

−𝟏𝝌𝒂(𝟐)]𝝌𝒃(𝟏) ,                Eq. 3.18 
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𝑱𝒃(𝟏)𝝌𝒂(𝟏) = [∫𝒅𝒙𝟐|𝝌𝒃(𝟐)|𝟐 𝒓𝟏𝟐
−𝟏]𝝌𝒂(𝟏).        Eq. 3.19 

Re-writing Equation 3.15 in the same “ab” spin notation in bra-ket form gives: 

𝑬𝟎
𝟏 =

𝟏

𝟐
∑ < 𝒂𝒃|𝒂𝒃 > − < 𝒂𝒃|𝒃𝒂 >𝒂𝒃 − ∑ < 𝒂|𝒗𝑯𝑭|𝒂 >𝒂 .         Eq. 3.20                     

The first pair of “single-bar” bra-kets may be combined into a “double-bar” bra-ket, of the 

form <ab| |ab> and will be shown in Equation 3.24. But first, a mathematical explanation 

for this notation is explained in the following paragraphs and in Equations 3.21-3.23.  

Equations 3.18 and 3.19 demonstrate one-electron integrals which are integrated 

over the coordinates of one electron. A two-electron integral [77], where the i and k spin 

orbitals are occupied by electron 1, and j and l spin orbitals are occupied by electron 2, is 

shown in Equation 3.21:  

< 𝑖𝑘 |
1

𝑟12
| 𝑗𝑙 > = < 𝑖𝑘|𝑗𝑙 > =  ∬𝑑𝒙𝟏𝑑𝒙𝟐𝜒𝑖

∗(𝒙𝟏)𝜒𝑗
∗(𝒙𝟐)𝑟12

−1𝜒𝑘(𝒙𝟏)𝜒𝑙(𝒙𝟐).     Eq. 3.21 

This four letter notation will be useful for completing the analysis of the 2nd order Moeller 

Plesset energy perturbation correction, at the end of this section [43].  

Antisymmetry is a means to satisfy the Pauli exclusion principal, and it is a way of 

coping with the interchange of space and spin coordinates of any two electrons that may 

occur within the matrix of a wave function. The antisymmetric wave function is displayed 

as a Slater determinant in Equation 3.22 for two electrons and requires that Ψ(𝑥1, 𝑥2) =

−Ψ(𝑥2, 𝑥1), such that the Slater determinant will not equal zero if exchange (ie:, index 𝑖 =

𝑗) should occur [43]. “Exchange correlation” is a term used to describe what happens when 

two electrons have the same spin. The determinant in Equation 3.22 will be uncorrelated 

when electrons 1 and 2 occupy their own spin orbitals, 𝜒𝑖 and 𝜒𝑗: 
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𝚿(𝒙𝟏, 𝒙𝟐) = 𝟐−
𝟏

𝟐 |
𝝌𝒊(𝒙𝟏) 𝝌𝒋(𝒙𝟏)

𝝌𝒊(𝒙𝟐) 𝝌𝒋(𝒙𝟐)
|  .                          Eq. 3.22 

Re-writing in terms of bra-ket notation, an antisymmetrized two electron integral can be 

represented as:  

< 𝒊𝒋| |𝒌𝒍 > = < 𝒊𝒋 |𝒌𝒍 >  − < 𝒊𝒋|𝒍𝒌 >.                        Eq. 3.23 

Equation 3.23 (with four different letters) is for the case when two determinants differ by 

two spin orbitals. Equation 3.20 (with two letters) is for the case in which two determinants 

are equal, and the equation < 𝑎𝑏 | | 𝑎𝑏 > = < 𝑎𝑏|𝑎𝑏 > −< 𝑎𝑏|𝑏𝑎 > is used. The final 

form of Equation 3.20 may now be written using this case (still considering letters “ab” 

from Equation 3.20) as 

𝐸0
(1)

=
1

2
∑ < 𝑎𝑏| |𝑎𝑏 >

𝑎𝑏

− ∑ < 𝑎|𝑣𝐻𝐹|𝑎 >
𝑎

, 

𝐸0
(1)

= −
1

2
∑ < 𝑎𝑏| |𝑎𝑏 >𝑎𝑏 .                              Eq. 3.24 

The second order perturbation term 𝐸0
(2)

 will only include doubly excited 

determinants [78]; this is due to the Brillouin theorem, in which single substitutions in the 

determinant make the expression zero and are representative of pairwise interactions 

between electrons. The second order energy equation may be written as  

𝑬𝟎
(𝟐)

=< 𝚿𝟎|𝑷|𝚿𝟎
(𝟏)

>,                                    Eq. 3.25 
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which can be further reduced using the expanded form of |Ψ0
(1)

>  in terms of “n” 

eigenfunctions, |Ψ0
(1)

> =  ∑ |𝑛 > < 𝑛 |Ψ0
(1)

>𝑛 , and using the following relationship for 

the zeroth order energy:  

(𝑬𝟎
(𝟎)

− 𝑬𝒏
(𝟎)

) < 𝒏| 𝚿𝟎
(𝟏)

> = < 𝒏 | 𝑷 | 𝟎 >,                      Eq. 3.26 

𝑬𝟎
(𝟐)

=< 𝚿𝟎|𝑷|𝚿𝟎
(𝟏)

> =  ∑ < 𝟎|𝑷|𝒏 > < 𝒏 |𝚿𝟎
(𝟏)

>𝒏 ,            Eq. 3.27 

𝑬𝟎
(𝟐)

= ∑
|<𝟎|𝑷|𝒏> |𝟐

𝑬𝟎
(𝟎)

−𝑬𝒏
(𝟎)𝒏 .                                    Eq. 3.28 

Using the bra-ket notation for a two electron integral with double excitations notated by 

the wave function, |Ψ𝑎𝑏
𝑟𝑠 >, the second order energy term takes on the familiar form:  

𝑬𝟎
(𝟐)

= ∑
|<𝒂𝒃||𝒓𝒔>|𝟐

𝜺𝒂−𝜺𝒃−𝜺𝒓−𝜺𝒔
𝒂<𝒃
𝒓<𝒔

.      Eq. 3.29 

The 𝜀 terms in the denominator are orbital energies (as expanded in the text below 

Equation 3.12). In summary, the MP2 theory differs from HF by incorporating electron 

correlation, in this case up to the 2nd order correction. The second order correction will be 

negative and therefore lowers the total energy, which is more representative of the 

structure’s equilibrium state.  

3.2.2 Density Functional Theory 

Instead of having the final term which represents the exact HF exchange, many 

DFT methods replace it with an approximate exchange functional 𝐸𝑋 and an approximate 

correlation term 𝐸𝐶: 
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𝑬𝑫𝑭𝑻 = 𝑬𝑵𝑼𝑪𝑳 + < 𝒉𝑷 >  + 
𝟏

𝟐
< 𝑷𝑱(𝑷) >  + 𝑬𝑿 + 𝑬𝑪  .         Eq. 3.30 

Previous research reported that, Hartree Fock exchange is useful for correcting the 

limitations that DFT has in handling self-interaction [71-73]. Initially the research 

conducted in this dissertation supported the reports of advantages [71-73] of UMP2 

simulations over DFT methods in localizing the self-trapped hole defect for KDP. An 

exception to this was ωB97XD which is explained further in the following paragraphs. 

Analysis was conducted by comparing the Fermi contact and anisotropic terms to hyperfine 

coupling constants obtained during EPR experiments. Specifically, when attempting to 

correctly model the self-trapped hole defect for KDP, the UMP2 simulations correctly 

localized the defect on two oxygen ions with their respective hydrogen ions, whereas most 

of the DFT results predicted the hole to be spread between the four oxygen ions and their 

respective hydrogen ions. These data are briefly summarized in Appendix A.  

The ωB97XD range-separated functional was utilized, and it had satisfactory 

results. The resultant calculations using this functional had spin densities that matched 

expectations based on experiment, beginning with the small 41-atom cluster (see Figure 

4.4 for a depiction of this cluster).  This functional, ωB97XD, utilizes a long-range 

correction by incorporating Hartree Fock exchange using the term erf(𝜔𝑟) /𝑟 and 

maintaining the exchange functional using 𝑒𝑟𝑓𝑐(𝜔𝑟)/𝑟 for short ranges [79]. The “XD” 

in ωB97XD stands for HF exchange and dispersion correction, with the dispersion 

correction term 𝐸𝑑𝑖𝑠𝑝 adding to the original Kohn-Sham DFT energy equation: 

𝑬𝑫𝑭𝑻,𝑫 = 𝑬𝑲𝑺,𝑫𝑭𝑻 + 𝑬𝒅𝒊𝒔𝒑,                             Eq. 3.31 
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𝑬𝒅𝒊𝒔𝒑 = −∑ ∑
𝑪𝟔

𝒊𝒋

𝑹𝒊𝒋
𝟔 𝒇𝒅𝒂𝒎𝒑(𝑹𝒊𝒋)

𝑵
𝒋=𝒊+𝟏

𝑵−𝟏
𝒊=𝟏 .                Eq. 3.32 

The variables within the dispersion correction term for the energy are: 𝑁, the 

number of atoms in the system, 𝐶6
𝑖𝑗

, the dispersion coefficient for atom pair ij, and 

interatomic distance 𝑅𝑖𝑗 . The damping function is represented as:  

𝒇𝒅𝒂𝒎𝒑(𝑹𝒊𝒋) =
𝟏

𝟏+𝒂(
𝑹𝒊𝒋

𝑹𝒓
)
−𝟏𝟐 .          Eq. 3.33 

The variable 𝑅𝑟 is the sum of van der Waals (vdW) radii between ij atomic pairs, and the 

variable “a” is a parameter that controls the strength of dispersion corrections. The vdW 

radius refers to an spherical area surrounding each atom that indicates the region of 

occupation for a particular atom and the region of closest, physically allowable approach 

by a separation atom. The damping factor corrects the dispersion energy term at short 

interatomic distances. 

3.3 Information Included In Gaussian Outputs  

A few issues were encountered with Gaussian when conducting simulations, in 

particular for the computationally intensive jobs. For instance, the Gaussian software is 

programmed to omit the electron density calculations, and thus the hyperfine output, for 

the larger UMP2 theory and for structures of 100 atoms or more, regardless of the theory. 

This is to save on computational cost. In order to circumvent this, when conducting a 

UMP2 simulation of less than 100 atoms which does not include optimization, one must 

specify the keyword and option combination of “density=current”. An important keyword 

to include for structures of 100 atoms or more when using SCF-based methods, is 
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Iop(6/82=1, 10/47=1), which will guarantee that Gaussian prints the hyperfine terms for 

structures with 100 atoms or more, in particular for UHF jobs. The keyword “Iop” stands 

for internal options, and there are a variety of ways to use Iop settings that may be typed 

into the header of the input files to bypass default Gaussian settings. The header in the 

example code of Appendix C demonstrates the use of the “density” and “Iop” keywords.   

Additionally, the population analysis in Gaussian defaults to the self-consistent 

field (SCF) density unless the “density” keyword is specified. The use of the “density” 

keyword affects two parts of the Gaussian output: first, the population analysis which 

consists of the Mulliken analysis, dipole moment, quadrupole moments, and higher order 

moments. Secondly, the hyperfine couplings which are the Fermi contact terms and 

anisotropic couplings. During an optimization job, MP2 uses analytic gradients, and the 

“density” keyword is not necessarily needed. In a geometry optimization, the energy’s first 

derivatives need to be computed. These are needed so one can have the forces on the atoms 

to indicate whether the structure is a stationary point or not, and if not, which direction to 

take a geometry optimization step. For methods such as MP2, analytic expressions are 

coded into Gaussian to be used for the first derivatives of the energy. Analytic gradients 

involve taking the derivative of the second order perturbation energy term to calculate the 

forces on the atoms as a step in trying to locate a stationary point.  
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IV. KDP Point Defect Simulations 

This dissertation includes the quantum chemistry results obtained for three different 

point defects in KDP. This chapter focuses on the efforts and methods used to model a self-

trapped hole in KDP and how to optimize the use of Gaussian for doing these electronic 

structure calculations. Chapter 5 depicts molecular orbitals and spin density plots for the 

self-trapped hole defect in KDP, and Chapter 6 discusses preliminary results on the 

hydrogen vacancy and oxygen vacancy defect in KDP. EPR data was available for all three 

of these defect types [19-22]. The self-trapped hole and the hydrogen vacancy were 

assigned to EPR spectra observed at low temperatures, therefore the orthorhombic, order-

phase structure of KDP was utilized for these defects. The oxygen vacancy spectra can be 

observed at room temperature, therefore the tetragonal, disorder-phase structure of KDP 

was used for these defects. The crystal structures were modeled with a range of atom cluster 

sizes that varied between 41 atoms to 185 atoms.   

The first step in using quantum chemistry methods to model a defect using a cluster 

approach is to determine the excess charge and the total spin on the specific cluster being 

studied. Values for the net charge and the spin multiplicity, an indicator of the number of 

unpaired spins and defined as 2S+1, are required inputs when starting a Gaussian run. As 

an example, consider the 41-atom cluster H16P5O20 used to model the self-trapped hole. 

Visualize the cluster as composed of closed shell ions, i.e., K+, H+, P5+ and O2 ions. In the 

41-atom cluster H16P5O20, the sixteen H+ ions, and the five P5+ ions give a charge of +41, 

whereas the twenty O2 ions give a charge of 40. Thus the net charge on the cluster, 

without the defect, is +1, with all the electrons in spin-up, spin down pairs. The 47-atom 
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cluster K6H16P5O20 provides another example. The six K+ ions, sixteen H+ ions, and the 

five P5+ ions give a charge of +47 and the twenty O2 ions give a charge of 40. The net 

charge on this latter cluster, without a defect, is +7. 

By introducing the hole (a positive entity) on the 41-atom cluster, the net charge is 

brought to +2 and results in an unpaired electron. Similarly, introducing the self-trapped 

hole for the 47-atom cluster increases the total charge to +8 and results in one unpaired 

electron. The unpaired electron on each cluster is represented by its unpaired spin through 

the spin multiplicity. For the clusters with a self-trapped hole, S = 1/2 and 2 (
1

2
) + 1 gives 

a spin multiplicity of 2. Therefore, the 41-atom cluster has net charge and spin multiplicity 

values of +2 and 2. These values are stated in the Gaussian code in the line immediately 

preceding the atom specifications (see input code Appendix C.1 and line with "2 2").  The 

47-atom cluster has +8 for the net charge and a multiplicity of 2, which would give a 

Gaussian input line of “8 2”. 

The electrons within the KDP crystal will distribute themselves among the atoms 

to form a minimum energy, thus forming a stable structure. Some atoms gain electrons and 

other atoms lose electrons to their neighbors as bonds are formed. A useful technique to 

visualize the way that electrons are split up and shared between atoms in a molecule is to 

apply Valence Shell Electron Pair Repulsion (VSEPR) theory. By themselves, the atoms 

within KDP have the following atomic numbers: potassium is number nineteen; oxygen is 

atomic number eight; phosphorus is fifteen; and hydrogen is one. Potassium atoms have 

just one valence electron in the outer 4s shell; oxygen atoms have six electrons in the outer 

2s2p shell; hydrogen atoms have one electron in the outer 1s shell; and phosphorus atoms 



40 

 

have five electrons in the outer 3s3p shell. In the PO4H4 unit, each of the atoms are bonded 

to one another by their valence electrons. Two electrons of the phosphorus and an electron 

from each hydrogen atom is primarily shared with their neighboring oxygen, thereby filling 

the outermost shell of the four oxygen atoms with a total of eight electrons.  

The figures graphically depicting KDP in Chapters 4 and 5 share the same color 

scheme. Small white spheres are used for hydrogen, red spheres for oxygen, purple spheres 

for phosphorus, and large white spheres for potassium. The electrons of each atom will 

combine into shared molecular orbitals which can also be visualized using Gaussian, and 

this process is described in Chapter 5 of this dissertation. Besides demonstrating the way 

in which electrons are shared in order to fill the outer shells, VSEPR describes how each 

electron is paired. Electrons occur in pairs of spin up and spin down, as consistent with the 

Pauli Exclusion Principle. Once the appropriate charge and multiplicity is determined for 

a cluster, and the single point energy calculations are performed, the hyperfine values for 

a variety of defects are extracted from the Gaussian outputs and compared to experimental 

EPR results.  

The EPR spectrum from the self-trapped hole defect was described in Chapter 2 

and shows six lines representing a 31.0 Gauss hyperfine interaction with the central 

phosphorus nucleus and two 3.2 Gauss hyperfine interactions with the two nearby 

hydrogen nuclei.  The EPR spectrum from the hydrogen-vacancy defect introduced in 

Chapter 2 also has two lines separated by 31.0 Gauss, attributed to a phosphorus hyperfine 

interaction.  The computationally modeled self-trapped hole is presented in this chapter, 

and the hydrogen vacancy defects are presented and compared with EPR results in 

Chapter 6. Lastly, there are five similar, yet distinct, EPR spectra from oxygen vacancies 
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with hyperfine splittings from phosphorus that range from 600 to 800 Gauss. These oxygen 

vacancies are discussed further in Chapter 6. 

4.1 Introduction to the Self-Trapped Hole 

This section describes how the optimum combination of quantum method and basis 

set, combined with the optimum geometry, was determined for performing the KDP self-

trapped hole defect calculations. These results also helped to set up the inputs for the 

oxygen vacancy and hydrogen vacancy simulations. The development of the approach 

began by comparing to previous [22] computational results using the tetragonal crystal 

structure, and this is discussed in Section 4.1.1. The subsequent Sections 4.1.2-4.1.7 

present results for the orthorhombic crystal structure, which is the physically realistic 

structure for the self-trapped hole defect.  

4.1.1 Validation of Previous Tetragonal Cluster Results without Potassium Ions 

 Before modeling the self-trapped hole in an orthorhombic cluster, this defect was 

studied in a 41-atom tetragonal cluster (shown in Figure 4.1) which was constructed using 

the lattice constants from Nelmes et al. [80]. The reason for initially using a tetragonal 

cluster was to confirm the computational results presented in Chirila’s dissertation which 

used a tetragonal H16P5O20 cluster for point defects [22]. In order to precisely duplicate the 

prior study, the cluster does not include potassium ions. Additionally, the prior study only 

focused on the isotropic Fermi contact values and not the anisotropic dipole-dipole 

hyperfine values. For this initial task, only the computed isotropic hyperfine parameters 

are considered. The isotropic Fermi contact values before and after a geometry 

optimization using UHF and the 6-31++G(d,p) basis set are displayed in Table 4.1 below 
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and are in agreement with previously published optimization results which also used UHF 

and 6-31++G(d,p) [22].  

 

Figure 4.1. 41-atom tetragonal KDP cluster before optimization, with the Cartesian axis 

overlaid. The top image shows all 41 atoms (z-axis pointing out) with the Cartesian axis. 

The bottom shows the central PO4H4 unit of interest, zoomed in. Atoms H21, O23, P35, 

O36 and H37 share the self-trapped hole. 
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The results in Table 4.1 indicate that two out of the four oxygen ions in the central PO4 

unit share the hole, oxygen number 23 and 36, and their Fermi contact values are shown in 

the first row of Table 4.1. The other two oxygen ions have a comparatively small amount 

of the spin density, oxygen number 13 and 7, and their Fermi contact values are listed in 

the second row of Table 4.1. The results for the hydrogen atoms are also listed. The 

hydrogen atoms with the hole are number 21 and 37 and are listed in the third row of Table 

4.1, and the hydrogens without the hole, number 10 and 5, are the fourth row of Table 4.1. 

The two hydrogens with larger Fermi contact values are located next to the two oxygen 

ions (H21, O23 and O36, H37 in Figure 4.1) with larger Fermi contact values, and the two 

hydrogens with smaller Fermi contact values are next to the oxygen ions with smaller 

Fermi contact values (H10, O13 and O7, H5 in Figure 4.1). The Fermi contact values for 

the cluster help to obtain a preliminary understanding of how the self-trapped hole’s 

unpaired spin is distributed among the atoms, before delving fully into a calculation of the 

anisotropic hyperfine values. 

Table 4.1. Isotropic hyperfine values for atoms with (O23, O36, H21, H37) and without 

the hole (O13, O7, H10, H5) for the 41-atom tetragonal cluster before and after 

optimization, allowing all nine atoms in the central PO4H4 to move. The results are also 

compared to previous work [22] which allowed the two hydrogen atoms and two oxygen 

atoms that shared the self-trapped hole to move during optimization. All results are in 

Gauss units and used the UHF/6-31++G(d,p) method and basis set. 

 

Atom Fermi Contact Value, 

pre-optimization  

Fermi Contact Value for 

Atoms with hole, from [22] 

Fermi Contact Value, 

post-optimization  

Oxygen 23, 36  -29.43   -29.38 

Oxygen 13, 7 0.57  1.06 

Hydrogen 21, 37  -6.84  -10 -1.03 

Hydrogen 10, 5 0.05  0.12 

Phosphorus 35 -87.05  -46 -78.70 
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The Fermi contact values before optimization for the atoms that shared the self-

trapped hole were -1.03 Gauss for both of the hydrogen ions (H37 and H21) and -29.43 

Gauss for both of the oxygen ions (O23 and O36). The relative location of these ions to the 

central PO4H4 unit and the atoms in the rest of the surrounding cluster (minus potassium 

atoms) are seen in Figure 4.1. After optimization, the Fermi contact value for the hydrogen 

ions became -6.84 Gauss, and the Fermi contact values for the oxygen ions changed very 

slightly, to -29.38 Gauss. The isotropic hyperfine values for the phosphorus ion (P35) were 

-87.05 Gauss before optimization and -78.70 Gauss after optimization, as seen in Table 

4.1. The hyperfine values for the phosphorus and hydrogen ions are on the same order of 

the experimental EPR results, namely 31.0 Gauss for the phosphorus and 3.2 Gauss for the 

hydrogen atoms [19-21]. The relative difference in signs, negative for the output from 

Gaussian and positive from EPR experiments, are not directly comparable, because the 

choice of the sign is chosen arbitrarily in experiment. A discussion on the significance of 

relative signs from ab-initio calculations is introduced in Section 4.1.7 in order to examine 

the distribution of spin density for the isotropic versus anisotropic hyperfine values, post 

geometry optimization.  

The geometric displacement of the atoms that share the self-trapped hole is seen in 

Table 4.2. Specifically, the distance between the hydrogen atoms and their neighboring 

oxygen atoms increases from 1.26 Angstroms to 1.64 Angstroms. The other significant 

geometry change is the angle between the central phosphorus atom and the two oxygen 

atoms. This angle decreases from the perfect lattice placement of 103.44 degrees to 97.06 

degrees after geometry optimization. This demonstrates the “trapping” of the self-trapped 

hole, and this geometric phenomenon is explored in more detail later in this chapter.  
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Table 4.2. Interatomic, oxygen hydrogen (O-H) and oxygen phosphorus (O-P), distances 

and oxygen-phosphorus-oxygen (OPO) angle measurements before and after optimization 

for the atoms that shared the self-trapped hole in the 41-atom cluster.  

Atom Pre-

optimization  

Post-

optimization  

O-H distance 1.26 Å 1.64 Å 

O-P distance 1.56 Å 1.54 Å 

OPO angle 103.44 deg  97.06 deg 

 

4.2 Results from a 41-atom Orthorhombic Cluster without Potassium Ions 

 The self-trapped hole is an unstable defect when the crystal is in the high-

temperature tetragonal phase, and thus the results from the previous tetragonal clusters are 

not truly representative of the actual defect. To accurately model the self-trapped hole 

defect, a cluster was created using the low temperature orthorhombic lattice constants from 

a 2001 paper by Miyoshi and coworkers who performed single crystal neutron diffraction 

experiments at 10 K [81]. Figures 4.2-4.4 demonstrate a typical procedure for how 

GaussView (a software component compatible with Gaussian) was used to create the 

orthorhombic clusters. First, the space group is chosen, and the unit cell parameters are 

entered. The appropriate Fdd2 orthorhombic space group was selected for KDP with unit 

cell parameters based on fractional coordinates reported in [81] and given in Table 4.3. 

These unit cell parameters were determined by converting the a, b, c lattice constants from 

the fractional coordinates to regular Cartesian coordinates in order to input them to 

GaussView. This was done by multiplying the unit cell parameters by the fractional cell 

parameters, and the results are seen in Table 4.3 for five central atoms.  
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After entering the Cartesian coordinates and unit cell parameters from Table 4.3 

into GaussView, it automatically creates a cell with the atoms duplicated the appropriate 

amount of times depending on where they are in the lattice for the pre-defined space group. 

A KDP unit cell is 32 atoms, comprised of four formula units. The cell depicted in Figure 

4.2 is a 64 atom cell. The cell may be grown by utilizing the periodic boundary cell editor, 

which is a tool within GaussView. As seen in Figures 4.3, the cell is duplicated in the x, y, 

and z directions once for each axis. Figure 4.4 is the result after trimming away extra atoms 

from Figure 4.3. 

Table 4.3. Cartesian coordinates (x,y,z) for the central atoms calculated from the fractional 

coordinates measured by Miyoshi and coworkers for the orthorhombic KDP cluster [81]. 

Atom X Y Z Unit Cell Parameters (Å) 

K 0 0 3.347792 a 10.5447 

P 0 0 0 b 10.4816 

O 0.358509 1.210614 -0.94762 c 6.9205 

O 1.225073 -0.36067 0.809283   

H 2.243069 0.662647 0.787968   

 

 

Figure 4.2. A 64-atom cell for the orthorhombic KDP cluster. The lines indicate dangling 

bonds that are ready to have atoms affixed to them, if the user specifies to grow the cell. 
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Figure 4.3. (Top) Expanding the 64 atom cell in the (x,y,z) direction by one unit along each 

axis utilizing the periodic boundary condition tool in GaussView. (Bottom) The supercell 

corresponding to the replicated atoms in the top panel. 
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Figure 4.4. The 41-atom orthorhombic structure after trimming away the extra atoms in the 

larger structure created in GaussView.  

 

4.2.1 Results from 41-atom using UMP2/6-31++G(d,p) without Potassium Ions 

The methods described in the previous section were utilized in order to generate 

structures for the remainder of this research project. In this section, the orthorhombic 41-

atom structure was submitted as an optimization run in Gaussian to examine the self-

trapped hole defect, and all nine atoms in the central unit were allowed to move while 

keeping the other atoms in the cluster fixed. In reference to Figure 4.4, the atoms that were 

allowed to move were H4, O1, O36, H13, H32, O39, P30, H21, and O29. The method and 
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basis set that were chosen after having explored UHF for the optimization were UMP2/6-

31++G(d,p). The UHF method had been producing hyperfine results that indicated an 

equally shared spin density on two hydrogen atoms and equally shared between their two 

respective oxygen atoms, as had been demonstrated for the tetragonal simulations in 

Section 4.1.1. However, it does not produce hyperfine results that are as close to EPR 

experiment as the UMP2 method. Additionally, once hours were granted on the HPC, it 

became possible to use the more computationally expensive UMP2 method in order to 

generate results that were closer to EPR measurements, in particular with larger clusters.  

The hyperfine results for the 41-atom cluster were compared to experimental EPR 

results [19, 20], in addition to comparisons with the isotropic and anisotropic outputs from 

Wells et al. who conducted ENDOR and ESR experiments on the self-trapped hole in KDP 

at 4.2 K [82]. The resulting combination of hyperfine results are compared with Wells et 

al. for a large 129-atom structure in Section 4.1.7 of this dissertation. This comparison with 

Wells et al. was made because the EPR results published by Garces and Stevens only 

contained the combined hyperfine splittings along the c-axis of the magnetic field, which 

are a combination of isotropic and anisotropic parameters. The Wells paper refers to the 

self-trapped hole as the “4.2 K defect” and provides a complete description of the g matrix 

and the anisotropic matrices for the hydrogen ions that share the hole as well as for the 

phosphorus ion.  

The results of the orthorhombic 41-atom structure simulation conducted with 

UMP2/6-31++G(d,p) after optimization are shown in Table 4.4, alongside the values 

obtained from experiments [19, 20 ,82]. The anisotropic hyperfine results are listed for the 

Baa, Bbb, and Bcc principal axes components. The calculated hyperfine values are on the 
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same order of magnitude as the EPR hyperfine results, which were 31.0 Gauss for the 

phosphorus ions and 3.2 Gauss for the two hydrogen ions that shared the self-trapped hole 

[19, 20]. Table 4.4 also demonstrates that there is comparatively little spin density on 

hydrogen number 4 and hydrogen number 13, which are the opposing pair of hydrogen 

ions of the same PO4H4 unit.  

The separated isotropic and anisotropic hyperfine results in Table 4.5 are given in 

units of MHz for ease of comparison with the published isotropic and anisotropic ENDOR 

values [82]. The experimental values from the EPR experiments were converted from units 

of Gauss to MHz in order to include the results on the same table for comparison purposes. 

The conversion between Gauss and MHz may approximately be done by multiplying the 

value in Gauss by a factor of 2.8. According to the Gaussian results, the two hydrogen ions 

with the hole (H21 and H32) both have an isotropic value of 3.35 MHz and anisotropic 

values of Baa = −11.122, Bbb = −8.195, and Bcc = 19.317 MHz, in the diagonalized 

form of the anisotropic matrix.  

The hyperfine values for the four oxygen ions are also shown in Table 4.4 in a 

similar manner as was presented in Table 4.1 in order to understand the distribution of spin 

density among atoms in the central PO4H4 unit. The pair of oxygen ions that are paired 

with hydrogen number 21 and 32 (oxygen number 29 and number 39 respectively), have 

relatively large hyperfine values compared with the pair of oxygen ions that are paired with 

hydrogen number 4 and 13 (oxygen number 1 and number 35, respectively).  
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Table 4.4. UMP2/6-31++G(d,p) isotropic and anisotropic (along the principal axes) 

hyperfine values for the 41-atom cluster after allowing all nine ions in the central PO4H4 

unit of the orthorhombic KDP structure to move, compared with results from ENDOR and 

EPR experiments [19, 20, 82].  
Atom Isotropic 

Results 

(MHz) 

Anisotropic 

(MHz) 

Isotropic 

ENDOR [82] 

(MHz) 

Anisotropic 

ENDOR [82] 

(MHz) 

EPR, Combined 

Hyperfine  

[19, 20] (MHz) 

Hydrogen 21 and 32 -3.35 -11.12 

-8.2 

19.32 

-1.03 14.17 

-8.15 

-6.02 

6.4 

Hydrogen 4 and 13 1.46 -3.31 

-1.52 

4.83 

   

Phosphorus 35 -34.05 -3.75 

-1.67 

5.41 

-82.21 -3.31 

-0.23 

3.54 

62.0 

Oxygen 29 and 39 -50.66 70.12 

67.93 

-138.04 

   

Oxygen 1 and 36 1.33 1.73 

1.33 

-3.06 

   

 

The central PO4 unit seen in Figure 4.5 is surrounded by four hydrogen ions; two 

are relatively closer to the unit and two are relatively farther away, as was introduced in 

Chapter 2. After optimization, the self-trapped hole is primarily interacting with O39 and 

O29, which have the far hydrogen ions, H32 and H21. These oxygen and hydrogen ions 

are separated by a distance of 1.44359 Angstroms. This is in contrast to previous research 

by Stevens et al., which suggested that the self-trapped hole defect was on O1, O35, and 

the near hydrogen ions, H4 and H13 [20]. The distance between these oxygen and hydrogen 

ions are 1.0598 Angstroms, per pair. A zoomed in and rotated image of the ions without 

the hole are shown in Figure 4.6, and an image with the self-trapped hole are shown in 

Figure 4.7.  
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Figure 4.5. The 41-atom orthorhombic KDP structure after optimization which was 

conducted with UMP2/6-31++G(d,p). The central nine atoms were allowed to move (H4, 

O1, O36, H13, H32, O39, P30, H21, and O29). The two “near” hydrogen ions are H4 and 

H13, and the two “far” hydrogen ions are H21 and H32. The z-axis is pointing out of the 

page, the y-axis is pointing up, and the x-axis is pointing right.  

 

 

  

 



53 

 

 

Figure 4.6. The view of the atoms in the central part of the 41-atom orthorhombic structure 

that do not have the hole (H13, O36, O1, and H4) with z-axis pointing up. The image on 

the top is before optimization, and the image on the bottom is after optimization. The 

quantitative changes in the relative distances between the atoms that took place during 

optimization are shown in Table 4.6.  
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Figure 4.7. The view of the atoms in the central part of the orthorhombic structure that have 

the hole with z-axis pointing up in both images. The hole is shared between H32, O39, 

O29, and H21. The figure on the top is before optimization, and the figure on the bottom 

is after optimization. The quantitative changes in the relative distances between the atoms 

that took place during optimization are shown in Table 4.6.  
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In addition to the hyperfine values, the coordinates of the ions that were allowed to 

move during the geometry optimization were compared to those of the perfect crystal 

obtained from the x-ray and neutron diffraction experiments. The bond distances shown in 

Table 4.6 and displayed in Figures 4.6 and 4.7 demonstrate that the atoms in the PO4 unit 

that are opposite from the oxygen atoms where the unpaired electron localizes moved 

relatively little in comparison with the atoms that host the unpaired electron. The angle 

between the two oxygen ions that have the hole (O29, P30, O39) was reduced from 115 

degrees to 94 degrees, and these two oxygen ions moved farther away from the central 

phosphorus and their respective hydrogen ions. This is indicated by the increase in the P30-

29 and P30-O39 distance from 1.412 to 1.57 Angstroms and an increase in the H21-O29 

and H32-O39 distances from 1.44 to 1.58 Angstroms. As seen in Table 4.6, the OPO 

(oxygen-phosphorus-oxygen) angle for the trio that includes the two oxygen ions without 

the hole increased from 106 degrees to 112 degrees (O36, P30, O1). The distances between 

P30-O36 and P-30-O1 reduced very slightly, from 1.58 to 1.56 Angstroms, and the 

distances between H13-O36 and O1-H4 also changed slightly, from 1.06 to 1.05 

Angstroms. Figure 4.6 presents a good view of the central phosphorus ion as it changes its 

position along the z-axis before and after optimization. The relative difference in location 

of phosphorus number 30 in the top image of Figure 4.6 compared to the bottom image in 

Figure 4.6, shows that it moves downwards along the z-axis during optimization, away 

from O29 and O39 and towards O1 and O36 and off of the origin of the Cartesian axis.  
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Table 4.6. Distances and angles, before and after geometry optimization, for the 41-atom 

orthorhombic structure. The unpaired electron is localized on O1-H4 and O36-H13 of the 

central PO4 unit, while O29-H32 and O39-H21 are on the opposite side of the phosphorus 

atom and do not share the hole. 

