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Abstract

a. Objectives: Despite significant advances in our understanding of chlorinated solvent source
zones and the maturation of several in sifu remediation technologies (e.g., bioremediation), our
ability to provide a priori predictions of the performance of remediation technologies in the field
remains severely limited. This is attributed, in large part, to our inability to accurately quantify
source zone mass and its spatial distribution, as well as to accurately estimate effective in situ mass
transfer and transformation rates. The overarching goal of this research project was to develop and
demonstrate a remediation design and performance assessment protocol that can efficiently assess
the suitability of a remediation technology and predict remedial performance (e.g., mass
removal/destruction) and the uncertainty associated with such predictions. This protocol couples
careful characterization of the contaminant source with down-hole treatability testing and
mathematical modeling,

b. Technical Approach: This project focused on a representative TCE-contaminated site
(Commerce Street Superfund Site, Williston, VT) that supported the development, refinement and
testing of the protocols and software tools. The project was implemented in three phases; Phase I
involved the development of protocols and software tools for efficient estimation of key source
characteristics (mass distribution metrics) governing remediation technology selection, design,
and performance. In Phase II, work focused on laboratory scale batch and aquifer cell testing to
(a) support source zone characterization, (b) provide kinetic data for testing and refinement of
upscaled mathematical models, and (c) guide the design and implementation of field-scale
reactivity tests. A down-hole treatability (DHT) test was then conducted in Phase III to estimate
(confirm) the in situ rate parameters needed for subsequent site-specific protocol application.
Upscaled models and uncertainty analysis tools were incorporated into the widely-used solute
transport modeling platform, MT3DMS, to facilitate adoption by practitioners and site managers.

c. Results

Phase I: A novel statistical approach was developed and implemented for the reconstruction of
source zone mass distributions and quantification of source zone metrics and associated
uncertainty in heterogeneous subsurface formations. The approach employs trained discriminative
random field (DRF) models, in conjunction with Monte-Carlo sampling methods, to generate
contaminant mass realizations, conditioned on measured borehole data. Post-processing of these
realizations yields estimates of source zone metrics (e.g., pool fraction, total mass) and associated
uncertainty. These metrics and approximations of uncertainty can be used to predict source zone
longevity, mass recovery behavior, and remedial performance and to inform further sampling for
characterization and remediation. DRF model performance was evaluated through comparisons
of predicted metrics with those obtained from ‘true’ mass distributions, generated with validated
flow and transport models. Comparisons demonstrate that the trained DRF model can reconstruct
realistic saturation and concentration fields for a range of NAPL spill scenarios, significantly
outperforming traditional kriging approaches.

Phase 1I: A matrix of laboratory microcosm experiments, assembled from site soil and
groundwater samples, was undertaken to estimate batch TCE dechlorination rates in unaugmented
and SiIREM KB-1®-amended systems. Results demonstrated the need for bioaugmentation at the
Commerce St. site. An aquifer cell system was constructed with field site soil, pre-loaded with
TCE, bioaugmented with KB-1®, and operated to mimic the field-scale downhole treatability test.
Effluent and side port measurements of volatile fatty acid, chlorinated ethene and ethene, and
biomass concentrations were used, in conjunction with an enhanced version of the transport
simulator MT3DMS with batch-measured rates, to explore effective bio-reaction rates (e.g.,
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maximum substrate utilization rate, W,,,,) under representative heterogeneous subsurface
conditions. Batch-measured rates provided a good prediction of aquifer cell behavior (average
relative error of 19%) when heterogeneity was explicitly modeled and TCE and cis-DCE inhibition
of VC transformation was neglected. However, ethene production was significantly under
predicted when a uniform permeability was assumed, demonstrating the influence of local
heterogeneity on dechlorination prediction accuracy. Ethene concentrations varied spatially within
the domain, primarily associated with low permeability layers. To investigate the effect of the
residence time on dechlorination, the flow rate was reduced by 50%. Under these conditions, the
proportion of ethene (molar basis) increased from 26% to 54%. In this phase of the project,
correlations for effective mass transfer coefficients were also developed to describe back-
diffusion/desorption under a range of heterogeneous formation conditions.

Phase IlI: Employing aquifer cell-calibrated rate parameters adjusted for temperature effects,
transport modeling of the field DHT test resulted in an over-prediction of ethene production by a
factor of 2. Model sensitivity analyses suggest this discrepancy, observed despite the comparable
sizes of the aquifer cell and pilot test treatment zone, was associated with unmodeled
heterogeneity. Similar to the cell experiment, when the flow rate in the test zone was reduced by
50%, the observed proportion of ethene increased from 17% to 78% at the end of the treatment
zone.

Adjoint sensitivity analysis was employed, in conjunction with a first-order second-
moment (FOSM) uncertainty analysis method, to optimize borehole sampling for prediction of
down-gradient flux-averaged concentration evolution at a contaminated site. The approach was
implemented in MT3DMS, and initial source zone conditions were generated by averaging
realizations of the DRF model. Results reveal that optimal sampling locations vary with the
prediction time window. Comparison of predictions associated with the optimized versus a
uniform sampling approach reveals that the FOSM model yields better estimates of down-gradient
flux averaged concentration, associated with a significant reduction in variance.

Project results were integrated into a source zone remediation feasibility framework to
guide practitioners on the use of the developed modeling methodologies. This framework provides
an efficient method to perform site characterization and obtain screening-level forecasts of site
behavior, with and without implementation of treatment remedies. Application of the framework
to a realistic synthetic field scenario demonstrated its feasibility and potential benefits during
conceptual site model refinement and remedial site management.

d. Benefits: This research provides site managers, regulatory officials and the scientific
community with protocols and software tools to (a) efficiently characterize source zone mass
metrics and associated uncertainty, (b) estimate relevant mass transfer and reaction rates for use in
upscaled models, and (c) predict remedial performance (or evolution of down gradient plume) and
associated uncertainty. The methodologies and tools, although developed for microbial reductive
dechlorination, are designed with sufficient flexibility to allow for implementation with other
remediation technologies or combinations of remedies. In addition, we anticipate that other types
of remedial performance data, such as isotopic analysis and proteomics, could be incorporated into
the developed models to allow for refined predictions of remedial performance and optimization
of remediation-specific site characterization in near real-time.
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Extended Abstract SERDP Project ER-2311: Development of an Integrated Field
Test/Modeling Protocol for Efficient In Situ Bioremediation Design and Performance
Uncertainty Assessment

Linda M. Abriola, Tufts University (PI)
Natalie L. Capiro; John A. Christ; Liyang Chu; Eric L. Miller; Kurt D. Pennell (co-Pls)

Introduction

Widespread use of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene
(TCE), in dry cleaning and degreasing operations has resulted in groundwater contamination at
thousands of industrial facilities and government installations throughout the United States and
abroad (ITRC, 2011; NRC, 2005). In most cases, chlorinated solvent spill sites are conceptualized
as consisting of two main regions, a highly contaminated source zone that often contains free
product, commonly referred to as a dense non-aqueous phase liquid (DNAPL), and a down-
gradient groundwater plume that contains both dissolved- and sorbed-phase contamination (ITRC
2003). The long-term persistence of DNAPLs (as entrapped ganglia or pools) in the source zone
and the high local contaminant concentrations associated with their presence also creates a strong
driving force for contaminant diffusion into lower permeability layers, where dissolved and sorbed
mass is subsequently sequestered. Substantial laboratory and field research has demonstrated the
importance of this sequestered mass to the persistence of down gradient contaminant plumes (e.g.,
DiFilippo and Brusseau, 2008; NRC, 2005; Parker et al., 2008; Suchomel and Pennell, 2006) and
the long term performance (mass removal or transformation rates) of most remedial technologies,
in particular those that require the delivery of chemical additives or amendments (e.g., Christ et
al., 2010; Kaye et al., 2008; Stroo et al., 2003).

Although substantial progress has been made in the development of both noninvasive and invasive
source zone characterization technologies in the past two decades (e.g., ITRC, 2003; Kavanaugh
et al., 2003; Kram et al., 2002; NRC, 2005), these technologies can typically provide quantitative
information on contaminant mass distributions only in the vicinity of the sampling location, which
may not be representative of the entire source zone. To address the limitations associated with
sparse sampling, it is now common practice to employ statistical interpolation approaches (e.g.,
kriging) to estimate contaminant concentration at unsampled locations using available borehole
data. However, a primary drawback to such approaches is their limitation in interpolating highly
sparse and discontinuous patches of DNAPL in heterogeneous domains (e.g., Maji et al. 2006).

The challenges posed by detailed (fine-scale) delineation of source zone mass have also led to the
development and application of averaged characterization metrics, such as DNAPL mass spatial
moments, pool fraction, trajectory-averaged saturation statistics, and ‘source strength’, that can
represent the salient features of the mass distribution (e.g., Stroo et al. 2003; ITRC 2004; Jawitz et
al., 2005; Christ et al., 2006; Saenton & Illangasekare, 2007; Chen and Jawitz 2009). Here, the
hypothesis is that such metrics can be employed in upscaled mathematical models to predict source
longevity and down-gradient flux evolution under natural or remedial conditions. Comparisons to
laboratory data (Fure et al., 2006; Zhang et al., 2008; Christ et al., 2010; DiFilippo & Brusseau,
2011) and field data history matching exercises ((DiFilippo and Brusseau 2008; Falta et al. 2005b))
suggest that such approaches may hold promise, particularly for use in screening remedial
alternatives.



Unfortunately, most laboratory treatability studies do not adequately mimic the mass transfer
processes, such as rate-limited dissolution, diffusion and desorption, that control elution of
sequestered mass and remedial system performance in a natural heterogeneous formation. Thus,
such studies tend to overestimate potential treatment effectiveness. For example, a comparison of
138 chlorinated solvent bioremediation field and laboratory studies revealed that median
laboratory rate constants were consistently higher (up to one order-of-magnitude) than observed
field rate constants (Suarez and Rifai 1999). The assumptions underlying the selection of a down-
hole treatability (DHT) methodology for this research are that: (a) even advanced assessment tools,
such as molecular probes, fail to provide reaction rate information necessary to predict remediation
extent in complex subsurface environments; and (b) the tool or method should provide information
that is relevant at the field scale and can be readily incorporated into model(s) for simulation of
remediation performance and uncertainty assessment.

The above discussion highlights the urgent need for better field treatability test methods to predict
potential remedial system performance and for the development of improved, cost-effective, field
characterization methods and associated modeling tools that encompass all source zone mass and
facilitate the identification of the most critical source zone properties that will govern mass
persistence and the performance of remedial options.

Objectives

The overarching goal of this research project is to develop and demonstrate a remediation design
and performance assessment protocol that can efficiently assess the suitability of a remediation
technology and predict remedial performance (e.g., mass removal/destruction) and the uncertainty
associated with such predictions. This protocol couples careful characterization of the contaminant
source with down-hole treatability testing and mathematical modeling. The research directly
responds to the following specific objectives in the SERDP Statement of Need:

e Development of field measurements or methodologies that provide predictive capability of
performance to reduce the uncertainty associated with long-term performance so that
decisions can be made early in the remedial process to avoid years of suboptimal
performance.

e Development of field measurements or methodologies that provide data to optimize
treatment if current operations are not expected to meet performance objectives.

e Development of assessment procedures and methodologies that aid in the decision to
discontinue operation of a technology and implement an alternative technology.

The fundamental hypothesis of this work is that it is impossible to provide reliable predictions of
remedial performance, and its associated uncertainty, without consideration of the complex
coupling between contaminant transformation/reaction rates, contaminant mass distribution
(spatial configuration and phase partitioning), and the processes influencing the accessibility of
this mass (e.g., heterogeneous flow paths, diffusion). Although the project utilizes microbial
reductive dechlorination as a representative in situ remediation technology, the developed protocol
and associated modeling tools are applicable to other remediation technologies, such as monitored
natural attenuation and chemical oxidation.

Technology Approach

The research approach involves coupling of site characterization, remediation performance
assessment (reaction rates), upscaled model development, and numerical simulations of remedial



performance and uncertainty. The study focused on a representative TCE-contaminated site (i.e.
Commerce Street Superfund Site, Williston, VT) to facilitate the development, refinement and
testing of protocols and software tools within the context of an actual field site.

To achieve its goal, the project was structured around three phases that addressed: (i) source and
plume characterization, (ii) upscaled mass transfer and transformation rates, and (iii) field-scale

reactivity and predictions of remedial performance. The project work plan is illustrated in Figure
1.

Site selection

Phase ll. L aboratory Evaluation and
Modeling of Effective Mass Transfer/
Transformation Rates

Phase |. Source Area/Plume
Characterization Methods Development

1.1 Data collection and materials

characterization 1.1 Physical/Chemical/Biclogical
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1.2 Aquifer Cell
Transformation Studies

!
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DHT Tests
v v

111.3 Predictive Modeling of Field-Scale Remediation,
Optimization and Uncertainty

Figure E-1. Project work plan.

Phase I focused on the development and demonstration of methods/modeling tools to characterize
the source zone for subsequent remedial design, implementation, and assessment. Here, the
specific objective was to develop a protocol and software tools that employ measured field data to
produce a representation of the subsurface source zone that captures the spatial distribution and
uncertainty associated with key features (i.e., permeability, microbial activity/mass, and
sequestered contamination [sorbed, immobile aqueous, and NAPL]) that control remedial
performance.

Phase II focused on batch and bench-scale laboratory testing, and upscaled mathematical model
development to support the design and implementation of a field remediation strategy. Here, the
performance of microbial reductive dechlorination was evaluated in aquifer cells that were
representative of field conditions, and the resulting data were employed to develop and evaluate
upscaled models to describe effective mass transfer and reaction rates.

Phase III focused on the estimation and application of effective rate parameters in field-scale
remediation. In this phase, a downhole treatability test was conducted at the Commerce Street
Superfund Site to estimate effective in situ transformation/reaction rates and to support the design
and assessment of site remediation strategies. Here a mathematical model, refined and validated
in Phase II, was employed to estimate effective field transformation rates. Estimated rates were




then compared to batch- and aquifer cell-measured rates to shed light on the processes controlling
remediation at the field scale. In addition, a traditional three-dimensional flow and transport
simulator was adapted and employed, in conjunction with the source zone characterization and
uncertainty results from Phase I, to propose an optimal sampling strategy coupling sensitivity
analysis and uncertainty quantification.

Results and Discussion

Phase I

A novel statistical approach was developed and implemented for the reconstruction of non-
aqueous phase liquid (NAPL) source zone realizations and the quantification of source zone
metrics and associated uncertainty. This approach employed discriminative random field (DRF)
models, originally introduced for computer vision applications, to model the spatial distributions
and relationships among source zone properties (i.e. permeability, NAPL saturation and aqueous
concentration distributions) consistent with commonly collected field data. Application of DRF
models required a limited number of full-scale simulations to train the model parameters. Monte-
Carlo sampling methods based on these trained models then provided an efficient method to
generate contaminant mass realizations conditioned on measured borehole, bypassing the need to
run computationally intensive, PDE-based simulations of physical flow and transport. Post-
processing of these realizations yielded approximations of uncertainty to inform further sampling
for characterization and remediation (Phase III). The reconstructed contaminant mass realizations
provided sufficient information for calculating averaged characterization metrics, such as total
contaminant mass and pool fraction (PF), used to predict source zone longevity, mass recovery
behavior and remedial performance. The model performance was evaluated through comparisons
of these predicted source zone metrics with those obtained from the ‘true’ mass distributions
generated with validated flow and transport models. These comparisons clearly demonstrated that
the trained DRF model can reconstruct realistic saturation and concentration fields conditioned to
borehole data for a range of NAPL spill scenarios (see example in Figure E-2). The model was
also shown to significantly outperform traditional kriging approaches in reconstructing NAPL
mass distributions.
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Figure E-2. Example output of BRAINS model for estimation of DNAPL saturation distribution profile
in a heterogeneous formation. Depicted output (d) is the average of 2000 realizations.

Selected Conclusions from Phase I:

e A discriminative random field (DRF) model (BRAINS) was developed and implemented
for contaminant source zone characterization and uncertainty quantification. The DRF
model is completely characterized by a small collection of parameters (w and v vectors). These
parameters are determined through a ‘training’ process, employing a set of source zone spill
data specific to the selected DNAPL contaminant and geologic environment. Once the DRF
parameters are determined, the model can be used to generate realizations of the DNAPL



saturation and aqueous phase concentration using off-the-shelf Metropolis sampling methods.
This methodology is far superior to Monte Carlo approaches, which require extensive flow and
transport simulations to generate a similar set of realizations and cannot easily account for
measured data. .

e Ensemble averages over realizations of the DRF model represent the expected values for
concentration and saturation fields, while the variances provide a quantifiable measure
of the uncertainty associated with permeability and contaminant source zone. These
uncertainty measurements were used in Phase III to identify optimal locations for further
borehole sampling.

e Model performance was assessed by comparing estimated and ‘true’ metrics for contaminant
mass distributions in a structured heterogeneous unconsolidated depositional aquifer
environment. The trained DRF model produced realistic saturation and concentration
fields, conditioned to borehole data for a range of NAPL spill scenarios (release rates,
spill ages, pool fractions). Comparison with a traditional kriging approach clearly
demonstrated the superiority of BRAINS in reconstructing DNAPL saturation
distributions and associated DNAPL architecture metrics.

Phase I1

Microcosms were provided with lactate and trichloroethene (TCE) to derive dechlorination rates
in a batch system and one set was amended with SIREM KB-1®. Microcosm and batch reactor
experiments demonstrated the need for bioaugmentation and biostimulation at the site to transform
TCE to ethene. The native microbial population was capable of transforming TCE to cis-DCE
using the dissolved organic carbon in site groundwater but completed the transformation more
quickly when supplied with lactate as an electron donor. The absence of continued dechlorination
in most reactors indicated a low population of Dhc harboring the RDase genes necessary to
produce VC and ethene and a non-uniform distribution of organisms at the site. Bioaugmentation
of reactors with KB-1® or BDI was successful, facilitating the transformation of TCE to ethene in
an average of 37 days. A robust numerical model incorporating adsorption of contaminants to soil
and partitioning into the bottle headspace was created to simulate microbial reductive
dechlorination in the batch reactors and microcosms. The numerical model and Matlab fitting
routine were able to match the chlorinated ethene and ethene concentrations observed in the KB-
1® bioaugmented microcosms, providing culture-specific yield coefficients and substrate
utilization rates that were used in later modeling work.

Concurrently, an aquifer cell system was constructed with soil from the Commerce Street field
site, loaded with TCE, and configured to mimic the field-scale downhole treatability test. The
aquifer cell was provided with lactate and then bioaugmented with KB-1®. Effluent and side port
measurements of volatile fatty acid concentrations, chlorinated ethene and ethene concentrations,
and biomass abundance were used in conjunction with an enhanced version of the modular three-
dimensional multispecies transport simulator MT3DMS to explore effective bio-reaction rates
(e.g., maximum substrate utilization rates (U;,qy)- This enhanced version of MT3DMS is capable
of simulating anaerobic reductive dechlorination of multiple contaminants in heterogeneous
environments, incorporating consumption of the carbon source by a competitor culture. Microbial
reductive dechlorination is modeled with a modified Monod kinetic expression that accounts for
limitations due to election donor availability and daughter product inhibition. Model simulations
employing batch-measured rates provided a good prediction of aquifer cell behavior (average



relative error of 19%) only when heterogeneity was explicitly modeled and TCE and cis-DCE
inhibition of VC transformation was neglected (see Figure E-3). This result was attributed to
spatial variations in microbial population and substrate availability created by the presence of
physical heterogeneity. Comparison of simulation results for models employing both
heterogeneous and uniform domain properties, incorporating the same domain size and
transformation rate parameters, revealed that ethene production was underpredicted by the uniform
property model. This result contrasts with literature reports of field-scale reductions in observed
effective transformation rates. Coupling of laboratory observations with modeling results suggests
that transformation to ethene varied spatially within the domain, primarily associated with low
permeability layers (zones with longer residence times). This variation demonstrates the influence
of local heterogeneity on dechlorination prediction accuracy. To investigate the effect of the
residence time on dechlorination, the flow rate was reduced by 50%, increasing the proportion of
ethene in the aquifer cell (molar basis) from 26% to 54%.

Also in this project phase, upscaled modeling was undertaken to develop solutions and correlations
to quantify effective mass transfer coefficients that describe back-diffusion/desorption and
bioenhanced NAPL dissolution under a range of heterogeneous formation conditions.

(a) Effluent VOCs
I | I

0.4 T 1 T T T T T
o3k | A A A .
b A A
— A
S 02k 4
E” A, A ¢
----------------- A5G-y 0
rrrrrr - - .b.
0.1 M O R A - A AN A
o - =8 &~ O H- -G ¢
0 N — e ——— et L et
54 56 58 60 62 B4 66 68 70 T2 74
Time (Day)
|—TC.E-airr ¥ TCE-exp = = oisDCE-sim ) cisDCE-sxp WC-sim WG-axp = Ethans-sim & Emena--axpl

Figure E-3. Comparison between simulated and experiment effluent concentrations for chlorinated ethenes
and ethene components. Competitive inhibition was neglected in this simulation.

Selected Conclusions from Phase Il

* An industry-standard groundwater transport simulator, MT3DMS, was adapted to
incorporate multi-order Monod Kinetics coupled with a microbial growth model to
account for biotransformation of multiple components by multiple microbial
populations.

e Bioenhanced desorption and back diffusion of chlorinated solvents play an important
role in mass release in heterogeneous formations. For the examined experimental
conditions, the magnitude of this enhancement was observed to vary spatially and temporally
(from 6-55%), with the largest enhancement measured at interfaces with fine-textured, highly
sorptive media. These results demonstrate that bioenhanced desorption/back diffusion can
significantly reduce plume persistence and remedial cleanup timeframes.



e Temporal and spatial population shifts in the predominant strain of Dhc are observed
with changes in electron acceptor abundance. These observations demonstrate the
importance of maintaining a robust dechlorinating community harboring multiple RDase
genes. When the necessary genes are present, the microbial population is able to adapt to
changes in electron acceptor availability associated with varying up gradient concentrations or
the back diffusion of chlorinated ethenes from low permeability and highly sorptive materials.

e Dhc cells are capable of penetrating low permeability porous media, including clays.

e Observed aquifer cell microbial transformation rates were consistent with microcosm
(batch)-fitted values, when permeability variations were incorporated in the model. Thus,
models must incorporate heterogeneity to make accurate predictions of dechlorination

e Competitive inhibition was found to be of little significance in heterogeneous-packed
formations, attributed to microenvironments in the aquifer cell and differences in soil/water
ratios between microcosm and aquifer cell experiments.

e Accurate representation of sorption processes (i.e., extent, rate limitations, and
nonlinearity) in transport models is crucial to the accurate prediction of plume longevity,
particularly for the prediction of post-DNAPL dissolution longevity; (de)sorption processes
were observed to dominate the rate of mass release (back diffusion) to transmissive zones,
following DNAPL dissolution.

e An upscaled model was developed and parameterized to describe effective mass transfer
(desorption) rates in three dimensional heterogeneous systems. This Multi-Rate Mass
Transfer (MRMT) model, with two constant-in-time first-order rates, was shown to
successfully reproduce breakthrough curves.

e A screening level model was developed and implemented to estimate bioenhancement of
DNAPL dissolution. = Nomographs were presented to facilitate graphical estimation of
bioenhancement factor expressions for zero-order, first-order, and full Monod transformation
kinetics as a function of the Péclet and Damkdhler Numbers.

Phase 111

A down-hole treatability (DHT) test was conducted at the Commerce St site and test observations
were used, in conjunction with the enhanced MT3DMS model, to estimate effective in situ
biotransformation rate parameters. Simulations of the field pilot test, using aquifer cell-calibrated
rate parameters that had been adjusted for temperature effects, resulted in an over-prediction of
ethene production by a factor of 2. Model sensitivity analyses suggested that this discrepancy,
observed between laboratory and field transformation rates despite the comparable sizes of the
aquifer cell and pilot test treatment zone, was associated with unmodeled heterogeniety in flow
and biomass distributions. Similar to the behavior observed in the cell experiment, when the flow
rate in the test zone was reduced by 50%, the observed proportion of ethene increased from 17%
to 78% at the end of the treatment zone. These data demonstrate that controlling residence time is
essential to completely detoxify TCE to ethene.

Also in this project phase, adjoint sensitivity analysis was employed, in conjunction with a first-
order second-moment (FOSM) uncertainty analysis method, to develop a systematic approach to
optimize borehole sampling for prediction of down-gradient flux-averaged concentration (FAC)
evolution at a contaminated site. In this approach, an initial conditioned spatial distribution of



contaminant mass is first generated by averaging realizations of the DRF model developed in
Phase I. The adjoint state method is then used to quantify the importance of local system properties
on down-gradient FAC. The FOSM method, which uses linear approximations to directly
propagate parameter and data uncertainties into system states via sensitivity matrices, is employed
to estimate the uncertainty of FAC predictions. Both permeability and source zone mass
compartments are treated as random variables to account for aquifer heterogeneity, flow
irregularity, source zone morphology, and their interlinkages. Then in the decision process, data
worth analysis is used to develop an optimal borehole sampling strategy by selecting additional
measurements that yield the largest reduction in FAC uncertainty. The entire approach was
implemented in the widely-used transport modeling platform MT3DMS to facilitate future
adoption by practitioners and site managers. The utility of this approach was demonstrated using
numerically generated, two-dimensional, heterogeneous DNAPL source zones. Results reveal that
the model-guided sampling strategy recommends additional sampling locations that vary with the
prediction time window; optimal borehole measurements are chosen further down-gradient for
early time predictions, while up-gradient measurements have larger impact at later times.
Locations with low permeability values and high DNAPL saturations are generally good potential
candidates for additional measurements. Comparison of predictions associated with the optimized
versus a uniform sampling approach reveals that the FOSM model yields better estimates of down-
gradient flux averaged concentration, associated with a significant reduction in variance. This
innovative sampling strategy, coupling sensitivity analysis and uncertainty quantification, shows
promise for enhancement of our ability to guide characterization of source zones under realistic
field conditions.

Finally, in this phase, project results were integrated into a source zone remediation feasibility
framework to guide practitioners on the use of the developed modeling methodologies (see
description in next section). This framework provides an efficient method to perform site
characterization and obtain screening-level forecasts of site behavior, with and without
implementation of treatment remedies. Application of the framework to a realistic synthetic field
scenario in Section VILA. of the report demonstrated its feasibility and potential benefits during
conceptual site model refinement and remedial site management.

Selected Conclusions from Phase I11

e A FOSM uncertainty analysis modeling framework was developed and implemented to
estimate variance in predicted flux averaged concentration along a transect down
gradient of a DNAPL source zone. The method honors borehole observations and enables
consideration of the coupling among aquifer heterogeneity, flow irregularity, and source zone
mass distribution (morphology). The FOSM model was coupled with data worth assessments
and implemented in the modeling framework to guide acquisition of additional site data.

e Application of the FOSM method to numerically generated, field-scale, source zone
scenarios revealed that hydraulic conductivity variations and DNAPL saturation
distributions tend to dominate FAC predictions.

e Down Hole Test results were consistent with trends observed in the aquifer cell
experiment. Bioaugmentation with KB-1® successfully provided a large, viable Dhc
population capable of transforming cis-DCE to ethene over the duration of the pilot test.
Lactate pulses were rapidly fermented and provided a growth substrate to increase the Dhc
population. Growth stalled when the residence time was insufficient to increase the degree of



cis-DCE dechlorination. A reduction in pumping rate, increased the extent of transformation
of cis-DCE to ethene and allowed the DAc population to continue to increase in abundance.

Implications for Future Research and Benefits

This research provides site managers, regulatory officials, and the scientific community with
protocols and software tools to (a) efficiently characterize site conditions, (b) obtain relevant
reaction rates and develop upscaled models, and (c¢) predict remedial performance and associated
uncertainty. The developed models and their associated implementation protocols are equally
applicable to any remedial technology whose application is hindered by interphase mass transfer
limitations, 1.e., by heterogeneity in formation properties and contaminant mass distributions.

A straightforward framework (Figure E-4) was presented for implementation of the developed
mathematical models for near-source site characterization and plume response prediction. This
framework couples the 2D BRAINS model with an existing upscaled mass transfer model
previously developed under SERDP sponsorship (Christ et al., 2010). The trained BRAINS model
is used to generate a set of 2D representations of contaminant mass distributions along a plume
centerline. These results enable the estimation of effective, or upscaled, parameters employed in
the screening model, as well as the estimation of the uncertainty associated with screening model
predictions.

Figure E-4 represents the work flow for site characterization and screening-level FAC assessment.
Here, once a DNAPL source zone site has been selected, available data on the site
geology/stratigraphy are collected and matched to a representative site subsurface permeability
model. The permeability models are then linked to a library of machine learning characterization
tools (i.e. BRAINS library).

After a site-matched characterization tool is obtained, BRAINS is employed, along with measured
borehole data to estimate source zone metrics. This procedure requires only field-measured
borehole data (permeability, saturation, sorption and aqueous concentration) as inputs, as well as
some formation geostatistical characteristics. The first step in applying BRAINS to a real-word
problem is to generate multiple realizations of the permeability field, conditioned on borehole
measurements. Once the permeability realizations have been generated, the site-appropriate
trained BRAINS model is applied to each permeability field to derive a set of equiprobable
realizations of contaminant mass distribution along the plume centerline. Here all realizations are
conditioned available site data (saturations and aqueous and sorbed mass concentrations).

A set of source zone characterization metrics, such as DNAPL mass spatial moments and pool
fraction (PF), can then be calculated from the averages of the source zone (saturation and
concentration) realizations. This procedure provides a simple and straightforward approach to
predict the estimated range of characterization metrics across all equiprobable permeability
realizations. Once the ranges for source zone metrics have been estimated, the Protocol employs
an upscaled screening tool, presented by Christ et al., (2010), to predict mass recovery behavior.
Screening tool output can then guide preliminary site remediation decisions and future in-source
data collection. The case study presented in Section VII. A illustrates the used of this framework.