                                               Bond Distances (Å)             Angles (degrees) 

Atoms  Before opt. After opt.  Before 

optimization 

After 

optimization 

R(H13-O36), R(O1-H4) 1.06  1.05   

R(P30-O36), R(P30-O1) 1.58  1.56   

R(H21-O29), R(H32-O39) 1.44 1.58   

R(P30-O29),R(P30-O39)  1.51 1.57   

A(O36-P30-O1)   106.22 112.72 

A(O29-P30-O39)   115.28 94.55 

 

The relative placement of the self-trapped hole within the KDP crystal can be explained by 

a simple electrostatics argument. The hole that is self-trapped represents a positive charge, 

thus it will primarily localize on one or more negatively charged oxygen ions. Furthermore, 

the positive hole will want to be far away from the positive hydrogen ions, i.e., due to 

electrostatic repulsion. This makes the preferred location of the hole on the oxygen ion pair 

that is farther from hydrogen ions. This electrostatic behavior is also seen when allowing 

the oxygen ions with the hole to move relative to the central phosphorus ion, which has a 

+5 charge. The positive hole wants to move away from the positive phosphorus ion. This 

process is explored in the context of a larger cluster which includes potassium ions, in 

Section 4.1.7.  

4.2.2 Methods for Combining Hyperfine Values 

 The UMP2/6-31++G(d,p) simulation described in Section 4.2.1, both before and 

after optimization, gave results that were not as close to the experimental EPR results as 

the UMP/6-31++G simulation with no optimization. Table 4.7 below shows the results 
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generated using UMP2/6-31++G with no optimization, specifically listing the hydrogen 

and phosphorus anisotropic hyperfine values and their respective sets of direction cosines, 

along with a comparison to the results from experiment [19, 20]. The direction cosines are 

needed to combine isotropic and anisotropic hyperfine values. The phosphorus ion’s Bcc 

anisotropic component lies exactly along the z direction, since alpha and beta are both 

equal to zero and gamma equals one. This means that the isotropic Fermi contact term can 

be added directly to the Bcc anisotropic term to obtain a value that can be compared to the 

EPR splitting experimentally measured when the applied magnetic field is along the z-axis 

(corresponding to the c-axis). This gives a value of -41.46 Gauss, which is closer to the 

EPR experiment value of 31 Gauss than the UMP2/6-31++G(d,p) results.  

However, the hydrogen ion does not lie along the gamma direction, and so methods 

were explored to combine the isotropic and anisotropic hyperfine values, besides directly 

adding the Fermi contact term to the gamma direction of the Bcc principal component. The 

first method that was pursued was to use rotational operators. These operators were 

employed to extract the c-axis component of the anisotropic hyperfine matrix from the 

Gaussian output. This method is described in Appendix B.1, and the MATLAB code used 

to conduct the operations is in Appendix B.2. After converting the directional cosines into 

Euler angles and conducting these rotational operations, the predicted c-axis hyperfine 

value for the hydrogen ion is -5.334 Gauss, which is closer in magnitude than the UMP2/6-

3++G(d,p) results to the experimental EPR value of 3.2 Gauss.  
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Table 4.7. A section of the “Anisotropic Spin Dipole Couplings in Principal Axis System” 

output from Gaussian for the UMP2/6-31++G run with no optimization, which has been 

formatted into a table. These results are for the central phosphorus (P30) and one of the 

hydrogen (H21) ions that have the hole. Results are compared to experiment [19, 20], using 

the rotation matrix method of combining the hyperfine values. 

 
Atom Principal  

Values (Gauss) 

Direction Cosines Combined 

(Iso+Aniso) 

Garces, Stevens 

[19, 20]  

H21 Baa -4.473 -0.4806 0.3687 0.7957 -5.334 Gauss 3.2 Gauss 

Bbb -3.145 0.6906 -0.4001 0.6025   

Bcc 7.618 0.5404 0.8391 -0.0623   

P30 Baa -4.572 0.9993 0.0366 0.0000 -41.46 Gauss 31 Gauss 

Bbb -1.066 -0.0366 0.9993 0.0000   

Bcc 5.638 0.0000 0.0000 1.0000   

 

The “Anisotropic Spin Dipole Couplings in Principal Axis System” section of the Gaussian 

output file will also display units of MHz and cm-1, but in Table 4.7, only the units of Gauss 

are displayed for comparison purposes to the experiments conducted by Garces and 

Stevens [19, 20]. 

 The next method to be explored within the course of this dissertation research, was 

to simulate the EPR spectrum using the open-source code EasySpin [83]. In order to use 

EasySpin to simulate EPR spectra, the anisotropic part of the A matrix, 𝑨𝒂𝒏𝒊𝒔𝒐 = 𝑻𝒂𝒃𝒄, in 

the crystal coordinate system was first calculated using the outputs from a Gaussian 

simulation. The 𝑻𝒂𝒃𝒄 matrix was constructed by multiplying the transpose of the direction 

cosine matrix 𝑹𝑻, by 𝑻𝑨𝑩𝑪, the principal values multiplied by the identity matrix, and the 

matrix of direction cosines 𝑹. This is expressed by Equation 4.1 and Equation 4.2.  

𝑻𝑨𝑩𝑪 = [

𝐵𝑎𝑎 0 0
0 𝐵𝑏𝑏 0
0 0 𝐵𝑐𝑐

]         Eq. 4.1. 

𝑨𝒂𝒏𝒊𝒔𝒐 = 𝑻𝒂𝒃𝒄 = 𝑹𝑻𝑻𝑨𝑩𝑪𝑹       Eq. 4.2. 
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Once the 𝑨𝒂𝒏𝒊𝒔𝒐 matrix was calculated, then the Fermi contact terms are added to the 

diagonal part of this matrix, such that: 𝑨 = 𝒂𝒊𝒔𝒐𝑰 + 𝑨𝒂𝒏𝒊𝒔𝒐 (from Chapter 3, Equation 3.4). 

This A matrix and the specification of the frequency that was used during the experiment 

along with a range of magnetic field values are programmed into EasySpin. A complete 

description of this code is provided in Appendix B.3.  

 Simulated EPR spectra generated by EasySpin is shown in Figure 4.8 for the 

hydrogen ion, using the results from the UMP/6-31++G optimization for the 41-atom 

cluster. These results are not optimal and are only presented here in order to illustrate the 

EasySpin method. In Section 4.1.7, spectra are again simulated for a large 129-atom 

cluster, which provided the most optimal results.  

 
Figure 4.8. Simulated spectra from EasySpin for hydrogen number 21 in the 41-atom 

cluster for the self-trapped hole defect.  



60 

 

 

Finally, the combined hyperfine value is obtained from these simulated spectra the same 

way as they would be obtained from the experimental EPR spectra. This is done by 

centering a data cursor on the middle of each data peak and then measuring the separation 

between them. In the case of Figure 4.8, the hyperfine separation is approximately 333.5 

mT minus 332.8 mT, which is 0.7 mT or approximately 7 Gauss. 

4.2.3 Discrete Atom Movement for “Coordinate Scans”  

 Results from Table 4.4 show that the geometry optimization which allowed nine 

atoms to move with the UMP2/6-31++G(d,p) method and basis set gives a central 

phosphorus hyperfine value of 10.21 Gauss (after conversion from MHz). The 

optimization performed by Gaussian using UMP2/6-31++G also does not calculate the 

hyperfine values exactly as they are measured by EPR experiments, with a central 

phosphorus hyperfine value at 41.46 Gauss before optimization and a hyperfine value of 

91.53 Gauss after optimization. In order to better understand the effect of the geometry on 

the calculated hyperfine values, the optimization process was examined in greater detail. 

Furthermore, Gaussian does not provide an incremental output for hyperfine values per 

optimization step, and therefore, this procedure was helpful to see how the hyperfine values 

may change during each optimization step. 

An optimization of the cluster moves the oxygen ions inwards, such that the 

distance between the oxygen ions and their nearby hydrogen ions are increased to 1.55529 

Angstroms, which might be farther than what may be realistically occurring. It should be 

assumed that in a real cluster, the ions effected by the defect have not moved more than a 

fraction of an Angstrom from their perfect lattice position. Therefore, a different technique 
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was pursued in order to further understand the Gaussian optimization and how it affects 

the hyperfine values. Optimization is conducted in Gaussian to find an energy minimum 

for the structure by moving atoms by a fraction of an Angstrom per step until an energy 

minimum is reached. For the self-trapped hole defect, a hole is expected to become trapped 

in KDP when the oxygen ions of the PO4H4 unit move closer to one another, thus 

“trapping” the defect. The two oxygen ions sharing the hole were manually moved by 

increments of degrees for the angle formed between the two oxygen ions and the central 

phosphorus ions, in a similar manner that Gaussian moves the oxygen ions. This is because 

it is known that the unpaired electron is shared between two oxygen ions, and that the two 

oxygen ions are closer together in this case than they are in the perfect crystal. The 

hyperfine values were also analyzed per step, as seen in Table 4.8.  

Table 4.8. Hyperfine terms and total energy computed at various OPO angles of the PO2 

fragment that contains the unpaired electron. 

 Phosphorus Hyperfine 

Angle (degree)  

OPO separation 

Isotropic 

(Gauss) 

Anisotropic 

(Gauss) 

Total Hyperfine 

(Gauss) 

Total Energy 

(Hartrees) 

No optimization, 115.28 35.83 5.64 41.47 -3210.942 

113.88 33.72 5.56 39.28 -3210.944 

110.2 27.87 5.31 33.18 -3210.948 

109.15 26.14 5.23 31.37 -3210.948 

106.01 20.85 4.97 25.82 -3210.951 

97 5.26 11.68 16.94 -3210.953 

95 1.86 11.19 13.05 -3210.952 

90 -6.18 10.03 3.85 -3210.949 

 

 

As the results in Table 4.8 demonstrate, an energy minimum is reached near 97 degrees 

separation for the OPO angle, but the best hyperfine value occurs between 109.15 and 

110.2 degrees, 31.37 Gauss and 33.18 Gauss respectively,  compared to 31 Gauss from 
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EPR experiments [19, 20, 21].  The total energy is highest for the unaltered structure,  at 

-3210.942 Hartrees. Each iteration that moves the two oxygen atoms closer together brings 

the energy down to the minimum and then up again, but the hyperfine value starts to 

diverge from the value measured in EPR experiment after the ions begin to close in at 

angles smaller than 109.15 degrees. The method described in Appendix B was used to 

combine and calculate the hyperfine value for the hydrogen atom, since the anisotropic 

values for Bcc did not lie exactly along the gamma direction. The hyperfine value for the 

hydrogen ion was calculated to be 5.814 Gauss, which is closer to the value obtained in the 

EPR experiment, of 3.2 Gauss. It is important to keep in mind that these manual angle 

scans were conducted with the 41-atom cluster that does not have any potassium ions. The 

influence that the potassium ions have on the hyperfine parameters is explained in “Section 

4.1.3. Large Orthorhombic Clusters.”   

 Another coordinate scan was performed for UMP2/6-31++G, by moving the two 

oxygen ions inwards and outwards, along the line that connects them. The results for those 

trials are seen in Table 4.9. Here, the results in Table 4.9 show that the moving the two 

oxygen ions in closer along their bond also brings them closer to the central phosphorus 

ion, which drives up the total energy of the cluster. Although the hyperfine value is closer 

to the value obtained in the EPR experiment (31 Gauss) between an O-O distance of 2.53 

and 2.50 Angstroms (28.71 and 35.65 Gauss, respectively), the energy is higher than that 

of the structure before any geometric alteration has taken place. The energy begins to 

decrease when the two oxygen ions are separated farther from one another which also 

increase their distance from the central phosphorus. Therefore, this may indicate that for 
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the hole to be properly formed in this particular 41-atom structure, the oxygen ions need to 

come closer together while also moving away from the central phosphorus ion. 

 

Table 4.9. Hyperfine terms (in Gauss) and total energy (in Hartrees) computed at various 

O-O distance of the PO2 fragment that contains the self-trapped hole. 

 

 Phosphorus Hyperfine 

O-O Distance Å Isotropic Anisotropic Total P-O 

distance, Å 

Energy 

2.4 5.33 3.17 8.5 1.447 -3210.902 

2.45 14.14 3.90 18.04 1.468 -3210.918 

2.5 24.00 4.70 28.71 1.489 -3210.931 

2.53 30.43 5.21 35.65 1.502 -3210.937 

2.54 32.65 5.39 38.40 1.506 -3210.939 

2.55 (Before 

Moving)   

35.83 5.64 41.47 1.512 -3210.942 

2.57 39.48 5.92 44.40 1.519 -3210.945 

2.59 44.17 6.28 50.35 1.521 -3210.948 

2.62 51.33 6.81 58.14 1.540 -3210.952 

2.7 70.22 8.10 78.32 1.574 -3210.960 

 

For comparison with Table 4.9, the final results for the Gaussian optimization job described 

previously gave a distance between the two oxygen ions of 2.388 Angstroms with 

hyperfine of 91.535 Gauss, a phosphorus-oxygen distance of 1.657 Angstroms, and an 

energy of -3210.988 Hartrees. It is important to include an analysis of the estimated 

minimum energy of the structure, because it is well-defined and represents the most 

probably geometry for a given ground state wave function. However, unlike Table 4.8 

which was able to demonstrate an energy minimum, the results seen in Table 4.9 have a 

diverging energy.  

4.2.4 Layers of Interest and Atom Links 

In order to tackle the challenge of modeling the self-trapped hole defect in a large 

KDP cluster that contained potassium ions, a variety of Gaussian techniques were utilized 
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to see if they could assist in producing a realistic computational result. The following 

information is meant to be instructive and potentially beneficial to a project that might need 

to utilize these methods for KDP. Multi-layered optimization calculations can be carried 

out using ONIOM [83] (“Our own N-layered Integrated molecular Orbital and Molecular 

mechanics”). The ONIOM method works by assigning the area of interest – in the case of 

KDP the central PO4 cluster that has the self-trapped hole – as the “high” layer, and the rest 

of the structure as the “low” layer. The high layer is typically assigned a more complex 

quantum method and a larger basis set, while the low layer is assigned a quantum method 

that is less computationally intensive. A common assignment for the low layer is UFF 

(universal force field), but it can be changed by the user to a different method and basis 

set.  

The results from the single point energy calculations can be applied to the ONIOM 

calculations, by knowing where the defect is localized and knowing which atoms to assign 

to the high layer and the low layer, and by studying the HOMO (highest occupied molecular 

orbital) and LUMO (lowest unoccupied molecular orbital) of the alpha and beta electrons. 

This method has been applied by previous computational physicists in the study of defects 

[84]. After an optimization, the ONIOM job will display updated Fermi contact terms and 

anisotropic spin dipole couplings for the atoms in the high layer of interest, omitting the 

atoms in the low layer. Therefore, the choice of atoms in the high and low layer needed to 

be done in such a way as to retain all nine of the atoms in the central unit. Appendix A.2 

describes the progress made in exploring the ONIOM method along with a table of 

preliminary results for the self-trapped hole in KDP, although it was not utilized for the 

remaining simulations described in Chapters 4 – 6 of this dissertation.  
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4.3 Orthorhombic Clusters including Potassium Ions  

4.3.1 Results from a 149-atom Cluster with +38 Charge 

 The functional ωB97XD was utilized in simulations for a variety of large KDP 

clusters. As had been the case previously in attempts to conduct self-trapped hole 

simulations for the tetragonal cluster, initial simulations for the large orthorhombic cluster 

were also incorrectly localizing the hole to the outer part of the cluster. In other words, the 

hole was not being assigned to atoms located in the symmetrically “middle region” with 

respect to the other atoms. Again, the main issue appeared to be the nearest potassium ion 

to the central PO4 cluster (i.e., the potassium ion that was located along the same axis as 

the self-trapped hole), and the removal of that potassium ion would then give the excess 

spin density an unoccupied region to localize in the absence of the potassium ion. Two 

combined methods were attempted in order to explore this phenomenon, and a large cluster 

was created which placed the nearest potassium ion in the geometric and symmetric 

“middle” of the cluster, assuming that the self-trapped hole region extended along the z-

axis, beyond the two oxygen atoms and hydrogen atoms. This is in contrast to the previous 

clusters, which had placed the entire PO4 unit in the center of the cluster.  

As seen in Figure 4.9, this axis extends from left to right, and the nearest potassium 

ion in the symmetric center of the cluster, is marked in yellow. The nearest potassium ion 

to the central PO4 cluster was removed in the first method and is indicated by the yellow 

circle in Figure 4.9. The simulation was also conducted by retaining a large number of 

potassium ions arranged around the outer perimeter of the cluster. The reasoning behind 

retaining the large number of potassium ions on the outside of the cluster was in order to 

see if this would prevent the self-trapped hole from localizing in the outer regions of the 
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cluster. However, even with the excess potassium ions on the outer part of the cluster, the 

self-trapped hole would still tend to avoid the middle PO4 unit - highlighted in teal in Figure 

4.9. The removal or displacement of the potassium ion nearest to the unit was a successful 

method for localizing the defect on the nearby PO4 unit. This provided a path forward in 

getting the self-trapped hole to not go on the outer part of the cluster and to localize on the 

middle PO4 unit, and this was the second method that was explored for the +38-charge 

(149-atom) cluster. Unfortunately, the removal of the potassium ion would indicate that 

the defect is not a self-trapped hole but instead a hole trapped next to a potassium ion 

vacancy.  

 

Figure 4.9. The 149-atom cluster which retains the potassium ions that surround the large 

orthorhombic cluster. The yellow circle indicates the area where the closest potassium ion 

resides. This potassium ion was removed in one instance. 
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 The simulations for the large clusters were conducted in multiple steps and input 

files, as depicted in Appendix C.2, which has a “Link” to a second job after the first one is 

completed. First, a single point energy calculation is conducted for the entire cluster, 

utilizing the keyword and option scf=(xqc,maxconventionalcycles=150,maxcycles=300). 

This dictates quadratic convergence to an energy minima after 150 conventional linear 

steps, and it instructs Gaussian to stop attempts to converge the cluster to a solution after 

300 cycles.  

 The method which resulted in the modeling of the self-trapped hole defect began 

by taking the final geometry results from the 41-atom cluster’s optimization job and 

applying them to the large cluster in attempts to localize the self-trapped hole on the pair 

of oxygen ions located in the middle of the cluster and to have the self-trapped hole 

localized for a PO4 unit with a potassium ion nearby. Specifically, the angle between the 

central phosphorus ion and its two oxygen atoms was minimized in the large cluster similar 

to how the two oxygen atoms are drawn closer to one another during the optimization in 

the small 41-atom cluster. This adjustment of the coordinates for the optimization starting 

guess was also done for the distance along the bond between the central phosphorus and 

its nearest potassium ion. This negated the need to completely remove the potassium ion. 

Figure 4.10 depicts a series of orientations for the large cluster with the surrounding 

potassium ions that was utilized in this section of simulations. The results for the cluster 

below had 149-atoms with a stoichiometry of H40K39O56P14. Due to the excess number of 

potassium ions, this cluster had a total charge of +38, as was presented in Figure 4.9 

previously.  
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Figure 4.10. These two panels depict the 149-atom orthorhombic cluster. This particular 

cluster retains an excess amount of potassium ions around the outer part of the cluster for 

+38 charge. The top image has the z-axis pointing out of the page, and the bottom image 

shows phosphorus 94 and potassium 105 highlighted in teal, with the z-axis pointing left. 
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 The simulation started by utilizing the keyword and option guess=fragment=2 in 

order to obtain convergence and a new energy for the large cluster. Utilizing the guess 

keyword, there were two fragments under consideration, with the central (PO4H4)2+ being 

the second fragment. Charge and multiplicity are divided with the two fragments and are 

presented in the header of the input file as 38 2 36 1 2 2. This first pair in this line of 

numbers indicates that the total charge and multiplicity for the entire cluster are 38 2, while 

the second pair corresponds to the larger cluster’s charge and multiplicity 36 1, and the 

second fragment, which is expected to have the self-trapped hole, has a charge and 

multiplicity of 2 2. A tool in GaussView known as “Atom Groups” was utilized to divide 

the cluster into fragments after specific atoms were highlighted.  

 The second part of the job was a full DFT SCF allowing relaxation of all orbital 

rotations. This step utilized the results from the guess=fragment job. The final part of this 

guess-method was to utilize the results from the second step in an optimization job. This is 

done by using the checkpoint file from the second step in the input file for Gaussian and 

re-specifying guess=read, to instruct Gaussian to read the inputs from the checkpoint file. 

Since the two oxygen ions and the potassium ion were manually moved at the beginning 

of the first simulation, they were un-frozen for the optimization job. The optimization then 

would move the two oxygen atoms and the potassium to where Gaussian determined was 

best in terms of lowest energy for the cluster. Upon analyzing the final geometric position 

of the cluster, these three ions did not move a significant distance away from where they 

were originally assigned. 
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Table 4.10. The hyperfine results from the large orthorhombic cluster with a total charge 

of +38 and a multiplicity of 2.  

 

Atom  Isotropic 

(Gauss) 

Anisotropic 

(Gauss) 

Direction Cosines 

H8 -0.895 -3.60 

-2.60 

6.20 

0.8823  -0.4112   0.2293 

0.4476   0.5818   0.6791 

0.1458   0.7017  -0.6973 

H114 -1.147 -3.75 

-2.78 

6.53 

-3.506    0.4345  0.2264 

-0.4652  0.5893  0.6606 

0.1536  -0.6812 0.7158 

P94 -35.050 -1.93 

0.35 

1.56 

1.0       0.0084  -0.0023 

0.0036 0.1613   0.9869 

0.0079 0.9869  -0.1613 

O98 -11.319  
 

O99 -11.294  
 

 

 

It seemed that Gaussian had consistently rotated the guess-basis for the DFT simulations, 

such that the magnetic field was along the “x” axis. This is what this section of the Gaussian 

output seems to indicate:  

 

For this reason, it is assumed that the isotropic hyperfine value may be added to the Baa 

principal axis value for the phosphorus ion, assuming that the other values are 

approximately zero, and that the magnetic field would be applied along the x-axis (also 

known as a-axis). This is in contrast to the UMP2 output, where the isotropic hyperfine 

value was added directly to the Bcc anisotropic component for the central phosphorus ion. 

In this case, the total hyperfine value is approximately -36.95 Gauss. The hydrogen ions 

also give values that are approximately -4 Gauss. Both of these values approach the EPR 
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experiment which measured 31 Gauss for the phosphorus and 3.2 Gauss for the two 

hydrogen ions. Table 4.11 below shows a summary of the distances for the atoms that were 

manually adjusted and then optimized.  

Table 4.11. Distances between atoms from the PO4 unit of interest for the 149-atom 

cluster before and after optimization. All distances are in Angstrom and angles are in 

degrees.  

 K-P distance 

(Angstom) 

OPO angle 

(degrees) 

O-O distance 

(Angstom) 

O-P distance 

(Angstom) 

Before alteration 3.35 115.27  1.51 

After manual change  3.86 97.30 2.58 1.53 

After optimization  

(K and two O atoms 

move) 

3.99 95.87 2.30 1.55 

 

This table of values shows that the angle between the two oxygen ions became even 

smaller, from 97.30 degrees to 95.87 degrees, while subsequently pushing the potassium 

ion further away from the phosphorus ion, from 3.8626 Angstroms to 3.993 Angstroms. 

The two oxygen ions also moved further away from the central phosphorus ion, from 

1.52983 Angstrom to 1.55491 Angstrom.  

4.3.2 Self-Trapped Hole Simulations with +16 and +4 Charge 

It was not optimal that the isotropic hyperfine values for the two hydrogen ions that 

shared the self-trapped hole were not equal (-0.90 Gauss versus -1.17 Gauss), as introduced 

in Table 4.10, and therefore the Miyoshi cluster was revisited in order to see if the issue 

resided in the crystal geometry. This was supposed, because the 149-atom cluster depicted 

in the preceding paragraphs was created using a unit cell from the Materials Project 

Database of DFT structures [85]. The next change that was performed for the results 

described in this section, involved the removal of the excess potassium ions from the outer 
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perimeter of the cluster. This was done for two reasons. First, it was suspected that the 

success of the localization for the self-trapped hole was due to the manual adjustment of 

the atoms before the Gaussian simulations took place, and therefore “manual optimization” 

procedure should at least be retained. Surrounding the large cluster with the excess 

potassium ions played a minimal role in localizing the self-trapped hole to the central part 

of the large cluster, as was demonstrated by the undesirable localization of the self-trapped 

hole to the outer part of the cluster in lieu of manual optimization. The second reason that 

the additional potassium ions were removed from the large cluster, was in an attempt to 

bring the total charge closer to zero, down from the +38 charge.  

The first cluster reduced the excess charge by half to +16, rather than the +38 as it 

had been in the 149 atom cluster discussed in the preceding paragraphs. This new cluster 

with a total of 127 atoms is seen below in Figure 4.11. 
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Figure 4.11. The second iteration of the large orthorhombic cluster utilizing the manual 

optimization method to examine the self-trapped hole, with an excess charge of +16 and a 

total of 127 atoms.  

 

The pictures of the cluster in Figure 4.12 are after the manual alteration of the OPO angle 

and the P-K distance. Table 4.12 lists these angles and distances. The angle between 

oxygen 86, oxygen 120, and phosphorus 92 were also manually changed from 115.275 

degrees before the manual change to 97.2 degrees after the manual change. As seen in the 
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figure, the two atoms highlighted in teal on the right side of the figure are the oxygen ions 

which were drawn in closer to one another, and the potassium ion that is nearest to it is 

located to the left. 

  

Figure 4.12. The 127-atom cluster, with the nearest potassium ion moved from the PO4 

unit, and the OPO angle of the unit decreased. Phosphorus 92 and potassium 98 are 

highlighted in teal.  

 

Potassium ion number 98 (the nearest potassium to the self-trapped hole) directly to the 

left of the oxygen pair, was manually moved before the single point energy calculation. 

The P-K distance was changed from 3.35 to 3.86 Angstroms. 
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Figure 4.13. Looking down along “x” (x-axis in and out of page). Notice before, this axis 

was designated as the z-axis for the non-DFT jobs.  

  

 The results in Table 4.12 show that the geometry decreased the K-P distance from 

3.86 to 3.56 Angstroms, increased the OPO angle from 97.2 to 99.68 degrees, and drove 

the OP distance from 1.51 to 1.55 Angstroms.  

 

Table 4.12. Distances between atoms from the PO4 unit of interest for the 127-atom cluster 

before and after optimization. All distances are in units of Angstrom, and the angles are in 

degrees. 

 K-P distance OPO angle O-P distance 

Before alteration 3.35 115.28 1.51189 

After manual change 3.86 97.2 1.5119 

After optimization 

(K and two O atoms move) 

3.56 99.68 1.547 
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The full set of Fermi contact values and Anisotropic values from the Gaussian output are 

in Appendix D.3, and a subset of values for the atoms of interest are shown in Table 4.13 

and 4.14. These values are in close agreement with experiment.  

Table 4.13. Isotropic hyperfine values for the central KH2PO4 unit after optimization in 

units of Gauss for the 127 atom cluster.  

Ion After Optimization EPR (combined hyperfine) [19-21] 

P92 -33.53 31.0 

O120, O86 -9.55  

H102, H29 -2.29 3.2 

 

Table 4.14. Anisotropic hyperfine values for the ions that share the self-trapped hole for 

the 127 atom cluster.  

Ion Principal Value 

(Gauss) 

Principal Axis Directions 

P92 -2.159 

0.685 

1.474 
 

0.0011  0.0040  1.0000 

0.9098 -0.4150  0.0006 

0.4150  0.9098 -0.0041 

H29, H102 -3.923 

-3.038 

6.961 
 

0.3439 -0.2821  0.8956 

-0.6146  0.6535  0.4419 

0.7099  0.7024 -0.0514 

 

In an effort to reduce the total charge on the cluster, the size of the cluster was decreased 

to 115 atoms and had a total charge of +3 which became +4 with the defect. This cluster 

was adapted from the same cluster discussed in the preceding paragraphs with the nearest 

potassium ion being the “middle” of the cluster, and the total charge was lowered by 

removing 12 potassium ions from the 127-atom cluster. The stoichiometry of the 115-atom 

cluster was: H40K5O56P14, and the simulations all used the method and basis set 

ωB97XD/6-31+G(d). The simulations were conducted in the same manner as was 
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previously done, by starting with guess=fragment=2 and finishing with an optimization 

using the wavefunction from the fragment guess procedure.  

 

 

(a). 
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(b). 

Figure 4.14. Two images (a and b) of the 115-atom cluster resulting from the ωB97XD/6-

31+G(d) optimization, after allowing the two oxygen atoms and potassium atom to move.  

 

As seen in Figure 4.14, the atom that is highlighted in teal is the central phosphorus of 

interest. Oxygen ions #76 and #108 were moved prior to the simulations began. Hydrogen 

ions number 23 and 90 are the neighboring ions of interest, as well. Again, the nearest 

potassium ion is located in the “middle” of the cluster. The distance of the central potassium 

relative to the nearby phosphorus of the PO4 unit of interest was adjusted and allowed to 

move during optimization along with the two oxygen atoms. The values in Table 4.15 are 
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similar to 4.13, before and after the manual geometry change. After optimization, the KP 

distance went from 3.86 to 3.57 Angstroms as before, and the OP distance similarly 

repeated going from 1.51 to 1.55 Angstroms. However, in the 115 atom cluster, the OPO 

angle remained relatively close to its pre-optimization value of 97.2 degrees, becoming 

97.89 degrees. The O-H distance went up, from 1.53 to 1.59 Angstroms.  

 

Table 4.15. Distances between atoms from the PO4 unit of interest for the 115-atom cluster 

before and after optimization. All distances are in Angstrom, and angles are in degrees. 

 K-P distance OPO angle O-H distance O-P distance 

Before alteration 3.35 115.28 1.44 1.5119 

After manual 

change 

3.86 97.2 1.53 1.5119 

After optimization  

(K and two O 

atoms move) 

3.57 97.89 1.59 1.5493 

 

The resultant isotropic Fermi contact value for phosphorus was 34.81 Gauss and the 

Fermi contact values for the hydrogen atoms that shared the self-trapped hole were 2.21 

Gauss. The full list of isotropic and anisotropic values for the 115-atom cluster is seen in 

Appendix D.4, and an excerpt of the ions of interest are shown in Tables 4.16 and 4.17. 

 

Table 4.16. Isotropic hyperfine values for the central KH2PO4 unit before and after 

optimization in units of Gauss for the 115 atom cluster.  

Ion After Optimization [Gauss] 

P82 34.81 

O76, O108 -10.34 

H23, H90 -2.07 

O38,O106  0.69 

H4,H13 0.58 
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Table 4.17. Anisotropic hyperfine values for the ions that share the self-trapped hole for 

the 115 atom cluster.  

Ion Principal Value Principal Axis Directions 

   

P82 -2.042    

0.390       

1.653      

-1.909  0.0014  0.0040  1.0000 

0.365  0.9529 -0.3032 -0.0001 

1.545  0.3032  0.9529 -0.0042 

H23 and H90 -3.921     

-3.102     

7.023      

-3.665 -0.3196  0.2645  0.9099 

-2.900 -0.6245  0.6634 -0.4122 

6.565  0.7126  0.7000  0.0468 
   

 

 

4.3.3 Understanding Energy Minimization during Optimization  

There is a tool in GaussView that allows the user to inspect the total energy of the 

cluster for each step in the optimization. This tool is useful for monitoring how the energy 

changes as a function of each optimization step, and the changes in energy can also be 

viewed while the optimization is in progress. This allows the user to monitor whether a job 

is likely to converge or diverge from a solution before the optimization finishes.  

There were nine steps in the optimization job for the 115-atom cluster, and the 

energy is seen to reach a minimum at the ninth step, as seen in Table 4.18. At the ninth and 

final optimization step, the total energy of the cluster is -12,013.3286 Hartrees. Upon 

inspecting the significant digits, this is a reduction from step one, which was -12,013.31438 

Hartrees at the beginning of the simulation. This data is also plotted in Figure 4.15. 
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Table 4.18. Angle between the OPO ions (in degrees), versus energy (Hartrees) for the 

nine steps that Gaussian conducted the geometry optimization for the 115-atom cluster.  

Step number OPO angle (deg) Energy (Hartrees) 

1 97.2 -12013.31438 

2 97.67 -12013.31954 

3 98.35 -12013.32387 

4 98.33 -12013.3256 

5 97.82 -12013.32817 

6 97.67 -12013.3285 

7 97.86 -12013.3286 

8 97.88 -12013.3286 

9 97.89 -12013.3286 

 

 

 

Figure 4.15. Angle (y-axis of the plot) between the OPO atoms in the central unit of the 

115-atom cluster, which were allowed to move during the geometry optimization, versus 

energy (x-axis). This particular optimization took nine steps to complete and correlates 

with Table 4.18. 

 

As seen in Figure 4.15, the angle between the two oxygen atoms and the central phosphorus 

atom gradually increased from the initial guess of 97.2 degrees, up to approximately 98.3 

degrees. Gaussian finally settles on an angle which is 97.8921 degrees at step nine.  
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 The results of these simulations with the large clusters demonstrated that making 

the OPO angle smaller (for the two oxygen atoms that were expected to share the hole) and 

increasing the KP distance were two keys to getting the wave function to converge to the 

two oxygen atoms with the self-trapped hole.  

4.3.4 Examining a 47-Atom Cluster with Potassium Ions 

 The 41-atom cluster was revisited in order to more closely examine the interaction 

between the self-trapped hole and the six-nearest potassium ions (see Figures 4.16 and 

4.17), but this time the ions’ positions were adjusted manually, pre-optimization, for a 

small 47-atom cluster (unlike the 41-atom job, in which ions were not manually adjusted). 

Three optimization jobs utilizing the ωB97XD/6-31+G(d) theory and basis set were 

performed. The first job changed the OPO angle but held the position of the potassium ion 

fixed. The optimization for the first job allowed the two oxygen atoms that were moved 

pre-optimization to move again during optimization in order to observe how much more 

they’d move while Gaussian searched for the minimum energy of the cluster. The second 

and third job changed the angle between the central phosphorus and the two oxygen atoms 

that were suspected of having the hole, and the nearest potassium ion was moved away as 

had been done in Sections 4.3.1 and 4.3.2 of this dissertation for the large clusters to 

approximately 3.8 Angstroms. The optimization for the second job allowed the two oxygen 

atoms and the potassium ion to move, while the optimization for the third job only allowed 

the two oxygen atoms to move and held the nearest potassium ion frozen. A coordinate 

scan was conducted for the 47-atom cluster, in order to study the variance in the hyperfine 

values by changing the distance along the bond between the phosphorus ion and the nearest 
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potassium ion. The results of these simulations are shown in Table 4.19. This analysis 

explored values for the K-P distance between 3.85 to 3.34 Angstroms.  

 

 

Figure 4.16. Left: The 47-atom cluster that moved the OPO angle but kept KP distance 

fixed with z-axis pointed up. Potassium number 11 is the closest potassium to the self-

trapped hole. Right: The cluster that moved the OPO angle but kept KP distance fixed with 

z-axis pointed out. 
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Figure 4.17. The cluster from the previous figure, that moved the OPO angle but kept the 

KP distance fixed with z-axis pointed left.  

 

Table 4.19. Fermi contact values for the central phosphorus ion, two nearby phosphorus 

ions, and the hydrogen ions with the self-trapped hole defect at various KP distances in a 

47-atom cluster with the OPO angle fixed at 90 degrees.  

KP Distance (Å) Fermi Contact Values (Gauss) 

 P1 P2 and P3 Hydrogen ions 

Fixed, 3.34779 -3.25 -19.95 -0.02, -0.02 

KP 3.45 -3.378 -19.99 -0.026, -0.027 

KP 3.55 -3.5 -19.99 -0.033, -0.033 

KP 3.65 -3.63 -19.92 -0.04, -0.04 

KP 3.75 -33.64 -3.1 -1.65, -1.65 

KP 3.85 -34.92 -1.92 -1.8,-1.8 
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As seen in Table 4.19, the hyperfine value is delocalized for distances that are lower than 

3.75 Angstroms, and the hyperfine value improves once the distance is increased to 3.75 

Angstroms. The Fermi contact value results were best before optimization for the first job, 

and thus the post-optimization results are not presented here. The 47-atom cluster results 

for the first job are displayed in Appendix D.5. The Fermi contact value for the central 

phosphorus ion was 30.2 Gauss, and the Fermi value for the two hydrogen atoms were 

approximately 4 Gauss. The Fermi contact values for the two hydrogen ions are equal for 

all cases except when the KP distance is 3.45 Angstroms. These results are in close 

agreement with the hyperfine values measured during the EPR experiment and are an 

improvement over the small 41-atom clusters that did not contain potassium ions. 

 Utilizing all 36 processors on one node, the job that did not alter the position of the 

nearest potassium ion finished in 2.5 hours, and the job that allowed the potassium ion to 

move during optimization took 15.5 hours. The result of this calculation was that the 

potassium ion moved 78 Angstroms away from the phosphorus atom, which is 26 times 

greater than the perfect lattice position of 3.34779 Angstroms. This job required forced 

convergence utilizing “scf=(xqc,maxconventionalcycles =150,maxcycles=300)”. The third 

optimization variant which had changed the OPO angle and the distance between the 

potassium and phosphorus initially, froze the position of the potassium but allowed the two 

oxygen atoms to move. After this optimization, the Fermi contact values were 35 Gauss 

for the central phosphorus and 1.8 Gauss for the hydrogen atoms that shared the holes. 
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4.4 Results from a 129-atom Cluster: Anisotropy Analysis 

A 129-atom cluster was optimized after reducing the angle between the central 

phosphorus (P1) and the two oxygen ions (O34, O35) that share the self-trapped hole from 

115.3 to 90 degrees. The distance between the central phosphorus and the nearest 

potassium ion (K15) was increased from 3.347 to 3.650 Angstroms. As shown in Section 

4.3, modifying the lattice in this way helps to trap and localize the hole, before an 

optimization is conducted. This cluster is shown in three different orientations, in Figure 

4.18. 
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Figure 4.18. The 129 atom cluster. The top image is the x-y plane of the cluster with the z-

axis out. The middle image has the z-axis pointing to the left and is rotated to show 

potassium #15 in the middle, phosphorus #1 to the right, and the oxygen ions that share the 

hole #35 and #34. The third image has the z-axis pointed to the left and is rotated to show 

the opposing oxygen pair #90 and #91 which does not share the self-trapped hole.  
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Table 4.20 shows the comparison between the distances before and after 

optimization, allowing ten ions in the central KH2PO4 unit to move. After optimization, the 

two oxygen ions O34 and O35 moved farther away from P1, from 1.512 to 1.573 

Angstroms, and closer together to one another along O34-O35, from 2.554 to 2.318 

Angstroms. All four hydrogen ions in the central KH2PO4 unit move away from their 

respective oxygen ions after optimization. The distance between the hydrogen-oxygen 

pairs that share the self-trapped hole, both O35-H63 and O34-H62, increased from 1.578 

to 1.672 Angstroms. Similarly, the hydrogen-oxygen pairs without the self-trapped hole, 

both O90-H68 and O91-H67, increase from 1.060 to 1.515 Angstroms. From these 

movements, the self-trapped hole is seen to affect all four of the central PO4 unit’s 

surrounding hydrogen ions. This is because the two hydrogen ions (H67 and H68) that are 

nearest to the two oxygen ions (O90 and O91) without the self-trapped hole become 

repulsed by the oxygen ions after they have become slightly less negative. This drives the 

two hydrogen ions to the oxygen ions of their secondary neighboring PO4 units, which had 

previously been “far pairs” to the hydrogen ions.  

Table 4.20. Distances between ions in the KH2PO4 unit for the 129 atom cluster, before 

and after optimization. 

Ion Pairs Perfect 

Lattice 

Before 

Optimization (Å) 

After 

Optimization (Å) 

O34-O35 2.554 2.138 2.317 

O34-H63, O35-H62 1.443 1.578 1.672 

P1-O34, P1-O35 1.512 1.512 1.573 

P1-K15 3.347 3.650 3.660 

O90-O91 2.525 2.525 2.571 

O90-H68, O91-H67 1.060 1.060 1.515 

P1-O90, P1-O91 1.578 1.578 1.527 

P1-K15 3.573 3.573 3.349 
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 Table 4.21 displays the isotropic hyperfine values for the 129 atom cluster before 

and after optimization in units of MegaHertz in order to conduct a direct comparison with 

the results from Wells. The anisotropic hyperfine values for the ions that share the hole are 

displayed in Table 4.22.  

 

Table 4.21. Isotropic hyperfine values for the central KH2PO4 unit in the 129 atom cluster 

before and after optimization in units of MegaHertz.  

Ion Before Optimization [MHz] After Optimization [MHz] 

P1 -93.885 -83.406 

O34, O35 -38.896 -33.662 

H63, H62 -13.152 -1.515 

O90,O91 1.819  0.818 

H68,H67 1.179  0.226 

K15 -1.116 -1.890 

 

Table 4.22. Anisotropic hyperfine values for the ions that share the self-trapped hole for 

the 129-atom cluster in units of MHz. 

Ion Principal Value Principal Axis Directions 

   

P1 -3.988 

-0.333 

4.321 

0.0000         0.0000         1.0000 

0.9491       0.3150         0.0000 

0.3150         0.9491         0.0000 

H62, H63 8.950 

6.667 

15.616 

0.2544       0.3125         0.9152 

0.6652       0.6304         0.4001 

0.7020         0.7106       0.0475 

O34, O35 71.176 

69.702 

140.877 

0.5688       0.1436         0.8098 

0.3516         0.9326         0.0816 

0.7435       0.3311         0.5810 

   

 

The isotropic hyperfine values were combined with the anisotropic values aligned with the 

c-axis using the EasySpin method described in Section 4.2.2 and utilizing the code in 

Appendix B.2. As Table 4.23 indicates, the calculated values are in very good agreement 

with the results from Wells. The total hyperfine value for the central phosphorus atom was 
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calculated to be -86.79 MHz, and the value obtained from the ENDOR experiment was 

measured to be -85.49 MHz [82]. The two hydrogen atoms that shared the self-trapped hole 

each had hyperfine values of -9.95 MHz, calculated by Gaussian, and -8.82 MHz as 

measured by the ENDOR experiment [82]. The oxygen ions were not measured in 

experiment, but their values have been combined as well and are presented in Table 4.23. 

Table 4.23. Comparison of hyperfine values from the 129 atom cluster with the hyperfine 

values from the paper from Wells et al. [82]. 

Ion Isotropic 

[MHz] 

Anisotropic B||c 

component [MHz] 

Combined 

[MHz] 

Wells [MHz] 

[82] B||c 

P1 -83.406 -3.988 -86.788 -85.49 

H62, H63 -1.515 -8.282 -9.949 -8.82 

O34, O35 -33.662 -68.731 -105.206 -- 

 

4.4.1 Computationally Simulated EPR Spectra using Gaussian Results 

 Utilizing the isotropic and anisotropic results generated by Gaussian in Table 4.21 

and 4.22, EPR spectra were simulated using EasySpin in the same manner that was used to 

generate the spectra Figure 4.9. These spectra are shown in Figure 4.19 – 4.21, for the 

hydrogen ion, oxygen ion, and phosphorus ion, respectively, and the combined spectra is 

shown in Figure 4.22. The isotope abundance for O17 is small (0.038%), so the intensity of 

the oxygen hyperfine is negligible and not observed.  
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Figure 4.19. EPR spectra generated in EasySpin for the hydrogen ion for the 129-atom 

cluster, self-trapped hole defect simulation with inputs from the results from Gaussian. 

 

Figure 4.20. EPR spectra generated in EasySpin for the oxygen ion for the 129-atom 

cluster, self-trapped hole defect simulation using results from Gaussian. 
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Figure 4.21. EPR spectra generated in EasySpin for the phosphorus ion for the 129-atom 

cluster, self-trapped hole defect simulation using results from Gaussian. 

 

Figure 4.22. EPR spectra generated in EasySpin for the combined hydrogen, oxygen, and 

phosphorus signatures (seen in Figures 4.19-4.21), for the 129-atom cluster, using the 129-

atom cluster self-trapped hole defect simulation results from Gaussian. 

 



93 

 

 

It is important to recognize that the spectra in Figure 4.22 is not exactly the same as the 

spectra from the EPR experiment, as presented in Figure 2.3. This is because Figure 4.22 

does not yet include the results from the hydrogen vacancy defect simulation. Chapter 6 

describes preliminary efforts to model the hydrogen vacancy, and incorporating this spectra 

into the combined simulated spectra will be part of future research.  

 4.4.2 Spin Density Distribution among Orbitals 

The output from these calculations helps to understand the relative localization of 

the spin density outside of the central phosphorus ion’s 3s shell. As introduced in Chapter 

2, previous researchers had postulated, using EPR on x-ray irradiated KDP, that 

approximately 0.9%-1% of the spin density for the phosphorus ion affected by a hole defect 

was in its 3s orbital [33, 34]. This was deduced from the amount of spin density in the 

Fermi contact term compared to the anisotropic values. Using the results discussed in this 

chapter, the same ratio may be calculated. According to previously published literature, if 

100% of the electron density were located in the 3s orbital of the phosphorus ion, then the 

expected isotropic hyperfine value would be 10201 MHz [86]. By dividing the ratio 

between what was calculated in this research, specifically -83.406 MHz from Table 4.23 

divided by 10201 MHz, the ratio turns out to be 0.8%, thus supporting previous claims on 

the insignificant localization of the spin density in the 3s orbital [33, 34]. This supports the 

theory that the dominant contributor to the isotropic hyperfine term is from exchange core 

polarization, between s-type (core) orbitals and the orbitals of neighboring atoms [87].  

Similar observations are made for the oxygen ions. Previously published literature 

states that for oxygen, an isotropic hyperfine value of -4623 MHz would indicate that 100% 
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of the spin density is located within an oxygen ion’s 2s orbital [86]. However, the 

calculations presented in Table 4.23 show that the calculated isotropic hyperfine values are 

-33.662 MHz for the two oxygen ions. Additional literature exists to help confirm that the 

placement of the unpaired spin on the two oxygen ions is in p-type orbitals versus s-type. 

The atomic value published by Fitzpatrick [86] for oxygen is -372.18 MHz (this is an 

updated value from the Morton and Preston value of -421 MHz [88]). By using the method 

in Reference [88], this number is divided by two (since ½ of the unpaired spin is in the 2p 

orbital of a given oxygen ion) and multiplied by the angular factor of 4/5. This will give 

the expected result for the unique principal value of -148 MHz, which is very close to the 

result for the unique principal value of either oxygen ion predicted in the Gaussian 

calculations of -140.88 MHz, as presented in Table 4.22. There are no experimental EPR 

or ENDOR values to confirm this measurement for the oxygen ions, due to their low natural 

abundance. These p-type orbitals from the self-trapped hole, along with a variety of 

molecular orbitals, are illustrated in Chapter 5 to be localized on these two oxygen ions for 

a variety of large and small KDP clusters. There is little physical overlap from the p-type 

orbitals on the neighboring two hydrogen ions, which indicates that the anisotropic 

hyperfine values for the two hydrogens are due to point dipole-dipole interaction with the 

oxygen ions.  

A further indicator that exchange core polarization is taking place between the 

central phosphorus ion and the two hydrogen ions that share the self-trapped, are the fact 

that their isotropic values are negative [89]. From previously published data, the nuclear 

magnetic moments of phosphorus and hydrogen nuclei are expected to have positive signs 

of 2.2632 and 5.585694 respectively, and the oxygen ions are expected to be negative,  at 
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-0.757516 [90]. The use of the nuclear g-values in calculating the hyperfine terms was 

introduced in Chapter 3 of this dissertation, and their use was illustrated in Equation 3.3, 

Equation 3.5, and Equation 3.6, for computing the total Hamiltonian, the Fermi contact 

term, and the anisotropic component of the A matrix, respectively. The anisotropic results 

for the 129-atom cluster presented in Table 4.22 further indicate that the unique principal 

axis values had been calculated with the magnetic moments of the nuclei with the 

respective atoms’ nuclear signs in accordance with the literature. The unique principal 

value for the phosphorus ion was calculated to be positive, at 4.321 MHz. Similarly, the 

unique principal value for the two hydrogen ions with the spin density were also positive, 

at 15.616 MHz. Lastly, the unique principal value for the two oxygen ions that share the 

defect are both negative, at -140.877 MHz.  
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V. Spin Density and Electronic Structure 

5.1 Molecular Orbitals  

This chapter consists of exploratory efforts to understand molecular orbitals and 

their role in the formation of the spin density, using the graphics software known as 

GaussView. GaussView allows the user to visualize HOMO, LUMO, and spin density iso 

surfaces. The combination of spatially distributed electron orbitals per atom can lead to a 

variety of molecular orbital shapes. Figure 5.1 demonstrates the association between orbital 

shapes and the 𝜎, 𝜋 naming convention for covalent bonds from p-type atomic orbitals, and 

the two colors are meant to indicate the phase of the orbital. The phase is a positive or 

negative probability amplitude for a given electron’s orbital, and this sign difference is due 

to the wavelike nature of an electron orbital. When p-type atomic orbitals lie mostly 

horizontal to one another and have the same phase, they will fuse together, and 𝜎-type 

orbitals are formed. If the electrons have a likelihood of being in the middle of their two 

positions, the orbital is considered 𝜎-bonded. Molecular 𝜎-type orbitals that have nodes in 

between them are referred to as anti-bonding 𝜎∗ orbitals. This results from the cancellation 

of the phase from the different orbitals. The 𝜋-type orbitals are formed from atomic orbitals 

that lie mostly parallel to one another. As seen in Figure 5.1, the 𝜋∗ antibonding orbitals 

are similar in their naming convention to the 𝜎∗ antibonding orbitals, in that they 

demonstrate a repulsive behavior between the orbitals, thus creating a gap between them. 

The 𝜋-type bonding orbital demonstrates the combination of orbitals into two spherically 

shaped lobes, with no gaps.  
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Figure 5.1. The top graphic shows the general shape of s orbitals and p orbitals, px, py, and 

pz, and the two colors indicate two different phases. The bottom graphic shows different 

ways that atomic p-type orbitals can combine to create 𝝈 or 𝝅 molecular orbitals.  

 

The Gaussian output file contains the values for the alpha and beta (spin up and spin down) 

distribution per electron orbital, per atom, and the final output at the end of the calculations 

is titled “Gross orbital populations.” An example for the values for alpha, beta, and spin 
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density for each orbital per atom is listed below, for a UMP2 job. Notice how the column 

for Spin is correlated to the Alpha – Beta quantity. Ultimately, the hyperfine parameters 

are determined by the spin density 𝜌𝛼−𝛽, as described in Section 3.1, and are based on the 

cumulative difference of all spatially distributed alpha and beta orbitals that contribute to 

the molecular-level excess spin density.   

Gross orbital populations: 

                           Total     Alpha     Beta      Spin 

193 21  H  1S          0.39774   0.19819   0.19954  -0.00135 

194        2S              0.03407   0.00788   0.02619  -0.01830 

195        3S            -0.05369  -0.02888  -0.02481  -0.00406 

257 29  O  1S          1.99810   0.99905   0.99905   0.00001 

258        2S              0.91109   0.46379   0.44730   0.01648 

259        2PX           0.83907   0.49151   0.34756   0.14396 

260        2PY           1.05901   0.54260   0.51642   0.02618 

261        2PZ           0.90784   0.54341   0.36443   0.17898 

262        3S             1.09404   0.54539   0.54865  -0.00327 

263        3PX           0.49208   0.28299   0.20909   0.07389 

264        3PY           0.75421   0.37988   0.37433   0.00555 

265        3PZ           0.58328   0.33389   0.24939   0.08450 

266        4S           -0.08514  -0.03331  -0.05183   0.01851 

267        4PX          0.02798   0.01251   0.01546  -0.00295 

268        4PY        -0.04818  -0.02738  -0.02079  -0.00659 

269        4PZ          0.02532   0.00128   0.02404  -0.02276 

270 30  P  1S          1.99958   0.99979   0.99979   0.00000 

271        2S             1.99919   0.99960   0.99959   0.00001 

272        2PX          1.99244   0.99615   0.99629  -0.00014 

273        2PY          1.99244   0.99621   0.99624  -0.00003 

274        2PZ           1.99235   0.99617   0.99617   0.00000 

275        3S             1.17339   0.58795   0.58543   0.00252 

276        3PX          0.71691   0.34787   0.36904  -0.02117 

277        3PY          0.73507   0.36539   0.36968  -0.00430 

278        3PZ          0.71077   0.35531   0.35547  -0.00016 

279        4S          -0.72967  -0.36604  -0.36363  -0.00241 

280        4PX          0.17111   0.09067   0.08044   0.01022 

281        4PY         0.16434   0.08152   0.08282  -0.00130 

282        4PZ         0.21188   0.09001   0.12187  -0.03186 

283        5S            0.17145   0.08833   0.08312   0.00521 

284        5PX         0.28085   0.14486   0.13598   0.00888 
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285        5PY         0.29437   0.14417   0.15020  -0.00603 

286        5PZ         0.08676   0.04082   0.04594  -0.00512 

 

As seen above, the highest values for spin density for the three atoms are located on: the 

2S orbital for the H21 hydrogen atom, the 2PZ orbital for the O29 oxygen atom, and the 

4PZ orbital of the P30 phosphorus atom. These three atoms are where the highest hyperfine 

values are concentrated for this particular 41-atom cluster, self-trapped hole simulation.    

There is one last point to be made about the spin density calculations conducted by 

Gaussian, in particular as it pertains to UMP2 simulations. Spin contamination can be an 

issue in simulations utilizing UMP2. This is when the total “S” value for the spin is greater 

than the prescribed value. In our case, S=1, and if there were spin contamination, it would 

be greater than one. However, Gaussian includes an annihilation step which eliminates 

higher order spin contaminants. As seen in the data below, the total Mulliken spin density 

sums to one, as it should. This spin density data is from a UMP2/6-31++G simulation – 

column two shows the spin densities, with the highest spin densities localized on the atoms 

where the hole is calculated to be. Namely, P(30), H(32), H(21), O(29), and O(39).  

Mulliken charges and spin densities: 

1          2 

     1  O   -0.735944   0.023264 

     2  P    1.838118   0.001558 

     3  H    0.508711   0.000217 

     4  H    0.642901  -0.000692 

     5  H    0.490313  -0.000072 

     6  H    0.466990   0.000698 

     7  O   -0.764344  -0.001260 

     8  O   -0.795175   0.000541 

     9  O   -0.979338   0.002579 

    10  O   -0.652272   0.001943 

    11  P    1.838118   0.001558 

    12  H    0.508711   0.000217 

    13  H    0.642901  -0.000692 
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    14  H    0.490313  -0.000072 

    15  H    0.466991   0.000698 

    16  O   -0.764344  -0.001260 

    17  O   -0.795174   0.000541 

    18  O   -0.979338   0.002579 

    19  O   -0.652272   0.001943 

    20  P    1.875443   0.001675 

    21  H    0.621879  -0.023715 

    22  H    0.486157  -0.000330 

    23  H    0.506344  -0.000021 

    24  H    0.505294   0.000189 

    25  O   -0.776497   0.000299 

    26  O   -0.880663   0.002125 

    27  O   -0.663909   0.001024 

    28  O   -0.653694   0.000315 

    29  O   -0.558704   0.512496 

    30  P    1.036779  -0.045661 

    31  P    1.875443   0.001675 

    32  H    0.621880  -0.023715 

    33  H    0.486157  -0.000330 

    34  H    0.506344  -0.000021 

    35  H    0.505294   0.000189 

    36  O   -0.735944   0.023265 

    37  O   -0.776497   0.000299 

    38  O   -0.880664   0.002125 

    39  O   -0.558706   0.512493 

    40  O   -0.663909   0.001024 

    41  O   -0.653694   0.000315 

Sum of Mulliken charges =   2.00000   1.00000 

 

 

Mulliken analysis is based on the linear combination of atomic orbitals (LCAO) and 

assigns the spin density based on the distribution of electrons across the molecule. The 

Mulliken spin density can be compared to the value obtained by manually performing a 

LCAO by utilizing the gross orbital population output from Gaussian. The values listed in 

the Mulliken spin density column are approximately equal to the values listed under the 

Spin column in the Gross Orbital Populations section of Gaussian output, on the previous 
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page. For instance, adding the three values under the Spin column for H21 gives a total of 

-0.02371, which is approximately equal to the Mulliken spin density of -0.023715. 

5.2 Using GaussView to Visualize Molecular Orbitals: HOMO, LUMO, and Spin 

Density  

 

The HOMO, LUMO, and electron density from the spin SCF density may be 

visualized using GaussView with “isosurfaces”. The isosurface values, in units of 

electrons/Angstrom3 for spin density or the square root of electrons/Angstrom3 for the 

molecular orbital, are chosen by the user and may be changed from the default. Changing 

the isovalues to be larger values will make the size of the displayed orbitals smaller. The 

following graphics utilize the default values for the isosurfaces – this isosurface size 

maintains the electron cloud size to be relatively localized while at the same time allowing 

the viewer the ability to see areas where bonding occurs between atoms.  

As seen in Figures 5.2-5.3, hovering over the isosurfaces for the spin density of the 

47-atom simulation, which used the post-optimization ωB97XD/6-31+G(d) job that held 

the PK distance at 3.75 Angstrom and the OPO angle at 90 degrees, shows the blue surface 

at 0.0004, and green at -0.0004, and the HOMO and LUMO molecular orbitals for the 

alpha and beta are 0.02 for the red surface and -0.02 in green. The positive and negative 

values that are reported by the isosurface represent the amplitudes of the electron’s 

probability distribution for a particular molecular orbital. The HOMO and LUMO for alpha 

are depicted below in Figure 5.2, and the structure is rotated in order to show that the 

HOMO and LUMO for the alpha molecular orbital are not located on the atoms with the 

highest hyperfine values. Similarly, the HOMO for the beta molecular orbital is not located 

on the PO4 unit with the self-trapped hole, but the LUMO for the beta molecular orbital is 
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relatively localized on the atoms with the excess spin density. The HOMO and LUMO beta 

molecular orbitals are shown in Figure 5.3. 

 

 

Figure 5.2. Graphics depicting the HOMO (left, z-axis down) and LUMO (right, z-axis 

down) for the alpha molecular orbital for the 47-atom cluster, after a ωB97XD/6-31+G(d) 

optimization. The atoms that have the highest hyperfine values are displayed in the middle 

of the cluster: P6, O43, O42, H21, and H20. 

 

 

 
Figure 5.3.  The HOMO (left) and LUMO (right), for the beta molecular orbital, displaying 

the same cluster and orientation as displayed in Figure 5.2. The beta LUMO is spatially 

located over the atoms that have the hole, O42, O43, and P6, unlike the HOMO for the beta 

molecular orbital.   
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The spin density graphic is shown below, in Figure 5.4, for the same post-

optimization job as displayed in Figures 5.2-5.3. GaussView labels the spin density plot as 

“Electron density from SCF (or UMP2) Spin Density”, depending on if UMP2 was used 

and is selected by the user for viewing. 

 
Figure 5.4. The spin density created by subtracting the alpha and beta molecular orbitals, 

such as those that were displayed in Figures 5.2-5.3. The z-axis is pointed down. The 

phosphorus and the two oxygen ions with the highest amount of spin density, P6, O43, and 

O42, are obscured by the lobes, and the H20 and H21 ions that partially share the hole are 

partially covered by the green part of the spin density lobes. 
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Figure 5.5. A slightly rotated view of the 47-atom cluster seen in Figure 5.4. This 

orientation shows the features of the four large, blue lobes that are distributed above the 

central phosphorus ion and over the two oxygen ions that share the self-trapped hole, O42, 

and O43, which are not visible in Figure 5.4. 
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Figure 5.6. Two different orientations of the electron density form the spin SCF density, z-

axis out (left image) and z-axis in (right), of the cluster shown in Figure 5.4 and Figure 5.5.  

 

 
Figure 5.7. This image depicts the relationship between the spin density over-plotted with 

the beta LUMO. The large blue lobes which were localized on the central PO4 unit for the 

electron density from the SCF spin density (seen in Figure 5.5) are obscured under the beta 

LUMO’s blue and green lobes.  
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The positive-valued spin density lobes (in blue) are due to the subtraction of negative beta 

regions and the addition of positive alpha molecular orbitals. The resultant hyperfine 

measurements are from the spin density, localized on the five atoms that had come into 

existence due to the pre-established addition of the self-trapped hole via the addition of an 

extra charge.  

GaussView will plot the spin density and spin density-squared values, after 

performing post-processing on the checkpoint file produced by Gaussian. This image 

makes it easier to visualize the localization of the excess spin density on the two oxygen 

ions, since the area covered by the isosurface is smaller and more confined to the two 

oxygen ions of interest versus the spin density isosurfaces in Figure 5.4 through Figure 5.6, 

and to see the relative shape and physical location of the orbitals, as seen in Figure 5.8. 

 

Figure 5.8. Spin density squared graphic for the same 47-atom cluster as depicted in the 

previous figures. This image makes it easier to visualize the shape and physical location of 

the spin density orbitals on the two oxygen ions.  
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5.2.1 Molecular Orbitals and Electron Density for 115-Atom Cluster 

The following series of figures depicts the electron density from the spin SCF 

density along with a variety of different molecular orbitals for the 115-atom cluster which 

was explained in Section 4.3.2. In general, the orbitals are almost identical in shape and 

composition to the 47-atom cluster self-trapped hole simulations.  

 

Figure 5.9. This is the beta HOMO for the 115- atom cluster. This graphic was generated 

from the cluster that is described in Section 4.3.2 of this dissertation. 
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Figure 5.10. 115-atom cluster HOMO for beta. Note that the PO4 unit of interest is to the 

far right of the central potassium ion (centralized around phosphorus number 82), and the 

beta HOMO is to the far left.  
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Figure 5.11. 115-atom cluster molecular orbital beta LUMO. Here, the orbitals are 

localized on the self-trapped hole. 
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Figure 5.12. The same 115-atom cluster as displayed in the previous figure, for the beta 

LUMO. This image is rotated about the z-axis to show the four distinct, red and green anti-

bonded lobes. 

 

The electron density plots of the spin SCF density were plotted for the 115-atom cluster in 

Figures 5.13 and 5.14, along with the electron density for the spin SCF density squared in 

Figure 5.15. These graphics are shown in the following series of figures. As seen in the 
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figures, the relative shape and orientation of the electron density in the 115-atom cluster 

resembles the 47-atom cluster, as was described in the previous section.  

 

Figure 5.13. The x-y plane of the 115-atom cluster with the “z-axis” coming out, displaying 

the electron density plot of the spin SCF density, post-geometry optimization. 
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Figure 5.14. The electron density plot of the spin SCF density for the 115-atom cluster, 

post-optimization. This is the same image as seen in the previous figure, rotated while 

maintaining the “z-axis” pointing to the left. 
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Figure 5.15. 115 atom cluster and the “Electron density from Spin SCF Density Squared” 

with the “z-axis” pointed to the left (same orientation as previous figure). 

 

These molecular orbital and spin density plots for the larger 115-atom cluster are 

preliminary indications that a smaller, 47-atom cluster is sufficient for modeling and 

calculating the orbitals of the self-trapped hole defect. 
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5.2.2 Energy Gap Calculations 

Energy gap calculations were not explored in great detail for the course of this 

dissertation, but they are occasionally studied in ab initio calculations for defects, and 

therefore were preliminarily explored here. Pacchioni [71] has compiled density of state 

(dos) data, concluding that the relative location of the conduction and valence bands – and 

the correct electron correlation calculations as they relate to polaronic distortions - are 

important indicators for successful EPR simulations. He references several papers, which 

explore the validity of quantum theories by calculating the dos data for the oxygen 

vacancies in MgO, AlO4, TiO2, and NiO. Valentin’s [91] paper also contains a discussion 

of the importance of performing the dos calculation for a more precise polaronic structure 

in estimating the localization of holes. 

The LUMO and HOMO are highlighted in Figure 5.16, for both the restricted (alpha 

molecular orbitals (MOs)) and unrestricted (split alpha and beta MOs). The energy gap Eg 

is calculated by subtracting LUMO from HOMO energy values. The following calculations 

demonstrate an energy gap of 4.4 eV for the alpha MO (1.42 beta MO) for the DFT 

calculations (tetragonal results were at 5.5 eV), versus UMP2 and UHF, which were 12.55 

eV and 12.26 eV alpha MO, compared to 10.33 eV and 10.33 eV for the beta MO. The 

energy gap of KDP is generally known in the literature to be around 5.9 eV, with no defects. 

Literature also exists for the calculation of interstitial hydrogen and the hydrogen vacancy 

defects’ energy gaps in the KDP crystal. However, only the self-trapped hole is presented 

below.  
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Figure 5.16. Results from the UMP2 calculation showing the highlighted restricted, alpha 

molecular orbitals. 

 

The calculations are conducted in the following way.  The highlighted values seen 

in Figure 63 are -0.212 Hartrees, or -5.785 eV,  and -0.673 Hartrees,  or  -18.339 eV, giving 

a band gap of  

                Eg =  LUMO − HOMO =  −5.785 – ( −18.339)  =   12.554 eV. 

The red up and down arrows are in reference to the electrons occupying either a spin up or 

down position and can be broken into two separate columns as seen in Figure 5.17. This is 

a decent example of an output that unrestricted molecular orbit theory calculations can 

provide, as discussed earlier in this dissertation. For the unrestricted MOs (alpha MO and 

beta MO (2nd column)), the calculation is conducted in the following way:  

 −0.211 Hartrees =  −5.754 eV − 0.591 Hartrees =  −16.088 eV  

Eg (2nd column) = LUMO − HOMO =  −5.754 − ( −16.088) 

Eg =  10.334 eV. 
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Figure 5.17. The unrestricted molecular orbitals split into alpha (spin up) and beta (spin 

down) values. 

 

Lastly, the UHF Calculation for restricted MO (alpha MO) give  

−0.201 Hartrees =  −5.486 eV − (−0.652 Hartrees)  = −17.744 eV  

for a band gap energy of 

 Eg =  −5.486 − (−17.744)  =  12.258 eV. 