This research focused on the development and application of the BRAINS model for one
representative heterogeneous unconsolidated formation type in 2D cross section. Thus, it should
be viewed as a proof of principle for the application of this modeling approach and as the first step
in generating a 3D characterization tool (i.e. library of models). It is anticipated that, while the



developed features and model structure are robust, the BRAINS model itself will need to be
retrained for applications to different depositional environments. Future work should focus on the
development of such a library of trained models and on the design and implementation of a field
demonstration of the framework.
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Objectives

The overarching goal of this research project was to develop and demonstrate a remediation design
and performance protocol that couples characterization of the contaminant source with down-hole
treatability testing and mathematical modeling to efficiently assess the suitability of a remediation
technology, either alone or in combination, and to estimate remedial performance (e.g., mass
removal/destruction) and the uncertainty associated with such predictions.

This research directly responds to the following specific objectives in the SERDP Statement of
Need):

e Development of field measurements or methodologies that provide predictive capability of
performance to reduce the uncertainty associated with long-term performance so that
decisions can be made early in the remedial process to avoid years of suboptimal
performance.

e Development of field measurements or methodologies that provide data to optimize
treatment if current operations are not expected to meet performance objectives.

e Development of assessment procedures and methodologies that aid in the decision to
discontinue operation of a technology and implement an alternative technology.

The comprehensive research approach described herein, which couples geostatistical source zone
characterization, field-measured rate coefficients, and numerical modeling, is viewed as essential
to predict remedial performance and uncertainty at the field scale. The overarching hypothesis of
this work is that it is impossible to provide reliable predictions of remedial performance, and its
associated uncertainty, without consideration of the complex coupling between contaminant
transformation/reaction rates, contaminant mass distribution (spatial configuration and phase
partitioning), and the processes influencing the accessibility of this mass (e.g., heterogeneous flow
paths, diffusion). Although the project utilized microbial reductive dechlorination as a
representative in situ remediation technology, the developed protocol and associated modeling
tools are applicable to other remediation technologies, such as monitored natural attenuation and
chemical oxidation.

xXx11



I. Background

Widespread use of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene
(TCE), in dry cleaning and degreasing operations has resulted in groundwater contamination at
thousands of industrial facilities and government installations throughout the United States and
abroad (ITRC, 2011; NRC, 2005). In most cases, chlorinated solvent spill sites are conceptualized
as consisting of two main regions, a highly contaminated source zone that often contains free
product, commonly referred to as a dense non-aqueous phase liquid (DNAPL), and a down-
gradient groundwater plume that contains both dissolved- and sorbed-phase contamination (ITRC
2003). The long term persistence of DNAPLSs (as entrapped ganglia or pools) in the source zone
and the high local contaminant concentrations associated with their presence can lead to a strong
driving force for diffusion and sequestration of (dissolved and sorbed) mass in lower permeability
layers. Substantial laboratory and field research has demonstrated the importance of this
sequestered mass to the persistence of down gradient contaminant plumes (e.g., DiFilippo and
Brusseau, 2008; NRC, 2005; Parker et al., 2008; Suchomel and Pennell, 2006). In addition, it is
now generally recognized that both the quantity and spatial distribution of immobile contaminant
(source) mass will ultimately control the long term performance (mass removal or transformation
rates) of most remedial technologies, in particular those that require the delivery of chemical
additives or amendments (e.g., Christ et al., 2010; Kaye et al., 2008; Stroo et al., 2003).

Recognizing their importance for predictions of contaminant persistence and remediation
effectiveness, substantial progress has been made in the development of both noninvasive and
invasive source zone characterization technologies in the past two decades (e.g., ITRC, 2003;
Kavanaugh et al., 2003; Kram et al., 2002; NRC, 2005). These technologies have been applied to
both contaminant plume and DNAPL mass characterization. Noninvasive methods, such as soil
gas surveys and surface geophysics (e.g., seismic refraction and reflection, electrical impedance
and resistivity, and ground penetrating radar), tend to provide only qualitative lines of evidence to
delineate the presence of contaminant mass. Because most geophysical methods are not currently
able to detect and quantify DNAPL saturations (Kavanaugh et al., 2003; NRC, 2005), their
application to source zone characterization has typically been limited to characterization of
subsurface geology/groundwater flow or the extent of the contaminant plume. More invasive
technologies, such as direct push sampling, core analysis, and partitioning inter-well tracer tests,
can provide more quantitative information on DNAPL and/or sorbed mass. However, these types
of measurements tend to be more costly and can provide data only in the vicinity of the sampling
location, which may not be representative of the entire source zone.

To address the limitations associated with sparse sampling, it is now common practice to employ
deterministic and stochastic plume interpolation approaches to estimate contaminant concentration
at unsampled locations using the available borehole data. Kriging packages (Deutsch and Journel
1998) are among the stochastic methods that have been extensively used for contaminant plume
characterization, to interpolate between point observations of mass concentrations at field sites
(e.g., Gilbert & Simpson, 1985; Jones et al., 2005; Wu et al., 2005) in an attempt to estimate
contaminant mass. Most kriging applications have focused on aqueous concentration
measurements to delineate contaminant plumes (Reed et al. 2000; Wu et al. 2005; Basu et al. 2006;
Rivett et al. 2006; Yu et al. 2006; Reed and Minsker 2004), failing to incorporate consideration of
sequestered mass, specifically DNAPL, in their site conceptual model, potentially leading to gross
underestimation of total mass and the associated remedial challenges. In particular, one of the main
drawbacks of the application of kriging approaches in source zone characterization is their
limitation in interpolating highly sparse and discontinuous patches of DNAPL in a heterogeneous
domain (Maji et al. 2006).



Over the past decade, more sophisticated modeling methods have been considered for processing
sparsely sampled data based on Markov chain models (Carle & Fogg, 1996, 1997). In the context
of environmental remediation, these methods have been employed in a number of ways. In
previous work (Elfeki, 2006a, 2006b), for example, Markov chain models were used to generate
realizations of hydraulic conductivity into which contaminant was synthetically released, to
explore how the addition of boreholes served to reduce uncertainty in plume shape and structure.
The Markov approach was considered in Maji et al., (2006) as an alternative to kriging for
interpolating sparse observations of DNAPL saturation and aqueous phase TCE concentration, but
DNAPL volume and mean estimated modes of aqueous phase TCE tended to be underestimated.
More recently, Harp and co-workers have considered the problem of estimating Markov transition
models for conductivity in ways that match not just sparse borehole facies indicator data, but also
observations of hydraulic head (Harp et al., 2008; Harp & Vesselinov, 2010). Statistical model
parameters were then employed for the Monte-Carlo generation of a suite of conductivity
realizations to quantify the probability of clay being present at a given position in the aquifer (Harp
et al., 2008) or to develop probability maps for facies as a function of position (Harp & Vesselinov,
2010).

The challenges posed by detailed (fine-scale) delineation of source zone mass have also led to the
development and application of averaged characterization metrics, such as DNAPL mass spatial
moments, pool fraction, and trajectory-averaged saturation statistics, that can represent the salient
features of the mass distribution (e.g., Jawitz et al., 2005; Christ et al., 2006; Saenton &
Illangasekare, 2007). Here, the hypothesis is that such metrics can be employed in upscaled
mathematical models to predict source longevity and down-gradient flux evolution under natural
or remedial conditions. Comparisons to laboratory data (Fure et al., 2006; Zhang et al., 2008; Christ
et al., 2010; DiFilippo & Brusseau, 2011) and field data history matching exercises ((DiFilippo
and Brusseau 2008; Falta et al. 2005b)) suggest that such approaches may hold promise,
particularly for use in screening remedial alternatives. To date, investigations pertaining to the
identification of source zone metrics have focused primarily on the distribution of DNAPL,
ignoring other sequestered mass sources such as sorbed and immobile aqueous mass.

Another metric of particular interest in remedial evaluation is ‘source strength’ (Chen and Jawitz
20009; Falta et al. 2005b; Goltz et al. 2007; ITRC 2004; Stroo et al. 2003). This metric provides a
simple basis for comparing DNAPL contamination across sites of very different scales and
geologic environments and its evolution in time or space has been used to assess the effectiveness
of natural attenuation (Falta et al. 2005a) and alternative remediation technologies (Fure et al.
2006; Lemke et al. 2004a; Lemke and Abriola 2006). Source strength is represented as mass
discharge [MT-!] or mass flux [ML2t"'] across a transect plane perpendicular to the direction of
groundwater flow. Under remedial conditions, source strength is typically quantified through
monitoring of concentrations within a transect perpendicular to the groundwater flow and down-
gradient of the contaminant source zone. Although source strength estimation has typically been
conducted using simple linear interpolation of measured concentrations, recent research has
explored the use of geostatistics and conditional simulation to estimate mass flux and its
uncertainty from multi-level sampler observations and hydraulic conductivity measurements in the
transect (Cai et al. 2011, 2012; Li et al. 2007). Results of these investigations have highlighted
the strong influence of velocity variation (physical heterogeneity) and sample density (location)
on mass flux estimates (with estimates varying more than one order of magnitude).

Unfortunately, most laboratory treatability studies do not adequately mimic mass transfer
processes, such as rate-limited dissolution, diffusion and desorption, that may control system
performance at a heterogeneous field site. Thus, such studies tend to overestimate potential



treatment effectiveness. For example, a comparison of 138 chlorinated solvent bioremediation
field and laboratory studies revealed that median laboratory rate constants were consistently higher
(up to one order-of-magnitude) than observed field rate constants (Suarez and Rifai 1999). The
premise underlying the down-hole treatability (DHT) methodology proposed herein is the
recognition that: (a) even advanced assessment tools, such as molecular probes, fail to provide
reaction rate information necessary to predict remediation extent in complex subsurface
environments; and (b) the tool or method should provide information that is relevant at the field
scale and can be readily incorporated into model(s) for simulation of remediation performance and
uncertainty assessment.

The above discussion highlights the urgent need for better field treatability test methods to predict
potential remedial system performance and for the development of improved, cost-effective, field
characterization methods and associated modeling tools that encompass all source zone mass and
facilitate the identification of the most critical source zone properties that will govern mass
persistence and the performance of remedial options.

To achieve its goal, the project was structured around three phases that addressed: (i) source and
plume characterization, (i1) upscaled mass transfer and transformation rates, and (iii) field-scale
reactivity and predictions of remedial performance. The project work plan is illustrated in Figure
B.1.1
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Figure B.1.1. Project work plan.

Phase I focused on the development and demonstration of methods/modeling tools to characterize
the source zone for subsequent remedial design, implementation, and assessment. Here, the
specific objective was to develop a protocol and software tools that employ measured field data to
produce a representation of the subsurface source zone that captures the spatial distribution and
uncertainty associated with key features (i.e., permeability, microbial activity/mass, and
sequestered contamination [sorbed, immobile aqueous, and NAPL]) that control remedial
performance.



Phase II focused on batch and bench-scale laboratory testing, and upscaled mathematical model
development to support the design and implementation of a field remediation strategy. Here, the
performance of microbial reductive dechlorination was evaluated in aquifer cells that were
representative of field conditions, and the resulting data were employed to develop and evaluate
upscaled models to describe effective mass transfer and reaction rates.

Phase III focused on the estimation and application of effective rate parameters in field-scale
remediation. In this phase, a downhole treatability test was conducted at the selected field site
(Commerce Street Superfund Site, Williston, VT) to estimate effective in situ
transformation/reaction rates and to support the design and assessment of site remediation
strategies. Here a mathematical model, refined and validated in Phase 11, was employed to estimate
effective field transformation rates. Estimated rates were then compared to batch- and aquifer cell-
measured rates to shed light on the processes controlling remediation at the field scale.

Section II of this report describes the materials, methods, and general technical approaches
associated with each of these project research phases, while Section III details research results.
Section IV provides a summary of important conclusions and implications for future research. In
Appendix A, we outline the procedure for application of the developed modeling tools in site
characterization and remedial assessment.



I1. Materials and Methods
I1.1 Chemicals and Porous Media
I1.1.1. Chemicals

Sodium bromide at a concentration of 10 to 16.5 mM (Fisher Scientific; Hampton, NH), sodium
fluorescein at a concentration of 0.075 mM (Sigma Aldrich; St. Louis, MO), and/or erioglaucine
A (Fluka Chemical; Seelze, Germany) at a concentration of 0.06 mM were used as non-reactive
tracers. Sodium sulfide nonahydrate (Fisher Scientific; Hampton, NH) and L-cysteine (Sigma
Aldrich; St. Louis, MO) were used as reductants to maintain anoxic conditions in laboratory
experiments while KB-1® primer (SiREM; Guelph, ON) was used to maintain reducing conditions
during the pilot test. Sodium DL-lactate solution, 60% w/w (Sigma Aldrich; St. Louis, MO
[laboratory experiments] or ChemWorld; Taylor, MI [pilot test]) was used as an electron donor in
all experiments. TCE (ACS reagent, >99.5%) with a density of 1.46 g/mL and an aqueous
solubility of 1,100 mg/L was obtained from Sigma Aldrich; St. Louis, MO. Unless otherwise
specified, aqueous solutions were prepared in deionized water produced by a Milli-Q® Integral
Water Purification System (EMD Millipore; Burlington, MA).

Sodium hexametaphosphate (Alfa Aesar; Haverhill, MA) was used as a dispersing agent during
hydrometer testing. Nitric acid (Fisher Scientific; Hampton, NH) was used as a preservative for
metals samples. Methanol (Optima grade; Fisher Scientific; Hampton, NH) or isopropanol
(Optima grade; Fisher Scientific; Hampton, NH) was used as a solvent to extract TCE and cis-
dichloroethene (cis-DCE) from soil samples. Sodium chloride (Fisher Scientific; Hampton, NH)
and calcium chloride (Fisher Scientific; Hampton, NH) were used as background electrolytes in
aquifer cell experiments and sorption studies, respectively.

Groundwater for laboratory experiments was obtained from the Commerce Street Superfund Site
in Williston, VT as described in Section I1.3.2.2. Unless a specific well location is noted, the
groundwater used was collected from numerous wells across the site and comingled to create a
representative groundwater. Prior to use, the groundwater was sparged with nitrogen gas for at
least four hours and amended with 1 mM L-cysteine and 0.2 mM sodium sulfide to remove oxygen
from the stored groundwater and create an oxidation-reduction potential (ORP) of less than -
150mV, similar to the site conditions.

I1.1.2. Reduced Growth Medium and Inoculum

The bacterial growth medium used in microcosm and batch reactor experiments was prepared
according to Loffler et al., (2005). During biotic experiments in the first aquifer cell, the
background solution consisted of bacterial growth medium (Loffler et al. 2005) incorporating the
modifications of Cépiro et al., (2015).

KB-1® (SiREM; Guelph, ON) inoculum was used in the pilot test, several batch experiments, and
in the aquifer cell experiments. This inoculum is a methanogenic dechlorinating consortium of
microbial species: Acetobacerium sp., Geobacter sp. (Geo), and multiple Dhc strains harboring
the verd, bvcA, and tceA reductive dehalogenase (Rdase) genes. It was selected because of its
relevance to the field, use in field-scale bioremediation applications, and demonstrated capability
to dechlorinate PCE to ethene (Duhamel et al. 2002, 2004; Sleep et al. 2006). The culture used in
the experiment was measured to have initial gene abundances of 2.4x107, 9.8x107, 2.9x10%, and
6.0x10° gene copies per mL of the Dhc 16S rRNA, verAd, bveA, and tceA genes, respectively. The
microbial species and strain breakdown is as follows (Roberts 2017):



e Acetobacterium (27 percent) is a genus of bacteria that produce acetate as a metabolic
byproduct. Acetate is required by Dehalococcoides for producing cellular material, and
Dehalococcoides consortia that contain Acetobacterium experience enhanced population
growth (He et al. 2007).

e Geobacter (22 percent) is a genus of proteobacteria first discovered in 1987 (Lovley et al.
1987) that is capable of dechlorinating PCE and TCE but not cis-DCE or vinyl chloride
(VC) (Duhamel and Edwards 2006).

e Dehalococcoides (22 percent) is a genus of bacteria that is capable of complete
dechlorination of PCE to ethene. The strain of Dehalococcoides present in KB-1 was
obtained from a site in Southern Ontario contaminated with TCE (Duhamel et al. 2002)
and has been identified as belonging to the same subgroup (Pinellas) as the strain of
Dehalococcoides present in BDI (Loffler et al. 2013).

e Synergistales (3 percent) is a phylum of bacteria that is thought to aid Dehalococcoides
growth by producing acetate (Hug et al. 2012).

e Treponema (3 percent) is a genus of spiral-shaped bacteria that is thought to aid
Dehalococcoides growth by producing hydrogen and acetate (Miura et al. 2015). Hydrogen
is the only electron donor that Dehalococcoides is capable of using, and Dehalococcoides
must use hydrogen generated by other microbes because it is not capable of producing it
itself (Hug et al. 2012).

e Archaea (2 percent) are a domain of single-celled microorganisms. The Archaea present in
KB-1 are methanogens that compete with the dechlorinating species (Geobacter and
Dehalococcoides) for hydrogen and acetate (Hug et al. 2012).

e Anaerolineaceae (1 percent) are a family of methanogenic bacteria (Yamada et al. 2006)
that also compete with the dechlorinating species for hydrogen and acetate (Hug et al.
2012).

Select batch reactor and microcosm experiments were bioaugmented with BDI-SZ, a non-
methanogenic PCE-ethene dechlorinating microbial consortium. This inoculum contains several
dechlorinating cultures including the PCE to cis-DCE dechlorinating species, Dehalobacter and
GeoSZ, as well as three Dhc strains (FL2, GT, and BAVI1) capable of completing the
transformation of PCE to ethene. The BDI-SZ used was maintained in the Tufts University
Environmental Sustainability Laboratory (ESL) with 0.33 mM PCE and 10 mM lactate at 35°C
without shaking.

I1.1.3. Porous Media

Porous media for laboratory experiments were obtained from the Commerce Street Superfund Site
in Williston, VT as described in Section I1.3.2.1. Site soil collected from the 10.7 to 11.3 m (35 to
37 foot) depth of boreholes CMT-4 and CMT-5, from the 10.4 to 10.7 m (34 to 35 foot) depth of
CMT-4, and from the 10.4 to 10.7 m (34 to 35 foot) depth of DHT-2 were used in microcosm
experiments. For the aquifer cell experiments, silty clay from the 12.2 to 12.8 m (40 to 42 foot)
depth of borehole CMT-2 was used to create a confining layer in each experiment.

The first aquifer cell was comprised of an ASTM Standard 20/30 sand (US Silica Company;
Ottawa, IL) background with four lenses (Figure M.4.1) consisting of Webster soil (Iowa State
University Agricultural Experiment Station; Ames, 1A), Appling soil (University of Georgia
Agricultural Experiment Station; Eastville, GA), F-95 fraction of Ottawa Sand Standard sand



(Fisher Scientific; Hampton, NH), and loamy sand (69% sand, 22.5% silt, 3.5% clay) collected
from the Commerce Street Superfund site (Williston, VT). The soil in the second aquifer cell,
above the clay confining layer, was entirely comprised of material collected from the 6.4 to 10.7
m (21 to 35 foot) depth of borehole DHT-2. Natural materials used in the microcosms and first
aquifer cell experiment (Webster, Appling, and Commerce Street) were ground with a mortar and
pestle, then passed through a #30 mesh sieve to remove large particles.

Table M.1.1. Properties of porous media used in the first aquifer cell experiment

. Hydraulic
Material Source Organic Coarbon Conductivity Reference
Content (%)
(m/day)
ASTM Standard Marcet et al., 2018,;
20/30 Sand Ottawa, IL 0.0 200 Shang, 2015
Webster Soil Ames, IA 1.96 0.86 Marcet, 2014
Appling Soil Eastville, GA  0.66 10.2 Marcet, 2014
F-95 Sand Ottawa, IL 0.01 2.5 Marcet et al., 2018
Commerce Street  yyyicon VT 0.09 0.03 Gaeth et al., 2016

Material

I1.2. Analytical Methods
I1.2.1. Soil Analytical and Characterization Methods

Soil cores from the installation of the CMT wells and from the preliminary soil borings (Section
I1.3.2.1) were delivered to the ESL where they were opened and visually and manually inspected
to determine the classification based on texture, plasticity, and color. Sample aliquots were
collected at specific locations for physical characterization, chemical, and biological analyses. The
soil was then segmented and segregated into Ziploc® bags representing 15 c¢cm (6 inches) of
borehole depth. Sample organic and inorganic carbon content were determined using a total
organic carbon (TOC)-L analyzer (Shimadzu; Kyoto, Japan) using the subtraction method (total
carbon minus inorganic carbon equals organic carbon) as described in Marcet, (2014). For select
locations and depth, soil was oven dried and ground with a mortar and pestle, then sample grain
size distribution was determined using sieve and hydrometer tests according to Das, (1997).

Soil hydraulic conductivity was measured by performing a static head test in a 15 cm by 2.5 cm
inner diameter borosilicate glass chromatography column (ACE Glass Inc, Vineland, NJ). Oven-
dried, ground soil was added to the column in approximately 2 cm intervals where it was then well
mixed using a metal spatula and settled using a gentle vibration tool. The settled material was then
tamped down before another 2 cm of material was added to the column. Once the column was
packed completely full of material, it was flushed with carbon dioxide gas for at least 30 minutes,
after which Milli-Q® water was driven through the column at a constant flow rate using a Rainin
Dynamax RP-1 peristaltic pump (Mettler-Toledo; Columbus, OH). After the column was saturated
with at least 5 PV of Milli-Q® water at 0.5 mL/min, the pump was removed and column was
configured so flow was driven by a static head maintained at a constant height. The head height
was measured with a ruler and the flow rate was measured by collecting and weighing the column
effluent during a fixed period of time (1 to 10 minutes).

Soil TCE and cis-DCE concentrations were measured using an alcohol extraction procedure in
which 5 to 10 mg of soil sample was placed in 10 mL of methanol (Optima grade; Fisher Scientific;
Hampton, NH) or isopropanol (Optima grade; Fisher Scientific; Hampton, NH). After mixing and



allowing the soil and alcohol to equilibrate for 24 to 48 hours, the alcohol was analyzed for TCE
or TCE and cis-DCE analysis. TCE and cis-DCE were measured in methanol extractions using an
Agilent 7890B gas chromatograph (GC) with electron capture detector (Agilent Technologies;
Santa Clara, CA). TCE in isopropanol extractions was measured using a 7890A GC with a flame
ionization detector (FID) (Agilent; Santa Clara, CA). After analysis, the alcohol was removed and
replaced and the extraction was repeated until chlorinated ethenes were no longer detected in the
sample.

The extent and rate of mass transfer of TCE to site soil was performed through a series of
adsorption and desorption batch reactor experiments. Three measurements were performed: 1) the
rate to adsorption equilibrium; 2) the adsorption isotherm; and 3) the rate to desorption
equilibrium. For each measurement performed, the aqueous phase was prepared by dissolving 0.38
to 7.6 mM (50 to 1000 mg/L) TCE in a 10 mM calcium chloride dehydrate solution in a sealed
container and mixing for at least 24 hours. Sorption experiments were performed in 20 mL crimp
top vials capped with a polytetrafluoroethylene (PTFE) lined rubber septum and aluminum crimp
top. Approximately 5 g of dried, well mixed material was placed in each vial prior to completely
filling the vial with the TCE-calcium chloride solution to eliminate headspace. Control reactors
without soil were also prepared to account for loss of TCE through the septum. Vials were
maintained on rotating shaker trays prior to sampling. High clay materials used in the sorption
experiments were dried at 105°C overnight, then passed through an HM-375 soil grinder
(Vicksburg, MI) and a #100 mesh sieve to create uniform material. The clay was then mixed with
Milli-Q® water on a 1:1 mass basis and allowed to sit overnight prior to use in sorption
experiments.

To measure the rate to adsorption equilibrium, vials containing a 3.8 mM TCE solution were
destructively sampled daily for one week, then again after 10-, 15-, and 21-days or until the
aqueous concentration differed from the previous sample’s aqueous concentration by <2%,
whichever came first. When the 3.8 mM TCE reactors had reached equilibrium, additional reactors
containing 0.38, 0.76, 1.9, and 7.6 mM (50, 100, 250, and 1000 mg/L) TCE solutions were sampled
to create an adsorption equilibrium isotherm. Vials containing TCE solution only (no soil) were
also sampled to account for any losses through the septa caps. All samples were collected
destructively. Vials were centrifuged at 1000 rpm for 30 minutes, then 3 (control reactors) or 5
(vials containing soil) 0.5 mL samples were drawn from the vial through the septum using a needle
and syringe. Each sample was passed through a 0.2 pum filter and placed in a 2.0 mL glass
autosampler vial containing 0.5 mL of isopropanol for measurement by GC-FID. The solid phase
was then removed from the vial and the sorbed TCE concentration was measured using the
isopropanol extraction procedure described above.

Additional reactors were prepared as described above but were not destructively sampled after
reaching equilibrium and were used to measure the rate of TCE desorption. Following aqueous
phase sampling, the remaining solution in the vials was removed and replaced with 10 mM calcium
chloride dihydrate solution, added until there was no headspace. After shaking overnight, the
aqueous phase was sampled, then removed and replaced with TCE-free calcium chloride solution.
This process was repeated until TCE was no longer detected in the aqueous phase.

I1.2.2. Aqueous Analytical Methods

Groundwater samples for chlorinated ethene and ethene analysis were prepared and analyzed
according to previously described methods (Amos et al. 2007a, 2008, 2009). Chlorinated ethene
and ethene concentrations were measured using an Agilent 7890B GC system with a DB-625
column and an FID (Agilent Technologies; Santa Clara, CA) (Amos et al. 2007a). Samples were



introduced to the GC by a Telemark HT3 headspace autosampler (Teledyne Technologies;
Thousand Oaks, CA) using a constant heating program.

After preparing the sample for GC analysis, a 0.5 mL aliquot of the sample remaining in the
volatile organic analysis (VOA) vial was collected and analyzed for volatile fatty acid (VFA)
concentrations by high pressure liquid chromatography (HPLC) using an Aminex HPX-87H
column (Bio-Rad Laboratories; Hercules, CA) as described by (He et al. 2003) and modified to
use a 1200 Agilent HPLC System with diode array detector (DAD; Agilent Technologies; Santa
Clara, CA). Additional aliquots of select samples were used for dissolved organic carbon (DOC)
analysis with a TOC-L analyzer using the non-purgeable organic carbon method (Shimadzu;
Kyoto, Japan) and anion (chloride, nitrate, nitrite, and sulfate) analysis using a Dionex ICS-2100
ion chromatograph (IC) (Dionex; Sunnyvale, CA). Dissolved metals were measured in 10 um
filtered, nitric acid preserved samples via EPA Method 200.7 using an Optima 7000 inductively
coupled plasma-optical emission spectrum (ICP-OES) (Perkin Elmer; Waltham, MA).

Bromide concentrations in large volume samples (field samples and aquifer cell effluent samples)
were measured using a bromide combination electrode (Cole Parmer; Vernon Hills, IL) connected
to a Model 50 conductivity meter (Accumet Engineering; Hudson, MA); for small volume (aquifer
cell port) samples, bromide concentrations were measured by IC using a Dionex ICS-2100 IC
system with lonPac AS-18 Fast column (Thermo Scientific; Waltham, MA).

I1.2.3. Biological Analytical Methods

Aqueous biomass samples from laboratory experiments (15 mL aquifer cell effluent samples, 1
mL aquifer side port samples, or 1 mL samples from batch reactors) were prepared by
centrifugation as described by Capiro et al. (2015). After removing the supernatant, pellets were
stored at -20°C. Microbial genomic DNA was extracted from laboratory experiment aqueous
samples using the QIAamp DNA Mini Kit (Qiagen; Hilden, Germany), from field-collected
groundwater using the Mo-bio PowerWater Kit (Qiagen; Hilden, Germany), and from field-filtered
(Sterivex) samples using the Mo-bio PowerSoil Kit (Qiagen; Hilden, Germany) with all extractions
performed in accordance with the manufacturers’ protocols. All extracted DNA was stored at -
20°C until quantitative polymerase chain reaction (qPCR) analysis.

Dhc cell abundance was quantified by qPCR analysis targeting the Dhc 16S rRNA gene using a
Step One Plus Real-Time PCR System (Applied Biosystems; Foster City, CA) under standard
operating conditions and TagMan-based chemistry (Ritalahti et al. 2006). Geobacter lovelyi Strain
SZ (GeoSZ) 16S rRNA gene copies were measured using SYBR Green detection chemistry
according to described protocols (Amos et al. 2007b; Duhamel and Edwards 2006) with the
modifications introduced by Amos et al. (2009). All gPCR analyses were measured in triplicate.
Primers and probes were obtained from IDT Technologies (Coralville, IA) or ThermoFisher and
the TagMan Universal PCR Master Mix from Applied Biosystems (Foster City, CA). For each
analysis, a standard curve was generated using 10-fold serial dilutions of a stock solution
containing a known concentration of plasmid DNA with a single copy of the target gene (Ritalahti
et al. 2006).



I1.3. Commerce Street Site: Data and Materials Collection
I1.3.1. Overview of Commerce Street Superfund Site

The Commerce Street Superfund Site (hereafter referred to as “the site™) is located at the Alling
Industrial Park (AIP) in Williston, Vermont, approximately 4 miles east of Burlington, Vermont
(Figure M.3.1). The test area for this research study (Figure M.3.2) constitutes a small portion of
the entire Superfund site. The site is located within the Winooski River watershed at an elevation
ranging from 330 to 350 feet above mean sea level (AMSL).

The site is zoned for mixed residential, business, and industrial uses. Commerce Street and the
areas to the east are predominantly commercially zoned lots that are currently developed or in the
process of being developed. Kirby Lane and South Brownell Road are zoned residential, with
limited commercial development on South Brownell Road. The ground surface over the entire
area exhibits little relief and slopes gently to the southwest. Surface water consists of a small
unnamed stream and its three tributaries, which flow in a southerly direction to Muddy Brook.
The unnamed stream is a habitat for two State-designated threatened species and is a State-
designated area for protection and maintenance of aquatic life under the Clean Water Act. The
Winooski River downstream of the Test Area is a known fishery.

The Site is currently being evaluated by the VTDEC (with funding by EPA) as part of the ongoing
Remedial Design under the Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization
Act (SARA) of 1986; and the National Oil and Hazardous Substances Pollution Contingency Plan
(NCP).