And the unrestricted (alpha and beta MOs) data gives  

−0.2115 Hartrees =  −5.754 eV minus − 0.5912 Hartrees =  −16.088 for a band gap of 

Eg =  −5.754 – (−16.088) =  10.334 eV. 
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VI. KDP Hydrogen and Oxygen Vacancy Simulations 

 

6.1 Hydrogen Vacancy 

The hydrogen vacancy is a common defect experimentally observed in KDP 

crystals [11, 19, 36, 37]. The EPR spectra for the hydrogen vacancy overlaps the self-

trapped hole spectra, as seen in Figure 2.3. The model proposed to explain the EPR 

spectrum of the hydrogen vacancy consists of a hole trapped on one oxygen atom adjacent 

to a missing hydrogen ion. The cluster used in this simulation, shown in Figure 6.1, is an 

orthorhombic KDP structure with 40 atoms. The hydrogen-vacancy defect occurs when a 

hydrogen atom is removed from a regular (H2PO4) unit, and it becomes (HPO4)2, which 

then stabilizes into a (HPO4) unit when the hole is included. Similar to the procedure 

outline for the self-trapped hole in Chapter 4 Section 4.1, prior research was first verified 

by utilizing the UHF and UMP2 method and the basis set 6-31++G [22]. However, unlike 

Chapter 4, which began by duplicating results from previous research for the self-trapped 

hole, this chapter does not duplicate the tetragonal simulations that had been conducted in 

prior research for the hydrogen vacancy [22].  

The calculated Fermi contact values indicate that the highest spin density is on the 

nearby oxygen ion, as was expected by prior research [19, 22]. This is the O28 oxygen in 

the cluster in Figure 6.1. After geometry optimization, allowing only the central eight 

PO4H3 atoms to move, the Fermi contact value for the O28 oxygen went from 51.2 to 

48.9 Gauss, and the central phosphorus went from 35.75 to 30.44 Gauss. This is in 

good agreement with the hyperfine value measured by an EPR experiment, which was 31.0 

Gauss for the central phosphorus [19]. 
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Figure 6.1. 40-atom cluster used in modeling of the hydrogen-vacancy trapped-hole defect 

in a KDP crystal. The hydrogen vacancy is between oxygen ions O28 and O25 and is 

indicated by the circle with a dashed outline.  

 

 The hydrogen vacancy defect was then simulated for the same cluster but with the 

ωB97XD/6-31+G(d) method and basis set. The Fermi contact values and anisotropic 

hyperfine values are presented below in Table 6.1 and compared to the EPR results from 

previous research [19, 20]. An interesting result of this simulation was the movement of 
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the atoms surrounding the central PO4 unit. The geometry changes from this simulation are 

presented in Table 6.2.  

Table 6.1 Hydrogen vacancy results for the 40-atom, orthorhombic cluster portrayed in 

Figure 6.1 compared to previously measured EPR data [19, 20]. 

 

Atom Isotropic 

Results 

(Gauss) 

Anisotropic 

(Gauss) 

Directional Cosine Matrix EPR, 

Hyperfine  

[19, 20] 

(Gauss) 

     

P29 -27.95 -1.63 

-0.31 

1.93 

   0.1649   0.9471  -0.2753 

   0.7209   0.0747   0.6890 

   0.6732  -0.3121  -0.6704 

31.0 

O28 -25.05 34.76 

33.79 

  -68.54 

  

O25 -22.58 12.24 

11.80 

  -24.04 

  

H21 -3.38    

P20 -8.19    

 

Table 6.2 Distances and angles, before and after geometry optimization, for the 40-atom 

orthorhombic structure, hydrogen vacancy defect simulation. The unpaired electron is 

primarily localized on P29 and O28.  

                                               Bond Distances (Å)             Angles (degrees) 

Atoms  Before opt. After opt.  Before 

optimization 

After 

optimization 

R(H13-O35), R(O1-H4) 1.06  1.02   

R(P29-O35), R(P29-O1) 1.58  1.55   

R(H31-O38) 1.44 1.04   

R(P29-O38)   1.512 1.56   

R(P29-O28)   1.512 1.58   

A(O35-P29-O1)   106.22 114.93 

A(O28-P29-O38)   115.28 115.90 

 

The most noticeable geometry change that occurred in this simulation was the decrease in 

distance between H31 (a normally “far” hydrogen) and O38. The distance between these 
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two atoms decreased from 1.44 to 1.04 Angstroms, essentially placing H31 in the “near” 

position. This dramatic geometry change is also seen graphically in Figure 6.2, which 

shows the same cluster, post-geometry optimization.  

 

Figure 6.2. Post-optimization 41-atom cluster for the hydrogen vacancy defect. Hydrogen 

31 had been a “far” hydrogen pre-optimization, but it moved closer to O38 post-

optimization. The hydrogen vacancy is indicated by the circle with the dashed line.  

 

Another interesting geometry change to note, is that unlike the self-trapped hole, in which 

the OPO angle between O29, P29, and O38 decreased, in the hydrogen vacancy defect 
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simulation, this angle did not change significantly. The change that occurred was for the 

O35-P29-O1 angle. This angle increased from 106.22 degrees to 114.9 degrees.  

6.2 Oxygen Vacancy  

As stated in Chapter 2, five different oxygen vacancies were measured by EPR 

experiment with the hyperfine splittings ranging from approximately 552 to 757 Gauss 

[20]. Since there are five different hyperfine values, it was hypothesized that the variance 

in these defect states were due to a variety of potassium vacancies surrounding the 

respective PO3 unit with the missing oxygen ion. It was also suggested that one of the five 

hyperfine splitting values could be due to an oxygen plus a hydrogen vacancy. The same 

procedure was carried out in this chapter for the oxygen vacancy simulations as had been 

done by the self-trapped hole and hydrogen vacancy. The simulations started out by using 

the less computationally intensive UHF methods, and once the results seemed to have some 

level of validity in terms of hyperfine spectra and spin density localization, the more 

computationally intensive methods were employed. The results of these simulations 

supported previous research, which attributed the hyperfine splitting values in this range to 

(PO3)2- units, with a 100% abundant I=1/2 phosphorus nucleus, with an electron trapped at 

one of the nearby oxygen divacancies [20]. Additional research is necessary in order to 

understand the underlying electronic structure, as had been done for the self-trapped hole. 

6.2.1 Oxygen Vacancy using UHF 

 The oxygen vacancy simulations described here were successfully conducted for a 

larger cluster of 185 atoms, which become a cluster of 184 atoms upon removal of an 

oxygen ion. This cluster contains all six potassium ions that surround the central PO4 unit. 
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This cluster is displayed in Figures 6.3, and a zoomed in and rotated view of the cluster 

with the oxygen vacancy visible is seen in Figure 6.4. The simulation results presented 

below were conducted before discovering the correct way to utilize all 36 processors, and 

the simulations took longer than what was reasonable. Additionally for this reason, the 

larger cluster meant that the simulations would have to use a simpler quantum chemistry 

approach and smaller basis set, so the job could finish in a timely manner. If the cluster 

was simulated with the UMP2 theory, the job time would have been over a week, and it 

would not finish (the limit on the duration of run-time for jobs on the HPC was one week). 

Initially, with no optimization, the job’s CPU time was 0 days 2 hours 59 minutes 22.7 

seconds with an elapsed time of 0 days 2 hours 59 minutes 33.1 seconds. The optimization 

CPU time was 1 day 16 hours 51 minutes with an elapsed time of 1 day 16 hours and 53 

minutes, across two nodes sharing memory across all 72 processors. Thus, the jobs can 

finish in a relatively timely fashion, albeit the results are not as accurate due to the lack of 

electron correlation and smaller basis set.  

An important realization occurred prior to conducting the oxygen vacancy 

simulations using ωB97XD/6-31+G(d). The previous oxygen vacancy simulations did not 

seem to be utilizing all 36 processors correctly, and this may have accounted for the 

simulations taking far longer than necessary. A small script was utilized that ensured that 

the input file was launched while utilizing all 36 cores. Additionally, another important 

piece of information to include in the input file was the following line:  

%CPU=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,2 

8,29,30,31,32,33,34,35 
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Figure 6.3. The y, z plane of the 184-atom cluster with an oxygen vacancy on the central 

PO4 unit. In this orientation, all six potassium ions are visible (large white spheres).  
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Figure 6.4. The central phosphorus unit located next to the oxygen vacancy. The teal atoms 

are the central phosphorus atom P142, a nearby oxygen O165, and its associated hydrogen 

H123. The hydrogen on the other side of the oxygen vacancy is H131, located up along the 

y-axis. 

 

Table 6.3. Fermi contact terms and the central phosphorus anisotropic values for the 

oxygen vacancy simulation with 184 atoms. 

Atom  Fermi value 

(Gauss) 

Anisotropic values 

(Gauss) 

Phosphorus(142) 324.74 -60.48 

-54.81 

115.29 

Oxygen(165) 18.28  

Oxygen(161) -8.85  

Oxygen(169)          -22.90  

Hydrogen(123)             1.98  

Hydrogen(131)           23.39  
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Since only the phosphorus hyperfine value was measured during the EPR 

experiment for the oxygen vacancy defects, combining the hyperfine values for the other 

atoms was not the focus of this research; therefore, only the phosphorus anisotropic values 

are combined in this chapter. Combined with the Fermi term, the hyperfine value for c-axis 

EPR spectra is around 450 Gauss, which is lower than the lowest measured EPR value at 

552 Gauss. The Fermi contact values are listed for nearby atoms to get an idea of where 

the defect is localized, with respect to the central phosphorus atom. The results in Table 

6.3 show the excess spin density located on a region spanned by the oxygen vacancy, 

including its associated hydrogen atom. This asymmetric placement (versus equal sharing 

of the defect, as was done in the self-trapped hole) of the oxygen vacancy defect matches 

expectations set by previous research [20]. The hyperfine splitting value is not quite as high 

as seen in the EPR experiment, although, it is on the same order of magnitude.  

6.2.1.1 Oxygen and Hydrogen Vacancy 

Larger hyperfine results are seen after removing the nearby hydrogen and after 

conducting the geometry optimization. The optimization was conducted after removing the 

nearby hydrogen atom, as seen in Figure 6.5, which indicates the vacancy located to the 

right side of the central phosphorus atom. Both vacancies are indicated by circles made of 

dashed black lines. The three remaining oxygen atoms of the PO4 unit were allowed to 

move during the optimization. The Fermi contact values were increased with the removal 

of the nearby hydrogen atom, as seen in Table 6.4, bringing the Fermi contact term for the 

phosphorus ion up to 587 Gauss and anisotropic values to 72.983, 67.593, and 140.576 
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Gauss before the geometry optimization and up to 602.63 Gauss and 77.398, 69.288, 

146.686 Gauss after the geometry optimization.  

 

 

Figure 6.5. The central unit, P141, O164, O160, and O168 is highlighted in teal with a 

missing oxygen and its missing respective hydrogen. This is the structure after 

optimization. The atoms in the central unit were allowed to move during the optimization. 

 

Table 6.4. Fermi contact and anisotropic values after conducting the oxygen vacancy 

simulation with its associated hydrogen atom removed. 

Atom Fermi value 

(before opt) 

Anisotropic 

value 

(before opt) 

Fermi value 

(after opt) 

Anisotropic 

value 

(after opt) 

Phosphorus 587.66 -72.98 

-67.59 

140.59 

602.63 -77.40 

-69.29 

146.69 

Oxygen(160) -14.68  -9.92  

Oxygen(164) -21.72  -19.18  

Oxygen(168) -22.46  -19.06  
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These values are an improvement over the simulations described previously, in which the 

crystal had only the oxygen vacancy, because they were in better agreement with the range 

of phosphorus hyperfine splitting values measured by EPR experiment, which ranged 

between 552 to 757 Gauss [20].   These encouraging results from the UHF simulations led 

to the focus on the oxygen and hydrogen vacancy simulations described in Section 6.2.2, 

utilizing the ωB97XD and 6-31+G(d) method and basis set.  

6.2.1.2 Oxygen and Potassium Vacancy 

Since there are six potassium ions around the central (PO3)2- unit, it is reasonable 

to surmise that the results from these simulations could match the five EPR values 

measured by Garces et al., which varied between 552 and 757 Gauss [20]. Table 6.5 lists 

isotropic and anisotropic values for these six simulations, before and after optimization, 

using UHF/6-31G theory and basis set. The highest hyperfine values are associated with 

vacancy number four which has a potassium vacancy along the y-axis. Job number four 

calculated a Fermi value of 415.05 Gauss and anisotropic values -71.10, -63.145, and 

134.240 Gauss before optimization and a Fermi value of 416.79 Gauss and anisotropic 

values -71.10, -63.15, and 134.24 Gauss after optimization. The second highest hyperfine 

values are for job number five which had a potassium cation vacancy along the z-axis. Its 

hyperfine values are 391.73 Gauss before optimization and 382.42 Gauss after 

optimization. Job number five’s hyperfine values are the only values that decreased after 

optimization, as seen at the bottom of Table 6.5. 
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Table 6.5. Isotropic and anisotropic hyperfine values, before and after optimization, for the 

oxygen vacancy plus six different potassium cation vacancies, using UHF/6-31G.  

Atoms Isotropic 

values 

(Gauss) 

Isotropic 

values 

(Gauss) 

Anisotropic 

values (Gauss) 

Anisotropic 

values (Gauss) 

 (before opt) (after opt) (before opt) (after opt) 

Job 1     

P141  333.086 347.14 -62.13  

-53.44  

115.57 

-68.59  

-56.06 

124.64 

H130  -32.64   

O164  -16.70   

O168  -23.17   

O160  -7.74   

Job 2     

P141  208.856 239.44 -60.65 

-45.68  

106.33  

-66.87 

-51.67  

118.54 

H130  -20.48   

O164  -16.61   

O168  -20.01   

O160  -4.96   

Job 3     

P141  256.24 300.16 -55.35  

-51.03 

106.38 

-62.30  

-57.29  

119.59 

H130  -21.90   

O164  -18.54   

O168  -20.96   

O160  -6.79   

Job 4     

P141 415.05  416.79 -71.10 

-63.15  

134.24 

-71.10 

-63.15  

134.24 

H130  -20.32381   

O164  -17.37343   

O168  -22.10241   

O160  -7.17229   
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Job 5     

P141  391.73  382.42 -61.66 

-58.80 

120.46 

-67.47 

-61.49  

128.96 

H130  -20.68   

O164  -17.98   

O168  -20.34   

O160  -7.87   

Job 6     

P141  -231.62  289.19 -59.47  

-44.74 

104.22 

-67.87  

-50.84  

118.71 

H130  -18.56   

O164  -15.77   

O168  -22.24   

O160  -6.44   

 

6.2.2 Oxygen Vacancy using ωB97XD/6-31+G(d) 

Preliminary oxygen vacancy simulations were conducted using the ωB97XD and 

6-31+G(d) method and basis set. Unlike the self-trapped hole, the oxygen vacancy 

simulations described in this chapter go immediately from the UHF method (described in 

Section 6.2.1) to the range-separated DFT method (in this section). The focus for these 

simulations was on the oxygen vacancy, with no additional vacancies, and the oxygen plus 

hydrogen vacancy. The hyperfine spectra for the phosphorus was simulated using 

EasySpin. This research sets the stage for ongoing and future research to generate a 

combined spectra for all five oxygen vacancy defects and to specifically identify what is 

causing the five different hyperfine splittings.  

6.2.2.1 Oxygen Vacancy Simulations: Allowing Three Oxygen Ions to Move 

The two oxygen vacancy simulations described in this section utilized 

guess=fragment=2, setting the central PO3H4 cluster as the second fragment and the rest of 
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the cluster as the first fragment. Utilizing GaussView, Figure 6.6 was created after hiding 

the atoms that make up the first fragment of the cluster, while making the atoms that make 

up the second fragment of the cluster visible. 

 

Figure 6.6. The central fragment for the oxygen vacancy simulations using fragments. 

 

Table 6.6. Oxygen vacancy results using the method and basis set ωB97XD/6-31+G(d). 

These results may be correlated by referring to the numbering of the atoms seen in the 

previous figure. H131 is the hydrogen atom nearest to the oxygen vacancy. 

Atom Fermi 

contact 

(Gauss) 

Anisotropic 

value (Gauss) 

Directional cosines 

Phosphorus(142) 321.27 -43.25 

-41.86 

85.12 

0.86  0.51 -0.03 

-0.26  0.48  0.84 

-0.44  0.71 -0.55 

Oxygen(165) -10.69   

Oxygen(161) -5.41   

Oxygen(169) -15.31   

Hydrogen(123) -0.36   

Hydrogen(131) -4.39   

 



131 

 

Referencing Table 6.3 and 6.6, the isotropic and anisotropic hyperfine values for P142 

seem to be on the same order of magnitude as the UHF simulation described in the previous 

section. The other atoms of interest however have lower values, in particular for the 

hydrogen atoms: H131 has approximately 4 Gauss for the DFT simulation versus 23 

Gauss for the UHF simulation. These results using the DFT method are an improvement 

over the UHF method. Hyperfine values were not measured during the experiment for the 

remaining oxygen ions associated with the oxygen vacancy, but the relative placement and 

anti-symmetry of the hyperfine values agrees with the assessment in the prior publication, 

which assumed that the excess spin density assigns itself to one oxygen and hydrogen pair 

more so than the other oxygen and hydrogen atoms [20]. As shown in Table 6.7, the three 

oxygen ions surrounding the central phosphorus moved away from the central phosphorus, 

by about a hundredth of an Angstrom. This is not a significant change in geometry, and 

this negligible change may be attributed to the fact that the remaining there oxygen ions 

have strong covalent bonds with the phosphorus. 

Table 6.7. Distances between the central phosphorus and its remaining three oxygen ions, 

before and after optimization, for the oxygen vacancy job. 

 

Atom Pair Distance before 

optimization 

Distance after 

optimization 

P142-O161 1.53585 1.54173 

P142-O165 1.53585 1.54487 

P142-O169 1.53585 1.54797 

 

 

 The 185-atom cluster was then used in Gaussian to simulation an oxygen vacancy 

combined with a hydrogen atom vacancy. This particular oxygen vacancy defect variant 

was the focus in this section, because it had the best hyperfine splitting values as compared 
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to the relatively lower oxygen plus potassium vacancy variants. The Fermi contact and 

anisotropic results are shown in Table 6.8 below. With the oxygen plus hydrogen vacancy, 

the central phosphorus is renumbered to be phosphorus 141. After optimization with 

ωB97XD/6-31+G(d), this oxygen vacancy simulation with the hydrogen vacancy increased 

the isotropic hyperfine value by approximately 100 Gauss, from 429.08 Gauss to 563.04 

Gauss. This value is still at the lower end of the range of values measured by EPR, which 

were 552 to 757 Gauss [20]. These calculations are also lower than the values calculated 

in Table 6.4, which range from 587.66 Gauss to 602.63 Gauss. 

Table 6.8. Oxygen vacancy and hydrogen vacancy using the ωB97XD/6-31+G(d) method 

and basis set. The units are in Gauss.  

Atom  Fermi 

contact 

(before opt) 

Fermi 

contact 

(after opt) 

Aniso value 

(before opt) 

Directional Cosines  

(Before opt) 

Aniso value 

(after opt) 

Directional Cosines 

(After opt) 

P141 429.08 563.04 -39.20 

-39.11 

78.31 

  0.9141  0.3450  -0.2128 

-0.0492  0.6155   0.7866 

-0.4024  0.7086  -0.5796 

-57.21 

-55.73 

112.94 

0.2232  0.9745   0.0221 

0.7911  -0.1944  0.5800 

-0.5695  0.1120  0.8140 

O160 -12.10 -10.05     

O164 -13.81 -14.62     

O168 -16.66 -16.44     

 

However, the hyperfine values for the surrounding oxygen ions are higher in Table 6.4 than 

those in Table 6.8. Specifically, the Fermi contact values for O160, O164, and O168 were 

-10.05, -14.62, and -16.44 Gauss after optimization for the DFT job, and they were -9.92, 

-19.18, and -19.06 Gauss respectively for the UHF job.  

6.2.2.2 Oxygen Vacancy Simulations: Allowing Four Oxygen Ions to Move 

 A second oxygen vacancy plus hydrogen vacancy simulation was conducted. This 

time “fragments” were not used, and the oxygen ion nearest the hydrogen vacancy was 

allowed to move during the geometry optimization. This caused the hyperfine values for 

the central phosphorus ion to increase relative to the previous optimization job, with the 
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results depicted in Table 6.9. The Fermi contact term went from 563 Gauss post-

optimization, from Section 6.2.2.1, to 597 Gauss post-optimization in this section. The 

value for the unique principal anisotropic value also increased to 113.93 Gauss compared 

to 78 Gauss from Section 6.2.2.1. The hyperfine splitting was computationally simulated 

in EasySpin, as had been demonstrated in Chapter 4 for the self-trapped hole, and the two 

peaks are shown in Figure 6.7 for the oxygen plus hydrogen defect simulated in this section. 

Since the hyperfine splitting is so large, two separate plots were generated in order to zoom 

in on each peak. The splitting between the two peaks is approximately 60.25 mT or 602.5 

Gauss. This is compared to experiment in Table 6.10. 

 

Table 6.9. Fermi contact values and anisotropic values of the oxygen vacancy plus 

hydrogen vacancy after geometry optimization, allowing four of the surrounding oxygen 

ions to move.  

Atom  Fermi 

contact 

(before opt) 

Fermi 

contact 

(after opt) 

Aniso value 

(before opt) 

Directional Cosines  

(Before opt) 

Aniso value 

(after opt) 

Directional Cosines 

(After opt) 

P141 563.00      597.04 -57.21 

-55.73    

112.94  

  0.7692  0.5986  0.2237 

-0.5046  0.3541  0.7874  

-0.3921  0.7185 -0.5745 

-57.714    

-56.211    

113.925    

0.7550  0.6314  0.1770 

-0.4871  0.3593  0.7960 

-0.4391  0.6872 -0.5788 

O160 -10.05     -9.41          

O164 -14.62 -15.16         

O168 -16.44 -15.38         

O180 -3.01 -3.44           

 

Table 6.10. Comparison between the computed value for the hydrogen plus oxygen 

vacancy and the range of hyperfine values measured by EPR experiment.  

 

Ion Computed 

[Gauss] 

EPR Experiment 

[Gauss] [20] B||c 

P141 602.5 Five values ranging 

from 552 to 757 
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Figure 6.7. Hyperfine splitting for the oxygen plus hydrogen vacancy after geometry 

optimization, using the values listed in Table 6.9. This splitting is approximately 602.5 

Gauss and is broken into two resolved plots, in order to show the definition of the peaks 

(the full splitting on one plot would not fit properly on this page).  

 

The relative distances between P141 and the four oxygen ions that were allowed to move 

are shown in Table 6.11, and an image of the cluster after geometry optimization is seen in 

Figure 6.8, with the ions of interest highlighted in yellow.  

 

Table 6.11. Distances between the central phosphorus, its remaining three oxygen ions, 

and O180 before and after optimization, for the oxygen plus hydrogen vacancy job. 

 

Atom Pair Distance before 

optimization 

Distance after 

optimization 

P141-O160 1.53585 1.57079 

P141-O164 1.53585 1.56728 

P141-O168 1.53585 1.55092 

P141-O180 3.40272 3.37709 
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Figure 6.8. Oxygen plus hydrogen vacancy, with P141, O160, O164, O168, and O180 

highlighted in yellow post geometry optimization. The hydrogen vacancy is between O180 

and O164. 

 

After geometry optimization (corresponding to the hyperfine splitting seen in Table 6.10 

and Figure 6.7), the three oxygen ions that make up the remainder of the PO3 unit moved 

only slightly farther away from the central phosphorus, while the oxygen ion that was on 

the other side of the hydrogen vacancy on a neighboring PO4 unit moved slightly closer to 

the PO3 unit with the vacancy, from 3.403 to 3.38 Angstroms.  
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VII. Summary  

EPR provides insights into the location and nature of defects within a variety of 

materials, and there is a wealth of experimental data for point defects in nonlinear optical 

crystals like KDP. Utilizing the results from the EPR experiments on defects in KDP, a 

variety of Gaussian simulations were carried out for this dissertation in order to further 

understand and validate the experimental results that were obtained for this crystal. The 

present research will contribute to the on-going efforts of quantum chemists that conduct 

computational simulations with software such as Gaussian to better model defects in ever-

more-complex materials. 

In summary, the first part of this research examined a variety of quantum methods 

and basis sets in order to explore the best and most accurate options, based on the outputs 

from Gaussian runs. These theories and basis sets were selected based on their ability to 

achieve geometric localization of the self-trapped hole defect and provide quantitative 

estimation of the hyperfine values in agreement with experiment. It was found that methods 

that were progressively more complex tended to produce the more accurate results, and the 

more complex UMP2 method was a viable option once access to HPC resources was 

granted and parallel computing was possible. The work started where Chirila [22] had left 

off with the 41-atom tetragonal cluster, which had indicated that Gaussian could replicate 

the EPR results and place the self-trapped hole on two oxygen atoms and their respective 

hydrogen atoms. An orthorhombic unit cell of KDP was created in order to more accurately 

model the self-trapped hole defect, as it is only stable in the low-temperature orthorhombic 

phase. The results of most of the simulations (for a variety of methods and basis sets) 
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demonstrated the self-trapped hole localizing on two oxygen atoms and their adjoining 

hydrogen atoms.  

There were a few interesting observations made after the 41-atom cluster runs were 

completed. First, the hole was localized on the oxygen-hydrogen atom pairs that had the 

hydrogen atoms further away from their respective oxygen atoms. Second, the angle 

between the two oxygen atoms and the central phosphorus atom became smaller, thus 

demonstrating the mechanism of lattice relaxation leading to the “self-trapping” of a hole. 

Third, the two oxygen atoms and the nearest potassium ion moved further away from the 

adjacent central phosphorus atom. After exploring two methods for combining the isotropic 

and anisotropic hyperfine values, the EasySpin method was chosen going forward. 

EasySpin successfully simulated EPR hyperfine spectra using output from Gaussian such 

that it could be directly compared to data from EPR experiment.  

This post-optimization, geometric configuration from the 41-atom cluster was 

utilized for the larger orthorhombic clusters which incorporated the potassium ions. This 

meant that the angle between the two oxygen atoms and the phosphorus was carried into 

the large clusters, and the existence of this enhanced potential well was important for 

localizing the hole for the large cluster. Second, it was shown to be important to move the 

nearest potassium ion slightly away from the self-trapped hole region. This was one of the 

more crucial elements to having a successful simulation for the large clusters. The 

hyperfine values were found to be fairly consistent with the EPR experiments, and the 

method and basis set ωB97XD/6-31+G(d) were used towards the end of the self-trapped 

hole research. The 47-atom cluster was used to explore the optimal distance between the 

phosphorus ion and its nearest potassium, as well.  
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In-depth analysis of the 129-atom cluster provided insight into the distribution of 

the spin-density among the atomic and molecular orbitals. Inspection of the isotropic and 

anisotropic values of the phosphorus ion and comparison to previously published data, 

indicated that approximately 0.9% of the spin density from the self-trapped hole was 

situated in the phosphorus’s 3s orbital. A similar inspection was conducted for the two 

oxygen ions with the self-trapped hole, placing the spin density on the 2pz orbital, which 

was further validated by inspecting spin density graphics generated using GaussView. The 

theory that exchange core polarization was occurring between the orbitals was validated 

by inspecting the signs (whether positive or negative) of the hyperfine values of the atoms 

that had the self-trapped hole spin distributed within their orbitals.    

 Molecular orbitals and a visualization of the electron density from the spin SCF 

density were used in GaussView in order to visually inspect the physical ways in which 

the defects were localizing and what the shapes of their orbitals might look like, according 

to how they were distributed within the cluster. Most of the focus was on the self-trapped 

hole, and the self-trapped hole consistently was aligned outwards from the central PO4 unit, 

usually outwards along the “z-axis” depending on how Gaussian had defined the coordinate 

system. This had been problematic when the nearest potassium ion was present and also 

located along the z-axis. Eliminating the nearby potassium ion and moving the nearest 

potassium ion away from the self-trapped hole region along the z-axis enforced this idea, 

when altering the geometry in this way caused the hyperfine values to properly localize in 

response.  

Preliminary work was done on the hydrogen and oxygen vacancy, and the oxygen 

vacancy combined with the vacancy of nearby potassium or hydrogen ions. These vacancy 
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simulations started off by utilizing small methods and basis sets in order to validate 

previous research and also to assess the viability of a given geometry. The hydrogen 

vacancy was successful in generating hyperfine values that were on the same order as EPR 

experiment.  A variety of oxygen vacancy simulations were completed for large tetragonal 

clusters. These simulations used UHF before parallel computing was utilized and used 

UMP2 and ωB97XD/6-31+G(d) after parallel computing was available. Each of the 

oxygen vacancy simulations produced encouraging hyperfine values and defect 

localization that compared favorably with the EPR experiments. 
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Appendix A 

 

A.1 DFT Comparisons  

 

Table A.1. Results that compare the hole localization abilities of UHF, UMP2, and DFT.  

41-atoms (orthorhombic) UMP2/631++G 

  before opt before opt Fermi 

values 

  P-O dist O-H dist  (after opt) 

 O(1) 1.57864 1.05980 (H(4)) 0.34957 

 O(36) 1.57864 1.05980 (H13)) 0.34957 

 O(29) 1.51189 1.44359 (H(21)) -31.9317 

 O(39) 1.51189 1.44359 (H(32)) -31.9317 

      

    H(4) 0.19232 

    H(13) 0.19232 

    H(21) -1.42217 

    H(32) -1.42217 

    P(30) 35.82866 

      

41-atoms (orthorhombic) UHF/6-31++G(d,p) 

  before opt before opt Fermi values 

  P-O dist O-H dist  (after opt) 

 O(1) 1.57864 1.05980 (H(4)) 1.51847 

 O(36) 1.57864 1.05980 (H13)) 1.71044 

 O(29) 1.51189 1.44359 (H(21)) -27.7596 

 O(39) 1.51189 1.44359 (H(32)) -27.6504 

      

    H(4) 0.31283 

    H(13) 0.2776 

    H(21) -1.01215 

    H(32) -0.83763 

    P(30) -87.1958 
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Inputs: nosymmetry and broken symmetry  

(Quadratic convergence, and stability run first before optimization)  

UHF/6-31++G(d,p) 

  before opt before opt Fermi values 

  P-O dist O-H dist  (after opt) 

 O(1) 1.57864 1.05980 (H(4)) -0.68206 

 O(36) 1.57864 1.05980 (H13)) 1.09232 

 O(29) 1.51189 1.44359 (H(21)) -3.31442 

 O(39) 1.51189 1.44359 (H(32)) -36.0299 

      

    H(4) 0.12692 

    H(13) -0.33131 

    H(21) -0.42285 

    H(32) -0.29919 

    P(30) -36.0299 

      

Inputs: nosymmetry and broken symmetry , DFT  

(Stability run first before optimization) UB3LYP/6-31++G(d,p) (DFT) 

  before opt before opt Fermi values 

  P-O dist O-H dist  (after opt) 

 O(1) 1.57864 1.05980 (H(4)) -2.69801 

 O(36) 1.57864 1.05980 (H13)) -2.69799 

 O(29) 1.51189 1.44359 (H(21)) -10.2035 

 O(39) 1.51189 1.44359 (H(32)) -10.2035 

      

    H(4) -1.26565 

    H(13) -1.26565 

    H(21) -1.12956 

    H(32) -1.12956 

    P(30) -33.2442 

 

Table A.2. Additional results for the DFT method UB3LYP/6-31++G(d,p) that show the 

delocalization of the hole, including the anisotropic value output. 

Atom Isotropic (Gauss) Anisotropic (Gauss units) 

H(21) -1.42692 -3.198, -3.095, 6.293 

H(4) and H(13) -2.30038 -3.195, -2.614, 5.810 

P(30) -31.84743 -3.092, 1.416, 1.675 
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A.2 ONIOM Results 

A job was attempted by specifying “ONIOM(ωB97XD/N07D:UHF/6-31+G(d))” 

in the input file. The secondary layer incorporated UHF instead of UFF in an attempt to 

have more accurate results. All nine of the central atoms were designated as high layer 

atoms, and they were unfrozen. One of the features of ONIOM is to automatically cap 

dangling bonds with hydrogen ions, but this is something that is not needed for the present 

situation, because hydrogen ions are already next to all of the oxygen ions. KDP is an 

unusual oxide compared to other crystals, in that each oxygen on one PO4 unit has a 

hydrogen that links it to an oxygen on a neighboring PO4 unit. Thus, the outer units do not 

require any dangling bonds to be capped by additional hydrogen ions. A variety of tests 

were conducted that attempted to avoid having the central PO4 unit capped by additional 

hydrogen atoms while at the same time including all four hydrogen atoms in the hyperfine 

analysis Gaussian automatically made two of the atoms “link atoms” and instead of O26 

and O38, included H26 and H38 in the hyperfine output. This additionally distorted the 

location of the hole. Therefore, various attempts were made to circumvent this automatic 

link creation process, because only the hyperfine values from the nine atoms of interest 

were needed. The output file specifically stated that: “Atom O26 in layer R is bonded to 

H21 in layer M and was made a link atom replaced by H. Atom O38 in layer R is bonded 

to H32 in layer M and was made a link atom replaced by H.” 

Table A.3 presents results from an ONIOM(ωB97XD/N07D:UHF/6-31++G(d,p)) 

simulation. A simulation using ONOIM(ωB97XD/N07D:UHF/6-31+G(d)) had failed to 

converge. Compared to the single point energy calculation, the results below show a much 
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higher ratio of hyperfine values for the hydrogen oxygen pairs with the self-trapped hole 

compared to the hydrogen oxygen pairs without the self-trapped hole.  

Table A.3. The Fermi contact and Anisotropic results for the ONIOM(ωB97XD/N07D: 

UHF/6-31++G(d,p)) simulation. Each atom in the central PO4 unit along with two outer 

hydrogen ions were placed in the high level, and the two hydrogen ions with the hole were 

placed at the low level linked to the high level. The two oxygen ions that shared the hole 

were allowed to move during the optimization.  

High layer,  

Low layer 

Atom Fermi 

(Gauss) 

Aniso  

(Gauss) 

Anisotropic Directional 

Cosines 

Total 

Hyperfine 

ωB97XD/N07D, 

UHF/6-31++G(d,p) 

H4, H13 

(high 

level, 

frozen) 

-0.04695 -1.828 

-0.200 

2.027   

-0.3025 -0.6260  0.7188 

0.9252 -0.0113  0.3794 

-0.2293  0.7798  0.5825 

0.6072 

 H21, H32 

(low level 

linked to 

high level) 

-37.57419 -5.613 

-4.133 

9.745 

 

-0.5263  0.3622  0.7693  

 0.6606 -0.3955  0.6381  

 0.5354  0.8440 -0.0311 

   28.6342 

 O1, O36 

(high 

level, 

frozen) 

1.93857 2.509 

1.463 

-3.972 

0.4407 0.4860 0.7547 

-0.4891 0.8350 -0.2521 

0.7527 0.2580 -0.6057 

 

 O29, O39 

(high 

level, 

unfrozen) 

-31.52009 35.230  

25.698  

-60.929 

-0.6314 0.2853 0.7211 

0.4248 0.9052 0.0139 

0.6487 -0.3151 0.6927 

 

 P30  

(high 

level, 

frozen) 

-

128.47504 

-18.410 

8.094 

10.316 

 0.0000  0.0000  1.0000  

-0.2191  0.9757  0.0000 

0.9757  0.2191  0.0000 

   36.0387 

 

A similar run was conducted in which the exact same methods and basis sets were used as 

before, except the high and low-level atoms of interest were reversed for the four hydrogen 
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atoms. This meant that the H4, H13 ions were assigned at the low level, linked to high 

level, and the H21, H32 ions were at the high level. However, this run was not successful.  

 The success of the small 41-atom cluster using ONIOM motivated attempts to use 

ONOIM for a larger cluster with 182 atoms which included ten potassium ions. There were 

difficulties in setting the atoms in the central PO4 unit as the high layer and the remainder 

of the cluster as the low layer, because Gaussian would cancel the simulation due to the 

bonds that it established between the potassium ions and the central unit. As mentioned, 

Gaussian will attempt to assign link atoms between the high-level and low-level atoms, 

and since Gaussian assigns bonds between the potassium ions and the central unit, it was 

becoming overwhelmed with the task of distributing link atoms between these groups. One 

work-around to this issue is to simply use “geom=connectivity” along with a manual 

assignment of bonds in the connectivity table in the input file. This way, Gaussian will not 

automatically assign bonds between the potassium ions and the central PO4 unit.  
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Appendix B 

 

B.1 MATLAB Eigenvalue Calculations from Gaussian Hyperfine Results 

 The EPR measurements that were taken by Stevens et al. were along the z-direction 

[20], and therefore the isotropic and anisotropic values computed by Gaussian need to be 

visualized as the crystal is rotated on its axes, with respect to the magnetic field axes, to 

estimate what the splitting is for a measurement taken along the co-aligned crystal and 

magnetic field z-axis. For the self-trapped hole results, anisotropic directional cosines that 

were calculated by Gaussian for the phosphorus atom for Bcc were calculated to be along 

directional cosines 0, 0, 1, and no further computation is needed. However, the Bcc vector 

of the hydrogen atom with the hole is along directional cosines 0.5404, 0.8391, and -0.0623 

for alpha, beta, and gamma respectively; this is more ambiguous and requires further 

investigation as to how the dipole is oriented with respect to the magnetic field in the z-

direction. 

B.1.1 Axes Angles and Orientation 

The post-analysis of the Gaussian results begins by assigning the spin-Hamiltonian 

parameters variables P1-P7, which represents the g-value and six A matrix values. Three 

of the values are principal values, adding together the Fermi contact term and each of the 

three anisotropic components, Baa, Bbb, and Bcc. The variables P5-P7 are the three Euler 

angles calculated from the directional cosines of the anisotropic hyperfine parameters and 

converted from degrees to radians. The principal axes of the 𝑨 matrix uses the coordinates 

𝑥1, 𝑦1, 𝑧1 for a particular dipole, the crystal axes uses the coordinates 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐, and the 

magnetic field system for a magnetic field parallel to the z-axis uses the coordinates 𝑥, 𝑦, 𝑧.  
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Figure B.1. The orientation of the crystal coordinate system with respect to the magnetic 

field coordinate system. The dipole coordinate axes are hidden in the crystal. 

 

The vector r can be represented in terms of the directional cosine angles 𝛼, 𝛽, 𝛾 or in 

terms of the two angles, 𝜃, 𝜙 which are relative only to the z-axis.  

𝒓⃗ = 𝐬𝐢𝐧𝜽 𝐜𝐨𝐬𝝓 𝒊 + 𝐬𝐢𝐧𝜽 𝐬𝐢𝐧𝝓 𝒋 + 𝐜𝐨𝐬𝜽 𝒌⃗⃗ ,                                   Eq. B.24 

𝒓⃗ = 𝐜𝐨𝐬𝜶 𝒊 + 𝐜𝐨𝐬𝜷 𝒋 + 𝐜𝐨𝐬 𝜸 𝒌⃗⃗ ,                                       Eq. B.25 

The conversion between the angles is done in the following way: 

𝐜𝐨𝐬𝜶 = 𝐬𝐢𝐧𝜽 𝐜𝐨𝐬𝝓,     𝐜𝐨𝐬𝜷 = 𝐬𝐢𝐧𝜽 𝐬𝐢𝐧𝝓,                                Eq. B.26 

𝐬𝐢𝐧𝜽 =
𝐜𝐨𝐬𝜶

𝐜𝐨𝐬𝝓
=

𝐜𝐨𝐬𝜷

𝐬𝐢𝐧𝝓
,                                                    Eq. B.27 

𝐬𝐢𝐧𝝓

𝐜𝐨𝐬𝝓
=

𝐜𝐨𝐬𝜷

𝐜𝐨𝐬𝜶
= 𝐭𝐚𝐧𝝓,                                                    Eq. B.28 

𝜽 = 𝜸,                                                                  Eq. B.29 
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Now each row of alpha, beta, and gamma for Baa, Bbb, and Bcc (a 3x3 set of values) can 

be represented as three rows of theta and phi for Baa, Bbb, and Bcc (a 2x3 set of values, 

𝜃𝑎𝑎𝜙𝑎𝑎, 𝜃𝑏𝑏𝜙𝑏𝑏, 𝜃𝑐𝑐𝜙𝑐𝑐 ). The last step is to convert the pairs of theta and phi into a 1x3 

set of Euler angles (Θ ,Φ, Γ). This is done in the following way:  

𝚯 = 𝜽𝒄𝒄,                                                            Eq. B.30 

𝚽 = 𝝓𝒄𝒄 − 𝟐𝟕𝟎(
𝝅

𝟏𝟖𝟎
),                                              Eq. B.31 

𝐬𝐢𝐧𝚽 = (
𝐜𝐨𝐬𝜽𝒂𝒂

𝐬𝐢𝐧𝜽𝒄𝒄
),                                                     Eq. B.32 

𝚪 = {
𝐚𝐜𝐨𝐬 (

𝐜𝐨𝐬𝜽𝒃𝒃

𝐬𝐢𝐧𝜽𝒄𝒄
),     𝐬𝐢𝐧𝝍 ≥ 𝟎

𝟐𝝅 − 𝐚𝐜𝐨𝐬 (
𝐜𝐨𝐬𝜽𝒃𝒃

𝐬𝐢𝐧𝜽𝒄𝒄
),     𝐬𝐢𝐧𝝍 < 𝟎

                                 Eq. B.33 

It is important when following this process to ensure that the three pairs of theta and phi 

are orthogonal to one another before proceeding to calculate the Euler angles.  

B.1.2 Rotation Operations 

Expanding Equation 3.3 using the notation given above introduces a Hamiltonian 

of the form:  

𝑯 = 𝒈𝜷𝑩𝑺𝒛 + 𝑰𝒙𝟏
𝑨𝒙𝑺𝒙𝟏

+ 𝑰𝒚𝟏
𝑨𝒚𝑺𝒚𝟏

+ 𝑰𝒛𝟏
𝑨𝒛𝑺𝒛𝟏

,                       Eq. B.34 

The g-value is isotropic, and A has at least six values with an Euler angle corresponding 

per row to 𝛼, 𝛽, 𝛾. For S and I both equal to spin ½, the Hamiltonian will be transformed 

into a four by four matrix, and then the eigenvalues will be calculated in order to estimate 

the energy as a function of position. The transformation begins with the crystal axes being 

related to the principal axes of the hyperfine matrix in the following way:  
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[

𝒙𝟏

𝒚𝟏

𝒛𝟏

] = [𝑯] [

𝒙𝒄

𝒚𝒄

𝒛𝒄

],                                                        Eq. B.35 

 

The 3x3 matrix H incorporates the three Euler angles 𝜃, 𝜙, 𝜓, represented below as P5, 

P6, and P7 in order to correspond with the notation in the MATLAB code: 

𝑯 = [
𝐜𝐨𝐬𝑷𝟕 𝐜𝐨𝐬𝑷𝟔 − 𝐜𝐨𝐬𝑷𝟓 𝐬𝐢𝐧𝑷𝟔 𝐬𝐢𝐧𝑷𝟕 𝐜𝐨𝐬𝑷𝟕 𝐬𝐢𝐧𝑷𝟔 + 𝐜𝐨𝐬𝑷𝟓 𝐜𝐨𝐬𝑷𝟔 𝐬𝐢𝐧𝑷𝟕 𝐬𝐢𝐧𝑷𝟕 𝐬𝐢𝐧𝑷𝟓

−𝐬𝐢𝐧𝑷𝟕 𝐜𝐨𝐬𝑷𝟔 − 𝐜𝐨𝐬𝑷𝟓 𝐬𝐢𝐧𝑷𝟔 𝐜𝐨𝐬𝑷𝟕 − 𝐬𝐢𝐧𝑷𝟕𝐜𝐨𝐬𝑷𝟔 + 𝐜𝐨𝐬𝑷𝟓 𝐬𝐢𝐧𝑷𝟔 𝐜𝐨𝐬𝑷𝟕 𝐜𝐨𝐬𝑷𝟕 𝐬𝐢𝐧𝑷𝟓
𝐬𝐢𝐧𝑷𝟓 𝐬𝐢𝐧𝑷𝟔 −𝐬𝐢𝐧𝑷𝟓 𝐜𝐨𝐬𝑷𝟔 𝐜𝐨𝐬𝑷𝟓

],  

Eq. B.36 

This matrix was created using the convention from Goldstein’s book, Classical Mechanics 

[92], which rotates along z (matrix D), ξ (matrix C), and ξ’ (matrix B), such that H=BCD, 

and refers to its second rotation as similar to a rotation along an equivalent system’s x-axis. 

Hence, this rotation is said to be done in the x-convention. It can be related to the magnetic 

field axis system by the rotation matrix, R. A rotation from x to y is calculated as: 

𝑹 = [

𝐜𝐨𝐬𝜶 −𝐬𝐢𝐧𝜶 𝐬𝐢𝐧𝜷 𝐬𝐢𝐧𝜶 𝐜𝐨𝐬𝜷
𝟎 𝐜𝐨𝐬𝜷 𝐬𝐢𝐧𝜷

−𝐬𝐢𝐧𝜶 −𝐜𝐨𝐬𝜶 𝐬𝐢𝐧𝜷 𝐜𝐨𝐬𝜶 𝐜𝐨𝐬𝜷
]                    Eq.B.14  

 

With 𝛼 =
𝜋

180
∗ 90, 𝛽 =

𝜋

180
∗ (𝑛 − 1), 1 < 𝑛 < 91. A rotation from y to z is calculated 

using the same matrix, but with 𝛼 = 0, 𝛽 = 90 ∗
𝜋

180
−

𝜋

180
∗ (𝑛 − 1), 1 < 𝑛 < 91. Lastly, 

a rotation from z to x is calculated with 𝛼 =
𝜋

180
∗ (𝑛 − 1), 𝛽 = 0, 1 < 𝑛 < 91. The indices 

“n” are increments of degrees. 

[

𝒙𝒄

𝒚𝒄

𝒛𝒄

] = [𝑹] [
𝒙
𝒚
𝒛
]      Eq.B.15 
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[𝑻𝑯] = [𝑯][𝑹]     Eq.B.16 

[

𝒙𝟏

𝒚𝟏

𝒛𝟏

] = [𝑻𝑯] [
𝒙
𝒚
𝒛
]     Eq.B.17 

 

The I and S values in the hyperfine coordinate system can be written in terms of the 

magnetic field system as: 

𝑰𝒙𝟏
= 𝑻𝑯(𝟏, 𝟏)𝑰𝒙 + 𝑻𝑯(𝟏, 𝟐)𝑰𝒚 + 𝑻𝑯(𝟏, 𝟑)𝑰𝒛   Eq.B.18 

𝑰𝒚𝟏
= 𝑻𝑯(𝟐, 𝟏)𝑰𝒙 + 𝑻𝑯(𝟐, 𝟐)𝑰𝒚 + 𝑻𝑯(𝟐, 𝟑)𝑰𝒛   Eq.B.19 

𝑰𝒛𝟏
= 𝑻𝑯(𝟑, 𝟏)𝑰𝒙 + 𝑻𝑯(𝟑, 𝟐)𝑰𝒚 + 𝑻𝑯(𝟑, 𝟑)𝑰𝒛   Eq.B.20 

𝑺𝒙𝟏
= 𝑻𝑯(𝟏, 𝟏)𝑺𝒙 + 𝑻𝑯(𝟏, 𝟐)𝑺𝒚 + 𝑻𝑯(𝟏, 𝟑)𝑺𝒛   Eq.B.21 

𝑺𝒚𝟏
= 𝑻𝑯(𝟐, 𝟏)𝑺𝒙 + 𝑻𝑯(𝟐, 𝟐)𝑺𝒚 + 𝑻𝑯(𝟐, 𝟑)𝑺𝒛   Eq.B.22 

𝑺𝒛𝟏
= 𝑻𝑯(𝟑, 𝟏)𝑺𝒙 + 𝑻𝑯(𝟑, 𝟐)𝑺𝒚 + 𝑻𝑯(𝟑, 𝟑)𝑺𝒛   Eq.B.23 

Equation B.11 is re-written as: 

𝑯 = 𝒈𝜷𝑩𝑺𝒛 + 𝑨𝒙[𝑻𝑯(𝟏, 𝟏)𝑻𝑯(𝟏, 𝟏)𝑰𝒙𝑺𝒙 + 𝑻𝑯(𝟏, 𝟏)𝑻𝑯(𝟏, 𝟐)𝑰𝒚𝑺𝒙 +

𝑻𝑯(𝟏, 𝟏)𝑻𝑯(𝟏, 𝟑)𝑰𝒛𝑺𝒙 + 𝑻𝑯(𝟏, 𝟐)𝑻𝑯(𝟏, 𝟏)𝑰𝒙𝑺𝒚 + 𝑻𝑯(𝟏, 𝟐)𝑻𝑯(𝟏, 𝟐)𝑰𝒚𝑺𝒚 +

𝑻𝑯(𝟏, 𝟑)𝑻𝑯(𝟏, 𝟐)𝑰𝒛𝑺𝒚 + 𝑻𝑯(𝟏, 𝟏)𝑻𝑯(𝟏, 𝟑)𝑰𝒙𝑺𝒛 + 𝑻𝑯(𝟏, 𝟐)𝑻𝑯(𝟏, 𝟑)𝑰𝒚𝑺𝒛 +

𝑻𝑯(𝟏, 𝟑)𝑻𝑯(𝟏, 𝟑)𝑰𝒛𝑺𝒛] + 𝑨𝒚[𝑻𝑯(𝟐, 𝟏)𝑻𝑯(𝟐, 𝟏)𝑰𝒙𝑺𝒙 + 𝑻𝑯(𝟐, 𝟏)𝑻𝑯(𝟐, 𝟐)𝑰𝒚𝑺𝒙 +

𝑻𝑯(𝟐, 𝟏)𝑻𝑯(𝟐, 𝟑)𝑰𝒛𝑺𝒙 + 𝑻𝑯(𝟐, 𝟐)𝑻𝑯(𝟐, 𝟏)𝑰𝒙𝑺𝒚 + 𝑻𝑯(𝟐, 𝟐)𝑻𝑯(𝟐, 𝟐)𝑰𝒚𝑺𝒚 +

𝑻𝑯(𝟐, 𝟑)𝑻𝑯(𝟐, 𝟐)𝑰𝒛𝑺𝒚 + 𝑻𝑯(𝟐, 𝟏)𝑻𝑯(𝟐, 𝟑)𝑰𝒙𝑺𝒛 + 𝑻𝑯(𝟐, 𝟐)𝑻𝑯(𝟐, 𝟑)𝑰𝒚𝑺𝒛 +

𝑻𝑯(𝟐, 𝟑)𝑻𝑯(𝟐, 𝟑)𝑰𝒛𝑺𝒛] + 𝑨𝒛[𝑻𝑯(𝟑, 𝟏)𝑻𝑯(𝟑, 𝟏)𝑰𝒙𝑺𝒙 + 𝑻𝑯(𝟑, 𝟏)𝑻𝑯(𝟑, 𝟐)𝑰𝒚𝑺𝒙 +

𝑻𝑯(𝟑, 𝟏)𝑻𝑯(𝟑, 𝟑)𝑰𝒛𝑺𝒙 + 𝑻𝑯(𝟑, 𝟐)𝑻𝑯(𝟑, 𝟏)𝑰𝒙𝑺𝒚 + 𝑻𝑯(𝟑, 𝟐)𝑻𝑯(𝟑, 𝟐)𝑰𝒚𝑺𝒚 +

𝑻𝑯(𝟑, 𝟑)𝑻𝑯(𝟑, 𝟐)𝑰𝒛𝑺𝒚 + 𝑻𝑯(𝟑, 𝟏)𝑻𝑯(𝟑, 𝟑)𝑰𝒙𝑺𝒛 + 𝑻𝑯(𝟑, 𝟐)𝑻𝑯(𝟑, 𝟑)𝑰𝒚𝑺𝒛 +

𝑻𝑯(𝟑, 𝟑)𝑻𝑯(𝟑, 𝟑)𝑰𝒛𝑺𝒛]     Eq.B.24 

 

The 𝐴𝑥, 𝐴𝑦, 𝐴𝑧 components can be grouped into six equations, W1-W6, that group 

respective pairs of IS according to their indices in the magnetic field axis system: 
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𝑾𝟏 = 𝑨𝒙𝑻𝑯(𝟏, 𝟏)𝑻𝑯(𝟏, 𝟏) + 𝑨𝒚𝑻𝑯(𝟐, 𝟏)𝑻𝑯(𝟐, 𝟏) + 𝑨𝒛𝑻𝑯(𝟑, 𝟏)𝑻𝑯(𝟑, 𝟏) Eq.B.25 

𝑾𝟐 = 𝑨𝒙𝑻𝑯(𝟏, 𝟐)𝑻𝑯(𝟏, 𝟏) + 𝑨𝒚𝑻𝑯(𝟐, 𝟐)𝑻𝑯(𝟐, 𝟏) + 𝑨𝒛𝑻𝑯(𝟑, 𝟐)𝑻𝑯(𝟑, 𝟏) Eq.B.26 

𝑾𝟑 = 𝑨𝒙𝑻𝑯(𝟏, 𝟑)𝑻𝑯(𝟏, 𝟏) + 𝑨𝒚𝑻𝑯(𝟐, 𝟑)𝑻𝑯(𝟐, 𝟏) + 𝑨𝒛𝑻𝑯(𝟑, 𝟑)𝑻𝑯(𝟑, 𝟏) Eq.B.27 

𝑾𝟒 = 𝑨𝒙𝑻𝑯(𝟏, 𝟐)𝑻𝑯(𝟏, 𝟐) + 𝑨𝒚𝑻𝑯(𝟐, 𝟐)𝑻𝑯(𝟐, 𝟐) + 𝑨𝒛𝑻𝑯(𝟑, 𝟐)𝑻𝑯(𝟑, 𝟐) Eq.B.28 

𝑾𝟓 = 𝑨𝒙𝑻𝑯(𝟏, 𝟑)𝑻𝑯(𝟏, 𝟐) + 𝑨𝒚𝑻𝑯(𝟐, 𝟑)𝑻𝑯(𝟐, 𝟐) + 𝑨𝒛𝑻𝑯(𝟑, 𝟑)𝑻𝑯(𝟑, 𝟐) Eq.B.29 

𝑾𝟔 = 𝑨𝒙𝑻𝑯(𝟏, 𝟑)𝑻𝑯(𝟏, 𝟑) + 𝑨𝒚𝑻𝑯(𝟐, 𝟑)𝑻𝑯(𝟐, 𝟑) + 𝑨𝒛𝑻𝑯(𝟑, 𝟑)𝑻𝑯(𝟑, 𝟑) Eq.B.30 

The spin Hamiltonian is re-written as: 

𝑯 = 𝒈𝜷𝑩𝑺𝒛 + 𝑾𝟏𝑰𝒙𝑺𝒙 + 𝑾𝟐𝑰𝒚𝑺𝒙 + 𝑾𝟑𝑰𝒛𝑺𝒙 + 𝑾𝟐𝑰𝒙𝑺𝒚 + 𝑾𝟒 𝑰𝒚𝑺𝒚 + 𝑾𝟓𝑰𝒛𝑺𝒚 +

𝑾𝟑𝑰𝒙𝑺𝒛 + 𝑾𝟓𝑰𝒚𝑺𝒛 + 𝑾𝟔𝑰𝒛𝑺𝒛   

Eq.B.31 

Next, the operators along (x,y) may be replaced by the raising and lowering operators 

which are rewritten to be in terms of 𝑆𝑥, 𝑆𝑦, 𝐼𝑥, 𝐼𝑦: 

𝑺+ = 𝑺𝒙 + 𝒊𝑺𝒚,   𝑺− = 𝑺𝒙 − 𝒊𝑺𝒚         Eq.B.32 

𝑺𝒙 =
𝟏

𝟐
(𝑺+ + 𝑺−),   𝑺𝒚 =

𝟏

𝟐𝒊
(𝑺+ − 𝑺−)           Eq.B.33 

𝑰+ = 𝑰𝒙 + 𝒊𝑰𝒚,   𝑰− = 𝑰𝒙 − 𝒊𝑰𝒚    Eq.B.34 

𝑰𝒙 =
𝟏

𝟐
(𝑰+ + 𝑰−),   𝑰𝒚 =

𝟏

𝟐𝒊
(𝑰+ − 𝑰−)                      Eq.B.35 

To get the IS pairs, each configuration needs to be multiplied and expanded: 

𝑰𝒙𝑺𝒙 =
𝟏

𝟐
(𝑰+ + 𝑰−) ∗

𝟏

𝟐
(𝑺+ + 𝑺−) =

𝟏

𝟒
(𝑰+𝑺+ + 𝑰+𝑺− + 𝑰−𝑺+ + 𝑰−𝑺−) Eq.B.36 

𝑰𝒚𝑺𝒙 =
𝟏

𝟒𝒊
(𝑰+𝑺+ + 𝑰+𝑺− − 𝑰−𝑺+ − 𝑰−𝑺−)                  Eq.B.37 

𝑰𝒙𝑺𝒚 =
𝟏

𝟒𝒊
(𝑰+𝑺+ − 𝑰+𝑺− + 𝑰−𝑺+ − 𝑰−𝑺−)   Eq. B.38 
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𝑰𝒚𝑺𝒚 =
−𝟏

𝟒
(𝑰+𝑺+ − 𝑰+𝑺− − 𝑰−𝑺+ + 𝑰−𝑺−),                 Eq. B.39 

 

The operators along “z” commute with the raising and lowering operators and thus can 

remain in the form of 𝐼𝑧, 𝑆𝑧: 

𝑰𝒛𝑺𝒙 =
𝟏

𝟐
(𝑰𝒛𝑺+ + 𝑰𝒛𝑺−)     Eq. B.40 

𝑰𝒛𝑺𝒚 =
−𝒊

𝟐
(𝑰𝒛𝑺+ − 𝑰𝒛𝑺−)     Eq. B.41 

𝑰𝒙𝑺𝒛 =
𝟏

𝟐
(𝑰+𝑺𝒛 + 𝑰−𝑺𝒛)     Eq. B.42 

𝑰𝒚𝑺𝒛 =
−𝒊

𝟐
(𝑰+𝑺𝒛 − 𝑰−𝑺𝒛)      Eq. B.43 

Replacing the IS pairs with the raising and lowering operators gives the Hamiltonian in 

the following form:  

𝑯 = 𝒈𝜷𝑩𝑺𝒛 + 𝑾𝟔𝑰𝒛𝑺𝒛 +
𝟏

𝟒
(𝑾𝟏 − 𝒊𝑾𝟐 − 𝒊𝑾𝟐 − 𝑾𝟒)𝑰+𝑺+

+
𝟏

𝟒
(𝑾𝟏 − 𝒊𝑾𝟐 + 𝒊𝑾𝟐 + 𝑾𝟒)𝑰+𝑺−

+
𝟏

𝟒
(𝑾𝟏 + 𝒊𝑾𝟐 − 𝒊𝑾𝟐 + 𝑾𝟒)𝑰−𝑺+

+
𝟏

𝟒
(𝑾𝟏 + 𝒊𝑾𝟐 + 𝒊𝑾𝟐 − 𝑾𝟒)𝑰−𝑺− +

𝟏

𝟐
(𝑾𝟑 − 𝒊𝑾𝟓)𝑰+𝑺𝒛

+
𝟏

𝟐
(𝑾𝟑 + 𝒊𝑾𝟓)𝑰−𝑺𝒛 +

𝟏

𝟐
(𝑾𝟑 − 𝒊𝑾𝟓)𝑰𝒛𝑺+ +

𝟏

𝟐
(𝑾𝟑 + 𝒊𝑾𝟑)𝑰𝒛𝑺−,  

Eq. B.44 

The last set of simplifications are: 

𝑸𝟏 =
𝟏

𝟒
(𝑾𝟏 − 𝑾𝟒) +

𝒊

𝟐
𝑾𝟐, Equation 37 

𝑸𝟐 =
𝟏

𝟒
(𝑾𝟏 + 𝑾𝟒), Equation 38 
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𝑸𝟑 =
𝟏

𝟐
(𝑾𝟑 + 𝒊𝑾𝟓), Equation 39 

𝑯 = 𝒈𝜷𝑩𝑺𝒛 + 𝑾𝟔𝑰𝒛𝑺𝒛 + 𝑸𝟏∗𝑰+𝑺+ + 𝑸𝟐𝑰+𝑺− + 𝑸𝟐𝑰−𝑺+ + 𝑸𝟏𝑰−𝑺− + 𝑸𝟑𝑰𝒛𝑺+ + 𝑸𝟑𝑰𝒛𝑺−, 

Equation 40 

The first two terms are along the diagonal of the four by four matrix, A(1,1), A(2,2), 

A(3,3), and A(4,4): 

 |1/2,1/2> |1/2,1/2> |1/2,1/2> |1/2,1/2> 

|1/2,1/2> A(1,1)    

|1/2,1/2>  A(2,2)   

|1/2,1/2>   A(3,3)  

|1/2,1/2>    A(4,4) 

 

Each operator 𝑆𝑧and 𝐼𝑧 acting on the kets |𝑚𝑠, 𝑚𝐼 > being: 

𝑨(𝟏, 𝟏) =
𝟏

𝟐
𝒈𝜷𝑩 +

𝟏

𝟒
𝑾𝟔,   𝑨(𝟐, 𝟐) =

𝟏

𝟐
𝒈𝜷𝑩 −

𝟏

𝟒
𝑾𝟔  

𝑨(𝟑, 𝟑) = −
𝟏

𝟐
𝒈𝜷𝑩 −

𝟏

𝟒
𝑾𝟔, 𝑨(𝟒, 𝟒) = −

𝟏

𝟐
𝒈𝜷𝑩 +

𝟏

𝟒
𝑾𝟔   Eq. 41 

 |1/2,1/2> |1/2,1/2> |1/2,1/2> |1/2,1/2> 

|1/2,1/2> A(1,1)    

|1/2,1/2> ½ Q3 A(2,2)   

|1/2,1/2> ½ Q3 Q2 A(3,3)  
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|1/2,1/2> Q1 - ½ Q3 - ½  Q3 A(4,4) 

 

B.2 MATLAB Code 

 

The following is the MATLAB code that performs these calculations. It was written by Dr. 

Larry Halliburton and reprinted with permission. 

 

 

 

B.2.1 Main Code 

 

%     KDP_STH_ENDORlines 

 

% This main program calculates ENDOR line positions as a function of 

% angle, using a g value and a hyperfine matrix, for the self-trapped hole 

% in KH2PO4 crystals.  The input A matrix is taken from Gaussian output. 

 

% This program uses a subroutine named KDP_STH_energylevels. 

 

clear all 

clf reset 

 

% Constants: 

 

h = 6.62606957;   % Planck's constant 

B = 9.27400968/h;  % Bohr magneton divided by Planck's constant 

gbn = 0.004257748;      % gn*bn for hydrogen 

CTR = pi/180;   % Conversion constant, degrees to radians 

FREQQ = 9400;   % Measured microwave frequency (in MHz) 

HH = 3377;              % Magnetic field (in gauss) 

 

% Spin-Hamiltonian parameters: 

% One for the g matrix and six for the A matrix (three principal 

% values and three Euler angles). 

 

P(1) = 2.01; 

P(2) = -5.895*2.8;      % P(2) trough P(7) values obtained 

P(3) = -4.567*2.8;      % from Gaussian output for atom 21 (hydrogen). 

P(4) = 6.196*2.8; 

P(5) = 93.57*CTR; 
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P(6) = -212.78*CTR; 

P(7) = 52.8659*CTR; 

 

% H is the 3x3 rotation matrix which takes the principal  

% axes of the A matrix into the crystal coordinate system. 

 

% R is the 3x3 rotation matrix which takes the crystal coordinate 

% system into the magnetic field coordinate system. 

 

H(1,1) = cos(P(7))*cos(P(6)) - cos(P(5))*sin(P(6))*sin(P(7)); 

H(1,2) = cos(P(7))*sin(P(6)) + cos(P(5))*cos(P(6))*sin(P(7)); 

H(1,3) = sin(P(7))*sin(P(5)); 

H(2,1) = -sin(P(7))*cos(P(6)) - cos(P(5))*sin(P(6))*cos(P(7)); 

H(2,2) = -sin(P(7))*sin(P(6)) + cos(P(5))*cos(P(6))*cos(P(7)); 

H(2,3) = cos(P(7))*sin(P(5)); 

H(3,1) = sin(P(5))*sin(P(6));    

H(3,2) = -sin(P(5))*cos(P(6)); 

H(3,3) = cos(P(5)); 

 

% Select a plane of rotation before running the program. 

 

% Plane = 1 corresponds to rotation from x to y 

% Plane = 2 corresponds to rotation from y to z 

% Plane = 3 corresponds to rotation from z to x 

 

% Enter the number below for the plane to be used. 

 

Plane = 3; 

 

if Plane==1             % Rotation from x to y. 

 

for n=1:91              % Rotation increment is one degree. 

    Alpha = 90*CTR; 

    Beta = (n-1)*CTR; 

    N(n) = n-1; 

 

    R(1,1) = cos(Alpha); 

    R(1,2) = -sin(Alpha)*sin(Beta); 

    R(1,3) = sin(Alpha)*cos(Beta); 

    R(2,1) = 0; 

    R(2,2) = cos(Beta); 

    R(2,3) = sin(Beta); 

    R(3,1) = -sin(Alpha); 

    R(3,2) = -cos(Alpha)*sin(Beta); 

    R(3,3) = cos(Alpha)*cos(Beta); 
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    TH = H * R; 

 

    EE = KDP_STH_energylevels(TH,HH,P,B,gbn); 

        E(n,1) = EE(4)-EE(3); 

        E(n,2) = EE(2)-EE(1); 

     

end 

 

elseif Plane==2         % Rotation from y to z. 

 

for n=1:91              % Rotation increment is one degree. 

    Alpha = 0*CTR; 

    Beta = 90*CTR - (n-1)*CTR; 

    N(n) = n-1; 

 

    R(1,1) = cos(Alpha); 

    R(1,2) = -sin(Alpha)*sin(Beta); 

    R(1,3) = sin(Alpha)*cos(Beta); 

    R(2,1) = 0; 

    R(2,2) = cos(Beta); 

    R(2,3) = sin(Beta); 

    R(3,1) = -sin(Alpha); 

    R(3,2) = -cos(Alpha)*sin(Beta); 

    R(3,3) = cos(Alpha)*cos(Beta); 

    

    TH = H * R; 

 

    EE = KDP_STH_energylevels(TH,HH,P,B,gbn); 

        E(n,1) = EE(4)-EE(3); 

        E(n,2) = EE(2)-EE(1);     

 

end 

 

elseif Plane==3         % Rotation from z to x. 

 

for n=1:91              % Rotation increment is one degree. 

    Alpha = (n-1)*CTR; 

    Beta = 0*CTR; 

    N(n) = n-1; 

 

    R(1,1) = cos(Alpha); 

    R(1,2) = -sin(Alpha)*sin(Beta); 

    R(1,3) = sin(Alpha)*cos(Beta); 

    R(2,1) = 0; 
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    R(2,2) = cos(Beta); 

    R(2,3) = sin(Beta); 

    R(3,1) = -sin(Alpha); 

    R(3,2) = -cos(Alpha)*sin(Beta); 

    R(3,3) = cos(Alpha)*cos(Beta); 

    

    TH = H * R; 

 

    EE = KDP_STH_energylevels(TH,HH,P,B,gbn); 

        E(n,1) = EE(4)-EE(3); 

        E(n,2) = EE(2)-EE(1); 

 

end 

 

end 

 

plot(N,E) 

ylabel('ENDOR frequency (MHz)') 

xlabel('Angle (degrees)') 

 

B.2.2 Subroutine 

 

%KDP_STH_energylevels 

% This subroutine is used in conjunction with KDP_STH_linepositions. 

% That main program determines the line positions as a function of 

% angle for the self-trapped hole in KH2PO4 crystals. 