The primary sources of contamination are a former unlined lagoon and a former leaching field
where plating rinse water and sludge wastes containing heavy metals and solvents were disposed
of intermittently from 1960 to 1984. Previous studies identified three properties/lots as locations
of former manufacturing and/or fabrication operations that could have contributed to groundwater
contamination.  Volatile Organic Compounds (VOCs) including tetrachloroethene (PCE),
trichloroethene (TCE), dichloroethene (DCE), petroleum hydrocarbons, and metals including
chromium, cadmium, and nickel were detected in soil and groundwater throughout the site. TCE
was detected at the highest concentrations and is the most extensive contaminant. The three lots
and potential sources are described below:

1. Lot 19-11 (Mitec property/96 Commerce Street): The property formerly leased by Mitec
Systems Corp. (Mitec) currently includes one building. A wastewater disposal lagoon west
of the building and a leach field south of the building are suspected sources of PCE and/or
metals.

2. Lot 19-12 (Bove-Fagan property/87 Commerce Street): Two underground storage tanks
were removed from this lot in 1994 revealing a previous release of BTEX compounds.

3. Lot 19-2 (Former EMCO property/63 Commerce Street): Manufacturing operations began
in 1947 and both a disposal pit and outfall pipe to the unnamed stream have been identified.

The source for the plume lobe included in the test area has not been confirmed. Previous
investigations showed that the water table is located from 3 to 11 feet below the ground surface.
The primary (upper) aquifer consists of medium to fine sand and has a total thickness of
approximately 40 feet. Pumping tests of the primary aquifer yielded hydraulic conductivity values
ranging from 1 ft/day to 29 ft/day. Because of the extensive TCE contamination and high estimated
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potential for delivery of bio-stimulation amendments (high permeability), the Commerce Street
Superfund Site was chosen for this research project.
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Figure M.3.1. Commerce street superfund site location map.

Measurements of groundwater contamination and hydraulic head were interpolated with the
software ArcGIS using two different methods: the Inverse Distance Weighted method and the
Empirical Bayesian Kriging method. The two methods yielded similar interpolations. Contours of
hydraulic head developed using the Inverse Distance Weighted method are shown in Figure M.3.3.

The contaminated sand unit is approximately 40 feet deep. It is relatively homogeneous, but with
a slightly fining trend downwards, and is bounded below by a consistent clay layer. Recorded
(interpolated) groundwater levels indicate a small gradient from the northern part of the site
towards both the southwest and the southeast. While the southeasterly flow follows the surface
topology, the southwesterly flow component is thought to originate from intermittent sump
pumping in residential buildings on the western part of the site, performed to mitigate basement
flooding. The rate of pumping is unknown. There is a shallow brook on the eastern part of the site,
with low flow.
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Figure M.3.2. Study area location within Commerce street superfund site.

Inspection of available site contaminant concentration data revealed the presence of a complex
source zone, characterized by a number of high concentration areas, and multiple chlorinated
solvent plumes (see Figure M.3.4). Contoured data suggested the existence of more than one
source area at the site. A persistent high concentration area (source) close to Commerce Street was
chosen as the focus of this project (see Figure M.3.2). Head observations in this area indicate that
vertical groundwater flow is negligible and that the lateral flow direction in the proximity of this
source area is towards the southeast. In addition, comparison of plume contours between the years
2000 and 2011 (see Figure M.3.4) revealed that plume spreading occurred towards the southeast
in this period, consistent with the head data.

I1.3.1.1. Previous Site Investigation Work

The following section is a description of previous site investigation work prepared by Nobis (Nobis
Engineering Inc., 2018).
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Figure M.3.3. Groundwater contour map.

Previous investigations at the site were performed by Nobis and other companies between 1986
and 2012. The available data encompass stratigraphic records from soil borings; a seismic survey
to determine the extension of a clay layer underlying the contaminated sand/silt unit; 21 slug
tests/pump tests to determine the hydraulic conductivity at different depths; and over 200
measurements of groundwater levels and geochemical parameters such as pH and dissolved
organic carbon (since 2008). Chemical analyses of groundwater, soil, surface water and sediment
samples had been performed with respect to VOCs (in total over 1000 samples) and other
compounds such as dioxin, heavy metals and BTEX.

A comprehensive, chronological list of previous environmental investigations associated with the
Site is presented below. Locations of existing monitoring wells installed prior to 2014 are shown
in Figure M.3.5. For a complete discussion of previous environmental investigations, refer to the
Remedial Investigation (RI) report (Nobis Engineering Inc. 2015). Previous investigations
included:
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Figure M.3.4. TCE concentration contours.

December 1984: Mitec (Lot 19-11) contracted an environmental consultant to install
monitoring wells MI-1 through MI-9, which were located adjacent to the wastewater
disposal lagoon and to the west of Lot 19-11. The wells were installed to a maximum depth
of 17 feet below ground surface (feet bgs).

March — May 1985: Mitec hired a contractor to remove 30 cubic yards of material from the
wastewater lagoon.
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June — July 1985: Six private potable water supply wells on South Brownell Road were
found to be contaminated with TCE and PCE above the State Health Advisory Levels. All
residences were subsequently connected to the Williston public water supply system.

1985 — 1986: VTDEC installed and sampled monitoring wells AL-1 through AL-21. The
results identified VOC and metal contaminated groundwater downgradient of the Lot 19-
11 wastewater disposal lagoon. TCE was detected in shallow groundwater east of
Commerce Street. Investigators assumed additional sources were present at the AIP.

March 1987: A CERCLA Preliminary Assessment (PA) completed for Lot 19-11 by an
EPA contractor recommended further investigation.

February 1989: VTDEC completed a PA of AIP. The PA recommended further
investigation, including suspected contamination on Lot 19-2.

1990: A site investigation (SI) was conducted for Lot 19-20 on behalf of the property
owner. Groundwater monitoring wells BM-1D, BM-2S, BM-2D, BM-3S, and BM-3D
were installed and sampled. Maximum concentrations of TCE and PCE in groundwater
were reported as 2,110 micrograms per liter (ug/L) and 7.27 pg/L, respectively.

1993: A CERCLA Site Inspection of the AIP, with a primary focus on Lot 1-2, was
conducted for the EPA. Limited sampling and analysis did not reveal the suspected source
for the TCE contamination east of Commerce Street.

July 1993: An SI was conducted for Lot 19-5 on behalf of the property owner. Monitoring
wells PO-North and PO-South were installed and sampled. No VOC contamination was
observed. Low concentrations of metals detected were assumed to be associated with the
downgradient Lot 19-11.

September 1994: An SI performed on Lot 19-23 included soil sampling and installation of
monitoring wells ARC-1, ARC-2, and ARC-3. Metals contamination was detected in soil
and groundwater; VOC contamination was not detected in groundwater from shallow
monitoring wells.

June 1994: An SI was performed on Lot 19-12 in response to a petroleum release. Shallow
monitoring wells were installed and analysis revealed the presence of BTEX contamination
in groundwater.

July 1995: An SI was performed on Lot 19-30. Monitoring wells NO-1 through NO-4
were installed and sampled. TCE was detected at concentrations ranging up to 19,000 ug/L.

January 1996: A summary report of the various investigations of properties in the AIP was
prepared on behalf of the VIDEC. The report identified data gaps in previous work
performed in the area.

October 1996: An SI was performed on behalf of VIDEC to further investigate the AIP.
Several monitoring wells were installed, and TCE-contaminated groundwater was
identified under the leach field on Lot 19-11.

July 1999: A limited groundwater investigation was completed for the VTDEC. TCE was
the primary contaminant noted, with concentrations up to 91,000 pg/L in groundwater. The
report stated that based on the observed concentrations, the presence of non-aqueous phase
liquids (NAPL) was possible.
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January 2000: An SI was performed within the AIP and adjacent residential areas on behalf
of Mitec. The SI confirmed the presence of PCE, TCE, and BTEX-contaminated
groundwater, surface water, and sediments throughout the area, and identified Mitec’s
leased property (Lot 19-11) and Lot 19-23 as likely sources of groundwater contamination.

April 2005: The Site was placed on EPA’s National Priorities List (NPL).

December 2008: Nobis conducted a well survey to locate historical wells and re-develop
those deemed viable for groundwater sampling. Nobis also conducted a round of
groundwater elevation measurements and sampling, and later produced a Data Summary
Report and updated Conceptual Site Model (CSM). The report concluded that the majority
of TCE resides in the deep overburden groundwater.

May-November 2010: Nobis conducted a geophysical survey, pore-water sampling of the
unnamed stream, groundwater vertical profiling, soil boring and dense non-aqueous phase
liquid (DNAPL) testing, monitoring well installations, and a full round of groundwater
monitoring well sampling. Nobis later produced a 2010 Data Summary Report and updated
the CSM. Report findings include more detailed groundwater quality information with
respect to plume delineation, including TCE west of the AIP, pore-water discharge,
stratigraphy, and data gaps.

August-September 2011: Nobis oversaw vertical profiling to collect groundwater samples
and determine relative hydraulic conductivity. Samples were sent to an on-site mobile
laboratory for VOC screening, and the results used to determine additional sample
locations. A subset of samples was sent for confirmatory analyses of VOCs, dissolved and
total metals, and 1,4-dioxane. Nobis also collected additional groundwater elevation
measurements.

June-August 2012: Nobis collected groundwater samples from 17 monitoring wells for
analysis of VOCs, SVOCs and metals. In addition, soil samples collected from six soil
borings were sent for analysis of VOCs, SVOCs and metals to fill data gaps from the 2011
sampling effort.

June 2012-January 2013: EPA collected indoor air and soil vapor samples from five
residential and two commercial buildings. EPA also collected surface water, sediment, and
aquatic invertebrate samples within the unnamed stream to better define local conditions.

January 2013: Nobis performed slug tests at five monitoring wells to characterize areas
without previous hydraulic conductivity data.

December 2013: a contractor for VTDEC installed soil borings and piezometers, collected
groundwater samples, and performed a soil vapor and sensitive receptor survey in the area
of South Brownell Road and Shunpike Road.

April 2014: VTDEC collected indoor air and one sump water sample from a property at
South Brownell Road. Elevated TCE and PCE were detected, and VTDE installed a remedy
that included sump vapor capture and water discharge outside to the lawn. EPA performed
follow-up sampling in December 2014, and PCE and TCE were not detected.

July 2014: Nobis performed a sump investigation at nine properties. Nobis collected
shallow soil samples and sump samples (water samples if present and soil samples from
the sump if dry), and EPA representatives collected air samples from eight of the properties
based on water quality results.
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An 2015 EPA Record of Decision selected the following components for the final remedy planned
for the Site: excavation of approximately 630 cubic yards of contaminated soil at 96 Commerce
Street, in-situ groundwater treatment in the plume core, institutional controls to limit groundwater
use and soil exposure and to require continuing access to and operation of existing vapor treatment
systems, additional vapor mitigation measures if required, long-term groundwater monitoring, and
five-year reviews.
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Figure M.3.5. Location of previously installed monitoring wells.

I1.3.2. Project Site Data and Materials Collection
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The selected area for performance of the Down-Hole Treatability Test (DHT) was a 5 m long
transect east of a commercial office building at 237 Commerce Street. At this location, TCE has
been naturally attenuated to cis-DCE with concentrations up to 0.30 mM. The DHT area is
generally flat with a gradual slope to the west from 103 m to 102 m above mean sea level. Surface
water drains to an unnamed tributary west of the site within the Winooski River watershed.
Groundwater flows to the south and west with a low natural gradient of 0.0036 m/m.

I1.3.2.1. Soil Boring and Well Installation

Soil was collected during three soil boring and well installation events. All borings were completed
using a direct-push drill rig to the depth of the clay confining layer, 11.3 to 12.2 m (37 to 40 feet)
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bgs), with soil samples collected in 1.2 m (4 foot) acetate sleeves. The first event was a preliminary
site investigation consisting of two soil borings (SB-1 and SB-2) installed south of the pilot test
area (Figure M.3.6). Soil cores were opened on site where engineers from Nobis Engineering
(Lowell, MA) visually examined the cores and documented the subsurface lithology. Aliquots of
soil were collected and submitted to a commercial laboratory for VOC analysis. Additional soil
volumes were transported to the ESL for analysis of soil physical properties.

Subsequently, five continuous multichannel tubing (CMT) multilevel wells were installed in the
proposed treatment area to provide additional VOC plume concentration data to guide the design
and configuration of the pilot test. CMT well locations were selected based on groundwater
elevation data, earlier groundwater sampling results, the TCE and cis-DCE concentration data
from the preliminary soil borings, and the location of subsurface utilities (Figure M.3.6). The wells
were installed in two transects perpendicular to the expected groundwater flow direction; two wells
in the upgradient transect and an additional three wells in a transect downgradient. Each CMT
multilevel well consisted of seven discrete channels screened at discrete intervals to allow
groundwater samples to be collected from specified depths beneath the water table. Based on
concentration and lithology data obtained from earlier borings, the well screens were installed at
4.7t04.9 m (15.5 to 16.0 feet) bgs, 6.1 to 6.2 m (20.0 to 20.5 feet) bgs, 7.9 to 8.1 m (26.0 to 26.5
feet) bgs, 8.8 to 9.0 m (29.0 to 29.5 feet) bgs, 9.6 to 9.8 m (31.5 to 32.0 feet) bgs, 10.4 to 10.5 m
(34.0 to 34.5 feet) bgs, and 11.1 to 11.3 m (36.5 to 37.0 feet) bgs. During CMT well installation,
field personnel cut the recovered soil cores into 0.61 m (2 foot) sections, capped each section, and
placed them in coolers on ice for storage and transport to the Tufts ESL. While awaiting analysis,
the soil cores were stored at 4°C to minimize microbial activity and the volatilization of compounds
in the soils.

In September 2016, prior to implementing the pilot test, 4 additional wells were installed in the
vicinity of CMT-1 (Figure M.3.6). Three of these wells (DHT-1, DHT-2, and DHT-4) were 5.1
cm (2-inch) diameter PVC-wells, screened between 10.1 and 10.7 m (33.0 and 35.0 feet) bgs to
deliver amendments into and collect samples from the depths of the aquifer with high TCE and
cis-DCE concentrations. The fourth well, CMT-6, had a similar construction to the existing CMT
wells with 6 screened intervals between 6.2 and 6.4 m (20.5 and 21.0 feet) bgs, 7.9 to 8.1 m (26.0
to 26.5 feet) bgs, 8.8 to 9.0 m (29.0 to 29.5 feet) bgs, 9.6 to 9.8 m (31.5 to 32.0 feet) bgs, 10.4 to
10.5 m (34.0 to 34.5 feet) bgs, and 11.1 to 11.3 m (36.5 to 37.0 feet) bgs. CMT-6, situated 5 m
upgradient of CMT-1, allowed monitoring of constituents entering the pilot test area. Well DHT-
1 was located 3 m upgradient of CMT-1 and was used as an injection well for bioaugmentation
and biostimulation. The third well (DHT-2) is 2.0 m upgradient of CMT-1 and served as an
extraction well during recirculation and a monitoring well afterward. This configuration allowed
CMT-1 to be used as an extraction well during the pilot test. Soil cores collected during well
installation were capped, stored, and transported as described above.

All wells were developed by rapidly pumping (400 mL/min) more than three well volumes
(approximately 3.0 L) of water from the well after installation and at least 72-hours prior to
sampling to remove fine materials from the well screen and any water that was introduced during
drilling.

11.3.2.2. Groundwater Monitoring and Sampling

Site-wide groundwater elevations were measured using a Model 101 or Model 102 water level
meter (Solinst; Georgetown, ON). Measurements were collected at 35 existing site groundwater
wells in August 2014 with additional measurements prior to and during groundwater sampling
events. Groundwater samples were collected using U.S. Environmental Protection Agency (EPA)
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low-flow sampling protocols for most wells and using a modified low-flow protocol for CMT-
wells. The modified protocol limited purging to the slowest flow rate, approximately 100 mL/min,
for a maximum of 25 minutes and omitted turbidity measurements. Water was removed from the
wells using a Geopump 2 peristaltic pump (Geotech; Denver, CO) and high-density polyethylene
(HDPE) tubing. Water quality parameters (temperature, pH, dissolved oxygen, and specific
conductivity) were measured using a 556 MPS or Professional Plus 1060 meter (YSI; Yellow
Springs, OH). During the August 2014 sampling, turbidity was measured with a microTPW
Handheld Turbidity Meter (HF Scientific; Fort Meyers, FL).
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Figure M.3.6. Well locations.

Samples for chlorinated ethene and ethene analysis were collected in 40 mL glass VOA sampling
vials with septa caps, completely filled to eliminate headspace; additional sample from select VOA
vials was used for VFA, DOC, dissolved metals, and anion analysis. Samples for biological
analysis were collected in 1.0 L HDPE bottles (Fisher Scientific; Agawam, MA) for laboratory
filtration using a 0.22 um pore size filter funnel (MoBio Laboratories; Carlsbad, CA).
Alternatively, 0.3 to 2.0 L of groundwater was filtered in the field using a 0.2 pm pore size Sterivex
filter cartridge (Millipore; Burlington, MA). Sterivex filters to be used for RNA analysis were
preserved by injecting 3.0 mL of RNAlater solution (Invitrogen-ThermoFisher; Waltham, MA)
into the filter cartridge after the sample was collected. All samples were collected in triplicate,
stored on ice, and transported to Tufts ESL for storage and analysis. VOA vials were stored at 4°C,
then sampled and analyzed within 72-hours. Additional samples were stored at 4°C and biological
samples were stored at -80°C prior to analysis.

Prior to implementing the pilot test, groundwater samples were collected from 9 previously
installed site monitoring wells in August 2014, from the 5 CMT-wells (all 7 depths) in September
2014, from select CMT-well depths in October 2015 (chloroethene and biological sampling only),
and from select CMT-well depths in September 2016 (chloroethene sampling only). Immediately
preceding and throughout the pilot test, groundwater samples were collected from CMT-6, CMT-
1, DHT-1, and DHT-2 twice per month for chloroethene and VFA analysis and monthly for
biological analysis.
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I1.4. Laboratory Experiments
I1.4.1. Batch Reactor and Microcosm Experimental Methods

Batch reactor (no porous media) and microcosm (with porous media) experiments are often used
to determine the capability of microbial populations to transform chlorinated solvents, to assess
the need for biostimulation amendments, and to determine microbial transformation rates
(Duhamel et al., 2002; Major et al., 2002; Stroo et al., 2013; Stroo and Ward, 2010).

A series of batch reactor and microcosm experiments were performed with material from the
Commerce Street Site in order to design aquifer cell experiments and the DHT pilot test,
specifically to determine the need for bioaugmentation and biostimulation amendments. These
experiments were also used to obtain initial parameters for models of microbial reductive
dechlorination.

Batch reactor and microcosm experiments were performed in 160 mL glass serum bottles capped
with butyl rubber stoppers and aluminum crimp caps. All reactors were prepared at room
temperature in an anaerobic chamber containing an atmosphere of 97% N2/3% H> (Coy Laboratory
Products; Grass Lake, MI).

Porous media used in microcosms were derived from cores collected during the installation of
CMT and DHT wells as described in Section II.3.2.1 above. Cores used in microcosms were
opened and stored in the anoxic chamber prior to use. Reactors were prepared with 0.0 to 20 mL
of porous media (0.0 to 15 g) and 80 to 100 mL of liquid for a total volume of approximately 100
mL. The liquid phase consisted of an anoxic growth medium prepared according to (Loffler et al.,
2005), unamended site groundwater, anoxic site groundwater prepared as described in Section I1.1
above, or a combination of groundwater and growth medium (Table M.4.1).

Reactors were amended with 0.10 to 0.48 mM TCE and a subset of reactors were amended with 5
to 10 mM sodium DL-lactate (60%v/v solution) as electron donor and/or 0.1 mL of Wolin vitamin
solution (Wolin et al., 1963); select reactors were bioaugmented with BDI-SZ or KB-1® inoculum
(Table M.4.1). Abiotic control reactors were prepared with sterilized growth medium and sterilized
porous media to identify possible chlorinated ethene losses caused by abiotic processes, including
adsorption to rubber stoppers. Each configuration (see Table M.4.1) was prepared in triplicate for
a total of 123 reactors. This matrix of microcosm reactors was used to determine the ability of the
native microbial community to breakdown TCE with or without electron donor addition and to
assess the need for bioaugmentation.
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11.4.2. Aquifer Cell Transformation Studies; Experimental methods
11.4.2.1. Aquifer Cell 1

Although bioaugmentation and biostimulation have been implemented as effective remedial
strategies, many sites exhibit incomplete dechlorination to dichloroethene isomers (DCE) and/or
VC or exhibit rebound of contaminant concentrations when active biostimulation ceases (Kielhorn
etal., 2000; Lendvay et al., 2003; Major et al., 2002; Stroo and Ward, 2010; Tillotson and Borden,
2017). Contaminant rebound is exacerbated by subsurface heterogeneity, which enables
contaminant retention as aqueous and sorbed phases in low permeability porous media, allowing
for the slow release of the compounds over time (McGuire et al. 2006; Sale et al. 2013; Stroo and
Ward 2010). Subsurface heterogeneity also complicates bioremediation as most bioremediation
amendments are delivered through groundwater injection and do not effectively distribute into low
permeability regions (Sale et al., 2013; Stroo et al., 2013).

Despite these limitations, bioremediation can be effective in heterogeneous systems (Damgaard et
al., 2013b; Scheutz et al., 2010). Biological reductive dechlorination of TCE and PCE adjacent to
NAPL source zones is known to increase the dissolution rate by dechlorinating dissolved
contaminants to more water soluble compounds and by increasing the concentration gradient
between the NAPL and the surrounding fluid, thus reducing source longevity (Amos et al., 2009;
Capiro et al., 2015; Sleep et al., 2006; Yang and McCarty, 2000). Similarly, biological activity in
higher permeability zones where bioremediation amendments are more easily distributed can
facilitate the back diffusion of compounds from low permeability into higher flow regions by
increasing the mass transfer driving force (Chambon et al., 2010; Lima and Sleep, 2007; Scheutz
et al., 2010).

Numerical models can serve as predictive tools to guide site management and decision-making,
and have been demonstrated to provide accurate assessment of multi-dimensional systems
involving permeability heterogeneity and back diffusion at the field- and bench-scales (Chapman
et al., 2012; Chapman and Parker, 2005; Parker et al., 2008; Rodriguez, 2006). However, these
studies do not account for changes to the driving force and contaminant properties (e.g. diffusivity,
sorptive capacity, volatility) caused by biological transformation. Further, there are limited studies
that have utilized numerical models to quantify the extent of back diffusion when enhanced by
biotransformation.

Due to their important role in attenuating releases from low-permeability media and influence
contaminant rebound rates, understanding the distribution of dechlorinating organisms in
heterogeneous porous media and quantifying their contribution to enhanced mass flux is essential
to designing effective remedies for chlorinated solvent contamination in real-world systems.
Quantifying Rdase genes has become a useful tool for identifying Dhc stains and assessing the
dechlorination capability of a microbial community (Damgaard et al., 2013b; Lee et al., 2008;
Ritalahti et al., 2006; Van Der Zaan et al., 2010). In addition to understanding the distribution of
organisms at the genus or species level in heterogeneous systems, examining the distribution of
specific Dhc strains (i.e., cells harboring specific Rdase genes) is necessary to gain a complete
picture of dechlorination potential.

This research was undertaken to improve our understanding of microbial growth and distribution
within heterogeneous porous media and the contribution of these microbes to increasing the flux
of contaminants from low permeability and highly sorptive materials. The influence of
permeability and substrate (electron donor and acceptor) availability on the distribution of Dhc
16S rRNA and Rdase genes and how these conditions influence the roles of microorganisms was
examined using a laboratory-scale, multi-dimensional aquifer cell system. This experiment
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(hereafter referred to as Aquifer Cell 1) was performed in an aquifer cell packed with five porous
media with permeabilities ranging from 0.03 to 10.2 m/day. An abiotic study of the diffusion of
TCE from low permeability regions was completed and compared to results of a subsequent biotic
experiment in which the aquifer cell system was bioaugmented with KB-1® (SiREM, Guelph, ON).
Spatial and temporal distributions of DAc, Rdase genes, and TCE daughter product formation were
monitored within the aquifer cell system using side sampling ports.

A numerical model (Section I1.5) capable of simulating abiotic contaminant transport, including
diffusion and sorption, was calibrated using data gathered in the abiotic phases of the experiment.
This model was then used to compare a prediction of abiotic contaminant transport to the actual
contaminant transport observed during the biotic experiment.

11.4.2.1.1. Aquifer Cell 1: Setup and Preparation

The aquifer cell measured 63.5 cm (length) x 38 cm (height) X 1.4 cm (thickness) and was
constructed with two 1.4 cm thick glass panels held in an aluminum frame configured with
sampling ports aligned in four vertical columns (Capiro et al., 2015). A layer of clay collected
from the Commerce Street Superfund Site (Williston, VT) was emplaced in the bottom 3 cm of
the aquifer cell to create a lower confining layer. The clay was dried, ground with a mortar and
pestle, and re-saturated with a 0.76 mM TCE solution prior to emplacement. Above the clay, the
aquifer cell was packed under water saturated conditions with ASTM Standard 20/30 sand (US
Silica Company; Ottawa, IL) as the background with four 5 cm (height) x 14 cm (length) emplaced
lenses positioned with sampling ports downgradient of each. The lens materials consisted of:
Webster soil (Iowa State University Agricultural Experiment Station; Ames, [A), Appling soil
(University of Georgia Agricultural Experiment Station; Eastville, GA), F-95 low permeability
sand (Fisher Scientific; Hampton, NH), and loamy sand collected from the Commerce Street site
in Williston, VT (Figure M.4.1) with material properties detailed in Table M.1.1. After packing,
flow was established in the aquifer cell using a constant head influent system as described by
(Capiro et al., 2015). Influent solutions were prepared in a 5.0 L Mariotte bottle and the flow rate
was maintained between 0.10 and 2.60 mL/min by adjusting the heights of the influent and
effluent. Flow rates correspond to a seepage (pore-water) velocity of 7.47 to 82.5 cm/day and a
residence time of 0.77 to 8.5 days.

I1.4.2.1.2. Tracer and Abiotic Desorption Experiment

A tracer test was performed in the aquifer cell using a 10 mM sodium bromide (Fisher Scientific;
Hampton, NH) and 0.075 mM sodium fluorescein (Sigma Aldrich; St. Louis, MO) solution at a
flow rate of 2.3 to 2.6 mL/min (200-227 cm/day seepage velocity). After a 750 mL pulse of this
solution (approximately 0.66 PVs), the influent was changed to the background electrolyte solution
of 10 mM sodium chloride. Effluent samples were collected continuously in 19-minute fractions
using a CF-2 fraction collector (Spectrum Laboratories; Rancho Dominguez, CA). Additional 0.6
mL samples were collected from 12 of the sampling ports throughout the tracer experiment
approximately once every 90 minutes. Effluent sample bromide concentration was measured using
a bromide combination electrode; port sample bromide concentrations were measured by IC as
described in Section I1.2.2. Black light, time-lapse photographs were taken with an EOS Rebel T2
digital camera (Canon; Melville, NY) throughout the tracer experiment to visually verify the flow
of fluorescein through the aquifer cell.
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Figure M.4.1. Aquifer cell layout and sample locations. Aqueous sampling ports sampled throughout
experiment ., final 7 rounds only O, and additional soil sample locations EA.

After the tracer experiment, the aquifer cell was flushed with a 0.5 mM TCE and 10 mM sodium
bromide solution, as summarized in Table M.4.2. When measured TCE concentrations in each of
the sampling ports were greater than 0.39 mM, the influent was changed to 10 mM sodium chloride
solution without TCE to unload TCE from the cell (Table M.4.2). During this period, 1.6 mL
samples were collected from 12 sample ports using a syringe pump to draw samples at a rate of
0.1 mL/min (10% of the background flow rate); 1.6 mL effluent samples were collected from a
sampling bulb in the effluent line. Ports were selected for sampling based upon their locations
relative to the clay and soil lenses and to provide a sampling port downgradient of each lens;
preliminary modeling results suggested that these locations would be most affected by the soil
lenses. Sample aliquots (1.0 mL) were used to measure chlorinated ethene (TCE, cis-DCE, and
V() and ethene concentrations by GC with FID and the remaining sample volume (0.6 mL) was
analyzed for bromide concentration by IC. Details of analytical methods are provided in Section
11.2.2.

11.4.2.1.3. Biotic Degradation Experiment

Following the abiotic desorption experiment, the aquifer cell was again loaded with a 0.5 mM TCE
influent in three phases (Table M.4.2). Anoxic conditions were then established by changing the
influent solution to a reduced mineral salts medium prepared according to Cépiro et al. (2015), and
containing 10 mM sodium lactate solution and 0.5 mM TCE. The flow rate was subsequently
reduced to approximately 0.25 mL/minute (18 cm/day seepage velocity; 3.4-day residence time)
to provide additional time for biodegradation reactions to be observed. The aquifer cell was then
bioaugmented with KB-1® inoculum (SiREM; Guelph, Ontario). The SiREM-provided inoculum
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was diluted in sterile, reduced mineral salts medium, then 20 mL of dilute inoculum was injected
into each of the 18 sampling ports using a syringe pump at a rate of 0.1 mL/min to provide target
of approximately 10* Dhc gene copies/mL of pore water, the cell density suggested to yield
acceptable degradation rates (Adrian et al. 2016).