 

% This subroutine calculates the eigenvalues and returns them to the 

% main program. 

 

function EE = KDP_STH_energylevels(TH,HH,P,B,gbn) 

 

W1 = P(2)*TH(1,1)*TH(1,1)+P(3)*TH(2,1)*TH(2,1)+P(4)*TH(3,1)*TH(3,1); 

W2 = P(2)*TH(1,1)*TH(1,2)+P(3)*TH(2,1)*TH(2,2)+P(4)*TH(3,1)*TH(3,2); 

W3 = P(2)*TH(1,1)*TH(1,3)+P(3)*TH(2,1)*TH(2,3)+P(4)*TH(3,1)*TH(3,3); 

W4 = P(2)*TH(1,2)*TH(1,2)+P(3)*TH(2,2)*TH(2,2)+P(4)*TH(3,2)*TH(3,2); 

W5 = P(2)*TH(1,2)*TH(1,3)+P(3)*TH(2,2)*TH(2,3)+P(4)*TH(3,2)*TH(3,3); 

W6 = P(2)*TH(1,3)*TH(1,3)+P(3)*TH(2,3)*TH(2,3)+P(4)*TH(3,3)*TH(3,3); 

 

Q1 = 0.25*(W1-W4)+0.5*i*W2;  

Q2 = 0.25*(W1+W4); 

Q3 = 0.5*(W3+i*W5); 

 

% Ham is the matrix representing the spin-Hamiltonian. 
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Ham = zeros(4); 

Ham(1,1) = 0.5*P(1)*B*HH + 0.25*W6 - 0.5*gbn*HH; 

Ham(2,2) = 0.5*P(1)*B*HH - 0.25*W6 + 0.5*gbn*HH; 

Ham(3,3) = -0.5*P(1)*B*HH - 0.25*W6 - 0.5*gbn*HH; 

Ham(4,4) = -0.5*P(1)*B*HH + 0.25*W6 + 0.5*gbn*HH; 

 

Ham(2,1) = 0.5*Q3; 

Ham(3,1) = 0.5*Q3; 

Ham(3,2) = Q2; 

Ham(4,1) = Q1; 

Ham(4,2) = -0.5*Q3; 

Ham(4,3) = -0.5*Q3; 

 

Ham(1,2) = conj(Ham(2,1)); 

Ham(1,3) = conj(Ham(3,1)); 

Ham(2,3) = conj(Ham(3,2)); 

Ham(1,4) = conj(Ham(4,1)); 

Ham(2,4) = conj(Ham(4,2)); 

Ham(3,4) = conj(Ham(4,3)); 

 

EE = sort(real(eig(Ham))); 

 

B.3 EasySpin Method to Generate Simulated Hyperfine Spectra 

 EasySpin is an open source software available for download and editing, and it runs 

in MATLAB. The user must provide spin parameter inputs “Sys.S” and “Sys.g”, nuclear 

specifications per atom such as “1H” for hydrogen, “17O” for oxygen, and “31P” for 

potassium, and inputs for the computationally generated hyperfine parameters for “Sys.A”. 

The method for combining the anisotropic values into a readable matrix format that is 

easily discernable by EasySpin is described in Chapter 4, Section 4.2.2, and simulated 

spectra are presented in Section 4.4.2 and Chapter 6 Section 6.2.2.2. Furthermore, the user 

must specify the conditions for the fictitious EPR conditions. The variable “Exp.mwFreq” 

is the microwave spectrometer frequency in units of GHz. In the example below, it is set 

to 9.4 GHz. The program also expects and input for the magnetic field range in 
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“Exp.Range”, and this range will vary depending on the expected size of the hyperfine 

splitting, on a per-atom basis.  

B.3.1 EasySpin MATLAB Code with Self-Trapped Hole Inputs 

% testing EasySpin (EPR spectra of the self-trapped hole in KDP) 

%================================================================ 

 

clear, clf 

 

% Spin parameters 

Sys.S = 1/2; 

Sys.g = 2.0158; 

Sys.lwpp = [0 0.1];    % units of mT 

 

Sys.Nucs ='1H,1H,31P'; 

Sys.A = [[2.651 11.297 -0.211; 11.297 2.847 -1.405; -0.211 -1.405 -10.043]; [2.651 11.297 -

0.211; 11.297 2.847 -1.405; -0.211 -1.405 -10.043]; [-83.277 1.391 0; 1.391 -79.547 0; 0 0 -

87.394]]; 

Exp.Range = [328 338]; 

 

%Sys.Nucs = '1H'; 

%Sys.A = [2.651 11.297 -0.211; 11.297 2.847 -1.405; -0.211 -1.405 -10.043]; 

%Exp.Range = [332.7 333.5]; 

 

%Sys.Nucs ='31P'; 

%Sys.A = [-83.277 1.391 0; 1.391 -79.547 0; 0 0 -87.394]; 

%Exp.Range = [331 335]; 

 

%Sys.Nucs ='17O'; 

%Sys.A = [-79.893 51.722 -91.640; 51.722 12.985 40.682; -91.640 40.682 -34.077]; 

%Exp.Range = [300 360]; 

 

% Experimental parameters 

Exp.mwFreq = 9.4; 

Exp.CrystalSymmetry = 'Fdd2'; 

 

% Generate orientations in a single rotation plane 

rotN = [1 0 0];  % rotation axis  (starts at c direction and goes to b direction) 

N = 1; 

[phi,theta] = rotplane(rotN,[0 pi],N); 

chi = zeros(N,1); 

Exp.CrystalOrientation = [phi(:) theta(:) chi]; 

 

% Simulate spectra 

Opt.Output = 'separate';  % make sure spectra are not added up 

Bres = resfields(Sys,Exp,Opt); 
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[B,spc] = pepper(Sys,Exp,Opt); 

stackplot(B,spc); 

 

% plotting 

%plot(Bres,theta*180/pi); 

xlabel('magnetic field (mT)'); 

ylabel('theta (°)'); 
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Appendix C 

C.1 Example Gaussian Input: 41-atom Self-Trapped Hole  

%mem=5GB 

#p density=current UMP2/6-31++G nosymm pop=full  

 

ortho self trapped hole no opt 

 

2 2 

 O               -1   -0.12415097   -1.25646485   -0.89861414 

 P               -1    3.08241621   -2.07716757   -1.68111914 

 H               -1    3.06496500   -4.07392108   -2.62327614 

 H               -1    0.75469833   -1.84871836   -0.89315114 

 H               -1    3.09986742   -0.08041406   -2.62327614 

 H               -1    5.41013409   -2.30561678   -0.89315114 

 O               -1    2.50237401   -0.95570940   -2.62873914 

 O               -1    3.66245840   -3.19862574   -2.62873914 

 O               -1    1.94716553   -2.66205439   -0.87183614 

 O               -1    4.21766689   -1.49228074   -0.87183614 

 P               -1   -3.08241621    2.07716757   -1.68111914 

 H               -1   -3.06496500    4.07392108   -2.62327614 

 H               -1   -0.75469833    1.84871836   -0.89315114 

 H               -1   -3.09986742    0.08041406   -2.62327614 

 H               -1   -5.41013409    2.30561678   -0.89315114 

 O               -1   -2.50237401    0.95570940   -2.62873914 

 O               -1   -3.66245840    3.19862574   -2.62873914 

 O               -1   -1.94716553    2.66205439   -0.87183614 

 O               -1   -4.21766689    1.49228074   -0.87183614 

 P               -1   -2.09563067   -3.06989363    1.77913086 

 H               -1   -2.07817946   -1.07314011    0.83697386 

 H               -1    0.23208721   -3.29834284    2.56709886 

 H               -1   -2.11308188   -5.06664714    0.83697386 

 H               -1   -4.42334855   -2.84144442    2.56709886 

 O               -1   -1.51558848   -4.19135180    0.83151086 

 O               -1   -2.67567287   -1.94843545    0.83151086 

 O               -1   -0.96037999   -2.48500680    2.58841386 

 O               -1   -3.23088135   -3.65478045    2.58841386 

 O               -1   -1.27107114    0.12355103    0.85828886 

 P              -1    0.00000000    0.00000000    0.04900586 

 P               -1    2.09563067    3.06989363    1.77913086 

 H               -1    2.07817946    1.07314011    0.83697386 

 H               -1   -0.23208721    3.29834284    2.56709886 

 H               -1    2.11308188    5.06664714    0.83697386 

 H               -1    4.42334855    2.84144442    2.56709886 

 O               -1    0.12415097    1.25646485   -0.89861414 
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 O               -1    1.51558848    4.19135180    0.83151086 

 O               -1    2.67567287    1.94843545    0.83151086 

 O               -1    1.27107114   -0.12355103    0.85828886 

 O               -1    0.96037999    2.48500680    2.58841386 

 O               -1    3.23088135    3.65478045    2.58841386 

 

C.2 Example Gaussian Input: 115-Atom Orthorhombic Cluster Self-Trapped Hole 

 
%chk=115.chk 

%mem=96GB 

%CPU=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,3

2,33,34,35 

%LindaWorkers=r16i6n11, 

#p wb97xd/6-31+g(d) nosymm guess=fragment=2 iop(6/82=1,10/47=1) 

scf=(xqc,maxconventionalcycles=150,maxcycles=300) 

 

115 atom cluster 

 

4 2 2 1 2 2 

 O(Fragment=2)   -1   -0.40240020   -1.21773255   -4.58796516 

 P(Fragment=1)   -1    2.54575070   -2.72352401   -5.36831023 

 H(Fragment=1)   -1    2.09044414   -4.67191323   -6.30183278 

 H(Fragment=2)   -1    0.32553620   -1.98794057   -4.58032689 

 H(Fragment=1)   -1    2.99848059   -0.78289167   -6.31908396 

 H(Fragment=1)   -1    4.76812018   -3.45262004   -4.58037240 

 O(Fragment=1)   -1    2.22390582   -1.50621872   -6.32051019 

 O(Fragment=1)   -1    2.86500397   -3.94863115   -6.31133245 

 O(Fragment=1)   -1    1.31112533   -3.04244094   -4.55601849 

 O(Fragment=1)   -1    3.78258934   -2.39794418   -4.56205120 

 P(Fragment=1)   -1   -2.56045329    2.67926297   -5.38356883 

 H(Fragment=1)   -1   -2.10772339    4.61989532   -6.33434255 

 H(Fragment=2)   -1   -0.33808381    1.95016695   -4.59563099 

 H(Fragment=1)   -1   -3.01575985    0.73087376   -6.31709137 

 H(Fragment=1)   -1   -4.78066778    3.41484642   -4.59558549 

 O(Fragment=1)   -1   -2.24120002    1.45415584   -6.32659104 

 O(Fragment=1)   -1   -2.88229816    3.89656826   -6.33576878 

 O(Fragment=1)   -1   -1.32361464    3.00484281   -4.57730980 

 O(Fragment=1)   -1   -3.79507865    2.36034605   -4.57127708 

 P(Fragment=1)   -1   -2.71929407   -2.54469415   -1.90156420 

 P(Fragment=1)   -1   -2.70983076   -2.51620558    5.01887070 

 K(Fragment=1)   -1   -2.71471619   -2.53091281    1.44619631 

 H(Fragment=2)   -1   -2.26656418   -0.60406180   -2.85233792 

 H(Fragment=1)   -1   -2.25710087   -0.57557323    4.06809697 

 H(Fragment=1)   -1   -0.49692459   -3.27379018   -1.11362636 

 H(Fragment=1)   -1   -0.48746128   -3.24530161    5.80680853 

 H(Fragment=1)   -1   -2.42540496   -5.82801893    0.62966671 

 H(Fragment=1)   -1   -7.53160894   -0.42523194    0.61440812 
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 H(Fragment=1)   -1   -3.17460063   -4.49308337   -2.83508674 

 H(Fragment=1)   -1   -3.16513732   -4.46459480    4.08534815 

 H(Fragment=1)   -1   -4.93950857   -1.80911071   -1.11358086 

 H(Fragment=1)   -1   -4.93004526   -1.78062214    5.80685404 

 O(Fragment=1)   -1   -0.39293690   -1.18924398    2.33246973 

 O(Fragment=1)   -1   -2.40004080   -3.76980129   -2.84458641 

 O(Fragment=1)   -1   -2.39057749   -3.74131272    4.07584848 

 O(Fragment=1)   -1   -0.56124099   -6.44168968   -1.10596053 

 O(Fragment=1)   -1   -5.66744497   -1.03890269   -1.12121912 

 O(Fragment=1)   -1   -3.04113895   -1.32738886   -2.85376415 

 O(Fragment=1)   -1   -3.03167564   -1.29890029    4.06667074 

 O(Fragment=1)   -1   -1.48245543   -2.21911432   -1.09530517 

 O(Fragment=1)   -1   -1.47299212   -2.19062575    5.82512973 

 O(Fragment=1)   -1   -1.37593762   -4.83690010    0.64546680 

 O(Fragment=1)   -1   -4.05570558   -0.23158101    0.63017303 

 O(Fragment=1)   -1   -3.95391943   -2.86361108   -1.08927245 

 O(Fragment=1)   -1   -3.94445613   -2.83512251    5.83116244 

 P(Fragment=1)   -1   -0.16382625   -5.23896550   -0.16382618 

 P(Fragment=1)   -1    2.55521400   -2.69503545    1.55212466 

 K(Fragment=1)   -1    2.55032857   -2.70974267   -2.02054973 

 H(Fragment=1)   -1    0.16669542   -7.21189770   -1.09832226 

 H(Fragment=1)   -1    2.09990744   -4.64342466    0.61860211 

 H(Fragment=1)   -1    0.33499950   -1.95945200    2.34010800 

 H(Fragment=1)   -1    3.00794389   -0.75440310    0.60135093 

 H(Fragment=1)   -1    4.77758348   -3.42413147    2.34006249 

 H(Fragment=1)   -1    5.60004427   -2.13828186   -1.12663804 

 O(Fragment=1)   -1    0.23099687   -4.04404318   -1.11691399 

 O(Fragment=1)   -1    2.23336912   -1.47773016    0.59992471 

 O(Fragment=1)   -1    4.87210787   -1.36807384   -1.13427631 

 O(Fragment=1)   -1    2.87446727   -3.92014258    0.60910244 

 O(Fragment=1)   -1    1.05049840   -5.63436800    0.64543163 

 O(Fragment=1)   -1    1.32058864   -3.01395237    2.36441640 

 O(Fragment=1)   -1    6.48384725   -0.56075217    0.61711585 

 O(Fragment=1)   -1    3.79205264   -2.36945561    2.35838369 

 P(Fragment=1)   -1   -2.55098998    2.70775154    1.53686607 

 P(Fragment=1)   -1   -5.27003023    0.16382148   -0.17908477 

 K(Fragment=1)   -1   -2.55587541    2.69304432   -2.03580832 

 H(Fragment=1)   -1   -0.16977972    7.20261264   -1.15720073 

 H(Fragment=1)   -1   -2.09826009    4.64838389    0.58609234 

 H(Fragment=1)   -1   -0.32862050    1.97865552    2.32480390 

 H(Fragment=1)   -1   -3.00629654    0.75936233    0.60334352 

 H(Fragment=1)   -1   -4.77120448    3.44333499    2.32484940 

 H(Fragment=1)   -1   -5.60312857    2.12899681   -1.12888495 

 O(Fragment=1)   -1   -0.23409611    4.03471315   -1.14953490 

 O(Fragment=1)   -1   -2.23173671    1.48264441    0.59384385 

 O(Fragment=1)   -1   -4.87520711    1.35874381   -1.13217258 

 O(Fragment=1)   -1   -2.87283486    3.92505683    0.58466611 

 O(Fragment=2)    0   -1.08101110    0.34320139   -2.64599068 

 O(Fragment=1)   -1   -1.20763353    0.41554559    4.08389706 
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 O(Fragment=1)   -1   -1.04879275    5.63950272    0.60189242 

 O(Fragment=1)   -1   -1.31415134    3.03333138    2.34312509 

 O(Fragment=1)   -1   -6.48214160    0.56588689    0.63020820 

 O(Fragment=1)   -1   -3.78561535    2.38883461    2.34915781 

 P(Fragment=2)   -1   -0.00498547   -0.01500838   -3.64583081 

 P(Fragment=1)   -1    0.00447784    0.01348019    3.27460409 

 P(Fragment=1)   -1    2.71405478    2.52892168   -1.92987997 

 P(Fragment=1)   -1    2.72351809    2.55741025    4.99055492 

 P(Fragment=1)   -1    0.16331862    5.23743732   -0.20740055 

 P(Fragment=1)   -1    5.26952260   -0.16534967   -0.19214195 

 K(Fragment=1)    0    0.00029282    0.00088150    0.21413288 

 K(Fragment=1)   -1    2.71863266    2.54270303    1.41788053 

 H(Fragment=2)   -1    2.25874822    0.58053246   -2.86340252 

 H(Fragment=1)   -1    2.26821153    0.60902103    4.05703238 

 H(Fragment=1)   -1    0.49384029    3.26450512   -1.14189663 

 H(Fragment=1)   -1    0.50330359    3.29299369    5.77853826 

 H(Fragment=1)   -1    2.42705231    5.83297816    0.57502774 

 H(Fragment=1)   -1    7.53325629    0.43019117    0.59028634 

 H(Fragment=1)   -1    3.16678468    4.46955403   -2.88065370 

 H(Fragment=1)   -1    3.17624798    4.49804260    4.03978119 

 H(Fragment=1)   -1    4.93642426    1.79982565   -1.14194214 

 H(Fragment=1)   -1    4.94588757    1.82831422    5.77849276 

 O(Fragment=2)   -1    0.38983766    1.17991395   -4.59891862 

 O(Fragment=1)   -1    0.39930096    1.20840252    2.32151627 

 O(Fragment=1)   -1    2.39220991    3.74622697   -2.88207993 

 O(Fragment=1)   -1    2.40167321    3.77471554    4.03835497 

 O(Fragment=1)   -1    0.55814174    6.43235964   -1.16048836 

 O(Fragment=1)   -1    5.66434573    1.02957265   -1.14522977 

 O(Fragment=1)   -1    3.03330805    1.30381454   -2.87290219 

 O(Fragment=1)   -1    3.04277136    1.33230311    4.04753270 

 O(Fragment=2)    0    1.07377457   -0.36498642   -2.64602190 

 O(Fragment=1)   -1    1.21880249   -0.38192231    4.08386189 

 O(Fragment=1)   -1    1.47942942    2.21000475   -1.11758823 

 O(Fragment=1)   -1    1.48889272    2.23849332    5.80284666 

 O(Fragment=1)   -1    1.37764327    4.84203482    0.60185726 

 O(Fragment=1)   -1    4.05741123    0.23671573    0.61715102 

 O(Fragment=1)   -1    3.95089343    2.85450151   -1.12362094 

 O(Fragment=1)   -1    3.96035673    2.88299008    5.79681395 

 

--Link1-- 

%chk=115.chk 

%mem=96GB 

%CPU=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,3

2,33,34,35 

%LindaWorkers=r16i6n11, 

 

#p uwb97xd/6-31+g(d) nosymm guess=(read) Geom=AllCheckpoint Symmetry=None 

density=current pop=full prop=epr scf=(xqc,maxconventionalcycles=80,maxcycles=300) 
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After this job had completed, the resultant checkpoint file was then provided for the 

optimization job. The input file for the optimization job utilizes the same atom list as above, 

but the --Link1-- at the bottom of the input file is removed, and guess=fragment becomes 

guess=read. Last, the keyword “opt” is included. The results from the optimization are then 

used as the final results.   

%chk=115.chk 

%mem=96GB 

%CPU=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,3

2,33,34,35 

%LindaWorkers=r16i6n11, 

#p opt wb97xd/6-31+g(d) nosymm guess=read iop(6/82=1,10/47=1) 

scf=(xqc,maxconventionalcycles=150,maxcycles=300) 

 

115 atom cluster 

 

4 2 2 1 2 2 

 O(Fragment=2)   -1   -0.40240020   -1.21773255   -4.58796516 

 P(Fragment=1)   -1    2.54575070   -2.72352401   -5.36831023 

 H(Fragment=1)   -1    2.09044414   -4.67191323   -6.30183278 

 H(Fragment=2)   -1    0.32553620   -1.98794057   -4.58032689 

 H(Fragment=1)   -1    2.99848059   -0.78289167   -6.31908396 

 H(Fragment=1)   -1    4.76812018   -3.45262004   -4.58037240 

 O(Fragment=1)   -1    2.22390582   -1.50621872   -6.32051019 

 O(Fragment=1)   -1    2.86500397   -3.94863115   -6.31133245 

 O(Fragment=1)   -1    1.31112533   -3.04244094   -4.55601849 

 O(Fragment=1)   -1    3.78258934   -2.39794418   -4.56205120 

 P(Fragment=1)   -1   -2.56045329    2.67926297   -5.38356883 

 H(Fragment=1)   -1   -2.10772339    4.61989532   -6.33434255 

 H(Fragment=2)   -1   -0.33808381    1.95016695   -4.59563099 

 H(Fragment=1)   -1   -3.01575985    0.73087376   -6.31709137 

 H(Fragment=1)   -1   -4.78066778    3.41484642   -4.59558549 

 O(Fragment=1)   -1   -2.24120002    1.45415584   -6.32659104 

 O(Fragment=1)   -1   -2.88229816    3.89656826   -6.33576878 

 O(Fragment=1)   -1   -1.32361464    3.00484281   -4.57730980 

 O(Fragment=1)   -1   -3.79507865    2.36034605   -4.57127708 

 P(Fragment=1)   -1   -2.71929407   -2.54469415   -1.90156420 

 P(Fragment=1)   -1   -2.70983076   -2.51620558    5.01887070 

 K(Fragment=1)   -1   -2.71471619   -2.53091281    1.44619631 

 H(Fragment=2)   -1   -2.26656418   -0.60406180   -2.85233792 

 H(Fragment=1)   -1   -2.25710087   -0.57557323    4.06809697 

 H(Fragment=1)   -1   -0.49692459   -3.27379018   -1.11362636 
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 H(Fragment=1)   -1   -0.48746128   -3.24530161    5.80680853 

 H(Fragment=1)   -1   -2.42540496   -5.82801893    0.62966671 

 H(Fragment=1)   -1   -7.53160894   -0.42523194    0.61440812 

 H(Fragment=1)   -1   -3.17460063   -4.49308337   -2.83508674 

 H(Fragment=1)   -1   -3.16513732   -4.46459480    4.08534815 

 H(Fragment=1)   -1   -4.93950857   -1.80911071   -1.11358086 

 H(Fragment=1)   -1   -4.93004526   -1.78062214    5.80685404 

 O(Fragment=1)   -1   -0.39293690   -1.18924398    2.33246973 

 O(Fragment=1)   -1   -2.40004080   -3.76980129   -2.84458641 

 O(Fragment=1)   -1   -2.39057749   -3.74131272    4.07584848 

 O(Fragment=1)   -1   -0.56124099   -6.44168968   -1.10596053 

 O(Fragment=1)   -1   -5.66744497   -1.03890269   -1.12121912 

 O(Fragment=1)   -1   -3.04113895   -1.32738886   -2.85376415 

 O(Fragment=1)   -1   -3.03167564   -1.29890029    4.06667074 

 O(Fragment=1)   -1   -1.48245543   -2.21911432   -1.09530517 

 O(Fragment=1)   -1   -1.47299212   -2.19062575    5.82512973 

 O(Fragment=1)   -1   -1.37593762   -4.83690010    0.64546680 

 O(Fragment=1)   -1   -4.05570558   -0.23158101    0.63017303 

 O(Fragment=1)   -1   -3.95391943   -2.86361108   -1.08927245 

 O(Fragment=1)   -1   -3.94445613   -2.83512251    5.83116244 

 P(Fragment=1)   -1   -0.16382625   -5.23896550   -0.16382618 

 P(Fragment=1)   -1    2.55521400   -2.69503545    1.55212466 

 K(Fragment=1)   -1    2.55032857   -2.70974267   -2.02054973 

 H(Fragment=1)   -1    0.16669542   -7.21189770   -1.09832226 

 H(Fragment=1)   -1    2.09990744   -4.64342466    0.61860211 

 H(Fragment=1)   -1    0.33499950   -1.95945200    2.34010800 

 H(Fragment=1)   -1    3.00794389   -0.75440310    0.60135093 

 H(Fragment=1)   -1    4.77758348   -3.42413147    2.34006249 

 H(Fragment=1)   -1    5.60004427   -2.13828186   -1.12663804 

 O(Fragment=1)   -1    0.23099687   -4.04404318   -1.11691399 

 O(Fragment=1)   -1    2.23336912   -1.47773016    0.59992471 

 O(Fragment=1)   -1    4.87210787   -1.36807384   -1.13427631 

 O(Fragment=1)   -1    2.87446727   -3.92014258    0.60910244 

 O(Fragment=1)   -1    1.05049840   -5.63436800    0.64543163 

 O(Fragment=1)   -1    1.32058864   -3.01395237    2.36441640 

 O(Fragment=1)   -1    6.48384725   -0.56075217    0.61711585 

 O(Fragment=1)   -1    3.79205264   -2.36945561    2.35838369 

 P(Fragment=1)   -1   -2.55098998    2.70775154    1.53686607 

 P(Fragment=1)   -1   -5.27003023    0.16382148   -0.17908477 

 K(Fragment=1)   -1   -2.55587541    2.69304432   -2.03580832 

 H(Fragment=1)   -1   -0.16977972    7.20261264   -1.15720073 

 H(Fragment=1)   -1   -2.09826009    4.64838389    0.58609234 

 H(Fragment=1)   -1   -0.32862050    1.97865552    2.32480390 

 H(Fragment=1)   -1   -3.00629654    0.75936233    0.60334352 

 H(Fragment=1)   -1   -4.77120448    3.44333499    2.32484940 

 H(Fragment=1)   -1   -5.60312857    2.12899681   -1.12888495 

 O(Fragment=1)   -1   -0.23409611    4.03471315   -1.14953490 

 O(Fragment=1)   -1   -2.23173671    1.48264441    0.59384385 

 O(Fragment=1)   -1   -4.87520711    1.35874381   -1.13217258 
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 O(Fragment=1)   -1   -2.87283486    3.92505683    0.58466611 

 O(Fragment=2)    0   -1.08101110    0.34320139   -2.64599068 

 O(Fragment=1)   -1   -1.20763353    0.41554559    4.08389706 

 O(Fragment=1)   -1   -1.04879275    5.63950272    0.60189242 

 O(Fragment=1)   -1   -1.31415134    3.03333138    2.34312509 

 O(Fragment=1)   -1   -6.48214160    0.56588689    0.63020820 

 O(Fragment=1)   -1   -3.78561535    2.38883461    2.34915781 

 P(Fragment=2)   -1   -0.00498547   -0.01500838   -3.64583081 

 P(Fragment=1)   -1    0.00447784    0.01348019    3.27460409 

 P(Fragment=1)   -1    2.71405478    2.52892168   -1.92987997 

 P(Fragment=1)   -1    2.72351809    2.55741025    4.99055492 

 P(Fragment=1)   -1    0.16331862    5.23743732   -0.20740055 

 P(Fragment=1)   -1    5.26952260   -0.16534967   -0.19214195 

 K(Fragment=1)    0    0.00029282    0.00088150    0.21413288 

 K(Fragment=1)   -1    2.71863266    2.54270303    1.41788053 

 H(Fragment=2)   -1    2.25874822    0.58053246   -2.86340252 

 H(Fragment=1)   -1    2.26821153    0.60902103    4.05703238 

 H(Fragment=1)   -1    0.49384029    3.26450512   -1.14189663 

 H(Fragment=1)   -1    0.50330359    3.29299369    5.77853826 

 H(Fragment=1)   -1    2.42705231    5.83297816    0.57502774 

 H(Fragment=1)   -1    7.53325629    0.43019117    0.59028634 

 H(Fragment=1)   -1    3.16678468    4.46955403   -2.88065370 

 H(Fragment=1)   -1    3.17624798    4.49804260    4.03978119 

 H(Fragment=1)   -1    4.93642426    1.79982565   -1.14194214 

 H(Fragment=1)   -1    4.94588757    1.82831422    5.77849276 

 O(Fragment=2)   -1    0.38983766    1.17991395   -4.59891862 

 O(Fragment=1)   -1    0.39930096    1.20840252    2.32151627 

 O(Fragment=1)   -1    2.39220991    3.74622697   -2.88207993 

 O(Fragment=1)   -1    2.40167321    3.77471554    4.03835497 

 O(Fragment=1)   -1    0.55814174    6.43235964   -1.16048836 

 O(Fragment=1)   -1    5.66434573    1.02957265   -1.14522977 

 O(Fragment=1)   -1    3.03330805    1.30381454   -2.87290219 

 O(Fragment=1)   -1    3.04277136    1.33230311    4.04753270 

 O(Fragment=2)    0    1.07377457   -0.36498642   -2.64602190 

 O(Fragment=1)   -1    1.21880249   -0.38192231    4.08386189 

 O(Fragment=1)   -1    1.47942942    2.21000475   -1.11758823 

 O(Fragment=1)   -1    1.48889272    2.23849332    5.80284666 

 O(Fragment=1)   -1    1.37764327    4.84203482    0.60185726 

 O(Fragment=1)   -1    4.05741123    0.23671573    0.61715102 

 O(Fragment=1)   -1    3.95089343    2.85450151   -1.12362094 

 O(Fragment=1)   -1    3.96035673    2.88299008    5.79681395 

 

C.3 Example Gaussian Input: 183 Atom Oxygen and Hydrogen Vacancy 

Optimization  

 

%chk=ovachvac.chk 
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%mem=96GB 

%CPU=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35 

%LindaWorkers=1, 

#p ωB97XD/6-31+g(d) nosymm guess=read opt iop(6/82=1,10/47=1) 

scf=(xqc,maxconventionalcycles=150,maxcycles=300) 

 

tetrag ovac hvac opt 

 