Table M.4.2. Aquifer cell 1 experimental parameters. (L = Loading, U = Unloading)

Bromide Tracer Abiotic Experiment Biotic Experiment
Phase Phase Phase

Phase L U L U LI LII LI I I I
Avg.
Flow 2.4 2.4 1.0 0.93 0.51 0.71 0.39 0.27 0.21 0.16
Rate
(mL/min)
Duration
(PVs) 0.63 2.3 15.9 8.9 12.9 6 3.7 2.6 5.8 1.5
Duration 0.21 0.79 13 8 21 7 8 8 23 8
(days)

10 mM

sodium

bromide
Influent and 10 mM 10 mM 10 mM 10 mM  Mineral Salts Medium with 10 mM sodium
Solution 0.075 sodium sodium sodium sodium lactate
(mM) mM chloride  bromide chloride chloride

sodium

fluoresce
in

Influent
TCE 0 0 0.5 0 mM 0.5 0.5 0.5 0.5 0.04 0.01
(mM)

Subsequent to bioaugmentation, the influent solution of mineral salts medium, lactate, and TCE
was maintained (Phase I), after which the influent TCE concentration was reduced to 0.04 mM
(Phase II) (Table M.4.2). For the final Phase (III), the influent TCE concentration was lowered to
0.01 mM TCE. Samples of 1.0 to 2.6 mL were collected from the 12 side ports and from the
effluent throughout each stage of the experiment and analyzed for chlorinated ethenes and ethene
as described above; after bioenhanced diffusion was observed, an additional port (Port 2D) was
sampled during the final 7 rounds of aqueous sampling, beginning 25 days (6.6 PVs) after
bioaugmentation. Sample aliquots of 0.5 mL were also analyzed for VFAs by HPLC and the
remaining sample volumes were centrifuged and frozen for microbial quantification according to
Capiro et al. (2015). Details of DNA extraction and microbial quantification via qPCR under
TagMan-based chemistry are provided in Section I1.2.3. (Ritalahti et al. 2006).

11.4.2.1.4. Soil Sampling and Analysis

Following collection of the final round of aqueous samples from the side ports, the aquifer cell
was placed on its side, and one pane of glass was removed. Soil samples were collected from the
porous media corresponding to the 13 ports where aqueous samples were collected with an
additional 3 samples collected from each of the soil lenses and 6 samples collected from the clay
confining layer (Figure M.4.1). Each sample was immediately placed in a sterile container and
frozen at -80°C for future DNA extraction and microbial quantification. An additional thirty-five
samples (5 of background sand, 5 of each lens, and 10 of the clay confining layer) were collected
and analyzed for TCE using the methanol extraction procedure described in Section I1.2.1.
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11.4.2.2. Aquifer Cell 2

The reliability of model predictions for contaminant biodegradation and field cleanup time depend
on the characterization of reaction processes and, more importantly, the use of relevant degradation
rates (NRC, 2013). Due to the difficulty in assessing field-scale degradation rates, laboratory
estimated parameters and reference values, most commonly derived from microcosm batch
studies, have commonly been used for field-scale simulations (Scheutz et al. 2010). However,
studies (Ding et al. 2017; Phanikumar et al. 2005) have demonstrated that field scale models using
degradation rates from laboratory experiments over-predict the contaminants degradation by up to
several orders of magnitude. Incomplete mixing of reagents induced by field heterogeneity has
identified to be the main reason for smaller reaction rates in the field (e.g., Dentz et al., 2011;
NAVFAC, 2013). Supporting this hypothesis, Haest et al., (2011) demonstrated the effect of mass
transport limitations by comparing batch dechlorination rates with rates in column experiments
but did not compare their results with a field-scale system.

Dechlorination rates of VOCs depend on numerous properties including: environmental
conditions, species present, heterogeneities in porous media, and mass transfer rate limitations.
Values derived for one system and microbial community may not be appropriate for different
systems or populations. Furthermore, despite the progress made in applying numerical models for
field scale dechlorination (e.g., Chambon et al., 2010; McCarty et al., 1998), there is, to date, no
numerical study comparing the dechlorination rates from batch to intermediate scale to field scale.
Although there are multiple studies of bioremediation at the field scale (Schaefer et al. 2010;
Semkiw and Barcelona 2011), none of these studies includes comparisons to both batch and 2-
dimensional flow systems using the same materials and methods.

To compare dechlorination rates across experiments of increasing complexity, an aquifer cell
experiment (hereafter referred to as Aquifer Cell 2) was designed to recreate as closely as possible
the conditions of the planned pilot (DHT) test. All porous media and groundwater were obtained
from the Commerce Street Superfund Site in Williston, VT as described in Section II.1.
Dechlorination rates derived from the microcosm experiments (Section I1.4.1) were used to predict
the performance of the aquifer cell using a numerical model incorporating transport of
contaminants and electron donors coupled with a model of microbial reductive dechlorination
(Section I1.5). The performance of the aquifer cell experiment was also compared to the DHT pilot
test to assess the suitability of laboratory-derived dechlorination rates on field-scale applications
(Section 1V).

11.4.2.2.1. Aquifer Cell Setup and Preparation

The second 63.5 cm (length) x 38 cm (height) x 1.4 cm (thickness) aquifer cell was constructed in
the same frame described in Section 11.4.2.2.1 above. Site clay (borehole CMT-2, 12.2 to 12.8 m
[40 to 42 feet] bgs) was dried, ground with a mortar and pestle, then resaturated with a 0.76 mM
TCE solution and emplaced in the bottom 3 cm of the aquifer cell to create a lower confining layer.
Above the clay, the aquifer cell was packed under water saturated conditions with site soil collected
from the 9.4 to 10.4 (31 to 34 feet) bgs cores of borehole DHT-2, collected and stored as described
above. For the cores used in the aquifer cell, the acetate sleeves were opened in an anoxic chamber
and separated into sections representing 15 cm (6-inches) of borehole depth. Each discrete section
was homogenized by mixing with a scoop, placed in Ziploc® bags, then packed in the aquifer cell
within 1 hour to maintain the native microbial population. The discrete sections of soil cores were
placed in 4 to 6 cm layers in the aquifer cell to recreate the stratigraphy of the field site (Figure
M.4.2).
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After packing, flow was established in the aquifer cell using a constant head influent system as
described by (Cépiro et al. 2015). Anoxic site groundwater was prepared in a 5.0 L Mariotte bottle
and the flow rate was controlled by adjusting the heights of the influent and effluent to maintain a
flow rate between 0.10 and 0.20 mL/min; a corresponding seepage (pore-water) velocity of 12.5
to 25 cm/day and a residence time of 4.8 to 9.5 days.
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Figure M.4.2. Second Aquifer Cell configuration.
11.4.2.2.2. Aquifer Cell Operation

A tracer test was performed in the aquifer cell using a 385 mL (approximately 1/3 pore volume)
pulse of 10 mM sodium bromide and 0.06 mM (50 mg/L) erioglaucine A (blue dye) solution at a
flow rate of approximately 0.15 mL/min. Effluent samples were collected continuously in 75
minute fractions using a CF-2 fraction collector (Spectrum Laboratories; Rancho Dominguez, CA)
and bromide concentrations were measured using a bromide combination electrode (Cole Parmer;
Vernon Hills, IL). Time-lapse photographs were taken with an EOS Rebel T2 digital camera
(Canon; Melville, NY) throughout the tracer experiment to visually verify the flow of erioglaucine
A tracer through the aquifer cell.

After the tracer experiment, the aquifer cell was flushed with a solution of 0.3 mM TCE in anoxic
site groundwater for a period of 32 days at a flow rate of 0.2 mL/min (25 cm/day seepage velocity)
to establish a uniform background contaminant concentration. The aquifer cell was then
reconfigured to a recirculation system where the effluent was removed with a peristaltic pump
(Cole Parmer; Vernon Hills, IL) at a rate of 0.1 mL/min (12.5 cm/day seepage velocity), amended
with 100 mM lactate stock at 0.01 mL/min to achieve a concentration of 10 mM lactate, and
reinjected into the aquifer cell. After 10-days of recirculation, the aquifer was bioaugmented with
KB-1® inoculum (SiREM; Guelph, Ontario). The SiREM provided inoculum was diluted 1:320 in
anoxic site groundwater amended with 10 mM lactate and 20 mL of dilute inoculum was injected
into each of the 5 sampling ports in the first column using a syringe pump at a rate of 1 mL/min to
provide target of approximately 10° DAc cells/L of pore water, the cell abundance that indicates
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complete transformation to ethene is likely (Lu et al. 2006; Ritalahti et al. 2010b; a; Stroo et al.
2013). Recirculation with lactate amendment continued for an additional 14 days following
bioaugmentation to distribute the inoculum throughout the aquifer cell. After recirculation, the
aquifer was converted back to a head-driven flow system without recirculation. Flushing of anoxic
groundwater with 0.3 mM TCE continued at a flow rate of approximately 0.1 mL/min for 88 days,
after which the flow rate was reduced to 0.05 mL/min and maintained for an additional 64 days
(Table M.4.3).

After the recirculation phase, three pulses of lactate were introduced into the aquifer cell by
changing the influent solution to anoxic groundwater amended with 0.3 mM TCE and 5 mM
lactate. Each pulse consisted of 1.0 L, approximately 1 PV, of lactate-amended influent solution.
The first two pulses contained 10 mM lactate and were injected over the course of 7 days at a flow
rate of 0.1 mL/min, the final pulse contained 5 mM lactate and was injected over 14 days at 0.05
mL/min. The pulses began 17.7, 59.7, and 101.6 days following the end of recirculation.

Table M.4.3. Aquifer cell 1 experimental parameters.

Bromide Lactate Bioaus- Lactate/ Lone-term Monitoring
Phase Tracer/ TCE . . g Biomass g . w/ Reduced
. Recirculation mentation . . Monitoring
loading Recirculation Flow Rate
D(“dr:yt;‘)’“ 37 10 | 14 88 64
Pore Water
Velocity 15 15 7.5 7.5 7.5 3.75
(cm/d)
Residence
Time (days) 4 4 8 8 8 16
10 mM 0.3 mM
bromide: 0.06 100 mL of TCE:2 0.3 mM TCE:
. dilute KB-1®
Iniections mM erio- 0.3 mM TCE,; in first 0.3 mM TCE,; pulses of 10 1 pulse of 5
J glaucine A 10 mM lactate column of 10 mM lactate mM lactate mM lactate
(blue dye); 0.3 orts (7 days (14 days)
mM TCE P cach)

Throughout the experiment, 1.6 mL samples were collected from 10 of the sample ports using a
syringe pump to draw a sample at a rate of 0.1 mL/min (10% of the background flow rate); effluent
samples were collected from a 10 mL sampling bulb in the effluent tubing. Chlorinated ethene
(TCE, cis-DCE, and VC) and ethene concentrations were measured using by GC with FID. Sample
aliquots were also analyzed for VFAs by HPLC and additional sample volumes were centrifuged
and frozen for microbial quantification according to (Cépiro et al. 2015).

11.4.2.2.3. Soil Sampling and Analysis

Following collection of the final round of aqueous samples from the side ports, the aquifer was
placed on its side, and one pane of glass was removed. Soil samples were collected from the porous
media corresponding to all 18 ports with an additional 6 samples collected from the clay confining
layer. Each sample was divided in half with one portion immediately placed in a sterile container
and frozen at -80°C for future DNA extraction and microbial quantification and the remaining
sample immediately placed in methanol for TCE and cis-DCE analysis using the methanol
extraction procedure described in Section I1.2.1.
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I1.5. Multiphase Flow and Reactive Transport Modeling Framework

IL1.5.1. Introduction — Modeling DNAPL Mass Release, Transformation, and Persistence in
Heterogeneous Environments

At aged DNAPL contamination sites, as concentrations in the more transmissive zones decline,
contaminants sequestered in low permeability zones are released back into the mobile plume. This
process is often referred to as “back diffusion” (BD) (Mackay and Cherry 1989). Along with
DNAPL dissolution, BD has been increasingly recognized as an important process that sustains
chlorinated solvent plumes (Abriola et al., 2012; NRC, 2013; Sale et al., 2013, 2008; Stroo et al.,
2012).

A number of studies have employed numerical models to capture diffusive mass transport into low
permeability zones and to predict persistence of plume tailing due to BD (Chapman et al., 2012;
Chapman and Parker, 2005; Maghrebi et al., 2015, 2014; Matthieu et al., 2014; Parker et al., 2008).
In general, these previous numerical simulation studies have been implemented on idealized
domains. At real field sites, however, variability of permeability at the small scale can range over
several orders of magnitude. Maghrebi et al. (2015) is the only previous numerical modeling
investigation of BD that incorporated a heterogeneous permeability field generated by a
geostatistical model.

Although sorption is an important process within many low permeability units and can influence
mass transfer, the influence of sorption on the mass rebound process in chlorinated solvent source
zones has not generally been as well-recognized as that of diffusion. While a few previous
modeling studies (Maghrebi et al., 2014, 2015; Rodriguez, 2006) have incorporated sorption and
explored the effect of sorption properties on plume tailing, most have emphasized the effect of
diffusion. In addition, these studies have typically assumed local equilibrium and isotherm
linearity. Many experimental studies, however, have demonstrated that the linear equilibrium
assumption fails to capture observed behavior. Thus, sorption processes in the subsurface are
generally characterized as nonlinear and/or rate-limited, particularly over the wide range of
concentrations encountered within DNAPL source zones. Furthermore, the use of simplified
configurations of permeability heterogeneity in previous simulation studies also resulted in limited
spatial variation of sorption parameters. It is widely recognized, however, that heterogeneity of
sorption properties can substantially influence solute transport and result in asymptotic
concentration tailing (e.g., Aksoy & Culver, 2004; Rabideau & Miller, 1994).

Most of the previous simulation studies of mass emanating from DNAPL source zones simplified
source functions as constant sources (Chapman and Parker, 2005; Maghrebi et al., 2015, 2014;
Parker et al., 2008) or as time varying expressions based on known data (Chapman and Parker,
2005; Rodriguez, 2006) and did not explicitly incorporate DNAPL dissolution processes. Thus,
researchers did not include heterogeneous DNAPL saturation distributions as model inputs.
However, it is now widely recognized that the distribution of DNAPL within a source zone (also
known as DNAPL architecture), developed under the influence of a number of site-specific
conditions (e.g. Dekker and Abriola, 2000; Lemke et al., 2004a), can be quite complex (e.g. Kueper
et al., 1993; Mercer and Cohen, 1990), and that this DNAPL architecture will largely control the
behavior and longevity of dissolved mass plumes (e.g. Christ et al., 2010, 2006; Lemke et al.,
2004b; Parker and Park, 2004; Phelan et al., 2004). Thus, it is important to consider the spatial
distribution of DNAPL in any investigation of BD and plume persistence in heterogeneous source
zones.

In addition, most of the previous simulations investigating BD have been performed in 2-D
domains, with only a few conducted in 3-D (Maghrebi et al., 2015, 2014). Reduced dimensionality
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simulations, however, may not be able to completely capture flow by-passing effects or accurately
predict the magnitude and penetration depth of mass in lower permeability zones. Thus, plume
persistence may vary with model dimensionality, and it will be important to compare concentration
rebound predictions in two and three dimensions.

Microbial reductive dechlorination has been shown to accelerate source zone mass removal and to
potentially reduce persistence of toxic plumes by enhancing mass transfer from the nonaqueous
to the aqueous phase (e.g., Amos et al., 2008; Capiro et al., 2015; Sleep et al., 2006). Although
attractive as a standalone or complementary remediation technology, there is an urgent need to
improve our understanding of dechlorination processes in heterogeneous environments, especially
in low permeability zones, due to their important role in determining remediation efficacy (Stroo
et al., 2012). Subsurface heterogeneity can affect the distribution and mass flux of fermentable
substrates and electron donors between transmissive zones and flow-inaccessible regions.
Sequestered substrates in low permeability zones may sustain long-term release of donor mass for
dechlorination within or outside of the low permeability zones (Adamson et al., 2011; Adamson
and Newell, 2009), potentially altering spatial biomass distributions. Additionally, heterogeneity
can influence solute residence times in reactive zones. Previous studies (Amos et al., 2008; Chen
et al., 2013) have shown that residence time is a key factor to the determination of the extent of
dechlorination.

While select studies have utilized numerical models to assess dechlorination rates in laboratory-
scale homogeneous batch (e.g., Bagley, 1998; Fennell and Gossett, 1998; Huang and Becker, 2011;
Lee et al., 2004; Sabalowsky and Semprini, 2010a; Yu and Semprini, 2004) and column systems
(e.g., Chenetal., 2013; Haest et al., 2010; Sabalowsky and Semprini, 2010b; Schaefer et al., 2009),
there are markedly fewer modeling studies of multidimensional laboratory systems (e.g., Chu et
al., 2003; Haest et al., 2012). Although field scale modeling of reductive dechlorination has been
conducted in a few studies (e.g., Becker and Seagren, 2009; Christ and Abriola, 2007; Manoli et
al., 2012; Widdowson, 2004), assessment of dechlorination performance under heterogeneous
conditions has been very limited (Hammond et al., 2005). As stated in 11.4.2.3, field-scale models
using laboratory dechlorination rates have tended to overpredict contaminant degradation.

The following sections describe the development and implementation of a mathematical modeling
framework employed in this research to explore the influence of dissolution, sorption, microbial
transformation and diffusion process coupling on source longevity, plume evolution, and remedial
performance in complex geologic environments. This model was also employed to design and
interpret microcosm (section I11.2), and aquifer cell experiments (section I11.3), to develop training
and test data for DRF and FOSM model development (sections III.6 and 7), and to design and
assess the DHT (section IV).

I1.5.2. Modeling DNAPL Infiltration

Heterogeneous permeability fields and DNAPL saturations were generated numerically for
applications to coupled processes exploration (IIl.4.), geostatistical modeling (III.6.), and
sensitivity/optimization modeling (II1.7.). Permeability field realizations were constructed based
on an real heterogeneous aquifer for which a high-resolution analog dataset is available (Bayer et
al. 2011; Heinz et al. 2003). This formation was selected as representative of a structured
heterogeneous unconsolidated depositional aquifer environment. Aquifer materials in this
formation were grouped into four dominant lithofacies (Table M.5.1) based on the aquifer analog
and measured permeability values, following the method by Maji (2005). A series of 3-D
realizations of categorical fields were conditionally generated based on synthetic ‘boreholes’ using
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a transition-probability-based Markov Chain (TP/MC) method (Carle 1999). 2-D realizations were
then extracted from the x-z cross section of the 3-D domains (Figure M.5.1).

Table M.5.1. Porous medium properties and capillary pressure-saturation parameters.

GS-x Gem S-x bGem,I
i Sandy gravel Poorly-sorted ~ Well-sorted Cobble-and-
Description (Silty sand, coarse- boulder-rich
. . gravel sand
grained silt) gravel
Volumetric Proportion® 29% 57% 6% 6%
. T, 4.50E-05
Hydraulic Conductivity® (m/s) (4.50E-06) 2.30E-04 1.00E-03 1.30E-01
. . i b 0.38
Median Grain Size® (mm) (0.038) 0.44 0.36 0.57
Uniformity Index® 1.75 1.66 2.38 1.67
. . 1667.73
Air Entry Pressure® (Pa) 3770.37 (Reference) 799.82 70.15
a. Maji, (2005), b. Heinz et al. (2003), c. Fit with method of Haverkamp and Parlange (1986).
Y
X
E . I
o 320L
3
£3
N5
6
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0 80L
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Figure M.5.1. Construction of 3-D and 2-D domain and conceptualization for 3-D and 2-D DNAPL release
for hypothetical field 1.

Migration and entrapment of DNAPL was simulated by solution of coupled two phase (organic
(o), water (w)) mass balance equations, incorporating a modified Darcy expression (Abriola et al.,
1992),
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where p; is the density of i-phase, K is the soil intrinsic permeability tensor, k,; is the relative
permeability of i-phase fluid (i=o,w), yu; is the dynamic viscosity, P; is the i-phase fluid pressure,
and q; represents the external sources/sinks. The coupled equations (M.5.1) were discretized and
solved using the multiphase flow simulators Michigan Vertical and Lateral Organic Redistribution
(MVALOR) (2-D) (Abriola et al. 1992) and University of Texas Chemical Compositional
Simulator (UTCHEM) (3-D) (Delshad et al. 1996). The framework developed by Kaluarachchi
and Parker (1992) was employed to account for entrapment hysteresis effects. This approach uses
an apparent effective water saturation that is a function of effective water saturation and immobile
organic phase saturation. The Brooks-Corey-Burdine formulations (Brooks and Corey 1964;
Burdine 1953) were adopted for modeling two phase capillary pressure-saturation and relative
permeability relations. A detailed description of these constitutive relations can be found in
Rathfelder and Abriola, (1998). The coupled, nonlinear mass balance equations, along with the
constitutive relations and the constraint, S, + S,, = 1.0, constitute a well-posed problem. Details
of the numerical implementation and solution algorithms in 2- and 3-D can be found in Abriola et
al. (1992) and Delshad et al. (1996), respectively.

In this work, the above multiphase flow models were used to create initial DNAPL distributions
for subsequent reactive transport model simulations (I1.5.3.3). The decoupling of infiltration and
transport simulations is based on the assumption that the time scales of infiltration and plume
development are vastly different (weeks to months versus decades). A similar decoupled modeling
approach was employed by Lemke et al. (2004) and Christ et al. (2006) to study plume evolution
from DNAPL dissolution.

PCE was selected as a representative DNAPL for model simulations. Tables M.5.1 and M.5.2
summarize the input parameters used in the DNAPL infiltration simulations for aquifer properties,
fluid properties and capillary pressure-saturation relations. Air entry pressures and pore size index
values for each aquifer material are listed in Table M.5.1. Because it comprises the largest
volumetric portion of the formation, Gem was selected for estimation of the reference air entry
pressure and pore size index (grain size distribution curves obtained from Heinz et al. (2003)) by
employing the Haverkamp and Parlange (1986) method. Leverett scaling was used to determine
the capillary entry pressure for the other three lithofacies. For simplicity and in the absence of data,
the pore size index, maximum residual DNAPL saturation, and irreducible water saturation
parameters were assumed uniform for the four materials (Table M.5.2).

The ensembles of 2-D PCE saturation distributions were generated by simulating infiltration
events using MVALOR. A specific volume of PCE was released at a specified rate from a four-
node area (0.5m?) in the top layer of the modeled domain (Figure M.5.1). 3-D DNAPL infiltration
simulations were conducted using UTCHEM. In these simulations PCE DNAPL was released at a
constant rate from a central location in the top grid layer across a 5x4 grid block area of (2.5 m?)
(Figure M.5.1). Here the spill volume per nodal area corresponded to that spilled in the 2-D
simulations. Impermeable boundaries were specified for the bottom boundaries of the domains;
constant pressure and saturation boundaries were specified for the side boundaries and top
boundaries. The resulting non-uniform saturation distributions were then used as inputs to the
transport model.
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Table M.5.2. DNAPL spill simulation input parameters.

Description Parameter Unit
Fluid Properties Water PCE

Density® 9.990E+05 1.625E+06 gr/m’
Dynamic viscosity® 1.121E-03  8.90E10-04 Pa-s
Compressibility? 440E-10 0 Pa’!
Residual saturation  0.08? 0.235° (Uniform)

Initial saturation 1 0

Aqueous Solubility? - 150 gr/m?
Aqueous Diffusivity® - 7.500E-06 cm?/s

Capillary pressure-saturation parameters

Uniform porosity* 0.23

Pore size index® 2.33

Matrix Properties

Longitudinal Dsp® 0.05 m
Horizontal Dsp’ 0.01 m
Vertical Dsp’ 0.001 m
Solid Bulk Density’  1.625E+06 gr/m’

a. Set to be uniform in the domain (Christ et al., 2005).
b. Fit to match data of Hoag and Marley (1986).

c. Set to be uniform in the domain (Wang, 2013).

d. Montgomery (2007).

e. Lucius et al. (1992).

f. Maji and Sudicky (2008).

I1.5.3. Modeling Reactive Transport at the Laboratory and -and Field Scales
I1.5.3.1. Governing Equations

The aqueous transport of a dissolving DNAPL component can be represented as:
%((PSaCia) +V- (qbsaciaza) —-V- (¢SaDﬁ . VCia) — Eian + Eias + ng (M.5.2)

where ¢ is the porosity of the aquifer material (dimensionless), s, is the aqueous phase saturation
(dimensionless), C# is the mass concentration in aqueous phase (ML), v® is the aqueous phase
linear pore water velocity (LT™!), D§ is the hydrodynamic dispersion tensor in the aqueous phase
(L*T"), and Ef™ represents the interphase mass exchange between the nonaqueous and aqueous
phases. E{** is the mass transfer between the sorbed and aqueous phases:

aS;
E® = —p, 2 (M.5.3)

2

where p,, is the bulk density of the porous medium (ML) and S; is the sorbed concentration of
the component with respect to the solid mass (MM™!). Rf represents biotransformation/production
of component i in the aqueous phase.
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Three types of sorption models are incorporated in the model: (a) linear equilibrium sorption, S; =
K4CE, (b) Freundlich equilibrium sorption, S; = K¢(C; *)"/, and (c) non-equilibrium sorption
characterized by a first-order reversible kinetic expression, —p,dS;/dt = —B(CY — S;/Ky),
where K is the distribution coefficient (L*M™), K is the Freundlich constant (L°M™)"), n; is

Freundlich exponent (dimensionless), and S is the first-order mass transfer rate between the
aqueous and solid phases (T!).

Dissolution is represented by a linear driving force expression, consistent with numerous previous
modeling and laboratory investigations (e.g., Christ et al., 2006; Parker and Park, 2004):

Ef = k" (Cleq — C) M.5.4)

L

where k%" is a lumped mass transfer rate coefficient (T-!) and C{eq 1s the aqueous solubility of the

DNAPL (ML?). Here C{eq 1s assumed to approximate the aqueous phase concentration of the
component at the DNAPL and bulk aqueous interface. A number of Gilland-Sherwood correlation
expressions have been developed in the literature to quantify the lumped mass transfer rate
coefficient (e.g. Imhoff et al., 1994; Miller et al., 1990; Powers et al., 1994). These correlations
are generally a function of DNAPL saturation, grain size information and flow velocity. For the
simulations reported herein, the lumped mass transfer coefficient is computed according to the
following correlation (Powers et al., 1994),

0.518+0.11428040.10U;

dm

KA — 413 g_é?(z)Re,o.S% (2_2)0.673 0369 (SS_:;) (M.5.5)
where ds, is the median grain size (L), D3, is the aqueous phase molecular diffusivity of the
component (L?T-!), Re’ is a modified Reynolds number expressed in terms of linear pore water
velocity, d,, is the diameter of a “medium-size” sand grain according to the ASTM particle size
classification (L), U; represents the uniformity index (dimensionless), a measure of the grain size
distribution (U; = dgy/d10), and s,; is the initial DNAPL saturation.

The mathematical model for reductive dechlorination used in this research tracks the
transformations and growth of two dechlorinator populations. Previous microbial studies with the
KB-1 culture (Duhamel et al. 2002; Duhamel and Edwards 2006, 2007; Haest et al. 2010b) showed
that two dominant species, Geo and Dhc, were responsible for degrading the majority of TCE to
cis-DCE and converting cis-DCE to ethene, respectively. This modeling approach, i.e., considering
two microbial groups with different dechlorinating functions, has been used in previous studies
that modeled biotransformation by laboratory-cultivated cultures (Bagley 1998; Chambon et al.
2010; Chen et al. 2013; Christ and Abriola 2007; Clapp et al. 2004; Haest et al. 2010b; Haston and
McCarty 1999; Lee et al. 2004). Hydrogen is assumed as the only direct electron donor for
dechlorination and is produced from fermentation of the added organic substrate (i.e., lactate). A
few previous studies (e.g., Clapp et al., 2004; Fennell and Gossett, 1998; Malaguerra et al., 2011)
have modeled multi-step fermentation processes, including intermediate production of short-chain
VFAs. However, the development of a more complex fermentation model requires an
understanding and characterization of fermentation pathways, fermenter communities, and
thermodynamics (Chambon et al. 2013). In addition, computational efficiency can potentially be
compromised by introducing more chemical components into the complex system. Thus, the
simplified model was selected. Although the model includes a competitor species, competition
for electron donor from other microorganisms, including methanogens, iron-reducers and sulfate-
reducers, was not considered in the aquifer cell simulations, as these microbial populations made
up a minor fraction of the entire populations in the KB-1 culture (Duhamel and Edwards 2006).
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Donor consumption from microorganisms other than dechlorinators could play a role in
influencing the effectiveness of in situ dechlorination in the DHT.

Based upon the above conceptual model, a dual Monod kinetics model (Chen et al. 2013; Christ
and Abriola 2007; Clapp et al. 2004; Lee et al. 2004), which accounts for competitive inhibition,
hydrogen utilization, and biomass growth, is applied to describe reductive dechlorination. The
mathematical expressions for each chlorinated solvent component are given as:

- kmax,TCECT(}CEXGEO CI(-} - Clg,th,GEO (M.5.6)
TCE = 5.
Ksrcelrce + Crce Kgngro + (C,‘} - CS,th,GEo)
e _ kmax,pceChceXpnc Cit — CH tnpHc (M.5.7)
DCE = 5.
Kspcelpce + Coce K ppue + (C,‘} - Cg,th,DHc)
Q. — kmax,VCCI(}CXDHC Clg - CIfIl,th,DHC (M 5 8)
VC - . -
Ksvelve + Coc Koy pue + (C,‘} - Cg,th,DHc)

where 7 is the mass rate of dechlorination of component i in the aqueous phase (ML= T™"), kyyqy i
is the maximum utilization rate for component i (MMp;t T™!), X; is the concentration (MyioL®) of
attached active cell for the TCE dechlorinator (j = GEO) and the cis-DCE and VC dechlorinator
(j = DHC), K; is the half saturation constant for component i (ML), I; is the competitive
inhibition by different electron acceptors (dimensionless), Cj; is the aqueous H» concentration
(ML), Cff en. ; 1s the threshold concentration of Hy for dechlorinating polulation j (ML?), Ky ; is
the half saturation constant of H, for dechlorinator j (ML").