1 2 0 1 1 2 

 h(fragment=1)   -1    9.28300000    6.31741569    6.06462500 

 h(fragment=1)   -1   16.70940000    6.31741569    6.06462500 

 h(fragment=1)   -1   12.24858431    5.56980000    4.33187500 

 o(fragment=1)   -1    8.04152871    6.31741569    6.06462500 

 o(fragment=1)   -1   15.46792871    6.31741569    6.06462500 

 o(fragment=1)   -1   10.52447129    6.31741569    6.06462500 

 o(fragment=1)   -1   12.24858431    6.81127129    4.33187500 

 h(fragment=1)   -1    5.56980000    8.53538431    6.06462500 

 h(fragment=1)   -1    5.56980000   15.96178431    6.06462500 

 o(fragment=1)   -1    6.81127129    8.53538431    6.06462500 

 o(fragment=1)   -1    6.81127129   15.96178431    6.06462500 

 h(fragment=1)   -1    9.28300000   13.74381569    6.06462500 

 h(fragment=1)   -1   16.70940000   13.74381569    6.06462500 

 h(fragment=1)   -1   12.99620000    8.53538431    6.06462500 

 h(fragment=1)   -1   12.99620000   15.96178431    6.06462500 

 h(fragment=1)   -1   12.24858431   12.99620000    4.33187500 

 h(fragment=1)   -1   12.99620000   10.03061569    2.59912500 

 h(fragment=1)   -1   10.03061569    9.28300000    4.33187500 

 h(fragment=1)   -1   10.03061569   16.70940000    4.33187500 

 h(fragment=1)   -1    9.28300000   12.24858431    2.59912500 

 p(fragment=1)   -1   11.13960000    7.42640000    5.19825000 

 p(fragment=1)   -1   11.13960000   14.85280000    5.19825000 

 p(fragment=1)   -1   11.13960000   11.13960000    3.46550000 

 o(fragment=1)   -1    8.04152871   13.74381569    6.06462500 

 o(fragment=1)   -1   15.46792871   13.74381569    6.06462500 

 o(fragment=1)   -1   14.23767129    8.53538431    6.06462500 

 o(fragment=1)   -1   14.23767129   15.96178431    6.06462500 

 o(fragment=1)   -1   10.52447129   13.74381569    6.06462500 

 o(fragment=1)   -1   11.75472871    8.53538431    6.06462500 

 o(fragment=1)   -1   11.75472871   15.96178431    6.06462500 

 o(fragment=1)   -1   12.24858431   11.75472871    4.33187500 

 o(fragment=1)   -1   11.75472871   10.03061569    2.59912500 

 o(fragment=1)   -1   10.03061569   10.52447129    4.33187500 

 o(fragment=1)   -1   10.52447129   12.24858431    2.59912500 

 o(fragment=1)   -1   12.24858431   14.23767129    4.33187500 
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 o(fragment=1)   -1   10.03061569    8.04152871    4.33187500 

 o(fragment=1)   -1   10.03061569   15.46792871    4.33187500 

 h(fragment=1)   -1    6.31741569    5.56980000    7.79737500 

 h(fragment=1)   -1    6.31741569    5.56980000   14.72837500 

 o(fragment=1)   -1    6.31741569    6.81127129    7.79737500 

 o(fragment=1)   -1    6.31741569    6.81127129   14.72837500 

 h(fragment=1)   -1    9.28300000    6.31741569   12.99562500 

 h(fragment=1)   -1   16.70940000    6.31741569   12.99562500 

 h(fragment=1)   -1   13.74381569    5.56980000    7.79737500 

 h(fragment=1)   -1   13.74381569    5.56980000   14.72837500 

 h(fragment=1)   -1   12.24858431    5.56980000   11.26287500 

 h(fragment=1)   -1   12.99620000    2.60421569    9.53012500 

 h(fragment=1)   -1   10.03061569    1.85660000   11.26287500 

 h(fragment=1)   -1    9.28300000    4.82218431    9.53012500 

 p(fragment=1)   -1   11.13960000    3.71320000   10.39650000 

 o(fragment=1)   -1    8.04152871    6.31741569   12.99562500 

 o(fragment=1)   -1   15.46792871    6.31741569   12.99562500 

 o(fragment=1)   -1   13.74381569    6.81127129    7.79737500 

 o(fragment=1)   -1   13.74381569    6.81127129   14.72837500 

 o(fragment=1)   -1   10.52447129    6.31741569   12.99562500 

 o(fragment=1)   -1   12.24858431    4.32832871   11.26287500 

 o(fragment=1)   -1   11.75472871    2.60421569    9.53012500 

 o(fragment=1)   -1   10.03061569    3.09807129   11.26287500 

 o(fragment=1)   -1   10.52447129    4.82218431    9.53012500 

 o(fragment=1)   -1   12.24858431    6.81127129   11.26287500 

 h(fragment=1)   -1    6.31741569   12.99620000    7.79737500 

 h(fragment=1)   -1    6.31741569   12.99620000   14.72837500 

 h(fragment=1)   -1    5.56980000    8.53538431   12.99562500 

 h(fragment=1)   -1    5.56980000   15.96178431   12.99562500 

 h(fragment=1)   -1    4.82218431   12.99620000   11.26287500 

 h(fragment=1)   -1    5.56980000   10.03061569    9.53012500 

 h(fragment=1)   -1    5.56980000   10.03061569   16.46112500 

 h(fragment=1)   -1    2.60421569    9.28300000   11.26287500 

 h(fragment=1)   -1    1.85660000   12.24858431    9.53012500 

 p(fragment=1)   -1    3.71320000   11.13960000   10.39650000 

 o(fragment=1)   -1    6.31741569   14.23767129    7.79737500 

 o(fragment=1)   -1    6.31741569   14.23767129   14.72837500 

 o(fragment=1)   -1    6.81127129    8.53538431   12.99562500 

 o(fragment=1)   -1    6.81127129   15.96178431   12.99562500 

 o(fragment=1)   -1    6.31741569   11.75472871    7.79737500 

 o(fragment=1)   -1    6.31741569   11.75472871   14.72837500 

 o(fragment=1)   -1    4.82218431   11.75472871   11.26287500 

 o(fragment=1)   -1    4.32832871   10.03061569    9.53012500 

 o(fragment=1)   -1    2.60421569   10.52447129   11.26287500 

 o(fragment=1)   -1    3.09807129   12.24858431    9.53012500 



169 

 

 o(fragment=1)   -1    6.81127129   10.03061569    9.53012500 

 o(fragment=1)   -1    6.81127129   10.03061569   16.46112500 

 p(fragment=1)   -1    7.42640000    7.42640000    6.93100000 

 p(fragment=1)   -1    7.42640000    7.42640000   13.86200000 

 p(fragment=1)   -1    7.42640000   14.85280000    6.93100000 

 p(fragment=1)   -1    7.42640000   14.85280000   13.86200000 

 p(fragment=1)   -1   14.85280000    7.42640000    6.93100000 

 p(fragment=1)   -1   14.85280000    7.42640000   13.86200000 

 p(fragment=1)   -1   14.85280000   14.85280000    6.93100000 

 p(fragment=1)   -1   14.85280000   14.85280000   13.86200000 

 o(fragment=1)   -1    8.53538431    8.04152871    7.79737500 

 o(fragment=1)   -1    8.53538431    8.04152871   14.72837500 

 o(fragment=1)   -1    8.53538431   15.46792871    7.79737500 

 o(fragment=1)   -1    8.53538431   15.46792871   14.72837500 

 o(fragment=1)   -1   15.96178431    8.04152871    7.79737500 

 o(fragment=1)   -1   15.96178431    8.04152871   14.72837500 

 o(fragment=1)   -1   15.96178431   15.46792871    7.79737500 

 o(fragment=1)   -1   15.96178431   15.46792871   14.72837500 

 k(fragment=1)   -1    7.42640000   11.13960000   12.12925000 

 k(fragment=1)   -1   14.85280000   11.13960000   12.12925000 

 k(fragment=1)   -1   11.13960000    7.42640000    8.66375000 

 k(fragment=1)   -1   11.13960000   14.85280000    8.66375000 

 k(fragment=1)   -1   11.13960000   11.13960000    6.93100000 

 k(fragment=1)   -1   11.13960000   11.13960000   13.86200000 

 h(fragment=1)   -1    9.28300000   13.74381569   12.99562500 

 h(fragment=1)   -1   16.70940000   13.74381569   12.99562500 

 h(fragment=1)   -1    8.53538431    9.28300000    7.79737500 

 h(fragment=1)   -1    8.53538431    9.28300000   14.72837500 

 h(fragment=1)   -1    8.53538431   16.70940000    7.79737500 

 h(fragment=1)   -1    8.53538431   16.70940000   14.72837500 

 h(fragment=1)   -1   15.96178431    9.28300000    7.79737500 

 h(fragment=1)   -1   15.96178431    9.28300000   14.72837500 

 h(fragment=1)   -1   15.96178431   16.70940000    7.79737500 

 h(fragment=1)   -1   15.96178431   16.70940000   14.72837500 

 h(fragment=1)   -1   13.74381569   12.99620000    7.79737500 

 h(fragment=1)   -1   13.74381569   12.99620000   14.72837500 

 h(fragment=1)   -1   12.99620000    8.53538431   12.99562500 

 h(fragment=1)   -1   12.99620000   15.96178431   12.99562500 

 h(fragment=2)   -1   12.24858431   12.99620000   11.26287500 

 h(fragment=1)   -1   12.24858431   12.99620000   18.19387500 

 h(fragment=1)   -1   12.24858431   20.42260000   11.26287500 

 h(fragment=1)   -1   19.67498431   12.99620000   11.26287500 

 h(fragment=2)   -1   12.99620000   10.03061569    9.53012500 

 h(fragment=1)   -1   12.99620000   10.03061569   16.46112500 

 h(fragment=1)   -1   12.99620000   17.45701569    9.53012500 
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 h(fragment=1)   -1   20.42260000   10.03061569    9.53012500 

 h(fragment=2)   -1   10.03061569    9.28300000   11.26287500 

 h(fragment=1)   -1   10.03061569    9.28300000   18.19387500 

 h(fragment=1)   -1   10.03061569   16.70940000   11.26287500 

 h(fragment=1)   -1   17.45701569    9.28300000   11.26287500 

 h(fragment=1)   -1    9.28300000   12.24858431   16.46112500 

 h(fragment=1)   -1    9.28300000   19.67498431    9.53012500 

 h(fragment=1)   -1   16.70940000   12.24858431    9.53012500 

 h(fragment=1)   -1   16.70940000   12.24858431   16.46112500 

 p(fragment=1)   -1    7.42640000   11.13960000    8.66375000 

 p(fragment=1)   -1    7.42640000   11.13960000   15.59475000 

 p(fragment=1)   -1   14.85280000   11.13960000    8.66375000 

 p(fragment=1)   -1   14.85280000   11.13960000   15.59475000 

 p(fragment=1)   -1   11.13960000    7.42640000   12.12925000 

 p(fragment=1)   -1   11.13960000   14.85280000   12.12925000 

 p(fragment=2)   -1   11.13960000   11.13960000   10.39650000 

 p(fragment=1)   -1   11.13960000   11.13960000   17.32750000 

 p(fragment=1)   -1   11.13960000   18.56600000   10.39650000 

 p(fragment=1)   -1   18.56600000   11.13960000   10.39650000 

 o(fragment=1)   -1    8.04152871   13.74381569   12.99562500 

 o(fragment=1)   -1   15.46792871   13.74381569   12.99562500 

 o(fragment=1)   -1   13.74381569   14.23767129    7.79737500 

 o(fragment=1)   -1   13.74381569   14.23767129   14.72837500 

 o(fragment=1)   -1   14.23767129    8.53538431   12.99562500 

 o(fragment=1)   -1   14.23767129   15.96178431   12.99562500 

 o(fragment=1)   -1    8.53538431   10.52447129    7.79737500 

 o(fragment=1)   -1    8.53538431   10.52447129   14.72837500 

 o(fragment=1)   -1   15.96178431   10.52447129    7.79737500 

 o(fragment=1)   -1   15.96178431   10.52447129   14.72837500 

 o(fragment=1)   -1   10.52447129   13.74381569   12.99562500 

 o(fragment=1)   -1   13.74381569   11.75472871    7.79737500 

 o(fragment=1)   -1   13.74381569   11.75472871   14.72837500 

 o(fragment=1)   -1   11.75472871    8.53538431   12.99562500 

 o(fragment=1)   -1   11.75472871   15.96178431   12.99562500 

 o(fragment=2)    0   12.24858431   11.75472871   11.26287500 

 o(fragment=1)   -1   12.24858431   11.75472871   18.19387500 

 o(fragment=1)   -1   12.24858431   19.18112871   11.26287500 

 o(fragment=1)   -1   19.67498431   11.75472871   11.26287500 

 o(fragment=2)    0   11.75472871   10.03061569    9.53012500 

 o(fragment=1)   -1   11.75472871   10.03061569   16.46112500 

 o(fragment=1)   -1   11.75472871   17.45701569    9.53012500 

 o(fragment=1)   -1   19.18112871   10.03061569    9.53012500 

 o(fragment=2)    0   10.03061569   10.52447129   11.26287500 

 o(fragment=1)   -1   10.03061569   10.52447129   18.19387500 

 o(fragment=1)   -1   10.03061569   17.95087129   11.26287500 
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 o(fragment=1)   -1   17.45701569   10.52447129   11.26287500 

 o(fragment=1)   -1   10.52447129   12.24858431   16.46112500 

 o(fragment=1)   -1   10.52447129   19.67498431    9.53012500 

 o(fragment=1)   -1   17.95087129   12.24858431    9.53012500 

 o(fragment=1)   -1   12.24858431   14.23767129   11.26287500 

 o(fragment=1)   -1   14.23767129   10.03061569    9.53012500 

 o(fragment=1)   -1   14.23767129   10.03061569   16.46112500 

 o(fragment=1)   -1   10.03061569    8.04152871   11.26287500 

 o(fragment=1)   -1   10.03061569   15.46792871   11.26287500 

 o(fragment=1)   -1    8.04152871   12.24858431    9.53012500 

 o(fragment=1)   -1    8.04152871   12.24858431   16.46112500 

 o(fragment=1)   -1   15.46792871   12.24858431    9.53012500 

 o(fragment=1)   -1   15.46792871   12.24858431   16.46112500 
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Appendix D 

 

D.1 41-Atom Self Trapped Hole Hyperfine Results using Miyoshi Coordinates 

 

                          Isotropic Fermi Contact Couplings 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  O(17)             -0.00591       3.58178       1.27807       1.19475 

     2  P(31)             -0.00009      -0.15414      -0.05500      -0.05141 

     3  H(1)               0.00000       0.00107       0.00038       0.00036 

     4  H(1)              -0.00034      -1.53861      -0.54902      -0.51323 

     5  H(1)               0.00000      -0.00319      -0.00114      -0.00106 

     6  H(1)               0.00007       0.30595       0.10917       0.10205 

     7  O(17)              0.00001      -0.00355      -0.00127      -0.00119 

     8  O(17)             -0.00002       0.01133       0.00404       0.00378 

     9  O(17)             -0.00087       0.52489       0.18729       0.17508 

    10  O(17)             -0.00021       0.12811       0.04571       0.04273 

    11  P(31)             -0.00008      -0.15386      -0.05490      -0.05132 

    12  H(1)               0.00000       0.00108       0.00038       0.00036 

    13  H(1)              -0.00034      -1.53871      -0.54905      -0.51326 

    14  H(1)               0.00000      -0.00318      -0.00113      -0.00106 

    15  H(1)               0.00007       0.30559       0.10904       0.10193 

    16  O(17)              0.00001      -0.00359      -0.00128      -0.00120 

    17  O(17)             -0.00002       0.01134       0.00405       0.00378 

    18  O(17)             -0.00087       0.52537       0.18747       0.17525 

    19  O(17)             -0.00021       0.12805       0.04569       0.04271 

    20  P(31)              0.00027       0.49227       0.17566       0.16420 

    21  H(1)              -0.00161      -7.19876      -2.56870      -2.40125 

    22  H(1)              -0.00008      -0.35428      -0.12641      -0.11817 

    23  H(1)              -0.00001      -0.04113      -0.01468      -0.01372 

    24  H(1)               0.00006       0.27244       0.09721       0.09088 

    25  O(17)              0.00005      -0.03317      -0.01184      -0.01107 

    26  O(17)              0.00172      -1.03996      -0.37108      -0.34689 

    27  O(17)             -0.00138       0.83739       0.29880       0.27932 

    28  O(17)             -0.00025       0.14981       0.05346       0.04997 

    29  O(17)              0.17151    -103.96595     -37.09763     -34.67931 

    30  P(31)              0.12268     222.18562      79.28135      74.11314 

    31  P(31)              0.00027       0.49264       0.17578       0.16433 

    32  H(1)              -0.00161      -7.20143      -2.56965      -2.40214 

    33  H(1)              -0.00008      -0.35495      -0.12665      -0.11840 

    34  H(1)              -0.00001      -0.04112      -0.01467      -0.01372 

    35  H(1)               0.00006       0.27201       0.09706       0.09073 

    36  O(17)             -0.00591       3.58280       1.27843       1.19509 
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    37  O(17)              0.00005      -0.03315      -0.01183      -0.01106 

    38  O(17)              0.00171      -1.03904      -0.37076      -0.34659 

    39  O(17)              0.17153    -103.98117     -37.10307     -34.68439 

    40  O(17)             -0.00138       0.83683       0.29860       0.27914 

    41  O(17)             -0.00025       0.14970       0.05342       0.04994 

 

 

 --------------------------------------------------------------------------------- 

              Anisotropic Spin Dipole Couplings in Principal Axis System 

 --------------------------------------------------------------------------------- 

             Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

                    Baa    -0.0233   -12.408    -4.428    -4.139 -0.3470  0.0512  0.9365 

    21 H(1)   Bbb    -0.0180    -9.587    -3.421    -3.198  0.7786 -0.5410  0.3181 

                    Bcc     0.0412    21.995     7.849     7.337  0.5229  0.8395  0.1479 

 

                    Baa    -0.1503   -32.490   -11.593   -10.838  0.9988 -0.0498 -0.0001 

    30 P(31)  Bbb    -0.0086    -1.851    -0.660    -0.617  0.0498  0.9988  0.0000 

                    Bcc     0.1589    34.341    12.254    11.455  0.0001  0.0000  1.0000 

                     

          Baa    -0.0233   -12.411    -4.429    -4.140  0.3471 -0.0510  0.9364 

    32 H(1)    Bbb    -0.0180    -9.589    -3.421    -3.198  0.7787 -0.5408 -0.3181 

                    Bcc     0.0412    22.000     7.850     7.338  0.5226  0.8396 -0.1479 

 

 

D.2 149-Atom Self Trapped Hole Hyperfine Results using Miyoshi Coordinates 

 

                    Isotropic Fermi Contact Couplings 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  K(39)              0.00011       0.02339       0.00835       0.00780 

     2  K(39)              0.00000      -0.00003      -0.00001      -0.00001 

     3  K(39)              0.00000       0.00077       0.00028       0.00026 

     4  K(39)             -0.00002      -0.00332      -0.00118      -0.00111 

     5  K(39)              0.00000       0.00000       0.00000       0.00000 

     6  P(31)             -0.00007      -0.12443      -0.04440      -0.04150 

     7  H(1)               0.00000       0.00077       0.00027       0.00026 

     8  H(1)              -0.00056      -2.50927      -0.89537      -0.83700 

     9  H(1)               0.00000      -0.00076      -0.00027      -0.00025 

    10  H(1)               0.00000      -0.01638      -0.00584      -0.00546 

    11  O(17)              0.00002      -0.01510      -0.00539      -0.00504 

    12  O(17)             -0.00036       0.21612       0.07712       0.07209 

    13  O(17)             -0.00168       1.02043       0.36411       0.34038 

    14  O(17)              0.00002      -0.01472      -0.00525      -0.00491 

    15  K(39)              0.00000       0.00001       0.00000       0.00000 
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    16  K(39)              0.00000      -0.00001       0.00000       0.00000 

    17  P(31)              0.00000       0.00003       0.00001       0.00001 

    18  H(1)               0.00000       0.00004       0.00001       0.00001 

    19  H(1)               0.00000       0.00000       0.00000       0.00000 

    20  O(17)              0.00000       0.00000       0.00000       0.00000 

    21  O(17)              0.00000       0.00000       0.00000       0.00000 

    22  O(17)              0.00000      -0.00002      -0.00001      -0.00001 

    23  O(17)              0.00000      -0.00001       0.00000       0.00000 

    24  K(39)              0.00000      -0.00022      -0.00008      -0.00007 

    25  K(39)              0.00001       0.00197       0.00070       0.00066 

    26  K(39)             -0.00005      -0.00956      -0.00341      -0.00319 

    27  P(31)             -0.00110      -1.98947      -0.70989      -0.66361 

    28  H(1)              -0.00003      -0.13036      -0.04652      -0.04348 

    29  H(1)              -0.00003      -0.13448      -0.04799      -0.04486 

    30  H(1)              -0.00009      -0.38806      -0.13847      -0.12944 

    31  O(17)             -0.00044       0.26384       0.09414       0.08801 

    32  O(17)             -0.00020       0.12121       0.04325       0.04043 

    33  O(17)             -0.00020       0.11851       0.04229       0.03953 

    34  O(17)              0.00128      -0.77440      -0.27633      -0.25831 

    35  K(39)             -0.00113      -0.23620      -0.08428      -0.07879 

    36  K(39)              0.00000       0.00000       0.00000       0.00000 

    37  K(39)              0.00000       0.00009       0.00003       0.00003 

    38  K(39)              0.00000       0.00002       0.00001       0.00001 

    39  K(39)              0.00000       0.00008       0.00003       0.00003 

    40  P(31)              0.00000      -0.00776      -0.00277      -0.00259 

    41  P(31)              0.00000       0.00082       0.00029       0.00027 

    42  H(1)               0.00000       0.00137       0.00049       0.00046 

    43  H(1)               0.00000      -0.00569      -0.00203      -0.00190 

    44  H(1)               0.00000      -0.00030      -0.00011      -0.00010 

    45  H(1)               0.00000      -0.00108      -0.00039      -0.00036 

    46  H(1)               0.00000       0.00008       0.00003       0.00003 

    47  O(17)              0.00000       0.00120       0.00043       0.00040 

    48  O(17)             -0.00005       0.03308       0.01180       0.01103 

    49  O(17)             -0.00002       0.01319       0.00471       0.00440 

    50  O(17)              0.00000      -0.00112      -0.00040      -0.00037 

    51  O(17)              0.00000      -0.00018      -0.00006      -0.00006 

    52  O(17)             -0.00001       0.00372       0.00133       0.00124 

    53  O(17)              0.00000      -0.00023      -0.00008      -0.00008 

    54  O(17)              0.00000      -0.00005      -0.00002      -0.00002 

    55  K(39)              0.00000      -0.00001       0.00000       0.00000 

    56  H(1)               0.00000       0.00001       0.00000       0.00000 

    57  K(39)             -0.00005      -0.01104      -0.00394      -0.00368 

    58  K(39)              0.00001       0.00184       0.00066       0.00061 

    59  K(39)              0.00000      -0.00029      -0.00010      -0.00010 

    60  P(31)             -0.00098      -1.77922      -0.63487      -0.59348 
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    61  H(1)              -0.00008      -0.37862      -0.13510      -0.12629 

    62  H(1)              -0.00003      -0.14076      -0.05023      -0.04695 

    63  H(1)              -0.00003      -0.13031      -0.04650      -0.04347 

    64  O(17)             -0.00037       0.22434       0.08005       0.07483 

    65  O(17)             -0.00018       0.11097       0.03960       0.03702 

    66  O(17)              0.00119      -0.72329      -0.25809      -0.24126 

    67  O(17)             -0.00020       0.11834       0.04223       0.03947 

    68  K(39)              0.00000       0.00025       0.00009       0.00008 

    69  K(39)              0.00000       0.00002       0.00001       0.00001 

    70  K(39)              0.00000       0.00007       0.00002       0.00002 

    71  K(39)              0.00000       0.00000       0.00000       0.00000 

    72  K(39)             -0.00118      -0.24546      -0.08759      -0.08188 

    73  P(31)              0.00000      -0.00449      -0.00160      -0.00150 

    74  P(31)              0.00000      -0.00882      -0.00315      -0.00294 

    75  H(1)               0.00000      -0.01916      -0.00684      -0.00639 

    76  H(1)               0.00000      -0.00106      -0.00038      -0.00036 

    77  H(1)               0.00000       0.00026       0.00009       0.00009 

    78  H(1)               0.00000       0.00130       0.00046       0.00043 

    79  H(1)               0.00000      -0.00044      -0.00016      -0.00015 

    80  O(17)              0.00000       0.00132       0.00047       0.00044 

    81  O(17)              0.00000       0.00041       0.00015       0.00014 

    82  O(17)              0.00000       0.00130       0.00046       0.00043 

    83  O(17)             -0.00001       0.00396       0.00141       0.00132 

    84  O(17)             -0.00001       0.00333       0.00119       0.00111 

    85  O(17)             -0.00006       0.03398       0.01212       0.01133 

    86  O(17)              0.00000      -0.00027      -0.00010      -0.00009 

    87  O(17)              0.00000      -0.00198      -0.00071      -0.00066 

    88  K(39)              0.00000      -0.00001      -0.00001       0.00000 

    89  H(1)               0.00000       0.00000       0.00000       0.00000 

    90  K(39)             -0.00005      -0.00991      -0.00354      -0.00330 

    91  K(39)              0.00012       0.02444       0.00872       0.00815 

    92  K(39)             -0.00016      -0.03352      -0.01196      -0.01118 

    93  K(39)             -0.00004      -0.00924      -0.00330      -0.00308 

    94  P(31)             -0.05424     -98.22884     -35.05049     -32.76562 

    95  H(1)               0.00029       1.30120       0.46430       0.43403 

    96  H(1)               0.00035       1.54987       0.55303       0.51698 

    97  O(17)             -0.00269       1.62877       0.58119       0.54330 

    98  O(17)              0.05233     -31.72256     -11.31940     -10.58151 

    99  O(17)              0.05221     -31.65068     -11.29375     -10.55753 

   100  O(17)             -0.00281       1.70385       0.60798       0.56834 

   101  K(39)              0.00000       0.00000       0.00000       0.00000 

   102  K(39)              0.00000       0.00025       0.00009       0.00008 

   103  K(39)             -0.00002      -0.00456      -0.00163      -0.00152 

   104  K(39)              0.00000       0.00101       0.00036       0.00034 

   105  K(39)             -0.00339      -0.70876      -0.25290      -0.23642 
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   106  K(39)              0.00000      -0.00004      -0.00001      -0.00001 

   107  K(39)              0.00000       0.00006       0.00002       0.00002 

   108  P(31)             -0.00014      -0.25542      -0.09114      -0.08520 

   109  P(31)              0.00000      -0.00529      -0.00189      -0.00176 

   110  P(31)              0.00000       0.00136       0.00049       0.00045 

   111  P(31)              0.00000       0.00106       0.00038       0.00035 

   112  H(1)               0.00000       0.00027       0.00009       0.00009 

   113  H(1)               0.00000       0.00019       0.00007       0.00006 

   114  H(1)              -0.00072      -3.21382      -1.14677      -1.07201 

   115  H(1)               0.00000       0.00010       0.00003       0.00003 

   116  H(1)               0.00000      -0.01983      -0.00708      -0.00662 

   117  H(1)               0.00000      -0.00091      -0.00033      -0.00030 

   118  H(1)              -0.00001      -0.02410      -0.00860      -0.00804 

   119  H(1)               0.00000       0.00034       0.00012       0.00011 

   120  H(1)               0.00000       0.00083       0.00030       0.00028 

   121  H(1)               0.00000      -0.00787      -0.00281      -0.00262 

   122  O(17)              0.00000       0.00050       0.00018       0.00017 

   123  O(17)              0.00000       0.00114       0.00041       0.00038 

   124  O(17)             -0.00001       0.00385       0.00137       0.00128 

   125  O(17)             -0.00001       0.00386       0.00138       0.00129 

   126  O(17)             -0.00154       0.93171       0.33246       0.31079 

  127  O(17)              0.00005      -0.03023      -0.01079      -0.01008 

   128  O(17)              0.00000       0.00001       0.00000       0.00000 

   129  O(17)              0.00002      -0.01232      -0.00440      -0.00411 

   130  O(17)              0.00000       0.00026       0.00009       0.00009 

   131  O(17)              0.00000       0.00024       0.00008       0.00008 

   132  O(17)             -0.00034       0.20619       0.07357       0.06878 

   133  O(17)             -0.00001       0.00421       0.00150       0.00141 

   134  O(17)             -0.00001       0.00689       0.00246       0.00230 

   135  O(17)             -0.00001       0.00446       0.00159       0.00149 

   136  O(17)              0.00000      -0.00019      -0.00007      -0.00006 

   137  O(17)             -0.00003       0.01603       0.00572       0.00535 

   138  K(39)              0.00000      -0.00001       0.00000       0.00000 

   139  K(39)              0.00000       0.00001       0.00000       0.00000 

   140  K(39)              0.00000      -0.00001       0.00000       0.00000 

   141  P(31)              0.00000       0.00003       0.00001       0.00001 

   142  H(1)               0.00000       0.00004       0.00001       0.00001 

   143  H(1)               0.00000       0.00000       0.00000       0.00000 

   144  H(1)               0.00000       0.00000       0.00000       0.00000 

   145  H(1)               0.00000       0.00001       0.00000       0.00000 

   146  O(17)              0.00000      -0.00002      -0.00001      -0.00001 

   147  O(17)              0.00000       0.00000       0.00000       0.00000 

   148  O(17)              0.00000       0.00000       0.00000       0.00000 

   149  O(17)              0.00000       0.00000       0.00000       0.00000 
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 --------------------------------------------------------------------------------- 

              Anisotropic Spin Dipole Couplings in Principal Axis System 

 --------------------------------------------------------------------------------- 

             Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

 

                   Baa    -0.0189   -10.090    -3.601    -3.366  0.8823 -0.4112 -0.2293 

     8 H(1)   Bbb    -0.0137    -7.292    -2.602    -2.432  0.4476  0.5818  0.6791 

                   Bcc     0.0326    17.382     6.202     5.798  0.1458  0.7017 -0.6973 

 

                    Baa    -0.0250    -5.398    -1.926    -1.801  1.0000 -0.0084 -0.0023 

    94 P(31)  Bbb     0.0048     1.038     0.370     0.346  0.0036  0.1613  0.9869 

                    Bcc     0.0202     4.360     1.556     1.454  0.0079  0.9869 -0.1613 

        

         Baa    -0.0197   -10.511    -3.750    -3.506  0.8718  0.4345  0.2264 

   114 H(1)   Bbb    -0.0146    -7.787    -2.779    -2.597 -0.4652  0.5893  0.6606 

                     Bcc     0.0343    18.297     6.529     6.103  0.1536 -0.6812  0.7158 

 

D.3 127-Atom Self Trapped Hole Hyperfine Results using Miyoshi Coordinates 

 

Isotropic Fermi Contact Couplings 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  K(39)              0.00016       0.03344       0.01193       0.01115 

     2  O(17)             -0.00159       0.96307       0.34365       0.32124 

     3  P(31)             -0.00082      -1.48565      -0.53012      -0.49556 

     4  K(39)             -0.00006      -0.01310      -0.00467      -0.00437 

     5  H(1)              -0.00007      -0.29280      -0.10448      -0.09767 

     6  H(1)               0.00024       1.07335       0.38300       0.35803 

     7  H(1)              -0.00008      -0.35842      -0.12789      -0.11956 

     8  H(1)              -0.00008      -0.36140      -0.12896      -0.12055 

     9  O(17)              0.00011      -0.06474      -0.02310      -0.02159 

    10  O(17)              0.00047      -0.28339      -0.10112      -0.09453 

    11  O(17)              0.00063      -0.38190      -0.13627      -0.12739 

    12  O(17)             -0.00044       0.26862       0.09585       0.08960 

    13  P(31)             -0.00082      -1.49339      -0.53288      -0.49814 

    14  K(39)             -0.00001      -0.00240      -0.00086      -0.00080 

    15  H(1)              -0.00007      -0.29418      -0.10497      -0.09813 

    16  H(1)               0.00024       1.07675       0.38421       0.35916 

    17  H(1)              -0.00008      -0.35981      -0.12839      -0.12002 

    18  H(1)              -0.00008      -0.36266      -0.12941      -0.12097 

    19  O(17)              0.00011      -0.06516      -0.02325      -0.02173 

    20  O(17)              0.00047      -0.28416      -0.10139      -0.09478 
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    21  O(17)              0.00064      -0.38601      -0.13774      -0.12876 

    22  O(17)             -0.00045       0.26984       0.09629       0.09001 

    23  K(39)              0.00016       0.03254       0.01161       0.01086 

    24  K(39)             -0.00006      -0.01316      -0.00470      -0.00439 

    25  K(39)             -0.00001      -0.00240      -0.00086      -0.00080 

    26  P(31)             -0.00136      -2.45732      -0.87683      -0.81967 

    27  P(31)              0.00000       0.00009       0.00003       0.00003 

    28  K(39)             -0.00015      -0.03152      -0.01125      -0.01051 

    29  H(1)              -0.00143      -6.39634      -2.28237      -2.13359 

    30  H(1)               0.00000      -0.00002      -0.00001      -0.00001 

    31  H(1)              -0.00004      -0.16544      -0.05903      -0.05518 

    32  H(1)               0.00000       0.00002       0.00001       0.00001 

    33  H(1)               0.00000      -0.00263      -0.00094      -0.00088 

    34  H(1)               0.00000       0.00540       0.00193       0.00180 

    35  H(1)              -0.00001      -0.05808      -0.02072      -0.01937 

    36  H(1)               0.00000       0.00000       0.00000       0.00000 

    37  H(1)              -0.00006      -0.28943      -0.10328      -0.09654 

    38  H(1)               0.00000       0.00001       0.00000       0.00000 

    39  O(17)             -0.00002       0.01363       0.00486       0.00455 

    40  O(17)             -0.00011       0.06812       0.02431       0.02272 

    41  O(17)              0.00000       0.00024       0.00009       0.00008 

    41  O(17)              0.00000       0.00024       0.00009       0.00008 

    42  O(17)              0.00000       0.00071       0.00025       0.00024 

    43  O(17)             -0.00006       0.03892       0.01389       0.01298 

    44  O(17)             -0.00372       2.25753       0.80554       0.75303 

    45  O(17)              0.00000       0.00034       0.00012       0.00011 

    46  O(17)              0.00072      -0.43496      -0.15521      -0.14509 

    47  O(17)              0.00000      -0.00006      -0.00002      -0.00002 

    48  O(17)             -0.00003       0.02067       0.00738       0.00690 

    49  O(17)             -0.00001       0.00616       0.00220       0.00205 

    50  O(17)              0.00076      -0.46024      -0.16423      -0.15352 

    51  O(17)              0.00000       0.00001       0.00000       0.00000 

    52  P(31)             -0.00001      -0.01037      -0.00370      -0.00346 

    53  P(31)             -0.00003      -0.05365      -0.01914      -0.01790 

    54  K(39)              0.00000       0.00005       0.00002       0.00002 

    55  K(39)             -0.00052      -0.10804      -0.03855      -0.03604 

    56  K(39)              0.00000      -0.00012      -0.00004      -0.00004 

    57  H(1)               0.00000       0.00042       0.00015       0.00014 

    58  H(1)               0.00000      -0.00552      -0.00197      -0.00184 

    59  H(1)               0.00000      -0.00107      -0.00038      -0.00036 

    60  H(1)               0.00000      -0.00232      -0.00083      -0.00077 

    61  H(1)               0.00000      -0.00378      -0.00135      -0.00126 

    62  H(1)               0.00000      -0.00101      -0.00036      -0.00034 

    63  O(17)             -0.00014       0.08647       0.03086       0.02884 

    64  O(17)             -0.00017       0.10394       0.03709       0.03467 
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    65  O(17)              0.00000       0.00176       0.00063       0.00059 

    66  O(17)              0.00003      -0.01530      -0.00546      -0.00510 

    67  O(17)              0.00000      -0.00091      -0.00032      -0.00030 

    68  O(17)              0.00000      -0.00050      -0.00018      -0.00017 

    69  O(17)              0.00000       0.00241       0.00086       0.00080 

    70  O(17)             -0.00001       0.00615       0.00219       0.00205 

    71  P(31)             -0.00003      -0.05163      -0.01842      -0.01722 

    72  P(31)             -0.00004      -0.06918      -0.02469      -0.02308 

    73  K(39)             -0.00053      -0.11038      -0.03939      -0.03682 

    74  K(39)              0.00000      -0.00012      -0.00004      -0.00004 

    75  K(39)              0.00000      -0.00003      -0.00001      -0.00001 

    76  H(1)               0.00000       0.00041       0.00015       0.00014 

    77  H(1)               0.00000      -0.00553      -0.00197      -0.00184 

    78  H(1)               0.00000      -0.00109      -0.00039      -0.00036 

    79  H(1)               0.00000      -0.00269      -0.00096      -0.00090 

    80  H(1)               0.00000      -0.00355      -0.00127      -0.00118 

    81  H(1)               0.00000      -0.00101      -0.00036      -0.00034 

    82  O(17)             -0.00015       0.08957       0.03196       0.02988 

    83  O(17)             -0.00016       0.09617       0.03432       0.03208 

    84  O(17)              0.00000       0.00159       0.00057       0.00053 

    85  O(17)              0.00003      -0.01529      -0.00546      -0.00510 

    86  O(17)              0.04418     -26.78299      -9.55684      -8.93384 

    87  O(17)              0.00000      -0.00035      -0.00012      -0.00012 

    88  O(17)              0.00000      -0.00093      -0.00033      -0.00031 

    89  O(17)              0.00000      -0.00055      -0.00020      -0.00018 

    90  O(17)              0.00000       0.00242       0.00086       0.00081 

    91  O(17)             -0.00001       0.00583       0.00208       0.00194 

    92  P(31)             -0.05189     -93.97310     -33.53194     -31.34605 

    93  P(31)              0.00000      -0.00114      -0.00041      -0.00038 

    94  P(31)             -0.00136      -2.45743      -0.87687      -0.81971 

    95  P(31)              0.00000       0.00009       0.00003       0.00003 

    96  P(31)             -0.00001      -0.01095      -0.00391      -0.00365 

    97  P(31)             -0.00004      -0.06914      -0.02467      -0.02306 

    98  K(39)             -0.00835      -1.74468      -0.62254      -0.58196 

    99  K(39)             -0.00015      -0.03149      -0.01124      -0.01050 

   100  K(39)              0.00000       0.00005       0.00002       0.00002 

   101  K(39)              0.00000      -0.00002      -0.00001      -0.00001 

   102  H(1)              -0.00143      -6.40489      -2.28543      -2.13644 

   103  H(1)               0.00000      -0.00002      -0.00001      -0.00001 

   104  H(1)              -0.00004      -0.16584      -0.05918      -0.05532 

   105  H(1)               0.00000       0.00002       0.00001       0.00001 

   106  H(1)               0.00000      -0.00266      -0.00095      -0.00089 

   107  H(1)               0.00000       0.00541       0.00193       0.00180 

   108  H(1)              -0.00001      -0.05812      -0.02074      -0.01939 

   109  H(1)               0.00000       0.00000       0.00000       0.00000 
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   110  H(1)              -0.00006      -0.28919      -0.10319      -0.09646 