Here the traditional Monod kinetics equation is multiplied by a hydrogen utilization term, which
accounts for the energy constraints to maintain a minimum H> concentration (Clapp et al. 2004;
Fennell and Gossett 1998). The reaction rate,r;*, is set to zero when aqueous H> concentration is
less than Cy ., ;. Competitive inhibition, /;, accounts for the reduction of dechlorination rates
originated from shift of degradation priority by dechlorinating populations, and the inhibition
caused by the presence of high concentration parent chlorinated ethenes (e.g., Cupples et al., 2004;
Garant and Lynd, 1998; Haest et al., 2010; Lee et al., 2004; Yu et al., 2005). I; takes the general
form of 1+ };C/K;;, where K; ; is the inhibition constant for component i (ML-). The

inhibitory relation among chlorinated ethenes and the values K;; vary among studies due to
experimental conditions and modeling approaches (Chambon et al. 2013). However, inhibition on
cis-DCE and VC transformation has been commonly observed. Here, the inhibition is assumed to
follow:

ITCE = 1,' (M.59)
IDCE = 1 + C‘?C/KI,VC (M.SIO)
lyc =1+ C’IE"lCE/KI,TCE + CSCE/KI,DCE (M.5.11)

Transport and biological reaction of the primary substrate, lactate, as well as the electron donor,
H, are modeled. Lactate is assumed to be fermented through a single-step pathway to produce H,,
which is immediately available as electron donor for dechlorination. The stoichiometry can be
expressed by the following equation (Ohnishi et al. 2012),

CH,CHOHCOOH + 3H,0 — 3CO, + 6H, (M.5.12)
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The kinetic model used for lactate transformation by the fermentative population (Xggy,) is as
follows:

a

ré  — kmax,LACCLACXFEM
LAC —

Ks,LAC + Cl(,IAC

(M.5.13)

By combining the equations above, the term R{* in equation (M.5.2) for all components can be

: . a — a a — a a a __ a a a — a
fOI‘mahzed as: RTCE —_ _TTCE, RDCE —_ —TDCE + TTCE’ RVC —_ —TVC + TDCE, RETH —_ TVC and
Ri4c = —7{ac- Then, Rfj, for H> production and consumption can be written as:

a XLAC ..a XTCE _..a XDCE _..a Xve ..a
— - re.. + ri-r + —n M.5.14
Hy = mowpae lac (mWTCE TCE T wpcs PCE T mwye ve) (M.5.14)

where x; is the molar reducing equivalence of H» that is generated or demanded during
transformation of one mole component cj*, mw; is the molecular weight for component i. It is to
be noted that the computation in the model was performed based on gram mass. Here, the
coefficients x; for lactate (x; 4. = 6) and chlorinated ethenes (xycp = Xpcg = Xyc = 1.41) are
obtained from the literature (Christ and Abriola 2007; Ohnishi et al. 2012).

The growth rate of biomass is modeled separately for each population as a function of substrate
transformation rate, the yield coefficient, ¥; (MpicM'), for component i, and the first order
endogenous decay coefficient, k;, ; (T™), for X;:

dXgEo
dt = YrceTfce — kb,GEOXGEO (M.5.15)
dXpyc
i YoceToee + Yvelve — kbpucXpuc (M.5.16)
AdXrgm
—dt = YiacTiac — kb,FEMXFEM (M.5.17)

In this modeling effort, the following assumptions, pertaining to biomass growth and function are
also employed: 1) only attached (not planktonic) biomass is active for reductive dechlorination; 2)
the biophase is fully penetrated (no mass transfer resistance); 3) attached bacteria are not mobile;
4) the influence of microbial growth on aqueous flow is insignificant (low growth environment);
and 5) growth of attached biomass is bounded by a minimum and maximum biomass
concentration. Non-attached-to-total cell ratio of 14% (Geo) and 24% (Dhc) are assumed in this
study, based upon measurements in a similar chlorinated solvent aquifer cell system that was
bioaugmented with organohalide-respiring mixed cultures (Cépiro et al. 2015).

11.5.3.2 Model Implementation in MT3DMS

Transport simulations were performed using a modified version of the modular three dimensional
transport simulator MT3DMS (Zheng and Wang 1999), previously adapted to incorporate rate
limited dissolution from an entrapped DNAPL source zone and transient groundwater flow
associated with changes in DNAPL saturation (Christ et al. 2006, 2010; Parker and Park 2004).

In the modified MT3DMS, MODFLOW (Harbaugh et al. 2000) is coupled with the transport
model to account for the change in the aqueous flow field caused by DNAPL dissolution. The
coupling is implemented by introducing the water relative permeability k,.,, (ML-1) into the
groundwater flow equation,
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where K is the principal component of the hydraulic conductivity tensor (LT-1), /4 is the hydraulic
head (L), S, is the specific storage of the aquifer (L-1). For the simulations presented herein, the

water relative permeability is linked to the DNAPL saturation by the Brooks and Corey (1964)
function:

V(Kk,,Vh) = S, (M.5.18)

min
1-— S, — Sw 2-;31

— ¢min
1-—sy

Ky = ( (M.5.19)

where A is pore size index (dimensionless), s;*" is the irreducible water saturation
(dimensionless). The flow is frequently adjusted by updating water relative permeability as a
function of the newly computed DNAPL saturation values. DNAPL depletion results in an increase
in aqueous phase mobility and subsequently groundwater flow velocity, which in turn drives a
faster mass exchange between the DNAPL and aqueous phases.

In this research, to ensure mass conservation for nonlinear (Freundlich) sorption simulations,

Lb 95 \as modified in MT3DMS to employ a

calculation of the retardation factor, Ry = 1 + ,
Osq 0C2

standard chord slope method, 0S/9C% = %, where S; and C# are solute concentration and
t+17 >t
sorbed concentration in the preceding iteration (Rathfelder and Abriola 1994).

Following Christ and Abriola (2006), MT3DMS was further adapted to incorporate multi-order
Monod kinetics coupled with microbial growth model to account for biotransformation of multiple
components by multiple microbial populations under isothermal conditions (M.5.2 and M.5.3).
Variations in fluid density and viscosity were considered negligible. A Monod kinetics subroutine
was added to the simulator and stepwise/accumulative mass budget subroutines for six chemical
components: TCE, cis-DCE, VC, ethene, lactate and H»>. In order to solve the fully coupled
transport equations of the six components, the r;* terms are calculated by lagging ¢;* and X;one
time step,
ra — kmax,i Cic,lt—l Xj,t—l % Cg,t—l - lell,th,j
bt Ks,ili + Ci(,lt—l Ks,H,j + (lell,t—l - Clg,th,j)

(M.5.20)

In the model, an adaptive time step procedure is applied to account for the error introduced by
using an explicit solution scheme for 7 so that discrepancy between old and new solutions is
constrained within a tolerable range. Furthermore, the following mass discrepancy indicators
(Zheng and Wang 1999) are used to evaluate the accuracy of the model solutions for chlorinated
ethenes and ethene:

(X Source + M) — (¥ Sink + M,)
0.5[(% Source + M,) + (3, Sink + M,)]

Accumulative Discreapancy (%) = (M.5.21)

(Source + M;_,) — (Sink + M,)
0.5[(Source + M,_;) + (Sink + M,)]

Stepwise Discreapancy(%) = (M.5.22)

where M, is the total molar mass of carbon bond in chlorinated ethenes and ethene (aqueous and
sorbed) in the domain at the initial time step, M; and M,_, are the total molar mass at time step ¢t
and its previous time step, Source and Sink are the total molar mass into/out of the domain from
external sources/sink for all chlorinated ethenes and ethene at time step t, while ) Source and

38



Y. Sink are cumulative mass exchange terms summed for all time steps. Note that the Source and
Sink include mass exchange at constant concentration, constant head, and constant flux
boundaries. In general, the global mass balance calculated for simulated time duration using
equation (M.6.22) was controlled for the simulations conducted in this research between 0.05% -
0.1%. The biomass (M.5.15-17) is updated after each transport step by the following analytical
solution of equations,

Yirt
Xje = Xjr-1€Xp (Z ¥ k) (M.5.23)
i ];t_l

I1.5.3.3 Model Parameters for Coupled Process Exploration and Geostatistical Modeling
Tool Development

For the transport simulations described in sections III.5, 7, and 8, a natural hydraulic gradient of
0.01 was imposed on the domain, producing average linear groundwater velocities of
approximately 0.9 m/day in the majority of the domain, and 0.02 m/day in lower permeable zones.
All simulations consisted of two consecutive stages: a ‘loading stage’, during which PCE DNAPL
dissolves, but no change in saturation is permitted, and a flushing stage, with DNAPL dissolution
progressing until a specified stopping criterion is satisfied. For both stages, adsorption and solute
transport (advection and dispersion) were computed. Since solute transport and interphase mass
transfer were not simulated during DNAPL release and infiltration, the first stage was designed to
create conditions that are similar to untreated source zones where contaminants have accumulated
over a period of years. The second stage is of primary interest in this research, representing the
natural restoration or remediation process, during which contaminant infiltration has ceased, and
groundwater flushes the contaminated zone under natural or induced gradient conditions until
specified target goals are reached.

The physicochemical parameters used in the simulations are listed in Table M.5.2. Dispersivity
parameters and solid bulk density were taken from a modeling study of DNAPL dissolution in a
similar hydrogeological setting Maji and Sudicky (2008).

Table M.5.3 lists sorption-related parameters used in the simulations. These were estimated from
the literature, since sorptive property information for the field materials was not available. In the
absence of measured data, the linear equilibrium sorption of solutes to aquifer solids can be
estimated using a distribution coefficient, K; = K,.f,., where K,. (L*M") is the partition
coefficient to organic carbon, and f,,. is mass fractional of soil organic carbon. Estimated values
of K, .for PCE range from 200 ml/g to 600 ml/g (Mackay and Boethling, 2000; Vermeulen, 1991).
A K, value of 400 L/kg was employed here. Based on sedimentary studies of the prototype aquifer
in southwestern Germany (Heinz et al., 2003; Kleineidam et al., 1999b; a), lithofacies Gem, S-x
and bGem were treated as low organic carbon content deposits with f,. of 0.035%. The finest
material, GS-x was treated as the most sorptive in the transport simulations, with a f,,
approximately one order of magnitude larger. This relatively high value was selected so that the
influence of a strongly sorptive medium on DNAPL source zone persistence could be explored.
The value is consistent with other f,. values reported for fine materials in the literature (ranging
from 0.1% to 2%) (Delle Site, 2001; Domenico and Schwartz, 1997). For consistency and to
further facilitate the study of desorption and back diffusion, the hydraulic conductivity and grain
size were reduced for this lowest permeability material (GS-x) (bracketed values in Table M.5.1)
in the transport simulations to better reflect hydraulic characteristics consistent with a highly
sorptive material. For the nonlinear equilibrium sorption model, the Freundlich exponent, ny was
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selected from within the range 0.8-0.9 (Rivett et al., 2006). The Freundlich coefficient K; was then
calculated to ensure comparability with the corresponding linear isotherm for each material by
minimizing the difference in total sorbed mass between the linear and nonlinear models over an
aqueous concentration range of 0 to the PCE solubility value. A first order mass transfer coefficient
for solute PCE sorption from GS-x materials was selected within the range of reported literature
values. In published field scale simulations, these vary over several orders of magnitude, from
10™* to 1072 day' (Aksoy and Culver, 2000, 2004; Goltz and Roberts, 1986, 1988). The other
three materials were treated as less sorptive materials, and thus, assigned higher mass transfer rate
values.

3-D domains (16 X 40 X 7m) were discretized into 373,815 cells, with a resolution of
0.25 X 0.5 X 0.1 m in the x, y, and z directions. The same grid spacing in the x and z directions
was used for 2-D domains (16 X 7 m). An adaptive time step procedure, with an initial time step,
maximum time step, and a time-step multiplier, was implemented to handle the high concentration
gradient near the DNAPL source at early times, and the relatively mild concentration change at
later stages. Balancing computational efficiency and numerical stability, an implicit finite
difference method with upstream weighting was chosen as the numerical solution technique. The
spatial grid discretization was consistent with those used in the DNAPL spill simulations. Wang
(2013) showed that this level of grid resolution sufficiently resolved DNAPL pathways and pool
locations, consistent with finer grid spacing. Furthermore, this resolution was consistent with the
development of the permeability field, which was conditioned on 18 hypothetical boreholes with
0.25 m spacing in the vertical direction.

Table M.5.3. Formation sorption properties.

f Distribution  Freundlich  Freundlich  First Order
Lithofacies oc Coefficient ~ Coefficient ~ Exponent  Kinetic Rates

) we) g my ( (day)
GS-x 0.50 2.00E-06 5.06E-06 0.80 1.00E-03
Gem 0.035 1.40E-07 2.23E-07 0.90 1.00E-01
S-x 0.035 1.40E-07 2.23E-07 0.90 1.00E-01
bGcem,I 0.035 1.40E-07 2.23E-07 0.90 1.00E-01

I1.5.4. Modeling Biotransformation in Microcosm Scale

In this research, a MATLAB (The MathWorks Inc. 2016) code was developed to model the
dechlorination process (TCE to DCE to VC to ethene) in the microcosms as a batch process. In
this code a coupled system of eight simultaneous ordinary differential equations (ODEs) are solved
for:

e the aqueous phase concentration (mM) of three chloroethenes and ethene (TCE, Cf.g;
DCE, Cj¢g; VC, Cf; and ethene, Cgry; equation M.5.6-M.5.8)

e the aqueous phase biomass concentration of Geobacter in mg-cells per liter (Xsg0,
Equation M.5.15)

e the aqueous phase biomass concentration of Dehalococcoides in mg-cells per liter (Xpyc,
equation M.5.16)

e the volume of aqueous phase present in the microcosm (VV'¢, equation M.5.26)
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e the volume of gas phase present in the microcosm (V9, equation M.5.27)

It is assumed that the chemical species in the microcosm exist in three phases: as a solute in the
groundwater (aqueous phase, a), as a vapor in the head space (gas phase, g), or as a sorbate on the
surface of the soil particles (sorbed phase, s). Equilibrium and linear partitioning at all times
between the three phases is assumed. Furthermore, it is assumed that the mass of chemical species
i in the microcosm can only change in three ways:

1. Chemical species i is converted into another chemical species via dechlorination.

2. Chemical species i is removed from the microcosm when samples of the aqueous phase
are taken.

3. Chemical species i in the gas phase escapes from the microcosm via the septum. The
abiotic microcosm experiments suggested that this diffusion process could be adequately
modeled as first-order, dependent on the concentration of chemical species i in the aqueous
phase.

The mass balance equation for chemical species i in a microcosm is then given by:
d ara d ard d apa ara era
Y Ci)+E(V C; )+a(qiMs) = VIR 4+ QCH + kf C, (M.5.24)

where Cig is the concentration of chemical species i in the gas phase (mM), q; is the moles of
chemical species i sorbed per mass of soil (mmol per g), My is the mass of soil (g), R{* is the
transformation or production rate of chemical species i in the aqueous phase (mM/d), Q¢ is the
rate of aqueous phase sampling averaged over the duration of the experiment (L/d, negative value),
and k{ is a rate constant for gas escape from the microcosm (1/d, negative value). Using linear
sorption parameters measured in this study and Henry’s law, functions of the aqueous phase
concentration C{* can be substituted for g; and Cig in Equation (M.5.24) and the ODE for chemical
species i can be rearranged to form

ara
. VARE + %i}%', + kfCt
E(Ci ) = Vg (M.5.25)

Ve + W + Kd,iMs

where H; is the Henry’s law constant for chemical species i (mmol/m? Pa), R is the gas constant
(J/K mmol), T is the temperature (293 K), and K, ; is the linear sorption constant for chemical
species i (L/g).

The transformation or production rates R{* for TCE, DCE, VC, and ethene are presented in section
I1.5.3.1. Based upon the experimental conditions, hydrogen (electron donor) was assumed in
excess at all times. Inhibition was modeled by equations M.5.9-11. It is assumed that all
dechlorinating bacteria remain in the aqueous phase (i.e., they do not sorb to soil particles) and all
dechlorination occurs in the aqueous phase. Growth equations for the two dechlorinator
populations are given in M.5.15-16.

To close the system, volume balance equations are also needed:

d
— (=0 (M.5.26)
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d
E(Vg) = —Q¢ (M.5.27)

Where Q¢ is the aqueous phase sampling rate.

Initial values for the dependent variables in each of the eight ODEs described above were
determined as follows:

e For the aqueous phase concentration of the four chemical species (Cfcg, Chcr»> Cyc, and
Cérp), the initial concentration was set equal to the first set of aqueous phase concentration
measurements.

e For the biomass concentration of Dehalococcoides (Xpy ), the initial value Xpyc initiqr Was
calculated from (1) Dehalococcoides biomass measurements taken from samples of KB-1
inoculum and (2) the total volume of KB-1 inoculum added.

e For the biomass concentration of Geobacter (Xggp), the initial value X;gop initiar Was
calculated by assuming that (1) the initial concentration of Geobacter cells (cells/L, not
mg-cells/L) in KB-1 inoculum is the same as that for Dehalococcoides (Roberts 2017) and
(2) Geobacter cells have a mass that is 3.8 times greater than the mass of Dehalococcoides
cells (He et al. 2005; Sung et al. 2006). The initial biomass concentration of Geobacter was
therefore X¢eo initiar = 3-8 Xprc,initiar-

e The initial volumes of aqueous phase and gas phase (V¢ and V9) were taken from
measurements made at the start of the microcosm trials.

Using the model for microbial dechlorination in a microcosm (Equations M.5.20, M.5.23-27), a
MATLAB fitting routine was written that iteratively solved the system’s ODEs while varying the
three maximum substrate utilization rates (Krcg max> Kpcemax> a1d Kycmay) until the modeled
aqueous phase concentrations of each chemical species were acceptably close to measured values
collected during the microcosm experiments. The objective function for this fitting routine was the
sum of squared residuals

n

4
2
SSR = Z Z(Cicjl',modeled - C&,measured) (M'5'28)
i=1 j=1
where i is the index of the chemical species (either TCE, DCE, VC, or ethene), j is the index of
the collected aqueous phase sample (as well as the corresponding modeled aqueous phase
concentration at that time), and n is the total number of aqueous phase samples taken.

An iterative model fitting procedure was used where the two yield coefficients were first adjusted
manually to match biomass concentration measurements and then the three maximum substrate
utilization rates were fit via a MATLAB optimization routine so modeled chemical concentrations
matched measured values. The fitting routine was run several times, adjusting the DCE yield
coefficient YPCE and VC yield coefficient YV¢ manually each time until modeled Dehalococcoides
biomass concentration Xpy- values were close to Xpy measurements for all three microcosm
trials D2K-1, D2K-2, and D2K-3.
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I1.6. Parameter Upscaling and Screening Model Tools
I1.6.1. Regressed Models for Multi-Rate Mass Transfer in Heterogeneous Media
I1.6.1.1. Introduction

In DNAPL source zones, dissolved and sorbed species sequestered in zones of low conductivity
can act as a long-term source of contamination to the flowing groundwater. This mass
sequestration can lead to long cleanup times and is associated with non-Fickian transport with
pronounced breakthrough curve tailing (Adams and Gelhar 1992; Gouze et al. 2008; Haggerty et
al. 2000; Mackay et al. 1986; Riva et al. 2008). Failure to properly account for such mass transfer
limitations in numerical simulations employed to assess the outcome of different remedial
strategies would provide a poor decision basis for stakeholders. However, there is often a large
discrepancy in scale between the observation scale (field-scale), typically on the order of meters
to tens of meters, and the smallest length scale associated with heterogeneous medium properties
(centimeters to tens of centimeters). In these cases, direct numerical simulations become
computationally prohibitive.

One goal of this research was to explore the upscaling of aqueous phase transport of a sorbing
solute in heterogeneous media, with a focus on developing effective field-scale mass transfer
parameters at the meter scale. Here the emphasis was on the desorption and back diffusion of
solutes from low-permeability zones at later times, representative of long-term plume persistence.
Multi-rate mass transfer (MRMT) models (Carrera et al. 1998; Haggerty and Gorelick 1995) are a
promising approach for this upscaling application, due to their efficiency, ease of implementation,
and ability to capture late-time tailing. This method is an extension of the dual-domain concept
that has long been applied in the sorption literature (van Genuchten and Wierenga 1976). The
domain is decomposed into mobile and immobile regions that are defined at each point in space.
Advective and dispersive fluxes occur within the mobile region, and the diffusive transfer between
the mobile and immobile regions is described in terms of a distribution of first-order rates. This
distribution depends on the medium and fluid properties. Brusseau et al. (1989), Valocchi (1990),
Sardin et al. (1991) and Villermaux (1990, 1987) developed models accounting for multi-rate
processes between regions of different mobility. Building on these investigations, Haggerty and
Gorelick (1995) developed an MRMT model, in which immobile zones are connected in parallel
to one mobile zone. They showed that the multi-rate model, using an infinite sum of first-order
terms, exactly describes the diffusion between mobile and immobile zones and that a truncated
series, consisting of only a few terms, provides a very good approximation. In addition, these
investigators developed analytical expressions for the first-order rates for idealized geometries of
the immobile zones, such as spheres.

Natural porous media, however, cannot usually be described in terms of idealized geometries, and
thus, analytical expressions cannot often be directly employed in real applications. Instead,
upscaled parameters are typically fitted to breakthrough curves obtained from heterogeneous
laboratory or field experiments, or from fine-scale numerical simulations. This parameter fitting,
however, is complicated by the complex coupling of reactions and physical transport limitations,
precluding the independent upscaling of reaction and physical heterogeneity (Dentz et al. 2011)
and necessitating the performance of multiple experiments (e.g. varying flow rates or solute
diffusivities (Carrera et al. 1998)).

Fernandez-Garcia et al. (2009) compared the performance of MRMT models and fine-scale models
in heterogeneous two-dimensional domains. Simulations demonstrated that the so-called double-
rate and truncated power law mass transfer models could predict the average behavior of the fine
scale effluent mass flux. However, the variability of the multi-rate simulations was smaller than
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that of the reference fine-scale solutions. This behavior was mainly attributed to the fitting
procedure, which used a one-dimensional solution assuming all particles leave the domain across
the downstream face. Li et al. (2011) extended this work to three dimensions, and performed a
more elaborate upscaling of the hydraulic conductivity, so-called "Laplacian with-skin". In this
way, the variability as well as the mean behavior could be reproduced. Note that the latter approach
requires input both on the cell to be upscaled and the surrounding cells, and hence cannot be used
for regressions of conductivity with respect to local parameters, as is of interest in the present
work.

To apply the MRMT model without the need to perform fine-scale simulations or laboratory or
field tests, upscaled parameters must be regressed to properties that can be estimated a priori.
Although a few studies have explored the dependence of upscaled parameters for single-rate
models on a few properties, such as the volumetric portion of immobile zones (Pedretti et al.,2014)
and permeability field geostatistical parameters (Flach 2012; Zinn and Harvey, 2003), these studies
have been limited to reduced dimensionality and scale and to non-sorbing solutes. To date, no
regressed model for the estimation of MRMT parameters has been presented for application to
three-dimensional heterogeneous media at the field scale.

This research focused on the development of field-scale regressed models for estimation of MRMT
parameters. An ensemble of 1 m cube permeability fields was created and for each field, fine-scale
simulations of flow and transport were performed for imposed horizontal and vertical hydraulic
gradients. Input parameters to MRMT were then fit by comparison of breakthrough curves from
the fine-scale simulations with analytical one-dimensional MRMT solutions. To reduce problems
with non-uniqueness (Deutsch and Journel, 1998), a step-wise fitting procedure is developed.
Consistent with (Fernandez-Garcia et al. 2009), a double-rate model is shown to produce good fits
to fine-scale results. By varying flow rates, geostatistical input parameters, and (linear) sorption
coefficients, their links to the parameters of the double-rate model were established. The model
problem set-up, multi-rate equations, and regression techniques are described below.

11.6.1.2. Model Problem

The model problem is defined here in terms of the fine-scale equations, initial and boundary
conditions, and properties of the heterogeneous medium and the fluid. The upscaled model using
multi-rate equations is then introduced.

Fine-scale simulations were carried out in order to obtain transport data to which the upscaled
model could be fitted and verified. Single-phase flow with transport and sorption of one solute was
modeled by

Vi = 0, (M.6.1)
u = -KVh, (M.6.2)
¢% + pbKd% = —u-Vec+¢ V- (D V). (M.6.3)

Here, u denotes the (stationary) Darcy flux, K the hydraulic conductivity tensor, /4 the hydraulic
head, ¢ the porosity, ¢ the aqueous concentration and D the full local hydrodynamic dispersion
tensor. The pore velocity is v =u / ¢. In the flow direction, D = g v + D 7, where o is the
longitudinal dispersivity, D is the molecular diffusivity and 7 < 1 is the tortuosity factor. The
transverse dispersivity «; is assumed to be the same in the two transverse directions.
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The second term in (M.6.3) describes linear equilibrium sorption, with bulk density p» and sorption
distribution coefficient K4. This term depends on the porosity through p» = p, (1 - ¢) where p, is
the particle density. This is made explicit by writing

((/’+P1)Kd(1 _4)))% = —-u-Ve+¢V-(D-Ve) = (M64)
¢R% - —u-Ve+¢V-(D-Vo), (M.6.5)
R = 1+p,Ka(1/¢—1). (M.6.6)

Here, R is the retardation factor caused by sorption.

Simulations were carried out in heterogeneous domains Q = {0 < (x, y,; z) < Im}. One example is
shown in Figure M.6.1a. Two sets of initial and boundary conditions were applied for the
simulations with horizontal hydraulic gradient, depending on the purpose of simulations.

y=0 x=0

Figure M.6.1. a) High and low-permeability zones in red and blue, respectively. b) Concentration of the
solute between zero (blue) and 1 (red), after 1.2 days. Pure water is flushing the domain from left at x=0,
displacing water with initial concentration one through the effluent boundary at x=1. All other boundaries
are closed. Geostatistical parameters are a, = 0:22 m, a, = 0:10 m and f;,, = 0:34.

Step 1. Dirac delta pulse injection

c = 0, for 1 =0, (x>0,y,2) €Q, (M.6.7)
h=hy, (uc—¢D-Vec)-n = 6(t), for t>0, (x,y,z) €I, (M.6.8)
h=hy, (¢D-Vc)-n = 0, for t >0, (x,y,z) € I, (M.6.9)
u-n=0, (uc-¢D-Ve)-n = O, for t>0, (x,y,z) eIz,  (M6.10)
where n is the outside normal vector of 0Q, I'1={0Q |x=0} ,12={0Q |x=1} and 3= {0Q |y
=0,y=1,z=0, z=1}. The values of the hydraulic head at the left and right boundaries are
discussed in Section I1.6.1.3 in terms of the hydraulic gradient. Dirac delta pulse simulations were

also performed using a vertical hydraulic gradient. Here, the same set of initial and boundary
conditions was applied but with interchanged meaning of x and z.
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Step 2. 1-Heaviside condition

c = «p, for t=0, (x,y,2) € Q, (M.6.11)

h= /’lo, c = 0, fort > 0, (.\‘,y,z) c Fl’ (M612)

h=hi, (¢D-Ve)-n = 0, for t>0, (x,y,z) € Iy, (M.6.13)

- _ ) (M.6.14)
u-n=0, (uc-¢D-Ve)-n = 0, for t >0, (x,y,z) € I'3.

The value of ¢y 1s not important, since the equations are linear in the concentration. Here, we used
c= 1 kg/m?,

Of particular interest are unconsolidated media that have a connected permeable medium (e.g.
sand) as well as inclusions of lower-permeability material such as silt or clay. At late times, back-
diffusion from the material with lower permeability acts as a source to the mobile zone. Because
initial results showed that transport in three-dimensional domains could not be well represented
by two-dimensional simulations, full three-dimensional permeability fields were studied. The
inclusions were distributed in the domain using Sequential Indicator Simulations in the software
GSLIB (Deutsch and Journel 1998) with two classes of soil and a spherical semivariogram model

y(h)

y(h)

Here y(h) is half of the expected variance between points separated by distance /4. The horizontal
and vertical directions are parameterized separately. Values of a = as, a, describe the range, or the
typical size of inclusions. In addition, the total volume fraction of clay fi is prescribed. The
permeability, porosity and sorption distribution coefficients are constant for each material and the
local permeability is assumed isotropic. Figure M.6.1 depicts one realization with @;,=0.22 m,
a,=0.10 m and 34 % of the volume occupied by the low-permeability material.

a

3
(1.53_0.5(") ) h<a (M.6.15)
N e (M.6.16)

Parameter values that are constant for all simulations are presented in Table M.6.1. Several
parameters were chosen from Chapman et al. (2012), who studied back diffusion in a sandbox of
similar size as the domain size of our fine-scale simulations. However, they investigated 2D flow,
used other solutes than the one of interest here, and did not fit dispersivity. Local dispersivity
values used here were those fitted in Rathfelder et al. (2001), based on tracer test effluent
breakthrough curve in a 0.6 x 0.3 m 2D sandbox. A similar longitudinal dispersivity was fitted
from tracer tests in a sand column by Wang et al., (2012). Several parameters varied between
simulations, so that regression of upscaled parameters could be accomplished, see Table M.6.2. In
total, 700 simulation sets using Step 1 and Step 2 with a horizontal hydraulic gradient, and 300
simulations of Step 1 using a vertical hydraulic gradient (3 x 10 x 10), were used as a basis for the
regressions.

11.6.1.3. Multi-rate Equations

Here, rather than discretizing immobile zones such as low-permeability inclusions, the
concentration in the mobile and immobile regions is treated by explicit state variables (averages
over the coarse 1 m cube grid block), and the transport between these zones in each coarse grid
cell is modeled by first-order exchange terms. Transfer between coarse grid blocks of the upscaled
model is assumed to occur only in the mobile zone. As noted by Haggerty and Gorelick (1995),
multiple first-order rates may in general be needed to accurately account for diffusive mass transfer
between the mobile and immobile zones. When dealing with real heterogeneous media, where all
rates must be regressed, it is important to use the simplest model that describes the tailing.
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Table M.6.1. Parameter values used in all simulations.

Parameter ~ Value Motivation

Pp 2.65 g/ml [Freeze and Cherry, 1979]

D,, 7.9-107 mz/day Value for TCE from [USEPA, 1996]

T 0.5 Commonly 0.01-0.5 [Freeze and Cherry, 1979]. ¢ = 0.5.

Qg 103 m [Rathfelder et al., 2001; Wolfand, 2011]

a; 10*m [Rathfelder et al., 2001; Wolfand, 2011]

Permeable:

K,, 20 m/day Similar to [Chapman et al., 2012] (log(K) = 1.3,In(K) = 3.00)
Om 0.4 Similar to [Chapman et al., 2012]

Rm 1

Low-perm.:

Kim 1.0-107 m/day  Similar to [Chapman et al., 2012] (log(K) = —=5.0,In(K) = —11.5)
bim 0.5 Similar to [Chapman et al., 2012]

Table M.6.2. Variable parameter values. Each case is tested for all combinations of hydraulic gradient, but
variability in each of the three top parameters are performed with the other two at the base-case value
indicated in bold. Examples of fraction of organic matter, fo. , are calculated using fo. = Ki=K,. with K,~85
ml/g, which is the mean value for TCE from Delle Site (2001) (range 34-200 ml/g).

Parameter Value Comment

oh/ox 0.005, 0.01, 0.02

Fim 0.1,0.2,0.3

Rim 1,6,11 Ky =0, 1.89, 3.77 ml/g
foe =0, 0.022, 0.044

ap 0.10,0.14, 0.18,0.22 m

a, 0.10,0.14, 0.18,0.22 m

Preliminary simulations conducted in this research, as well as results presented by (Fernandez-

Garcia et al. 2009), showed that two rates, a1 and o , could describe breakthrough curves very
well. The upscaled transport equation is then written as

2
dcm OCimj eff eff
¢mRm7 + ;qﬁ,-ij,-mTj = —¢uv' Ve, + ¢ V- DY Ve, (M.6.17)
Rm = 1+ p[JKcl(1/¢mobile - l) (M618)
Rfﬂl = 1+ p[JKcl(1/¢in1n1obiIe - 1) (M619)

Here, the effective velocity and the effective dispersion tensor are upscaled to account for presence
of the immobile zones and D¢//= a,;¢/7v¢//. We denote the volume fraction of mobile material by
fm, and the volume fractions of the immobile zones fin; and fin2 such that 2, /= 1. The modified

porosities used above represent the volume fraction of pores in each zone relative to the bulk
volume

Odm = fm Omobiles (M620)
¢imj = fimj¢imm01)i[e- (M621)
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Here, @ mobile and ¢ immobile are the porosities of the high- and low-permeability media. We have
that ¢m + @im is the total porosity. The transport equation is supplemented by equations that
describe the first-order mass transfer between the mobile and the immobile zones

acimj
¢iijimT = ¢[mjaj(cm - Cimj)- (M622)
Defining = @imj / ¢ m , We get upscaled equations
aCm 2 acim[ ff £f
—n ‘R, —L = _yefr. - (DT M.6.23
R ot + ; ﬂ;/ Rim ot v Ve, +V - (D Vem), ( )
acimj )
T = @ (¢m = Cimj), (M624)
o = == (M.6.25)

With knowledge of the first-order rates and the corresponding volume fractions, as well as the
upscaled flow and dispersion terms, the equations can be discretized and solved.

To estimate the effective conductivity and dispersivity, as well as the first order rates and their
corresponding volume fractions, fine-scale simulation results were compared with an analytic
solution to a 1-D approximation of equations (M.6.23) - (M.6.25). The derivation is similar to that
of (Fernandez-Garcia et al. 2009), but with the addition of sorption and with more flexible initial-
and boundary conditions. The resulting solute mass flux at distance L from the inlet, at time 7 is
the inverse Laplace transform of

3 1 1 Ur(p)
L, = — — — — Ly, M.6.26
m(L,p)p eXp{(za?U \/4(07‘” 7 + a[e_/./ Veff) } ( )
ALy = (1 —m(Lp)p). (M.6.27)
p
o @ @ (M.6.28)
‘/’r(p) = pRm+p'Bl[)+(Y'l +pﬁ2p+a,§-

Here, p is the Laplace variable, m(L, p)p is the Laplace transform of the mass flux with Delta pulse
injection and m(L, p);-u 1s the mass flux with 1-H(?) injection.

I1.6.1.4. Numerical Solution and Regression Procedure

In this work, MODFLOW (Harbaugh et al. 2000) and MT3DMS (Zheng and Wang 1999) were
used to solve the fine-scale stationary flow and transport problems, respectively. A second-order
central difference scheme was applied for space discretization and the linear problems were solved
with the Conjugate Gradient Method, applying a Modified Incomplete Cholesky pre-conditioner.
The size of the cross section perpendicular to flow was chosen to mimic a reasonable size for large-
scale use of the MRMT model (1 x 1 m?). The domain size along the flow (1 m) is large enough
such that fitted parameters based on the effluent mass flux provide a good representation of the
average behavior. The selected grid size (2 x 2 x 2 cm?) is similar to previous tracer test simulations
in heterogeneous media that were successfully compared with experimental results (Rathfelder et
al. 2001), and provides a good match to the analytical solution using homogeneous sand. The
upscaled problem was solved with the same numerical framework, employing a small modification
to MT3DMS. Here, the mass transfer terms were lagged one time-step from the advection and
dispersion in the mobile zone, using a sufficiently small time-step size for convergence. Focus was
not on efficiency of this implementation but rather on applicability of the method and
establishment of regressions.
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Upscaled parameters were fitted such that the difference between the theoretical (m,) and simulated
fine-scale (m;) mass flux at the effluent boundary was minimized. Initial investigations revealed
that stable parameter fits could be obtained by splitting the fit into two steps. In the first step, ;<
and v/ were fit to the early-time breakthrough of a Dirac pulse. The effective conductivity K<
was then calculated from v/, These parameters account for the dispersion and delay of the flow
caused by the immobile zones acting as barriers. In this step, the immobile porosity was set to zero.
The objective function is

SSE; = (m;(t1) — mg1(t1))* + ... + (m (tn) — mg1 (tn))* (M.6.29)

where the simulation time, corresponding to two pore volumes, is split into N = 400 periods of
equal size. Because the initial mass in place is not equal to one, the mass is scaled by the initial
mass before fitting using equation (M.6.26).

The second step was performed to fit ¢ and b = S / (i + ) with focus on mass flux at late
times, i.e. back-diffusion. For this purpose, the 1 - H(?) condition was applied using porous
immobile zones. To capture small mass flux at late times, the logarithm of mass flux was used in
the fitting

SSE> = (logm, (t1) — log mg(1))* + ... + (logm, (tn) — log my (tn5))7. (M.6.30)

In order to also obtain a good fit during breakthrough, the logarithm of time was split into N =400
periods of equal size. These simulations were run for 400 pore volumes or until the effluent mass
flux was a factor 10 lower than the initial flux, whichever occurred first. Because the initial
simulated mass flux was not equal to one, the flux was scaled by the initial flux before fitting using
equation (M.6.27).

As explained in Fernandez-Garcia et al. (2009), the type 1 and 2 regions in the MRMT model do
not correspond exactly to physical regions. In our simulations, we saw that stagnant water forms
in sand regions partly surrounded by clay. Therefore, at first, £; and /> were fitted independently.
However, we found that the resulting f; + f> was close to the theoretical value based on the pore
volume of immobile material. Therefore, we imposed this theoretical value and only fitted the
relation £ / (1 + [2) , to reduce the number of fitted variables and hence problems with non-
uniqueness.

Before regression, fitted flow and transport parameters were non-dimensionalized, as follows :
K| Ksana, 1’/ o, Sha = a; i’ | D, and Sh = oz e’ / D. Here, D is the effective diffusion
coefficient, and Sha and Sh are Sherwood numbers for the higher and lower first-order mass
transfer rates, defined in terms of a length scale representing the horizontal range ("size") of the
low-permeability inclusions. This length scale was chosen because it was observed that the first-
order rates were more sensitive to the horizontal range than to the vertical range. We chose not to
scale with the retardation factor, because the results are not linear with respect to this factor.

Hypotheses regarding the controlling non-dimensional parameters and functional forms were
posed based on an understanding of the relevant processes and on the literature. The validity of
these hypotheses was first examined by plotting the parameters against the data and the most
relevant functional forms and parameters were then further tested using regressions of increasing
complexity and number of parameters. For each parameter, a final regression model was chosen
as the least complex model that has R>0.8 and an increase in R’ from the previous model of at
least 0.04. One exception was the effective longitudinal dispersivity, where R’ of the chosen model
1s 0.70. There is a large spread in this parameter among different realizations of one geostatistical
model. Another exception was the effective hydraulic conductivity, where a very accurate model
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(R’=0.99) was chosen, because this parameter influences the regression of transport parameters
through the Peclet number, Pe=u aw/D=K>*/Vh aw/D, where K> is the regressed effective
hydraulic conductivity using "model 2" as explained below. Although the focus of this work was
on horizontal flow, the applicability of the regressed models was also tested on simulations with
vertical flow.

I1.6.2. Bioenhanced Dissolution Screening Tool Development
I1.6.2.1. Introduction

In-situ bioremediation is an attractive strategy for the economical long-term management of
subsurface contamination emanating from dense non-aqueous phase liquid (DNAPL) or low-
permeability source zones (e.g., NRC, 2005; Scheutz et al., 2010; Stroo et al., 2012). Several
studies (Lebrén et al. 2007; McGuire et al. 2006; Sleep et al. 2006) have shown that stimulation
of indigenous or augmented microorganisms near source zones enhances contaminant dissolution,
reducing source longevity and, potentially, contaminant flux. Early efforts to quantify dissolution
enhancements due to microbial activity focused on dissolution from fully saturated DNAPL pools
(Chu et al. 2003, 2004; Gupta and Seagren 2005; Reitsma and Dai 2001; Seagren et al. 1993,
1994). However, source-zone characterization studies have highlighted the importance of
quantifying dissolution from complex source zones comprised of both high-saturation pools and
low-saturation ganglia (e.g., Lemke and Abriola, 2006). Thus, there is a need to quantify potential
dissolution enhancement from ganglia-contaminated source zone regions.

Enhanced dissolution due to microbial activity (i.e., bioenhanced dissolution) is generally defined
as the ratio of contaminant mass flux eluting from a DNAPL-contaminated region when microbial
activity is present to the contaminant mass flux in the eluate when no microbes are active
(Adamson et al. 2004; Amos et al. 2008, 2009; Carr et al. 2000; Cope and Hughes 2001; Da Silva
et al. 2006; Schaefer et al. 2009a; Sleep et al. 2006; Yang and McCarty 2000, 2002). Experimental
column results have demonstrated an average two- to six-fold enhancement in the rate of
dissolution from residual DNAPL (Amos et al. 2008; Christ et al. 2005), with dissolution
enhancement reaching as high as a factor of 20 relative to the abiotic case (Amos et al. 2009).
Variability in the magnitude of bioenhanced dissolution has been attributed to factors that
influence the rate of biotransformation such as low pH (e.g., Cope and Hughes, 2001; Adamson et
al., 2004) and accumulation of toxic remediation by-products (e.g. Amos et al., 2007a; Yu et al.,
2005), as well as hydrologic factors such as insufficient contact time and non-uniform saturations
(Amos et al. 2008, 2009; Glover et al. 2007). Although these column results provide much-needed
insight into the factors controlling dissolution enhancement, they are not readily applicable to the
prediction of dissolution enhancement under a wide variety of subsurface site conditions.

Previous efforts to predict dissolution enhancement due to microbial activity have generally
assumed a simple geometry, with a fully saturated DNAPL pool located along the domain
boundary. Seagren et al. (1994) were the first to employ a solution to the advection-dispersion-
reaction equation (ADRE) in a two-dimensional domain with one-dimensional flow parallel to a
DNAPL pool. This study modeled dissolution as a diffusion process away from the fully saturated
DNAPL boundary. Using this simplified model, they determined a biotransformation rate
threshold, above which dissolution enhancement will take place, and demonstrated that the
enhancement scales linearly with biotransformation rate on a log-log plot (Seagren et al., 1994).
Chu et al. (2004, 2003) employed a similar mathematical framework to investigate favorable
conditions for bioenhanced dissolution in tetrachloroethene (PCE)-contaminated domains. They
used their model to explore the influence of electron-donor limitations and bio-clogging on
microbial enhancements to dissolution and developed a simplified expression to quantify
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bioenhanced dissolution. This simplified expression was similar in form to the original expression
developed by Seagren et al. (1994), and again assumed dissolution from a DNAPL pool. In a later
work, Chu et al. (2004) extended their model to consider multiple pools placed along the domain
boundaries to better simulate a more heterogeneous DNAPL- contaminated region. They showed
that enhanced dissolution often had an upper bound, due to competition for an electron donor, the
effect of toxic byproduct accumulation on dechlorination kinetics, and DNAPL configuration in
the source zone. Follow-up experimental studies using a similar conceptual model (i.e., distinct
DNAPL pool zones overlain by uncontaminated groundwater) have likewise demonstrated
limitations in enhanced dissolution (Glover et al. 2007; Philips et al. 2011), although Glover et al.
(2007) did observe dissolution enhancement factors as high as 13, depending on the sharpness of
the interface separating the NAPL contaminated and uncontaminated zones.

Seagren et al. (1993) employed an analytical solution to the one-dimensional ADRE to quantify
dissolution enhancements due to microbial activity in ganglia-dominated systems. By comparing
solutions that neglected microbial degradation to solutions that included microbial degradation,
they were able to predict dissolution enhancement due to microbial activity. Their formulation
predicted an effective dissolution rate relative to the maximum rate of dissolution for the given
column conditions rather than a bioenhanced dissolution factor. Christ and Abriola (2007), as part
of a numerical modeling study of source zone bioremediation, reformulated the Seagren et al.
(1993) approach in terms of a bioenhanced dissolution factor to provide a screening-level check
on their numerical predictions. However, this approach was only applied to ganglia-dominated
geometries with first-order biotransformation kinetics.

In this research, the bioenhanced dissolution factor presented in Christ and Abriola (2007), which
is based on an assumption of first-order biotransformation kinetics, was extended to incorporate
zero-order and Monod kinetics and used to quantify the expected level of microbially enhanced
dissolution under a variety of physicochemical conditions (i.e., transport processes, interphase
mass transfer kinetics, and biotransformation kinetics). The bioenhanced dissolution factor was
then applied as a simple screening tool and its predictions compared to published laboratory and
field results to demonstrate its utility.

11.6.2.2. Mathematical Model

Dissolution in a one-dimensional, semi-infinite, DNAPL ganglia-contaminated system can be
modeled using a steady-state form of an ADRE:
d’C ac M 1
¢SaDW—¢SavE+k,(ceq ~C)-R=0 (M.6.31)
where ¢ is the porosity [L*/L?], S, is the aqueous-phase saturation [L*/L?], C is the contaminant
concentration in the aqueous phase [M/L?], D is the macro-scale hydrodynamic dispersion

coefficient [L*/T], v is the pore water velocity [L/T], &, is the lumped mass transfer coefficient

[1/T], Ceq 1s the equilibrium concentration of the contaminant in the aqueous phase [M/L?], and R
is the biotransformation reaction term [M/(L*T)]. The assumption of steady-state bio-
enhancement processes is an approximation often applied in field remedies. After initial remedy
implementation, there will likely be a period of acclimation before a quasi-steady state is reached,
and long-term dissolution and/or by-product accumulation may cause further changes later.
However, it is assumed that the screening-level approach described herein is appropriate during
the extended quasi-steady state period that exists after an initial period of acclimation.
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DNAPL ganglia dissolution is represented in (M.6.31) by a linear driving force model (3™ term),
which assumes that diffusion across the boundary layer separating the non-aqueous and aqueous

phases is a steady process. The value of the lumped mass transfer coefficient, £, , is typically
estimated using an empirical relationship (e.g., Imhoff et al., 1994; Miller et al., 1990; Powers et
al., 1992). The relationships of Powers et al. (1992) and Imhoff et al. (1994) incorporate the effect
of decreasing DNAPL saturation on the lumped mass transfer coefficient. Chu et al. (2003) suggest
that this lumped mass transfer coefficient may also increase with microbial activity, since biofilm
formation can decrease the boundary layer width across which dissolution occurs. However, for
the purposes of this work the lumped mass transfer coefficient ( k,) is assumed constant with

respect to time (i.e., independent of changing DNAPL saturation or microbial activity).

A significant amount of work has examined the appropriate expression for the reaction term, R,
when microbes are active in a multiphase system. This work employs the commonly applied dual-
Monod-kinetic model for dehalorespiration (e.g., Chen et al., 2013):

" KPP+ Cy K, +C

where knax 1s the maximum utilization rate for the contaminant [M/(Mcenis'T)], X is the biomass
concentration [Mcens/L?], Cep 1s the electron donor concentration [M/L?], KfD is the electron donor
half-saturation constant [M/L?], and K is the contaminant half-saturation constant [M/L?]. In most
applications, the system is engineered to provide electron donor in excess (CED KfD ) and the
biomass is assumed to have reached a steady-state value (i.e., X is a constant). Under these
conditions, equation (M.6.32) can be approximated as:

R=k X ¢ (M.6.33)
K. +C

Assuming the reaction term in equation (M.6.31) follows the simplified expression in equation
(M.6.33), equation (M.6.31) can be expressed in dimensionless form as:
1 d°C " .
L2C 4 pa,(1-C")-Da,—— -
Pe g dx K +C

s

0 (M.6.34)

where C* = C/C _, the ratio of the aqueous-phase solute concentration to the aqueous-phase solute
e q Y q p

equilibrium concentration and X = x/ L. K: =K, / Ceq , a dimensionless form of the Monod half-
saturation constant normalized to the aqueous-phase solute equilibrium concentration. Here Pe =
vL/D, the Péclet Number, is the ratio of the rate of advection to the rate of dispersion; Da, = k,L / v,
an interphase mass transfer-based Group I Damkdhler Number, is the ratio of the mass transfer
rate to the advection rate, Da, =k, XL / C,V, a reaction-based Group I Damkdhler Number, is
the ratio of the biotransformation rate to the advection rate, and L is the length of the DNAPL
source zone within which dissolution enhancement may occur.

Dimensionless half-saturation constants ( K;’) vary depending on the contaminant (Chen et al.,

2013; Clapp et al.,, 2004). In practice, the local source zone dimensionless contaminant
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concentration (C*) is either be much less than, or much greater than, the dimensionless halt-

saturation constants (Amos et al., 2007a; Becker, 2006; Chambon et al., 2013; Clapp et al., 2004;
Fennell and Gossett, 1998; Haest et al., 2010a; Huang et al., 2014; Huang and Becker, 2009;
Kouznetsova et al., 2010; Schaefer et al., 2009a; Torlapati et al., 2012; Yu and Semprini, 2004).
When ¢* K, equation (M.6.34) reduces to a mass balance equation with zero-order kinetics:

2 ok
L L 90 pa, (1-C*)-Da, =0 (M.6.35)
Pe gy dx

*

and, when ¢* g*, equation (M.6.34) reduces to a mass balance equation with first-order
kinetics:
1 d°C" dC - Da, .
— (’;—i*+Dal(1—c)— He=o (M.6.36)
Pe dx* dx K

N

Equations (M.6.34)-(M.6.36) can be solved using a variety of mathematical methods. For example,
Seagren et al. (1993) employed an analytical solution developed by van Genuchten and Alves
(1982) that uses equation (M.6.36) in conjunction with a Robin condition (type III) at the inlet
boundary and a Neumann condition (type II) at the outlet boundary of a one-dimensional semi-
infinite column. Although the application to a semi-infinite column is expected to introduce error
when applied to a finite length column, Seagren et al. (1993) suggested this error is relatively
small, especially for advectively dominated systems (i.e., large Pe) (van Genuchten and Alves
1982; van Genuchten and Parker 1984), an error level consistent the screening-level application
proposed here.

The Seagren et al. (1993) solution quantified the rate of dissolution in a bioenhanced system as a
fraction of the maximum possible rate of dissolution, which was calculated assuming the bulk
aqueous phase contaminant concentration (C* ) was equal to zero. It is relatively straight-forward,

however, to rearrange the solutions derived in Seagren et al. (1993) to quantify the steady-state,
first-order kinetic, bioenhanced dissolution factor (/) as the ratio of the biotic (Jpioric) and abiotic
(Jabiotic) dissolution flux (Christ and Abriola, 2007):

_ Jhiotic _ Dal _[01 (1 - Cbiotic ) dx*

1

J abiotic Da1 I 01 (1 —_ C:biotic ) "
D 2
Pe N 1+4[Dal J
2 2 Pe
Da, (Da1 +];<a,f) —Da;| Da, +]3(a*2_ l-e (M.6.37)

*

2 E 1- I-+—4])%ﬁll
(Dal—kDazj l—ez[ Fe ]
K

N

A review of the literature suggests that zero-order kinetics are far more likely than first-order
kinetics in a DNAPL source zone (i.e., equation (M.6.35)). Typical half-saturation constant values
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for chlorinated ethenes frequently fall within the 0.1-10 uM range. Considering typical equilibrium
aqueous-phase solute equilibrium concentrations for chlorinated ethenes (i.e., C;CE =905 uM;

C.," =8370 uM; Cy ™" =36,300 uM; and C; =14,000 uM; Montgomery, 2007) yields

dimensionless half-saturation constant values in the range of 10~ — 10-2. Thus, for the first-order
approximation to Monod kinetics to be valid, aqueous-phase concentrations have to be
significantly less than 10 — 107 times their respective equilibrium concentrations. These low
concentrations are unlikely in DNAPL source zones, particularly in regions where bioenhanced
dissolution occurs. Additionally, these low concentrations may fall below the specific regulatory
criteria that are motivating site remediation. In fact, dimensionless half-saturation constant values
in the 107 — 10~ range are far more likely to support a zero-order approximation to Monod kinetics,
rather than a first-order approach. Using an approach similar to that employed in Christ & Abriola
(2007), a steady-state, bioenhanced dissolution factor (Eyp) can be developed for zero-order
kinetics:

1 pay1-—2 —coth(l(Pe ~ [Pe(4Da, + Pe))j if Da, > Da,
J. 2 Da, 4
E, = _ N (M.6.38)
abiotic 1 a1 lf Da1 < ])az
- eE(Pe—AfPe(4Dal +Pe))

When Da; is greater than Daj, the concentration-independent biotransformation rate is greater than
the maximum possible dissolution rate. In effect, contaminant mass is removed from the aqueous
phase by biotransformation faster than it dissolves into the aqueous phase. Under these conditions
(and the boundary conditions described above), the solution to equation (M.6.35) yields non-
physical, negative concentrations over the entire domain. Thus, the value of Da; is limited to the
value of Day, which results in the two-part, C’-continuous, solution shown in equation (M.6.38).

Development of a bioenhanced dissolution factor that incorporates the full Monod kinetic
model is more challenging since an analytical solution to equation (M.6.34) does not exist. This
value can be estimated numerically, however. In this work, equation (M.6.34) is solved using a
fourth-order-accurate, finite-difference approach implementing the three-stage Lobatto Illa
formula (Kierzenka and Shampine, 2001) with a Type III upgradient boundary condition and a
Type II downgradient boundary condition. A spatial discretization of Ax” = 10 was used and non-
linearities introduced by the Monod reaction term were resolved using direct (Picard) iteration
with a convergence criterion of 10, This numerical model was validated using analytical solutions
to the zero- and first-order mass balance equations. Excellent mass balance was achieved. This

*

solution (i.e., C,, .. on 0 <x" < 1) is then incorporated into the definition of the bioenhanced

iotic

)dx* ) to develop an

abiotic

1 * * 1 *
dissolution factor (i.e., E=J,, . [J ;... =Da, IO (1 —Cyioic ) dx / Da, IO (1 -C
estimate for E.

Equations (M.6.37) - (M.6.38) and the numerical solution to equation (M.6.34) provide relatively
simple models that can be used to estimate the level of bioenhanced dissolution expected for a
given set of flow and biodegradation conditions in a ganglia-contaminated, uniform-saturation,
source zone.
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I1.7. Statistical Characterization Tool Development
I1.7.1. Modeling Background and Formulation

Despite significant advances in our understanding of chlorinated solvent source zones and the
maturation of several in situ remediation technologies (e.g., bioremediation), our ability to provide
a priori predictions of the performance of remediation technologies in the field remains severely
limited (Kavanaugh et al., 2003; NRC, 2005; Stroo et al., 2003). This limitation mainly arises from
our lack of knowledge of the contaminant source zone architecture and mass (Abriola, 2005; Koch
and Nowak, 2015; Kueper et al., 2014; Mercer et al., 2010).

A major challenge in site assessment and the design of remedial technologies is the fact that
modeling contamination by NAPLs using multiphase flow and transport models is
computationally intensive (Dokou & Pinder, 2009). Furthermore, application of stochastic
methods, such as Monte Carlo simulations, to explore the implications of the uncertainty
associated with formation properties, contaminant spill scenarios and hydrological boundary
conditions, involves the intensive use of such models (Koch & Nowak, 2015). In addition, such
forward models are not well-suited to consideration of field-measured data from boreholes or
monitoring wells. To overcome this limitation multiple inversion techniques have been proposed
over the last decade to predict source zone architecture from field data (e.g. Koch & Nowak, 2016;
Michalak & Kitanidis, 2004; Neupauer & Lin, 2006; Neupauer & Wilson, 2005; Saenton &
Illangasekare, 2007; Yeh et al., 2007; Zeng et al., 2012; J. Zhang et al., 2015). Although effective
in identifying contaminant plume distribution, many of these techniques are highly
computationally intensive, do not account for presence of NAPL in the domain, or have strong
assumptions relating to the location and geometry of the source zone (Koch & Nowak, 2016).

To address the limitations associated with sparse sampling of the source zone, it is now common
practice to employ deterministic and stochastic plume interpolation approaches to estimate
contaminant concentration at unsampled locations using available borehole data. Kriging packages
(Deutsch and Journel, 1998) are among the stochastic methods that have been extensively used for
contaminant plume characterization, to interpolate between point observations of mass
concentrations at field sites (e.g., Gilbert & Simpson, 1985; Jones et al., 2005; Wu et al., 2005) in
an attempt to estimate contaminant mass. Most kriging applications, however, have focused on
aqueous concentration measurements to delineate contaminant plumes (Reed et al., 2000; Wu et
al., 2005; Basu et al., 2006; Rivett et al., 2006; Yu et al., 2006; Reed and Minsker, 2004), failing
to incorporate consideration of sequestered mass, specifically DNAPL, in their site conceptual
model, and potentially leading to gross underestimation of total mass and the associated remedial
challenges. Over the past two decades, more sophisticated characterization methods based on
Markov chain models (MCM) (Carle & Fogg, 1996, 1997) have been considered for processing
sparsely sampled data, including hydraulic conductivity (e.g., Elfeki, 2006a, 2006b; Harp et al.,
2008; Harp & Vesselinov, 2010) and source zone mass (Maji et al., 2006) observations. In the
latter study, however, DNAPL volume and aqueous-phase mass tended to be underestimated.

The above discussion highlights the urgent need for the development of improved, cost-effective,
field characterization methods and associated modeling tools that encompass all source zone mass
and facilitate the identification of the most critical source zone properties that govern mass
persistence and the performance of remedial options. In this work, a statistical model, employing
machine learning methods in conjunction with a limited number of field scale simulations, is
developed and used to reproduce distributions of contaminant mass (including NAPL saturation,
aqueous and sorbed phase concentrations) within a hydrologic subsurface unit.
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This work employs random field models, introduced and widely used in computer vision
applications, to model correlations among system variables. In particular, Discriminative Random
Field (DRF) models are selected to allow for the use of arbitrary features that can capture long-
range information and arbitrarily complex functions of the observed data. Once the models are
learned from a set of training data, Monte-Carlo sampling methods are then used to generate
realizations that are conditioned on measured borehole data. These realizations are then employed
to generate approximations of uncertainty that can inform further sampling for characterization
and remediation. Aside from a limited number of forward modeling runs needed to train the model,
this approach obviates the need to conduct extensive forward simulations with flow and transport
models that would be required in the context of Monte-Carlo analysis. In order to investigate the
performance of the proposed model, model results are also compared to those obtained through
classical ordinary kriging.

The DRF model is conditional in the sense that it considers the dependence of the unobserved
contaminant source zone (i.e. DNAPL saturation and aqueous concentration) distribution given
two categories of observed information. Firstly, permeability is assumed to be known everywhere
in the domain and this information is used as part of the observed data, or features, of the model,
as described further in this report. For a discussion about lifting this assumption, see Section III.6.
Secondly, the model is conditioned on observed borehole information (saturation and aqueous
concentration), and features required for the specification of the DRF model are calculated based
on the values of these quantities at the boreholes. The statistical model presented in this work
considers discrete values (herein referred to as labels) for saturation and aqueous concentration as
determined by binning continuous values of these properties. With discrete labels as the variables
of interest, the modeling problem becomes one of classification, i.e., determining the label
associated with each pixel for each property. Here the classification problem in discrete values was
favored over modeling continuous values through regression models. This can be justified by the
fact that concentration and saturation categories (labels), as shown in Section III.6, can provide
sufficient information for calculating source zone metrics, such as pool fraction (PF), used to
predict source zone longevity. Furthermore, handling discrete valued random fields is more
feasible than continuous values, specifically in the case of drawing samples using the Markov
Chain Monte Carlo (MCMC) method. The next section provides background to graphical and
random field models, specifically discriminative random fields which are used in this work.

I1.7.2. Graphical Models

Graphical models (or probabilistic graphical models) provide a tractable framework for describing
joint probability distributions with potentially complex dependencies among the random variables.
Usually, neighboring pixels are considered to be those vertically and horizontally adjacent,
corresponding to a graph defined on a regular grid as shown in Figure M.7.1.a. The usefulness of
these models centers on the ability to factorize the joint probability distributions across pixels into
products of local functions based on the fact that the joint distributions satisty some conditional
independence properties governed by the structure of the graph or model (Wang et al., 2013).
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(a) (b) (©)

Figure M.7.1. (a) Graphical representation of a random field defined on a regular grid (lattice), (b) First-
order neighborhood N; for site 1, (¢) First-order cliques: unary and pairwise cliques

Markov Random Fields (MRFs) are perhaps the most widely used class of graphical models. They
provide a computationally tractable and relatively flexible means of specifying joint probabilistic
models over all pixels in an image that can capture spatial relationships, making use of the
assumption that the value of a random variable (such as saturation or concentration), x;, at pixel
(or site) 7 is independent of all other pixels, except i’s neighbors. This assumption is referred to as
the local Markov property and can be stated as

VieS x; Lxs_zlxy, M.7.1)

where S is the set of pixels or sites in the field, x; is the random variable of interest (i.e. DNAPL
saturation or aqueous concentration) at site 7, and N; is the set of neighbors of site i. For three sets
of random variables 4, B, and C, the notation A L B|C indicates that 4 and B are statistically
independent conditioned on knowledge of C. Using the local Markov property, the Hammersley-
Clifford theorem states that the joint probability p(x) can be represented as a Gibbs distribution
factorized as a product of positive function of the random variables (Li, 2009). That is,

p(X) « [eec Pe(xc) (M.7.2)

where the bold symbol x represents the vector constructed from the lexicographical ordered pixels
i in S, a clique c is a set of mutual neighbors and the clique potential w.(x.) is a positive-valued
function of the variables x. in the clique. The lowest order random field model that can capture
relationships between neighbors consists of two types of cliques, unary, or single-site cliques and
pairwise cliques (Figure M.7.1.c). The neighborhood structure defined by such a model is referred
to as a first-order neighborhood structure (Figure M.7.1.b). For compactness the representation of
clique energy . defined as .(x.) = - log w.(x.) is adopted so that the joint distribution becomes

p(x) = ~exp{—E (x)} (M.7.3)

where the energy E(x) = Y. .cc 0.(x.) is defined as the sum over all clique energies and Z is the
normalizing term known as the partition function (Wang et al., 2013).