   111  H(1)               0.00000       0.00001       0.00000       0.00000 

   112  O(17)             -0.00159       0.96144       0.34306       0.32070 

   113  O(17)             -0.00002       0.01364       0.00487       0.00455 

   114  O(17)             -0.00011       0.06805       0.02428       0.02270 

   115  O(17)              0.00000       0.00024       0.00009       0.00008 

   116  O(17)              0.00000       0.00077       0.00027       0.00026 

   117  O(17)             -0.00006       0.03890       0.01388       0.01298 

   118  O(17)             -0.00372       2.25632       0.80511       0.75263 

   119  O(17)              0.00000       0.00034       0.00012       0.00011 

   120  O(17)              0.04414     -26.76028      -9.54873      -8.92627 

   121  O(17)              0.00000      -0.00035      -0.00012      -0.00012 

   122  O(17)              0.00071      -0.43269      -0.15439      -0.14433 

   123  O(17)              0.00000      -0.00006      -0.00002      -0.00002 

   124  O(17)             -0.00003       0.02076       0.00741       0.00692 

   125  O(17)             -0.00001       0.00595       0.00212       0.00199 

   126  O(17)              0.00076      -0.46014      -0.16419      -0.15348                                                                                                  

127  O(17)              0.00000       0.00002       0.00001       0.00001 

 

--------------------------------------------------------------------------------- 

              Anisotropic Spin Dipole Couplings in Principal Axis System 

 --------------------------------------------------------------------------------- 

 

       Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

     

                Baa    -0.0206   -10.995    -3.923    -3.667 -0.3421  0.2902  0.8937 

    29 H(1)   Bbb    -0.0160    -8.514    -3.038    -2.840 -0.6157  0.6493 -0.4465 

                   Bcc     0.0366    19.509     6.961     6.507  0.7099  0.7030  0.0435 

 

                    Baa    -0.0206   -10.986    -3.920    -3.665  0.3439 -0.2821  0.8956 

   102 H(1)   Bbb    -0.0159    -8.510    -3.036    -2.838 -0.6146  0.6535  0.4419 

                    Bcc     0.0365    19.496     6.957     6.503  0.7099  0.7024 -0.0514 

 

                   Baa    -0.0280    -6.051    -2.159    -2.018  0.0011  0.0040  1.0000 

    92 P(31)  Bbb     0.0089     1.920     0.685     0.640  0.9098 -0.4150  0.0006 

                   Bcc     0.0191     4.131     1.474     1.378  0.4150  0.9098 -0.0041 

 

 

D.4 115-Atom Self Trapped Hole Hyperfine Results using Miyoshi Coordinates 

 

                         Isotropic Fermi Contact Couplings 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  O(17)              0.00050      -0.30163      -0.10763      -0.10061 
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     2  P(31)             -0.00013      -0.22737      -0.08113      -0.07584 

     3  H(1)               0.00000      -0.00212      -0.00076      -0.00071 

     4  H(1)               0.00036       1.61157       0.57505       0.53756 

     5  H(1)               0.00000      -0.01547      -0.00552      -0.00516 

     6  H(1)              -0.00003      -0.15335      -0.05472      -0.05115 

     7  O(17)             -0.00009       0.05301       0.01891       0.01768 

     8  O(17)             -0.00003       0.01736       0.00619       0.00579 

     9  O(17)             -0.00064       0.38631       0.13785       0.12886 

    10  O(17)             -0.00014       0.08519       0.03040       0.02842 

    11  P(31)             -0.00013      -0.22825      -0.08145      -0.07614 

    12  H(1)               0.00000      -0.00216      -0.00077      -0.00072 

    13  H(1)               0.00036       1.61558       0.57648       0.53890 

    14  H(1)               0.00000      -0.01550      -0.00553      -0.00517 

    15  H(1)              -0.00003      -0.15361      -0.05481      -0.05124 

    16  O(17)             -0.00009       0.05303       0.01892       0.01769 

    17  O(17)             -0.00003       0.01734       0.00619       0.00578 

    18  O(17)             -0.00063       0.38405       0.13704       0.12811 

    19  O(17)             -0.00014       0.08528       0.03043       0.02845 

    20  P(31)             -0.00069      -1.25027      -0.44613      -0.41705 

    21  P(31)              0.00000       0.00006       0.00002       0.00002 

    22  K(39)             -0.00007      -0.01385      -0.00494      -0.00462 

    23  H(1)              -0.00139      -6.19536      -2.21066      -2.06655 

    24  H(1)               0.00000       0.00000       0.00000       0.00000 

    25  H(1)              -0.00002      -0.10083      -0.03598      -0.03363 

    26  H(1)               0.00000       0.00002       0.00001       0.00001 

    27  H(1)               0.00000      -0.00366      -0.00131      -0.00122 

    28  H(1)               0.00000       0.00255       0.00091       0.00085 

    29  H(1)              -0.00002      -0.10659      -0.03803      -0.03555 

    30  H(1)               0.00000       0.00000       0.00000       0.00000 

    31  H(1)              -0.00001      -0.04782      -0.01706      -0.01595 

    32  H(1)               0.00000       0.00001       0.00000       0.00000 

    33  O(17)             -0.00002       0.01363       0.00487       0.00455 

    34  O(17)              0.00006      -0.03766      -0.01344      -0.01256 

    35  O(17)              0.00000       0.00010       0.00004       0.00003 

    36  O(17)              0.00000       0.00064       0.00023       0.00021 

    37  O(17)             -0.00001       0.00655       0.00234       0.00218 

    38  O(17)             -0.00320       1.93868       0.69177       0.64667 

    39  O(17)              0.00000       0.00026       0.00009       0.00009 

    40  O(17)              0.00021      -0.12561      -0.04482      -0.04190 

    41  O(17)              0.00000      -0.00001       0.00000       0.00000 

    42  O(17)             -0.00002       0.01109       0.00396       0.00370 

    43  O(17)             -0.00001       0.00512       0.00183       0.00171 

    44  O(17)              0.00011      -0.06715      -0.02396      -0.02240 

    45  O(17)              0.00000       0.00000       0.00000       0.00000 

    46  P(31)             -0.00001      -0.01876      -0.00670      -0.00626 
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    47  P(31)             -0.00002      -0.03480      -0.01242      -0.01161 

    48  K(39)              0.00063       0.13054       0.04658       0.04354 

    49  H(1)               0.00000       0.00028       0.00010       0.00009 

    50  H(1)               0.00000      -0.00348      -0.00124      -0.00116 

    51  H(1)               0.00000      -0.00106      -0.00038      -0.00035 

    52  H(1)               0.00000      -0.00085      -0.00030      -0.00028 

    53  H(1)               0.00000      -0.00426      -0.00152      -0.00142 

    54  H(1)               0.00000      -0.00151      -0.00054      -0.00050 

    55  O(17)             -0.00006       0.03675       0.01311       0.01226 

    56  O(17)             -0.00011       0.06482       0.02313       0.02162 

    57  O(17)             -0.00001       0.00857       0.00306       0.00286 

    58  O(17)              0.00002      -0.01470      -0.00525      -0.00491 

    59  O(17)              0.00000       0.00018       0.00006       0.00006 

    60  O(17)              0.00000      -0.00147      -0.00052      -0.00049 

    61  O(17)              0.00000       0.00166       0.00059       0.00055 

    62  O(17)             -0.00001       0.00342       0.00122       0.00114 

    63  P(31)             -0.00002      -0.03977      -0.01419      -0.01327 

    64  P(31)             -0.00001      -0.01285      -0.00459      -0.00429 

    65  K(39)              0.00062       0.12907       0.04605       0.04305 

    66  H(1)               0.00000       0.00028       0.00010       0.00009 

    67  H(1)               0.00000      -0.00347      -0.00124      -0.00116 

    68  H(1)               0.00000      -0.00106      -0.00038      -0.00035 

    69  H(1)               0.00000      -0.00019      -0.00007      -0.00006 

    70  H(1)               0.00000      -0.00506      -0.00180      -0.00169 

    71  H(1)               0.00000      -0.00151      -0.00054      -0.00050 

    72  O(17)             -0.00006       0.03645       0.01301       0.01216 

    73  O(17)             -0.00014       0.08406       0.02999       0.02804 

    74  O(17)             -0.00001       0.00852       0.00304       0.00284 

    75  O(17)              0.00002      -0.01478      -0.00527      -0.00493 

    76  O(17)              0.04780     -28.97759     -10.33992      -9.66588 

    77  O(17)              0.00000      -0.00037      -0.00013      -0.00012 

    78  O(17)              0.00000       0.00019       0.00007       0.00006 

    79  O(17)              0.00000      -0.00142      -0.00051      -0.00047 

    80  O(17)              0.00000       0.00166       0.00059       0.00055 

    81  O(17)             -0.00001       0.00421       0.00150       0.00141 

    82  P(31)             -0.05386     -97.55206     -34.80900     -32.53987 

    83  P(31)              0.00000      -0.00022      -0.00008      -0.00007 

    84  P(31)             -0.00069      -1.25215      -0.44680      -0.41767 

    85  P(31)              0.00000       0.00006       0.00002       0.00002 

    86  P(31)             -0.00001      -0.01868      -0.00667      -0.00623 

    87  P(31)             -0.00001      -0.01293      -0.00461      -0.00431 

    88  K(39)             -0.00875      -1.82745      -0.65208      -0.60957 

    89  K(39)             -0.00007      -0.01385      -0.00494      -0.00462 

    90  H(1)              -0.00139      -6.19950      -2.21214      -2.06793 

    91  H(1)               0.00000       0.00000       0.00000       0.00000 
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    92  H(1)              -0.00002      -0.10081      -0.03597      -0.03363 

    93  H(1)               0.00000       0.00002       0.00001       0.00001 

    94  H(1)               0.00000      -0.00367      -0.00131      -0.00122 

    95  H(1)               0.00000       0.00255       0.00091       0.00085 

    96  H(1)              -0.00002      -0.10664      -0.03805      -0.03557 

    97  H(1)               0.00000       0.00000       0.00000       0.00000 

    98  H(1)              -0.00001      -0.04781      -0.01706      -0.01595 

    99  H(1)               0.00000       0.00001       0.00000       0.00000 

   100  O(17)              0.00050      -0.30321      -0.10819      -0.10114 

   101  O(17)             -0.00002       0.01358       0.00484       0.00453 

   102  O(17)              0.00006      -0.03765      -0.01343      -0.01256 

   103  O(17)              0.00000       0.00010       0.00004       0.00003 

   104  O(17)              0.00000       0.00063       0.00023       0.00021 

   105  O(17)             -0.00001       0.00655       0.00234       0.00218 

   106  O(17)             -0.00320       1.93908       0.69191       0.64681 

   107  O(17)              0.00000       0.00026       0.00009       0.00009 

   108  O(17)              0.04773     -28.93606     -10.32511      -9.65203 

   109  O(17)              0.00000      -0.00036      -0.00013      -0.00012 

   110  O(17)              0.00020      -0.12304      -0.04390      -0.04104 

   111  O(17)              0.00000      -0.00001      -0.00001       0.00000 

   112  O(17)             -0.00002       0.01110       0.00396       0.00370 

   113  O(17)             -0.00001       0.00510       0.00182       0.00170 

   114  O(17)              0.00011      -0.06715      -0.02396      -0.02240 

   115  O(17)              0.00000       0.00000       0.00000       0.00000 

 

--------------------------------------------------------------------------------- 

              Anisotropic Spin Dipole Couplings in Principal Axis System 

 --------------------------------------------------------------------------------- 

       Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

 

                Baa    -0.0206   -10.988    -3.921    -3.665 -0.3196  0.2645  0.9099 

23 H(1)   Bbb    -0.0163    -8.693    -3.102    -2.900 -0.6245  0.6634 -0.4122 

                Bcc     0.0369    19.681     7.023     6.565  0.7126  0.7000  0.0468 

 

 

                Baa    -0.0265    -5.724    -2.042    -1.909  0.0014  0.0040  1.0000 

82 P(31)  Bbb     0.0051     1.093     0.390     0.365  0.9529 -0.3032 -0.0001 

                Bcc     0.0214     4.631     1.653     1.545  0.3032  0.9529 -0.0042 

 

 

               Baa    -0.0206   -10.983    -3.919    -3.663  0.3217 -0.2566  0.9114 

90 H(1)   Bbb    -0.0163    -8.691    -3.101    -2.899 -0.6235  0.6671  0.4078 

               Bcc     0.0369    19.673     7.020     6.562  0.7126  0.6994 -0.0546 

 



184 

 

D.5 47-Atom Self-Trapped Hole Results 

 

Isotropic Fermi Contact Couplings (Before optimization) 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  K(39)             -0.00015      -0.03094      -0.01104      -0.01032 

     2  P(31)             -0.00358      -6.49166      -2.31639      -2.16538 

     3  P(31)             -0.00359      -6.49375      -2.31713      -2.16608 

     4  P(31)             -0.00194      -3.51730      -1.25506      -1.17325 

     5  P(31)             -0.00194      -3.51751      -1.25513      -1.17331 

     6  P(31)             -0.04784     -86.64115     -30.91572     -28.90038 

     7  K(39)             -0.00256      -0.53562      -0.19112      -0.17866 

     8  K(39)             -0.00257      -0.53575      -0.19117      -0.17871 

     9  K(39)             -0.00004      -0.00848      -0.00303      -0.00283 

    10  K(39)             -0.00004      -0.00872      -0.00311      -0.00291 

    11  K(39)             -0.01050      -2.19242      -0.78231      -0.73131 

    12  H(1)              -0.00008      -0.37914      -0.13529      -0.12647 

    13  H(1)              -0.00008      -0.37917      -0.13530      -0.12648 

    14  H(1)              -0.00023      -1.04927      -0.37441      -0.35000 

    15  H(1)              -0.00023      -1.04982      -0.37460      -0.35018 

    16  H(1)              -0.00003      -0.11425      -0.04077      -0.03811 

    17  H(1)              -0.00003      -0.11427      -0.04077      -0.03812 

    18  H(1)              -0.00008      -0.33904      -0.12098      -0.11309 

    19  H(1)              -0.00008      -0.33919      -0.12103      -0.11314 

    20  H(1)              -0.00257     -11.49187      -4.10059      -3.83328 

    21  H(1)              -0.00257     -11.48569      -4.09838      -3.83121 

    22  H(1)              -0.00007      -0.32020      -0.11426      -0.10681 

    23  H(1)              -0.00007      -0.31901      -0.11383      -0.10641 

    24  H(1)              -0.00010      -0.43717      -0.15599      -0.14582 

    25  H(1)              -0.00010      -0.43703      -0.15594      -0.14578 

    26  H(1)              -0.00006      -0.26220      -0.09356      -0.08746 

    27  H(1)              -0.00006      -0.26299      -0.09384      -0.08772 

    28  O(17)              0.00137      -0.82805      -0.29547      -0.27621 

    29  O(17)              0.00137      -0.82793      -0.29543      -0.27617 

    30  O(17)             -0.00409       2.48055       0.88512       0.82742 

    31  O(17)             -0.00409       2.48038       0.88506       0.82736 

    32  O(17)             -0.00342       2.07522       0.74049       0.69222 

    33  O(17)             -0.00342       2.07568       0.74065       0.69237 

    34  O(17)              0.00013      -0.07665      -0.02735      -0.02557 

    35  O(17)              0.00013      -0.07668      -0.02736      -0.02558 

    36  O(17)             -0.00083       0.50265       0.17936       0.16767 

    37  O(17)             -0.00083       0.50291       0.17945       0.16775 

    38  O(17)             -0.00058       0.35193       0.12558       0.11739 

    39  O(17)             -0.00058       0.35308       0.12599       0.11777 

    40  O(17)              0.00071      -0.43125      -0.15388      -0.14385 
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    41  O(17)              0.00071      -0.43154      -0.15398      -0.14395 

    42  O(17)              0.04174     -25.30207      -9.02841      -8.43986 

    43  O(17)              0.04175     -25.31041      -9.03138      -8.44265 

    44  O(17)             -0.00011       0.06667       0.02379       0.02224 

    45  O(17)             -0.00011       0.06758       0.02411       0.02254 

    46  O(17)              0.00484      -2.93593      -1.04761      -0.97932 

    47  O(17)              0.00484      -2.93150      -1.04603      -0.97784  

 

         Anisotropic Spin Dipole Couplings in Principal Axis System (before optimization) 

 --------------------------------------------------------------------------------- 

 

       Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

 

                    Baa    -0.0173    -3.746    -1.337    -1.250  0.0070  0.0135  0.9999 

     6 P(31)  Bbb     0.0053     1.141     0.407     0.381  0.9491 -0.3149 -0.0024 

                   Bcc     0.0120     2.605     0.930     0.869  0.3148  0.9490 -0.0151 

           

                   Baa    -0.0237   -12.623    -4.504    -4.211  0.3220 -0.2231  0.9201 

    20 H(1)   Bbb    -0.0198   -10.542    -3.762    -3.516  0.6596 -0.6443 -0.3871 

                    Bcc     0.0434    23.165     8.266     7.727  0.6792  0.7315 -0.0603 

 

                    Baa    -0.0237   -12.622    -4.504    -4.210 -0.3084  0.2478  0.9184 

    21 H(1)   Bbb    -0.0198   -10.541    -3.761    -3.516  0.6654 -0.6338  0.3944 

                   Bcc     0.0434    23.163     8.265     7.726  0.6799  0.7327  0.0306 

 

D.6 Oxygen Vacancy Hyperfine Results 

 

This cluster was formed from a 185 atom cluster. After removing one oxygen atom it 

became a 184 atom cluster, with Stoichiometry H64K6O91P23 and Charge and 

multiplicity (2+,2). Before optimization, the central phosphorus Fermi value was 

311.62984 Gauss. And before optimization, central phosphorus’ anisotropic values were:  

 

 --------------------------------------------------------------------------------- 

              Anisotropic Spin Dipole Couplings in Principal Axis System 

 --------------------------------------------------------------------------------- 

    Atom             a.u.   MegaHertz   Gauss  10(-4) cm-1        Axes 

 

              Baa    -0.5560  -120.188   -42.886   -40.090  0.8360  0.5465  0.0499 

   142 P(31)  Bbb    -0.5386  -116.433   -41.546   -38.838 -0.3436  0.4504  0.8241 

              Bcc     1.0945   236.621    84.432    78.928 -0.4279  0.7060 -0.5643 
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Post-optimization results. The optimization allowed three oxygen atoms around central 

potassium to move.  

 

 Isotropic Fermi Contact Couplings 

        Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

     1  H(1)               0.00000      -0.00014      -0.00005      -0.00005 

     2  H(1)               0.00000       0.00078       0.00028       0.00026 

     3  H(1)               0.00000      -0.00085      -0.00030      -0.00028 

     4  O(17)              0.00000       0.00047       0.00017       0.00016 

     5  O(17)              0.00000       0.00000       0.00000       0.00000 

     6  O(17)              0.00002      -0.01362      -0.00486      -0.00454 

     7  O(17)              0.00000       0.00125       0.00045       0.00042 

     8  H(1)               0.00000      -0.00205      -0.00073      -0.00068 

     9  H(1)               0.00000       0.00224       0.00080       0.00075 

    10  O(17)              0.00003      -0.01709      -0.00610      -0.00570 

    11  O(17)             -0.00001       0.00348       0.00124       0.00116 

    12  H(1)               0.00000      -0.01047      -0.00374      -0.00349 

    13  H(1)               0.00000       0.00015       0.00005       0.00005 

    14  H(1)               0.00000      -0.00016      -0.00006      -0.00005 

    15  H(1)               0.00000      -0.00073      -0.00026      -0.00024 

    16  H(1)               0.00000      -0.00142      -0.00051      -0.00047 

    17  H(1)               0.00000      -0.00005      -0.00002      -0.00002 

    18  H(1)               0.00000      -0.00027      -0.00010      -0.00009 

    19  H(1)               0.00000       0.00748       0.00267       0.00250 

    20  H(1)               0.00000      -0.00009      -0.00003      -0.00003 

    21  P(31)              0.00000       0.00132       0.00047       0.00044 

    22  P(31)              0.00002       0.03734       0.01332       0.01246 

    23  P(31)              0.00000      -0.00287      -0.00102      -0.00096 

    24  O(17)              0.00001      -0.00652      -0.00233      -0.00218 

    25  O(17)              0.00001      -0.00385      -0.00137      -0.00128 

    26  O(17)              0.00000      -0.00039      -0.00014      -0.00013 

    27  O(17)              0.00000       0.00140       0.00050       0.00047 

    28  O(17)              0.00016      -0.09652      -0.03444      -0.03219 

    29  O(17)              0.00000       0.00103       0.00037       0.00034 

    30  O(17)              0.00000      -0.00179      -0.00064      -0.00060 

    31  O(17)             -0.00001       0.00471       0.00168       0.00157 

    32  O(17)              0.00000       0.00134       0.00048       0.00045 

    33  O(17)              0.00000       0.00169       0.00060       0.00056 

    34  O(17)              0.00000       0.00084       0.00030       0.00028 

    35  O(17)              0.00000       0.00055       0.00020       0.00018 

    36  O(17)              0.00000      -0.00060      -0.00021      -0.00020 
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    37  O(17)              0.00000      -0.00201      -0.00072      -0.00067 

    38  H(1)               0.00000      -0.00084      -0.00030      -0.00028 

    39  H(1)               0.00000       0.00020       0.00007       0.00007 

    40  O(17)              0.00000       0.00098       0.00035       0.00033 

    41  O(17)              0.00000      -0.00063      -0.00023      -0.00021 

    42  H(1)              -0.00001      -0.03677      -0.01312      -0.01226 

    43  H(1)               0.00000      -0.00012      -0.00004      -0.00004 

    44  H(1)               0.00000       0.00282       0.00101       0.00094 

    45  H(1)               0.00000       0.00009       0.00003       0.00003 

    46  H(1)               0.00000      -0.01242      -0.00443      -0.00414 

    47  H(1)               0.00000      -0.00056      -0.00020      -0.00019 

    48  H(1)               0.00000      -0.00030      -0.00011      -0.00010 

    49  H(1)               0.00000      -0.00374      -0.00134      -0.00125 

    50  P(31)              0.00002       0.02734       0.00976       0.00912 

    51  O(17)             -0.00002       0.01172       0.00418       0.00391 

    52  O(17)              0.00000       0.00036       0.00013       0.00012 

    53  O(17)              0.00003      -0.01910      -0.00682      -0.00637 

    54  O(17)              0.00002      -0.01369      -0.00489      -0.00457 

    55  O(17)              0.00011      -0.06907      -0.02465      -0.02304 

    56  O(17)              0.00001      -0.00552      -0.00197      -0.00184 

    57  O(17)              0.00000      -0.00176      -0.00063      -0.00059 

    58  O(17)              0.00000      -0.00001      -0.00001       0.00000 

    59  O(17)              0.00004      -0.02721      -0.00971      -0.00908 

    60  O(17)              0.00035      -0.21108      -0.07532      -0.07041 

    61  H(1)              -0.00002      -0.07330      -0.02615      -0.02445 

    62  H(1)               0.00000      -0.00007      -0.00003      -0.00002 

    63  H(1)               0.00000       0.00054       0.00019       0.00018 

    64  H(1)               0.00000      -0.00028      -0.00010      -0.00009 

    65  H(1)               0.00000      -0.00731      -0.00261      -0.00244 

    66  H(1)              -0.00002      -0.09077      -0.03239      -0.03028 

    67  H(1)               0.00000       0.00333       0.00119       0.00111 

    68  H(1)               0.00000       0.00025       0.00009       0.00008 

    69  H(1)               0.00000      -0.00117      -0.00042      -0.00039 

    70  P(31)              0.00001       0.01904       0.00679       0.00635 

    71  O(17)             -0.00019       0.11283       0.04026       0.03764 

    72  O(17)              0.00000       0.00060       0.00022       0.00020 

    73  O(17)              0.00001      -0.00388      -0.00138      -0.00129 

    74  O(17)              0.00000       0.00260       0.00093       0.00087 

    75  O(17)             -0.00008       0.04706       0.01679       0.01570 

    76  O(17)              0.00000       0.00074       0.00026       0.00025 

    77  O(17)              0.00003      -0.01840      -0.00656      -0.00614 

    78  O(17)             -0.00005       0.03210       0.01145       0.01071 

    79  O(17)              0.00000       0.00001       0.00000       0.00000 

    80  O(17)              0.00000       0.00286       0.00102       0.00095 

    81  O(17)             -0.00007       0.04137       0.01476       0.01380 
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    82  O(17)              0.00000      -0.00231      -0.00082      -0.00077 

    83  P(31)              0.00000      -0.00611      -0.00218      -0.00204 

    84  P(31)              0.00000      -0.00330      -0.00118      -0.00110 

    85  P(31)             -0.00001      -0.02017      -0.00720      -0.00673 

    86  P(31)             -0.00001      -0.01211      -0.00432      -0.00404 

    87  P(31)              0.00000      -0.00236      -0.00084      -0.00079 

    88  P(31)              0.00000       0.00454       0.00162       0.00152 

    89  P(31)              0.00000       0.00760       0.00271       0.00254 

    90  P(31)              0.00000      -0.00031      -0.00011      -0.00010 

    91  O(17)             -0.00008       0.04573       0.01632       0.01525 

    92  O(17)              0.00001      -0.00670      -0.00239      -0.00223 

    93  O(17)              0.00002      -0.01172      -0.00418      -0.00391 

    94  O(17)              0.00001      -0.00575      -0.00205      -0.00192 

    95  O(17)             -0.00002       0.01296       0.00463       0.00432 

    96  O(17)              0.00000       0.00002       0.00001       0.00001 

    97  O(17)              0.00000      -0.00009      -0.00003      -0.00003 

    98  O(17)              0.00001      -0.00340      -0.00121      -0.00114 

    99  K(39)             -0.00093      -0.19477      -0.06950      -0.06497 

   100  K(39)              0.00397       0.82814       0.29550       0.27624 

   101  K(39)              0.00167       0.34807       0.12420       0.11610 

   102  K(39)              0.00413       0.86349       0.30811       0.28803 

   103  K(39)             -0.00075      -0.15716      -0.05608      -0.05242 

   104  K(39)              0.00224       0.46825       0.16708       0.15619 

   105  H(1)              -0.00001      -0.04832      -0.01724      -0.01612 

   106  H(1)               0.00000       0.00381       0.00136       0.00127 

   107  H(1)              -0.00002      -0.10728      -0.03828      -0.03579 

   108  H(1)               0.00000      -0.00284      -0.00101      -0.00095 

   109  H(1)               0.00000       0.00099       0.00035       0.00033 

   110  H(1)               0.00000       0.00128       0.00046       0.00043 

   111  H(1)               0.00000      -0.01673      -0.00597      -0.00558 

   112  H(1)               0.00000      -0.00042      -0.00015      -0.00014 

   113  H(1)               0.00000       0.00078       0.00028       0.00026 

   114  H(1)               0.00000      -0.00018      -0.00006      -0.00006 

   115  H(1)               0.00001       0.03295       0.01176       0.01099 

   116  H(1)               0.00000      -0.00490      -0.00175      -0.00164 

   117  H(1)              -0.00001      -0.04732      -0.01688      -0.01578 

   118  H(1)               0.00000      -0.00148      -0.00053      -0.00049 

   119  H(1)               0.00022       0.99584       0.35534       0.33218 

   120  H(1)               0.00000      -0.00019      -0.00007      -0.00006 

   121  H(1)               0.00000       0.00038       0.00013       0.00013 

   122  H(1)               0.00000      -0.00019      -0.00007      -0.00006 

   123  H(1)              -0.00023      -1.00903      -0.36005      -0.33658 

   124  H(1)               0.00000      -0.00041      -0.00015      -0.00014 

   125  H(1)               0.00000       0.00004       0.00001       0.00001 

   126  H(1)               0.00000       0.00055       0.00020       0.00018 
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   127  H(1)               0.00011       0.48787       0.17409       0.16274 

   128  H(1)               0.00000       0.00022       0.00008       0.00007 

   129  H(1)               0.00000       0.00579       0.00207       0.00193 

   130  H(1)               0.00000      -0.00082      -0.00029      -0.00027 

   131  H(1)              -0.00275     -12.31118      -4.39294      -4.10657 

   132  H(1)               0.00000      -0.00058      -0.00021      -0.00019 

   133  H(1)               0.00000      -0.00053      -0.00019      -0.00018 

   134  H(1)               0.00000      -0.01343      -0.00479      -0.00448 

   135  H(1)               0.00000       0.00499       0.00178       0.00167 

   136  P(31)             -0.00309      -5.58982      -1.99459      -1.86456 

   137  P(31)              0.00002       0.03051       0.01089       0.01018 

   138  P(31)              0.00018       0.33261       0.11868       0.11095 

   139  P(31)              0.00003       0.05565       0.01986       0.01856 

   140  P(31)             -0.00102      -1.85325      -0.66128      -0.61818 

   141  P(31)             -0.00011      -0.20064      -0.07159      -0.06693 

   142  P(31)              0.49713     900.34828     321.26666     300.32386 

   143  P(31)              0.00000      -0.00148      -0.00053      -0.00049 

   144  P(31)              0.00000       0.00156       0.00056       0.00052 

   145  P(31)              0.00001       0.02447       0.00873       0.00816 

   146  O(17)              0.00000      -0.00263      -0.00094      -0.00088 

   147  O(17)              0.00005      -0.03111      -0.01110      -0.01038 

   148  O(17)             -0.00002       0.01298       0.00463       0.00433 

   149  O(17)              0.00000      -0.00246      -0.00088      -0.00082 

   150  O(17)              0.00002      -0.01228      -0.00438      -0.00410 

   151  O(17)              0.00003      -0.01770      -0.00632      -0.00591 

   152  O(17)             -0.00013       0.07957       0.02839       0.02654 

   153  O(17)              0.00016      -0.09470      -0.03379      -0.03159 

   154  O(17)              0.00001      -0.00488      -0.00174      -0.00163 

   155  O(17)              0.00001      -0.00785      -0.00280      -0.00262 

   156  O(17)              0.00042      -0.25612      -0.09139      -0.08543 

   157  O(17)             -0.00029       0.17360       0.06194       0.05791 

   158  O(17)              0.00028      -0.16762      -0.05981      -0.05591 

   159  O(17)              0.00038      -0.22742      -0.08115      -0.07586 

   160  O(17)              0.00004      -0.02274      -0.00811      -0.00758 

   161  O(17)              0.02503     -15.17521      -5.41489      -5.06191 

   162  O(17)              0.00000      -0.00038      -0.00014      -0.00013 

   163  O(17)              0.00000      -0.00133      -0.00048      -0.00044 

   164  O(17)              0.00000      -0.00029      -0.00010      -0.00010 

   165  O(17)              0.04941     -29.95468     -10.68858      -9.99181 

   166  O(17)              0.00000      -0.00145      -0.00052      -0.00048 

   167  O(17)              0.00003      -0.01552      -0.00554      -0.00518 

   168  O(17)              0.00000      -0.00136      -0.00048      -0.00045 

   169  O(17)              0.07080     -42.91915     -15.31462     -14.31629 

   170  O(17)              0.00000      -0.00081      -0.00029      -0.00027 

   171  O(17)              0.00002      -0.01398      -0.00499      -0.00466 
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   172  O(17)              0.00004      -0.02473      -0.00882      -0.00825 

   173  O(17)              0.00001      -0.00719      -0.00257      -0.00240 

   174  O(17)              0.00000       0.00107       0.00038       0.00036 

   175  O(17)              0.00000       0.00005       0.00002       0.00002 

   176  O(17)             -0.00257       1.55566       0.55510       0.51891 

   177  O(17)              0.00584      -3.54225      -1.26396      -1.18157 

   178  O(17)              0.00000      -0.00034      -0.00012      -0.00011 

   179  O(17)              0.00928      -5.62597      -2.00748      -1.87662 

   180  O(17)              0.00035      -0.21302      -0.07601      -0.07106 

   181  O(17)              0.03247     -19.68101      -7.02267      -6.56488 

   182  O(17)              0.00000      -0.00004      -0.00002      -0.00001 

   183  O(17)              0.00011      -0.06823      -0.02435      -0.02276 

   184  O(17)              0.00001      -0.00700      -0.00250      -0.00233 
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