Now consider constructing a model for x, an unknown quantity to be modeled as a random field,
conditioned on observed data, y. Specifically, these observed data y will be measurements of
hydrologic or other physical properties observed in the domain, such as in boreholes, or functions
of these measurements. The values of x represent values of DNAPL saturation or aqueous phase
concentration for all pixels in a discretized representation of the source zone.

Unfortunately, our preliminary work indicated that building conditional random fields (CRFs)
based on local interactions among the components of x, was not suitable for generating realistic
realizations of DNAPL saturation or aqueous phase concentration given limited borehole
information. As shown in Kaluza et al. (2015), realizations using models based upon the MRF
framework tended to overemphasize local data to predict values that may be better informed by
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larger scale information. This weakness can be addressed through the use of a modeling approach
that can capture more subtle interactions among the random variables and the conditioning data.
Of specific interest here are a class of models known as Discriminative Random Fields (DRFs)
originally introduced in the computer vision literature for which the clique potentials can take the
form of any arbitrary domain-specific discriminative functions, which can capture local, mid-
range, or long-range interactions across images (Kumar and Hebert 2006).

11.7.3. DRF Model Formulation

Similar to CRFs, the distribution of x for a DRF is conditioned on the data and is a function of the
sum of potential functions. Here however the DRF distribution takes the specific form

p(xly) = ~exp(Ties Ai(x1,¥) + Ties Tjen, lij (0%, ¥)) (M.7.4)

where 4;(x;, y) represents the unary, or association, potential and /;;(x;, x;, y) represents the pairwise,
or interaction, potential. Under the simplifying assumption that the random field to be modeled
here are homogeneous and isotropic, these potentials will be equal for all i and j, and therefore the
i and j subscripts can be dropped from Equation (M.7.4) (Kumar and Hebert 2006). For the
remainder of this discussion, we assume that each site or pixel in an image representing the domain
can take on one of discrete set of labels L for each hydrological property (i.e. DNAPL saturation
or aqueous phase concentration), where the possible labels for this property at any pixel is given
by k €L.

In this work, the association potential A(x;, y) represents a measure of how likely a pixel i will take
label x;, given the observed borehole and permeability data y, ignoring the effects of other pixels
in the image (domain). Following Kumar & Hebert, (2006), the association potential for this
multiclass problem takes the form

A(x;, y) = Xer 6(x; = k) log P'(x; = k|y) (M.7.5)

where 0(x;=k) = 1 when x;=k and d(x;=k) = 0 otherwise, in effect serving as a function to select
the appropriate label-dependent parameters in P'(x; = k|y), which represents an arbitrary
discriminative classifier (Kumar & Hebert, 2005). Discriminative classifiers differ from generative
classifiers in that they model the conditional distribution P(x|y) rather than the joint distribution
P(x, y). In this work, a multinomial logistic regression classifier was used as discriminative
classifier, which takes the form

T
P'(x: =k — _©Xp (wih; () M.7.6
O = k1Y) = 5.7 o o (M.7.6)
where w; with & €L are the coefficients (parameters) for the k-th component of the association
potential, and h,(y) is a feature vector corresponding to pixel i defined as function of the the
observed data y. The specific components of h; are defined later in this Section.

The interaction, or pairwise clique, potential /(x; x; y), considers the interactions between
neighboring sites 7 and j and can be thought as a measure of how the labels at neighboring sites
should interact given the observed data y (Kumar and Hebert 2006). Again, following the ideas in
Kumar & Hebert, (2006), the form chosen for the interaction term is

I(xi,xj,y) = Yk leL Vi uij(y) 6(x; = k) 6(x; = 1) (M.7.7)

where vy, 1s the coefficient or parameter vector corresponding to the pair of labels &, / and g;(p)
represents the pairwise feature vector (Kumar and Hebert 2006), in this work a function of the
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feature vectors h;(y) and hi(y) (specifically g;(y) = | h{y) — hi(p) |). The first two terms of the
function represent a linear regression or inner product of the parameters and the function of feature
vectors at neighboring locations i and j. The terms 6(x; = k) and J(x; = [) serve as a selection
function so that the product between the parameter vector vy and the pairwise feature vector is
nonzero only when x; = k and x; = [. In effect, this model consists of one parameter vector vy for
every unique combination or labels &, / € L and the last two terms in (M.7.7) select the appropriate
parameter vector for the specific labels at pixels i and ;.

The DRF model (M.7.4-7) is characterized in terms of a collection of parameters, the w and v
vectors. To estimate these parameters, a limited number of heterogenous field scale multiphase
flow and transport simulations were conducted to generate training and testing datasets. These
simulation data were assumed to represent realistic distributions of DNAPL saturations and
concentrations across the heterogeneous domains. The DRF model parameters, that is the w; and
vi vectors with &,/ e L were then estimated from these training data. Then, using these parameter
vectors and “bore hole” data from the test set, Markov chain Monte-Carlo methods were employed
to generate conditional realizations of DNAPL saturation and aqueous phase concentration. The
performance of the statistical model was measured by comparing the predicted realizations with
the ‘true’ inter-borehole distributions, as generated in the test set.

The following flow chart (Figure M.7.2) illustrates the sequence of tasks performed to develop the
statistical model (hereafter referred to as BRAINS - Borehole Random-field Automated
Interpolator for NAPL Source-zones). The procedure for generation of training and test data is
described in Section I11.6.

Data preparation

Source zone data generation
(MVALOR/ MT3DMS)

Quantize continuous data Separate_ data for tra!nlng,
validation and testing

v

Feature extraction
from observed data

Model training ¢

Train model Validate model (select
parameters hyper-parameters)

Metropolis-Hastings
Sampling; Model
Evaluation through
Simulations

Figure M.7.2. Workflow for BRAINS model

59



I1.8. Sensitivity/Sampling Optimization Modeling
I1.8.1. Introduction

Delineation of the down-gradient mass discharge from a contaminant source zone is of particular
importance in the estimation of source longevity (e.g., (Christ et al. 2005); (Koch and Nowak
2015), the assessment of long-term impact on groundwater quality (e.g., (Falta et al. 2005a; b;
Jawitz et al. 2005), and evaluation of the benefits of source zone remediation at contaminated sites
(e.g., (Basu et al. 2006; Falta 2008). Mass discharge and flux averaged concentration (FAC) are
receiving increased attention alternative metrics that relate to both source mass removal efficiency
and down-gradient plume persistence (e.g., (DiFilippo and Brusseau 2008; Li et al. 2007; Soga et
al. 2004; Stroo et al. 2003).

Here, flux averaged concentration is defined as:
[ KiC,dA
Cr="rr e
[ KidA
where K is the hydraulic conductivity [LT™1], i is the hydraulic gradient [—], A is the area of

control plane [L?], C, is the aqueous phase concentration [ML™3]. The integral is applied along a
down-gradient transect.

(M.8.1)

Unfortunately, mass discharge or FAC estimates are prone to large uncertainty, due to sparse data
and subsurface variability (Kitanidis 1997; Rubin 2003) In addition, because mass discharge
integrates uncertain spatial and temporal distributions of varying flow conditions and complex
contaminant distributions, estimates of mass discharge suffer from high prediction uncertainty ((L1
et al. 2007; Li and Abriola 2009; Troldborg et al. 2010, 2012).

Mass discharge uncertainty quantification has been investigated using the Integral Pumping Test
(Chen et al. 2014; Jarsjo et al. 2005), the Passive Flux Meter (Acar et al. 2013; Klammler et al.
2012), and Multilevel Sampling (MLS). MLS measurements of concentration and permeability
obtained by indicator Kriging (L1 et al. 2007; Li and Abriola 2009) or variogram (Cai et al. 2011)
were fitted into certain geostatistical models to estimate the mass discharge uncertainty in terms
of probability distributions. Simulations incorporating the physics of flow and transport processes
were proposed to account for heterogeneity of permeability and concentration to quantify mass
discharge uncertainty, employing numerical transport simulations (Troldborg et al. 2010) or
analytical macro-dispersive transport solutions (Troldborg et al. 2012).

Notably, none of the above applications considered the presence of NAPL phase or sorbed mass
and their relationship to mass discharge. A few studies incorporated random contaminant sources
in transport modeling (Chaudhuri and Sekhar 2006, 2008; Wang and Zheng 2005). However, the
physical processes that form DNAPL source zones were neglected. Such simplifications have
substantial consequences, since local permeability and flow velocity have significant impacts on
emanating mass fluxes (de Barros and Nowak 2010). In addition, it has been demonstrated by
numerous laboratory (e.g., (Suchomel and Pennell 2006; Totten et al. 2007) and modeling
investigations (e.g., (Christ et al. 2010; Lemke and Abriola 2006; Yang et al. 2018) that the
morphology of source zone and sorption properties (e.g., (Maghrebi et al. 2015; Yang et al. 2018)
have significant effects on solute transport, DNAPL depletion, and mass discharge prediction.
Thus, source zone architecture, DNAPL dissolution, and sorption processes, as well as field-scale
heterogeneity, should be taken into account in assessing mass discharge uncertainties.

In addition to the quantification of mass discharge uncertainty, the development of an iterative
sampling strategy will be critical to the improvement mass discharge predictions. In order to reduce
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uncertainty, additional measurements can be collected and employed, along with statistical models
of geologic heterogeneity, to interpolate between unsampled positions. Thus, an optimal sampling
design is sought that employs a sampling strategy which applies statistical methods to maximize
the expected gain of information, and to reduce the uncertainty associated with a prediction goal
(e.g., (Cirpka et al. 2004; Leube et al. 2012; Lu et al. 2018).

Optimal design, performed through data worth analysis, is widely applied in groundwater related
problems. Previous studies have focused on reducing prediction uncertainties related to
contaminant concentration (e.g., (Herrera and Pinder 2005) and arrival time (e.g., (Nowak et al.
2010), identifying system parameters and the corresponding uncertainties (e.g., (Neuman et al.
2012), and minimizing costs associate with site remediation (e.g., (Liu et al. 2012). In these studies,
different utility functions have been developed to explicitly quantify data worth, which include:
coefficient of variation (CV) (e.g., Zhang et al., 2005), relative entropy (e.g., (de Barros and Rubin
2008), the trace of the predicted quantity covariance matrix (e.g., (Lu et al. 2012), indicator
variable (Nowak et al. 2012), prediction uncertainty reduction (e.g., (de Barros et al. 2012), and
monetary terms (e.g., (Feyen and Gorelick 2004).

Assessing the data worth can be accomplished using different statistical methods (Loaiciga et al.
1992). Among the alternative approaches, are those based upon Monte Carlo (MC) sampling,
which involved performing a large number of deterministic calculations for random, equally likely
realizations and a statistical analysis of results. The MC method, coupled with other statistical
techniques, has been widely employed in groundwater modeling and optimal design. Statistical
techniques that have been coupled with this approach include the Ensemble Kalman Filter (e.g.
(Dai et al. 2016; Herrera and Pinder 2005; Nowak et al. 2010), Bayesian statistical design with
bootstrap filter sampling (Liu et al. 2012) or Preposterior Data Impact Assessor (Leube et al. 2012;
Nowak et al. 2012), and Bayesian Model Averaging (e.g., (Neuman et al. 2012; Pham and Tsai
2016; Xue et al. 2014). The biggest drawback of the MC based approach is that it is
computationally cumbersome, as the MC sample size should be large enough to preserve statistical
features.

The first-order second-moment method (FOSM), which uses linear approximations to directly
propagate parameter and data uncertainties into system states via sensitivity matrices, is a
straightforward and computationally efficient way to estimate mean and variances of dependent
quantities. The FOSM approach has been applied to estimate of the influence of permeability
uncertainty or recharge rates (Kunstmann et al. 2002); to quantify the uncertainty of capturing
plumes by funnel-and-gate systems (Cirpka et al. 2004); and to design optimal groundwater
monitoring networks that reduce flux and travel time prediction uncertainties (Fienen et al. 2010)
and hyporheic exchange (Wohling et al. 2016). Vilhelmsen and Ferré (2017) extended FOSM data
worth analysis to include simultaneous selection of multiple new measurements and consideration
of multiple forecasts.

Previous uncertainty quantification of mass discharge has been investigated either by neglecting
the presence of DNAPL or sorbed phase or by assuming simplified DNAPL source zone
architecture. Although preliminary assessment of the mass discharge uncertainty can be obtained
neglecting mass sources, the result might be biased based on those idealized scenarios. In addition,
although groundwater optimal design has been widely explored using different techniques, none
of these previous studies have conducted data worth analysis to select additional observations to
support a reduction in mass discharge uncertainty, considering heterogeneity in permeability and
source mass distributions.
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In this research the FOSM is adopted to evaluate the uncertainty of flux averaged concentration
predictions. Both aquifer parameters and source zone mass are considered as random variables, to
account for aquifer heterogeneity, flow irregularity, source zone morphology, and their
interlinkages. In the decision process, data worth analysis is conducted to develop an optimal
borehole sampling strategy by selecting the additional measurements that give the largest FAC
uncertainty reduction.

I1.8.2. Mathematical Formulation
I1.8.2.1. FOSM Uncertainty Approximation

Since uncertainty in the hydraulic conductivity field directly influences groundwater flow,
DNAPL migration, and solute transport, it is desirable to model the hydraulic conductivity field
as a random space function, with uncertainty propagating to other quantities via groundwater flow
and contaminant transport simulations. In addition, as source zone architecture and the
corresponding DNAPL dissolution and solute transport are mainly controlled by aquifer material
heterogeneity, the contaminant mass in different phases (aqueous, DNAPL, and sorbed) are also
treated as random variables with their associated uncertainties honoring insufficient site
characterization. Porosity is considered as spatially constant and known values for simplicity in
this study.

The FOSM propagates uncertainties in system parameters to the model output by applying a linear
approximation, which is performed to yield mean values, variances and covariances of all
dependent variables. Here hydraulic conductivity, initial aqueous phase concentration, and initial
DNAPL saturation were treated as independent random variables. The initial sorbed concentration
was related to initial aqueous concentration and texture via an equilibrium relationship. The log
conductivity and initial contaminant mass in different phases can be considered as second-order

variables with the distribution of p~N(§, Cpp):

p=[mK C° s° s (M.8.2a)
p = E[p] (M.8.2b)
Cpp(x1,X;) = E[(P(x1) — PX1))(P(x2) — P(X2))] (M.8.2¢)

in which InK is the log conductivity [LT~1], C,° is the initial aqueous concentration in the domain
[ML™3], SO is the initial sorbed mass [MM™1], s,° is the initial NAPL saturation [—], P is the
geometric mean of the parameter, E[ | denote the expected value operator, Cp, is the covariance

and cross-covariance function of the parameter fluctuations at location x; and X,, where diagonal
elements represent parameter variances, and off-diagonal elements denote interactions between
parameter uncertainties. For simplicity, measurement error in these four variables was not
considered.

Uncertainty in the dispersion tensor is included implicitly in the analysis in so far as it can be
tracked back to uncertainty in the velocity field, which arises from uncertainty in hydraulic
conductivity and piezometric head. The uncertainty in the velocity field also propagates
uncertainty into the DNAPL dissolution mass transfer coefficient. The down-gradient FAC can
also be characterized by its expected value and covariance function since it depends on the random
space variable p. The first moment of the FAC prediction is approximated to first-order accuracy
by the mean C¢ obtained as the solution of coupled flow and transport equations using the ensemble
mean values of the four system parameters:
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E[Ce(p)] = C¢ = C(P) (M.8.3)

The propagation of parameter uncertainties into the down-gradient FAC prediction, given by the
covariance matrix, are approximated to first-order accuracy by linear error propagation (Dettinger
and Wilson 1981):

Ceoe, = 0¢, = E[(Ce — CpI(Ce — Cp) = He, CppHe, " (M.8.4)

where Cc,c, is the covariance matrix of down-gradient FAC, Hc, is the Jacobian matrix containing
the sensitivity of down-gradient FAC to an incremental change in each model parameter:

dCe
Hee = g5t

The Jacobian matrix is derived from the adjoint-state sensitivities, which is discussed in section
11.8.2.3.

11.8.2.2. Data Worth

Data worth analysis seeks optimal combinations of new, yet to be collected, observations that
support a forecast of interest. The worth of existing and new data is evaluated by quantifying their
ability to constrain the uncertainty of model predictions (Dausman et al. 2010; Fienen et al. 2010;
Leaf 2017; Wohling et al. 2016). Quantitative criteria are usually developed to rank either
individual data point or groups of data points, in an effort to allocate sampling resources efficiently
for optimal monitoring network design (Kikuchi 2017). According to FOSM uncertainty
propagation, the variance of down-gradient FAC predictions is a product of sensitivities of model
outputs to parameters and the parameter covariance matrix. The relative contribution of parameters
to model prediction uncertainty, assuming model parameters are fully accessible and measurable,
can be evaluated by recomputing variances, replacing new measurement-associated terms in the
covariance matrix with zeros, implying perfect knowledge of additional measurements. An
estimate of the reduction of down-gradient FAC predictive uncertainty, or data worth, can, thus,
be calculated as:

2 _ 2 2 _ T T
AO—Cf - 0—Cf,base 0-Cf,new - HcfcppHCf HCprp,newHCf (M86)

(M.8.5)

where Cppnew 18 the updated covariance matrix with enhanced parameter knowledge. The

reduction in prediction uncertainty can be computed using (M.8.6) for all potential measurement
locations and particular measurements to support the identification of the locations with highest
expected data worth, where (normalized) data worth expressed as:

2
OCtnew
Normalized Data Worth = —"2 (M.8.7)

Cf,base

Here o tnew 18 the prediction uncertainty with additional sets of observations, and of fbase 18 the

base uncertainty corresponding to existing data only. This normalized quantity ranges between 0
and 1, with the lowest value associated with the largest uncertainty reduction.

The data worth analysis described above is closely related to parameter identifiability, targeted to
identify model parameters with high uncertainty, as well as high sensitivity to model predictions.
Once these locations/parameters are identified and measurements obtained, new realizations can
be generated, and a forward multiphase flow and transport simulation applied to obtain an
improved prediction of future states.
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11.8.2.3. Evaluation of Sensitivities

For computational efficiency, the adjoint state method (Sun and Yeh 1990; Sykes et al. 1985;
Townley and Wilson 1985) was adopted herein to evaluate the sensitivity matrix Hc.. The
derivation of the adjoint states equations for the FAC prediction are provided in Supplementary
materials. For the selected four random variables (log hydraulic conductivity and contaminant
mass in aqueous, sorbed, and DNAPL phase), four adjoint partial differential equations
corresponding to four adjoint states were derived with structures similar to the original control
equations(Equations M.5.2-M.5.4, M.5.18). Due to the crossover effects between state variables
and parameters, the derivation of adjoint states preserves the feature of flow and mass transport
coupling. In the adjoint states development, it was assumed that the change of log hydraulic
conductivity may affect the velocity field, the dispersion tensor, and the DNAPL dissolution rate.
In addition, the DNAPL dissolution rate is also a function of initial DNAPL saturation distribution.
Note that, although the impact of DNAPL dissolution on water relative permeability, is considered
in the forward flow and transport simulations, this effect is neglected in the calculation of adjoint
states to simplify the adjoint state equations. In other words, the water relatively permeability is
set as 1, and the flow is assumed to be steady-state in the process of deriving adjoint states
equations and marginal sensitivity expressions. Thus, the sensitivity of the water relative
permeability with respect to the small change of initial DNAPL saturations is disregarded in this
study for simplification.

With the purpose of investigating the sensitivity of down-gradient FAC with respect to the small
change of the above mentioned four variables, the performance measure P, which quantifies some
state of the system, is defined as the FAC at the down-gradient transect at the time of interest. ¢ is
a functional of the state of the system and is defined accordingly.

P= U s(InK, C,°,S%s,°, Cr) dVdt (M.8.8a)

C(IHK, Cao' s, Sn0: Cf) = Cf(X, O(X = Xmea)0(Y — Ymea)8(Z — Zmea) 8(T) (M.8.8b)

where 8(+) denotes the Dirac delta function, X is defined as the location of down-gradient transect,
T is the specific time of interest. After applying the adjoint state theory, the resultant equations for
the adjoint states are given as:

ok
V- (KV¥) = V- (KC,V¥}) — V- (KEV¥}) + V - <K —(c3 - ca)lpg;) -V

¢ (M.8.9)
aga a a n ah
oW B A 5
o ara =V (galp;) + V- (D} - V¥a) + k(¥s — Wa) + Kq'¥s — % (M.8.10)
a
"ot 9t ds,
0¥, dg

Vs =— - M.8.12
s T TP T 5s ( )

with initial and boundary conditions:
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<Kw;; — KC,V¥; + KEV¥; — T

ok . ok
q * eq *
a K(C Ca)qja + aqa K(Ca - Ca)lpn> (M813a)
=0
Pi(t=0)=¥(t=0)=%%(=0)=0 (M.8.13Db)
—(Dg-v¥;) i=0 (M.8.13¢)
Here W, ¥;, and W, are adjoint states corresponding to aqueous phase concentration, DNAPL
saturation, and sorbed concentration, respectively, ¥}, is the adjoint states corresponding to the
hydraulic head. T = t; — tis the backward time, t¢ is the final time of simulation. E is a tensor with
components: Ej = aD;/ 0q;0C,/ 0x;, (the summation for 1=x,y,z is implied). Thus, the
marginal sensitivities corresponding to log hydraulic conductivity field and three initial
contaminant mass in different phases can be computed as:

dan H\,t [61 — — (KVh) - V¥ + (KC,Vh) - V¥; — (KFVC,) - V¥;

ok (M.8.14a)
+ (KVh) g (C3% —Co)(w; — tp;;)l dvdt
Fyy = 9D/ 9q,0h/ 0x, (M.8.14b)
dp
0= j [—ns,(t = 0)¥;(t = 0)]dV (M.8.15)
dc,’ N
dp
qs0 = j [—pp¥a(t=0)]dV (M.8.16)
\%
dp ok
5= f f [—as—o(cgq —C)(W; - qJ;;)l dvat
e (M.8.17)

+ J [nC,¥;(t=0) —np,Pi(t=0)]dV
v

11.8.2.4. Model Framework

The overall procedure for down-gradient FAC prediction, uncertainty quantification, and optimal
sampling strategy design is shown in Figure M.8.1. Equiprobable hydraulic conductivity field
realizations were first constructed conditioned on existing borehole data. Instead of applying
numerical simulations of spilled DNAPL migration to obtain source zone architecture formations,
the discriminative random field (DRF) based probabilistic model presented in I1.7.3 was employed
to generate stochastic realizations of a subsurface source zone, consistent with known, limited site
characterization data. The conditional ensemble means of the random fields of log hydraulic
conductivity and sequestered contamination were then applied as initial conditions for a coupled
groundwater flow (eq. M.5.18-M.5.19) and contaminant transport (eq. M.5.2-M.5.5) simulation
coupling DNAPL dissolution, sorption, and dissolved phase transport.

The first-order approximation of FAC at different times (eq. M.8.3) was obtained using a modified
version of the MODFLOW (Harbaugh 2005) and MT3DMS (e.g., (Parker and Park 2004; Yang et
al. 2018; Zheng and Wang 1999) codes, as described in section I1.5. The adjoint states were solved
via another modified MT3DMS code (eq. M.8.9-M.8.13). The marginal sensitivities were then
computed coupling velocity field, concentration moments, adjoint sates, as well as their
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interlinkage via a MATLAB script (eq. M.8.14-M.8.17). The propagation of parameter
uncertainties into FAC was then implemented through the FOSM method, with the variance of
FAC calculated by coupling the sensitivities and covariance and cross-covariance of four random
variables (eq. M.8.4). In the decision process, the new sampling strategy design, taking the form
of data worth analysis, was then developed by considering additional measurements at locations
with highest variance reduction (eq. M.8.6-M.8.7).

Extract borehole

b information of
InK, CJ,s5,5°
Generate equiprobable Average
realizations of ey | InK,CY, 59,5 % caliza
InK, CY, s, §© tions as model input

! }

Run MT3DMS:
MNAPL dissolution and
transport simulations

! | 1

Run adjoint
states model

Calculate covariance Compute marginal
and cross-covariance of sensitivities of Cy with
InK, ¥, sY, §° respect to InK, CJ,sh, 57
4 A

Down-gradient Cy
estimate and uncertainty
quantification

. J

!

{ Y
Data worth analysis and
optimized Sampling
strategy design

/

Figure M.8.1. Overall procedure of the optimal sampling network design for prediction of down-gradient
FAC and uncertainty quantification.
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II1. Results and Discussion
III.1. Site Characterization Results

This section describes the results of the preliminary site investigation and materials
characterization completed prior to implementation of the DHT. Site groundwater monitoring
encompassed water table elevations, water quality parameters, and measurements of, chlorinated
ethene, VFA, dissolved organic carbon, dissolved metal, and anion concentrations, and , as well
as aqueous Dhc, GeoSZ, and RDase gene abundance quantification. Soil characterization included
grain size and permeability analyses, total organic carbon measurements, sorption equilibria and
rate experiments, soil pH measurements, sorbed chlorinated ethene measurements, and total Dhc
abundance quantification.

II1.1.1. Groundwater Elevation

Site wide groundwater elevations varied from 98.4 to 102.6 m (322.7 to 336.6 feet) above sea level
(North American Vertical Datum of 1988) as measured in site monitoring wells in August 2014
(Appendix B.1). Groundwater generally flows north to south with a slight west to east gradient in
the pilot test area. The unnamed brook does not appear to influence groundwater flow, with a
groundwater elevation of 101.0 m (331.3 ft) on the west side of the brook (MW-06) and 101.1 m
(331.6 ft) in a nearby well west of the brook shown on Figure M.3.5 (ASI-05D2).

In the DHT area, groundwater elevations measured in the CMT-wells ranged from 100.9 to 101.1
m (331.2 to 331.8 feet) in September 2014 with no discernable vertical or horizontal gradients.
The measured elevations were consistent with the 101.0 m (331.3) foot elevation measured in
August 2014 in MW-06, the monitoring well closest to the pilot test area (Figure M.3.3). Similar
gradients were observed in October 2015 with slightly higher groundwater elevations ranging from
101.2 to 101.3 m (331.9 to 332.4 feet). In the September 2016 measurements, groundwater
elevation in the previously measured CMT-wells ranged from 100.9 to 101.0 m (331.1 to 331.4
feet) with a slight north-south gradient of 0.0012 m/m (0.004 feet/foot). In the newly installed
wells, CMT-6, DHT-1, DHT-2 and DHT-4, groundwater elevations were 101.0, 101.0, 100.8, and
101.0 m (331.5, 331.4, 330.8, and 331.4 feet), respectively. A complete table of groundwater
elevation measurements at site monitoring wells can be found in Appendix B.1.

II1.1.2. Site Groundwater Contaminants

Water sample collected from the site monitoring wells in August 2014 exihibit a large spatial
variability in chlorinated ethene concentrations, with high concentrations between Commerce
Street and the unnamed stream and low (<3.03 uM TCE) or undetectable concentrations west of
Commerce Street (MW-09D and MW-09M) and east of the stream (ASI-05D2 and ASI-04D2);
well locations are shown on Figure M.3.5. Within the plume, TCE concentrations ranged from 119
to 227 uM with lower concentrations of cis-DCE (0.50 to 14.4 uM) and ethene (0.32 to 3.82 uM).
VC was not detected in any of the monitoring well samples. In monitoring well pair MW-06M and
MW-06D, the closest wells to the pilot test area, the concentrations of TCE increased with depth
while the concentration of cis-DCE decreased. The deeper well, MW-06D had concentrations of
TCE and cis-DCE of 227 and 5.02 uM, respectively while MW-06M had concentrations of 119
and 14.4 uM. A complete table of groundwater chlorinated ethene and ethene measurements is
presented in Appendix B.2.

In the CMT-wells arranged around the pilot test area (Figure M.3.4), the concentrations of TCE
were generally lower than the site monitoring wells (up to 117 uM) while the cis-DCE
concentrations were higher (up to 275 uM), indicating dechlorinating activity by the native
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microbial population in this area. The CMT wells facilitated the observation of vertical variations
in chlorinated ethene concentrations. For example, in the September 2014 samples, the TCE, cis-
DCE, VC, and ethene concentrations ranged from non-detect to 0.087 uM, 0.017 to 78.6 uM, non-
detect to 0.033 uM, and 1.03 to 2.26 uM, respectively, in the shallowest depth (4.60 to 4.75 m
bgs). In the deepest depth (10.94 to 11.09 m bgs), TCE, cis-DCE, VC, and ethene concentrations
ranged from 0.12 to 1.53 uM, 6.70 to 147 uM, non-detect to 0.27 uM and 0.34 to 2.67 uM,
respectively. The highest TCE concentration of 117 uM was in the 9.48 to 9.63 m depth, while the
highest cis-DCE concentration of 200 uM was measured in deeper groundwater (10.24 to 10.58
m). Subsequent groundwater sampling wells focused on the lower CMT depths where TCE and
cis-DCE were present at the highest concentrations. In the samples collected in October 2015, TCE
was only detected above 0.47 uM in well CMT-1 with concentrations shown in Table R.1.1 while
cis-DCE was detected in CMT-1 and in the other nearby CMT wells at concentrations up to 139
puM. The high concentrations in CMT-1 and its location in the parking lot led to its selection as the
site for the pilot test.

Table R.1.1. Chlorinated ethene and ethene concentrations (WM) measured in CMT-1 samples collected on
October 23, 2015.

Depth (m TCE cis-DCE VC Ethene

bgs) concentration concentration concentration  concentration
6.07t0 6.23  0.505 47.2 0.0162 4.54

7.80t0 7.96 114 40.1 ND ND
948t09.63 1.21 134 0.0143 0.228

10.24 to

10.58 0.0393 105 ND 0.0875

10.94 to

11.09 0.489 76.1 0.0124 0.0583

Similar results were observed in the September 2016 samples collected from CMT-1 and the newly
installed CMT-6, indicating that the wells were well situated for implementation of the pilot test
(Figure M.3.4). In CMT-6, upgradient of the pilot test, the highest TCE and cis-DCE
concentrations were 81.2, 201, and 195 uM and 140, 134, and 67.9 uM in the 7.92 to 8.01, 8.84 to
8.99, and 9.60 to 9.75 m bgs depths, respectively. All chlorinated ethene and ethene results can be
found in Appendix B.2.

I11.1.3. Water Quality Parameters

In the monitoring wells sampled in August 2014, the water quality parameters exhibited little
variability in pH, ORP, specific conductivity, temperature, dissolved oxygen, and turbidity,
ranging from 6.7 to 7.4, -109.1 to 65.2 mv, 735 to 1890 ps/cm, 10.23 to 14.41°C, 0.091 to 0.55
mg/L, and 0.57 to 40.2 NTUs, respectively. Of these parameters, pH and ORP (an indicator of
oxygen content) are most critical to successful bioremediation. For biodegradation to occur
efficiently, pH should be between 6 and 8 and ORP should be less than -100 mv (Stroo et al. 2013).
These conditions are met in MW-05D, a location with a high TCE concentration upgradient of the
pilot test area, where pH is 6.87 and ORP is -109.1 mv. In several other locations with high TCE
concentrations, the elevated ORP readings (45.8mv in MW-04D, -7.2 mv in MW-06D, and -14.7
in MW-06M) indicate that dechlorination of TCE is unlikely in these areas. All water quality
parameter measurements can be found in Appendix B.3.
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The CMT-well concentration measurements conducted in September 2014 and October 2015
demonstrate ideal conditions for bioremediation with pH between 6.98 and 8.70 and ORP between
-87.2 and -223.4 mv. There were no trends in water quality parameters with depth in the CMT-
wells. During the February 2017 sampling event, the ORP measurements were higher than in other
sampling rounds, ranging from -150.6 to 29.6 mv. These elevated readings are likely due to the
introduction of oxygen due to the large volume of water (4.0 L) collected from these wells for use
in microcosm experiments. During the September 2016 sampling event, the groundwater pH
measured in CMT-1 ranged from 2.87 to 3.02. Low pH was not observed previously or during the
pilot test. It is likely that the pH probe used was not calibrated correctly and these readings are not
representative of groundwater conditions at the site.

I11.1.4. Groundwater Volatile Fatty Acids and Dissolved Organic Carbon

VFAs were not detected in the site monitoring well or CMT-well samples analyzed. The detection
limits for each volatile fatty acid, using the HPLC method described in Section I1.2.2, were 0.35
mg/L for fumaric acid and 5 mg/L for all other VFAs. While VFAs are a typical electron donor
during active bioremediation, other sources of organic carbon can sustain microbial populations
and enable the dechlorination of chlorinated ethenes. Sitewide dissolved organic carbon
concentrations ranged from 0.54 to 2.92 mgC/L in the samples collected in August 2014. In the
pilot test area CMT-wells sampled in October 2015, dissolved organic carbon concentrations were
higher, ranging from 0.89 to 4.9 mgC/L, likely facilitating the dechlorination of TCE to cis-DCE
observed in the area (Rectanus et al. 2007). Dissolved organic carbon measurements are provided
in Table R.1.2.

Table R.1.2. Groundwater dissolved organic carbon (DOC) results (mgC/L) for site monitoring wells (Aug
2014) and CMT-wells (Sep 2014).

Well Date Sampled  DOC Well Date Sampled DOC
ASI-02D2  8/14/2014 0.79 CMT-2D3  10/23/2015 1.4
ASI-04D2  8/14/2014 0.82 CMT-2D4  10/23/2015 0.89
ASI-05D2  8/13/2014 1.11 CMT-2D5  10/23/2015 3.47
MW-04D 8/14/2014 0.54 CMT-2D6  10/23/2015 3.19
MW-05D 8/13/2014 1.75 CMT-2D7  10/23/2015 4.9
MW-06D 8/13/2014 0.8 CMT-3D4  10/23/2015 1.76
MW-06M  8/14/2014 24 CMT-3D5  10/23/2015 2.88
MW-09D 8/14/2014 2.92 CMT-3D7  10/23/2015 391
MW-09M  8/14/2014 1.57 CMT-4-D5  10/23/2015 2.31
CMT-1 D2 10/23/2015 242 CMT-4 D7  10/23/2015 1.27
CMT-1 D3  10/23/2015 1.76 CMT-5D3  10/23/2015 3.08
CMT-1 D5  10/23/2015 1.64 CMT-5D5  10/23/2015 293
CMT-1 D6  10/23/2015 2.97 CMT-5D6  10/23/2015 2.66
CMT-1 D7 10/23/2015 2.25 CMT-5D7  10/23/2015 1.59
CMT-2D2 10/23/2015 1.98
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II1.1.5. Groundwater Dissolved Metals

Concentrations of 21 dissolved metals were measured in groundwater samples collected at the site
monitoring wells in August 2014 and in the CMT-well samples collected in September 2014 as
shown in Appendix B.4. The metals concentrations observed were consistent with previous rounds
of sampling at the site (Nobis Engineering Inc. 2012) and did not indicate any impediments to
utilizing bioremediation in the pilot test as shown in Table R.1.3.

Table R.1.3. Average concentrations (range in parentheses) of select dissolved metals measured in site

monitoring wells and CMT-wells. All values in ug/L.

Sample Group Aluminum  Barium Calcium Chromium Copper Iron

Site Monitoring  0-12 0.14 91.5 0.003 0.003 1.44

Wells (2014) (ND-0.23)  (0.09-0.22)  (62.0-117)  (ND-0.008) (ND-0.01) (ND-3.68)

Site Monitoring 1 54 0.12 102 0.019 0.02 15.3

Wells (NOBIS

2012) (ND-7.22)  (ND-0.20)  (59.9-148)  (ND-0.049) (ND-0.05)  (1.99-36.7)
0.033 0.14 78.5 3.07

CMT Wells ND ND

(2014) (ND-0.17)  (0.05-0.25)  (29.7-138) (0.01-12.6)

Sample Group Potassium Magnesium Manganese Sodium Lead Zinc

Site Monitoring 372 18.4 1.05 343 0(')03063 0.005

Wells (2014) (1.78-6.35)  (12.6-25.2)  (0.49-2.09)  (45-1316) f) o1 1)' (ND-0.03)

Site Monitoring 3 36 18.5 1.66 84.0 0.007 0.049

Wells (NOBIS

2012) (1.28-4.02)  (10.4-27.7)  (0.64-3.27)  (19.1-310)  (ND-0.024) (ND-0.10)

CMT Wells 6.16 13.5 1.25 366 0.001

(2014) (131-14.4)  (5.22-25.7)  (0.11-3.39)  (53-1005) (ND-0.01)

Notes: 1. Additional metals analyzed but not detected: Arsenic, Cadmium, Cobalt, Molybdenum, Nickel,
Selenium, Vanadium. 2. Beryllium not detected by Nobis 2012. 2014 average 0.005, range 0.003-0.009 pg/L.

II1.1.6. Groundwater Anions

The samples collected from site-wide monitoring wells in August 2014 were analyzed for anions
relevant to bioremediation: chloride, sulfate, nitrite, and nitrate. Similar to previous sampling by
(Nobis Engineering Inc. 2012), nitrite and nitrate were not detected across the site while chloride
and sulfate were present at the low concentrations shown in Table R.1.4, averaging 6.85 and 7.51
ug/L, respectively. Near the CMT-wells, in MW-06D and MW-06M, the chloride and sulfate
concentrations were close to the average values and did not indicate conditions that would impede
bioremediation.
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Table R.1.4. Groundwater anions, all values in ug/L.

i?)g:ﬂ:ﬁn l()J:::leec ted Chloride Sulfate Nitrite Nitrate
ASI-02D2 8/14/2014 18.77424 9.570975 ND ND
ASI-04D2 8/14/2014 2.756649 7.144461 ND ND
ASI-05D2 8/13/2014 3.087576 4.902045 ND ND
MW-04D 8/14/2014 4.693678 7.324914 ND ND
MW-05D 8/13/2014 5.214537 7.577964 ND ND
MW-06D 8/13/2014 4.01288 8.860034 ND ND
MW-06M 8/14/2014 8.553747 9.960891 ND ND
MW-09D 8/14/2014 3.482385 1.929688 ND ND
MW-09M 8/14/2014 11.12855 10.34556 ND ND

Notes: ND=not detected
II1.1.7. Groundwater Microbial Abundance

In the biological samples collected from the CMT-wells in September 2014, Dhc abundance was
generally uniform with a slight increase in cell abundance with depth. The average Dhc
abundances across the CMT-wells sampled were 1.40 x 10° (£8.68 x 10°) 16S rRNA gene copies/
L in the deepest two depths (10.2 to 10.6m bgs and 10.9 to 11.1 m bgs), 8.87 x 10° (£7.46 x 10°)
16S rRNA gene copies/ L in the middle three depths (7.80 to 7.96 m bgs, 8.66 to 8.81 m bgs, and
9.48 t0 9.63 m bgs), and 8.89 x 10° (£1.63 x 10°) 16S rRNA gene copies/ L in the shallowest two
depths (4.60 to 4.75 m bgs and 6.07 to 6.22 m bgs). All Dhc gene copy counts measured are
included as Appendix B.5. Dhc abundances exceeding 1 x 10% 16S rRNA gene copies/ L are
associated with successful transformation of TCE to ethene (Lu et al. 2006; Ritalahti et al. 2010b;
a; Stroo et al. 2013).

In the groundwater samples collected in October 2015, samples from two depths (9.48-9.63 m bgs
and 10.9-11.1 m bgs) were analyzed to confirm the DAc abundance in the pilot test area. The 16S
rRNA gene abundance averaged 1.46 x 10° (£2.52 x 10°) gene copies/ L in the shallower depth
and 2.22 x 10° (£9.72 x 10%) gene copies/ L in the deeper depth. While these gene abundances
suggest a Dhc population capable of dechlorination, the RDase genes implicated in ethene
formation, bvcA and fced, were not detected (<8.6 x 10% gene copies/L) in any of the samples
analyzed. The lack of Dhc cells harboring these RDase genes explains the accumulation of cis-
DCE observed at the site and the lack of VC and ethene measured in the CMT-wells.

I11.1.8. Site Soil Visual Characterization and Grain Size Analysis

Soil boring logs with visual descriptions of the soil cores are included as Appendix B.6. The aquifer
generally consists fine grain sand with increasingly fine sands and silts in deeper depths,
culminating in a layer of dense, silty clay beginning at 10.7 to 12.2 m (35 to 40 feet) bgs. The
water table was generally encountered at approximately 3m (10 feet) bgs. Results of the grain size
analysis are included as Appendix B.7 and show the silt and clay content increase with depth. In
the pilot test transect well DHT-2 (Figure M.3.6), the shallow depths (> 4.6 m [15 feet] bgs)
consisted primarily of fine sand (31.7 to 58.4%) with some medium (10.8% to 33.9%) and very
fine sand (3.7% to 44%) but very little clay (0% to 5.6%). Above the water table, the soil contained
coarse sand (2.2 to 11.6%) with gravel (16 to 25.3%) identified at 2 depths. Within the aquifer but
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above 10.7 m (35 feet) bgs, soil primarily consisted of fine sand (23.4 to 64.8%) and silt/very fine
sand (13.6 to 75.4%). Although there was a location containing a higher percentage of clay (26.5%)
at4.6to 5.3 m (15 to 17.5 feet) bgs, the remainder of the borehole had a lower clay content (1.1 to
6.7%). Between 10.7 and 10.9 m (35 and 35.8 feet) bgs, there is a layer of soil containing primarily
silt and very fine sand (81.9 to 88.4%) directly above the confining layer of silt (66.2%) and clay
(33.8%) located at 10.9 m (35.8 feet) bgs.

II1.1.9. Soil Permeability

Samples from the preliminary borings were analyzed at three depths: shallow water table (4.3 to
4.9 m [14 to 16 feet] bgs), intermediate water table (7.3 to 7.9 m [24 to 26 feet] bgs), and the deep
water table (10.4 to 11.0 m [34 to 36 feet] bgs). These data, provided in Table R.1.5, are consistent
with the grail size analyses; the shallower depths with a greater proportion of medium grain sands
have higher permeability (4.01 x 107! m? and 3.88 x 10°!> m?) than the lower depths of finer grain
sediments (permeabilities of 9.5 x 10713 m? and 2.32 x 10> m?). Similar results were obtained by
analysis of samples collected from the CMT-well and DHT-2 soil borings. In DHT-2, at the
screened depth used in the pilot test (10.1 to 10.7 m [33 to 35 feet] bgs), the permeability was 1.01
x103m?.

Table R.1.5. Permeability of soil samples collected from soil borings and monitoring wells.

Location Sample Depth (ft. bgs) Permeability (m?)
SB-1 14to 16 4.01 x107'2
SB-1 24 to 26 4.62 x10713
SB-1 34 t0 36 9.50 x10°"
SB-2 14to 16 3.88 x107"2
SB-2 24 to 26 1.83 x10°12
SB-2 34 t0 36 2.32 x10"2
CMT-1 10.5to0 12 4.70 x10"2
CMT-1 17to 18 2.00 x10"2
CMT-4 32to 34 1.00 x107"3
CMT-5 10to 11 8.10 x10°'2
CMT-5 18to 19 2.60 x10"2
DHT-2 251027.5 1.02 x10°'
DHT-2 27.51t0 30 9.97 x10°"
DHT-2 35t035.5 1.04 x10°"3

I11.1.10. Soil Organic Carbon

Soil samples from the preliminary soil boring and from CMT-1 were analyzed for total organic
carbon with results provided in Table R.1.6. Organic carbon was highest above the water table (>
2.4 m [8 feet] bgs), ranging from 0.46% to 1.54% in CMT-1. Near the water table, organic was
detected at low concentrations (0.10% to 0.20%) but was not detected in CMT-1 below 4.0 m (13
feet) bgs. Similarly, in the soil borings, organic carbon was not detected in the sandy aquifer
between 7.3 and 11.6 m (24 and 38 feet) bgs. In the single high clay sample analyzed, SB-1 11.6
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to 12.2 m (38 to 40 feet) bgs, organic carbon was detected and comprised 0.34% of the sample

mass.

Table R.1.6. Soil organic carbon content in preliminary borings and CMT-1.

Sample gl)‘fga;nic Sample gl)‘fga;nic Sample gl)'ta;nic
Location Depth Carbon Location Depth Carbon Location Depth Cagbon

(ft bgs) (%) (ft bgs) (%) (ft bgs) (%)
SB-1 10to 14  0.21% CMT-1 2to 4 1.54%
SB-1 14t020 ND SB-2 14t020 0.063% CMT-1 41006 0.46%
SB-1 20to 24  0.14% SB-2 20to 24 0.064% CMT-1 8to 10  0.10%
SB-1 241038 ND SB-2 24t040 ND CMT-1 10to 12 0.20%
SB-1 38t040 0.34% CMT-1 13to24 ND

Notes: ND = not detected above 0.1 mgC detection limit (~0.012% by mass)
I11.1.11. Soil Sorption Capacity and Rate

Adsorption equilibrium experiments were conducted with soils collected from CMT-1 at depths
of 2.6 t0 2.9 m (8.5 to 9.5 feet) bgs, 2.4 to 3.0 m (8 to 10 feet) bgs, 3.2 to 3.5 m (10.5 to 11.5 feet)
bgs, and 12.2 to 1.8 m (40 to 42 feet) bgs. These depths were chosen to assess the effects of particle
size and organic carbon on adsorption-desorption processes. The material from depth 3.2 to 3.5 m
(10.5 to 11.5 feet) bgs was used for the forward rate to adsorption experiment; this material
achieved equilibrium after approximately 90 hours (see Figure R.1.1).
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Figure R.1.1. Rate to Adsorption Equilibrium for soil collected from CMT 1 3.2 to 3.5 m (10.5 to 11.5
feet) bgs.

The other three materials were chosen for their range of particle size and organic carbon content.
Depth 2.6 to 2.9 m (8.5 to 9.5 feet) bgs consisted of primarily sand (90.5% sand, 7.8% silt, and
1.7% clay) with lowest organic carbon content (0.1% by weight) of the three adsorption isotherm
materials tested. The material from this depth also had the lowest sorption equilibrium partitioning
coefficient, K4, (mass of TCE/mass of soil) / (mass of TCE/volume of solution) of the three
materials with a value of 1.0x10"* L/g. Similar material from a wider depth range of 2.4 to 3.0 m
(8 to 10 feet) bgs, consisted of 73.67% sand, 22.5% silt, 3.5 % clay with a slightly higher organic
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carbon content of 0.2% by weight. The Kq for this depth was higher, 4.8x10* (L/g), due to the
increased organic carbon content. A high clay material, collected from the 12.2 to 1.8 m bgs depth
of boring CMT-1, consisted of primarily clay (54.9%) and silt (45.1%), with no sand and 0.3%
organic carbon by weight. The adsorption isotherm for this depth was also 3.5x104(L/g).

A summary of the three adsorption isotherms is shown in Figure R.1.2. The K4 values for each of
these isotherms each differ less than a factor of two from their theoretical K4 values, as calculated
using the method from Cwiertny and Scherer (2010), shown in Table R.1.7. The small K4 values
and relatively similar amount of adsorption among all three materials suggests that contaminant
sorption throughout the selected pilot test site is limited and confined to a narrow range. The rate
to adsorption equilibrium was found to be the longest for the clay. This might be due to the fact
that mass transfer from aqueous to solid phase may be more limited in fine materials.
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Figure R.1.2. Adsorption Isotherms for soils collected from CMT-1 at depths of 2.6 to 2.9 m bgs (High
sand), 2.4 to 3.0 m bgs (Intermediate), and 12.2 to 1.8 m bgs (Clay).

Desorption experiments were completed for soil collected from the 2.4 to 3.0 m bgs and 12.2 to
1.8 m depths of CMT-1. TCE desorbed more quickly from the sandy material (2.4 to 3.0 m bgs)
than the clay material (12.2 to 1.8 m bgs) with the time to reach a TCE concentration below the
detection limit (< 0.4mg TCE/L) being 3 days and 5 days, respectively.

The data from these experiments were used to calculate 1% order TCE desorption rates for each
material type. Results are presented in Table R.1.7). These adsorption-desorption experiments
offer insight into the relative rates of mass transfer between the solid and liquid phases. The faster
rates of mass transfer within the sandy materials relative to the clay materials indicate higher
mobility and shorter contaminant-solid phase interaction times are likely to be observed for
materials of larger particle sizes.

I11.1.12. Site Soil pH

Site soil pH was measured from samples collected from the CMT-5 borehole. The results, in Table
R.1.8, show alkaline soil with pH ranging from 7.71 to 9.44. This soil pH is consistent with the
high groundwater pH (up to 8.70) observed during CMT-well sampling.
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Table R.1.7. Summary of Materials and Results from Adsorption-Desorption Experiments

Clay High Sand Intermediate
Particle Size Average % Present Average % Present Average % Present
Gravel 0.0% 0.0% 0.4%
Coarse Sand 0.0% 0.3% 0.1%
Medium Sand 0.0% 3.5% 4.9%
Fine Sand 0.0% 86.7% 68.7%
Silt 45.1% 7.8% 22.5%
Clay 54.9% 1.7% 3.5%
Total 100.0% 100.0% 100.0%
Total Organic Carbon 0.3% 0.1% 0.2%
Koe 133.33 100.00 200.00
Theoretical Kq (L/g) 4.44E-04 1.48E-04 2.96E-04
Measured Kq (L/g) 3.50E-04 1.00E-04 4.80E-04
T o % 2
Pmelobenin o £
gtggifga?:)sorpﬁo“ -0.40320.19 N/A -0.895+0.42

Notes: 1. Theoretical K4 values calculated according to {Citation} 2. Soils collected from CMT-1 at
depths 0f 2.6 t0 2.9 m (8.5 to 9.5 feet) bgs (High sand), 2.4 to 3.0 m (8 to 10 feet) bgs (Intermediate), and
12.2 to 1.8 m (40 to 42 feet) bgs (Clay).

Table R.1.8. Soil pH in samples collected from the CMT-5 borehole.

Depth bgs Soil pH Depth (ft bgs) Soil pH
3.0to 3.4 m (10 to 11 feet) 7.79 7.3 to 7.6 m (24 to 25 feet) 8.00
3.7t0 4.0 m (12 to 13 feet) 9.63 7.6 to 7.9 m (25 to 26 feet) 8.89
4.91t05.2m (16 to 17 feet) 9.36 9.8 to 10.1 m (32 to 33 feet) 7.71
5.5t0 5.8 m (18 to 19 feet) 8.10 10.1 to 10.4 m (33 to 34 feet) 8.86
6.7 to 7.0 m (22 to 23 feet) 7.81 11to 11.3 m (36 to 37 feet) 8.08

7 to 7.3 m (23 to 24 feet) 9.44

II1.1.13. Site Soil Contaminants

Soil samples from the preliminary borings were analyzed for volatile organic compounds (VOCs)
by a commercial contract laboratory, Test America, Inc. (Burlington, MA). The results, provided
in Appendix B.8, showed detectible levels of TCE at depths of 6.1 to 12.2 m (20 to 40 feet) bgs in
both locations with the highest TCE concentration, 13,000 pg/kg, at a depth of 9.8 to 10.4 m (32
to 34 feet) bgs in soil boring SB-02. DCE isomers were not detected above the laboratory detection
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limit of 5.3 to 230 pg/kg. These results were consistent with the observations in the nearby
monitoring wells (MW-06M and MW-06D) where TCE was the primary groundwater contaminant
and cis-DCE was present at low concentrations (5.02 uM to 14.4 uM).

Soil samples from the CMT-5 soil boring were analyzed in the ESL using an alcohol extraction
method and GC-FID as described in Section II.2.1. Due to the high detection limit of this method,
TCE and cis-DCE were not detected in the CMT-well samples analyzed. Soil samples from the
DHT-2 soil boring core were analyzed using alcohol extraction with GC-ECD analysis which had
the necessary sensitivity to detect contaminants that desorbed into the extraction solvent. Both
TCE and cis-DCE were detected in all of the samples collected from the 9.1 to 10.7 m (30 to 35
feet) bgs depth of DHT-2 as shown in Table R.1.9. TCE concentrations ranged from 379.7 to 1839
ug/kg and cis-DCE concentrations ranged from 8.77 to 74.27 ng/kg. As with the groundwater
sample results, the pilot test area (DHT-2) had lower TCE concentrations and higher cis-DCE
concentrations than the portion of the site where the preliminary soil borings were conducted.

Table R.1.9. Contaminant concentrations in DHT-2 soil boring samples

Depth (m bgs) Depth (Ft bgs) TCE (ug/kg) cis-DCE (ug/kg)

9.1 30 74.3 912
9.3 30.5 40.6 643
9.4 30.8 31.9 1054
9.4 31 48.1 722
9.6 315 49.9 380
9.7 31.8 433 474
9.8 32 42.2 652
9.9 325 53.9 516
10.0 32.8 37.2 841
10.1 33 25.0 840
10.2 335 13.4 905
10.3 33.8 13.3 789
10.4 34 14.0 608
10.5 345 12.4 920
10.7 35 8.77 1839

I11.1.14. Site Soil Microbial Abundance

A single soil sample, from the CMT-4 borehole 10.9to 11.1 m (35.9 to 36.4 feet) bgs, was analyzed
for total Dhc abundance. This sample had a total Dhc abundance of 1.08 x 107 16S rRNA gene
copies/ gram of wet soil. Due to the lack of RDase gene in the groundwater samples analyzed and
evidence that bioaugmentation was necessary, no additional analyses of soil microbial abundance
were conducted.
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I11.2. Batch Reactor and Microcosm Experiments and Modeling Results
I11.2.1. Experiment Results

Batch reactor and microcosm transformation studies were completed to assess the need to
bioaugment the native microbial population at the Commerce Street site. A total of 123 reactors
were prepared as described in Section II.4.1 using the combination of materials and amendments
detailed in Table M.4.1.

In the 12 microcosms prepared with site soil, groundwater collected more than 1 year prior to use,
and amended with TCE and lactate, all of the TCE was transformed to cis-DCE over the course of
58.2 (£9.5) days. When 27 similar reactors were prepared with site soil and groundwater collected
3 days prior to use (also amended with TCE and lactate), TCE was completely transformed to cis-
DCE in an average of 57.6 (£22.9) days. None of these 39 microcosms completely transformed
cis-DCE to ethene over the course of 140 days, indicating a need to bioaugment the Commerce
Street site to achieve dechlorination to ethene over the proposed time-frame of the pilot test. In the
reactors prepared with 1-year old CMT-5 groundwater, two reactors produced VC after 82.5 (£3.5)
days and one reactor produced ethene after 86 days. These batch experiments were terminated
after 95 days. The reactors prepared with 3-day old groundwater from CMT-5 were sampled for
673 days. Over this period, six of the reactors fully transformed TCE to ethene between the 140
day and 588 day sample with VC detectable after an average of 87.2 (+14.8) days. Of the 15
reactors prepared with soil and groundwater from other CMT-wells, 8 showed an increase in
ethene concentration from 0.002 mM to 0.016 to 0.44 mM, but still contained mostly cis-DCE (68
to 90% of total molar mass) after 673 days.

In batch reactors prepared without soil, transformation of TCE to cis-DCE did not occur or required
a longer time frame. No transformation was observed in the 6 reactors prepared with 1-year old
groundwater during 95 days of sampling. In the 3 reactors prepared with 3-day old groundwater,
but no soil and provided with 50% anaerobic growth medium, TCE was completely transformed
to cis-DCE after 140 days. In the 3 reactors without soil or medium (prepared with 3-day old
groundwater), only 1 reactor fully transformed TCE to cis-DCE after 588 days. Neither ethene nor
VC was detected in any non-augmented reactors prepared without soil. The presence of soil
provides a larger initial population of viable dechlorinating microorganisms than the groundwater
alone, resulting in more rapid transformation of TCE to cis-DCE. The micronutrients and buffering
capacity that may be contributed by the soil can also be provided by the anaerobic growth medium,
as indicated by a shorter time to full transformation to cis-DCE in the groundwater-medium batch
reactors than the groundwater only batch reactors.

When lactate was not provided as an electron donor (15 reactors), dechlorination was limited. In
the 6 reactors containing CMT-5 groundwater and soil, TCE was fully transformed to cis-DCE
after 79.9 (£5.4) days but was not transformed to VC or ethene. In the 6 reactors without soil or
lactate, only 2 were able to fully transform TCE to cis-DCE after 588 days. The remaining 3
reactors without electron donor (prepared with CMT-4 groundwater) were sampled for 95 days
and did not demonstrate transformation of TCE to cis-DCE. These reactors demonstrate that the
organic carbon in the soil and site groundwater provide sufficient electron donor for the microbial
species that transform TCE to cis-DCE but do not provide the hydrogen necessary for DAc strains
to transform cis-DCE to VC and ethene. Microcosm and batch reactors bioaugmented with KB-1®
or BDI were able to fully transform TCE to ethene over a short timeframe. In the 36 bioaugmented
reactors, TCE was reduced to concentrations below detection limits in an average of 7 days (£3.1)
days while cis-DCE and VC were no longer detected after 33.1 (+18.0) days and 37.0 days (£30.7)
days, respectively. In bioaugmented reactors, VC was detected in the earliest samples collected
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(<1 day), although it may have been inadvertently introduced with the inoculum. Ethene
concentrations increased after 2 to 27 days in bioaugmented reactors.

Figure R.2.1 contains example plots typical of reactor performance for a) native microbial
population without lactate, b) native microbial population with lactate electron donor, and c) site
materials bioaugmented with BDI. Anaerobic control reactors (21 reactors) did not exhibit
transformation of TCE but were used to account for losses of chlorinated solvents through the
rubber stopper.
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Figure R.2.1. Typical plots of chlorinated ethene and ethene concentrations in microcosms prepared with:
a) site soil, site groundwater, and TCE; b) site soil, site groundwater, TCE, and lactate; and ¢) site soil, site
groundwater, TCE, and lactate bioaugmented with BDI.

Additional analysis of the reactors prepared with DHT-2 soil and anoxic site groundwater was
performed to develop parameters for modeling the aquifer cell and pilot test experiments. The
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lactate added to these microcosms was rapidly fermented to acetate and propionate, providing
hydrogen for Dhc strains, in microcosm containing native microorganisms and in reactors
bioaugmented with KB-1®, but not in the abiotic control reactors (Figure R.2.2).
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Figure R.2.2. Concentrations of VFAs in microcosms comprised of DHT-2 soil, anoxic groundwater and

a) native microbial community, b) bioaugmentation with KB-1® and ¢) sterilized anoxic control.

After the initial fermentation of lactate, VFA concentrations remained stable as the electron donor
was in excess of the molar mass needed to complete dechlorination of TCE to ethene. The
chlorinated ethene and ethene concentrations in the DHT-2 microcosms are presented in Figure
R.2.3. As in the other microcosm studies prepared with soil and groundwater from the CMT-wells,
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the non-bioaugmented reactors stalled at cis-DCE, the bioaugmented reactors fully transformed
TCE to ethene, and biotic losses of approximately 0.3 mM TCE were observed in the abiotic
control reactors. The reactors that were not bioaugmented stalled at cis-DCE and did not produce
measurable concentrations of VC and ethene, while the bioaugmented reactors fully transformed
TCE to ethene.
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Figure R.2.3. Concentrations of chlorinated ethenes and ethene in microcosms comprised of DHT-2 soil,

anoxic groundwater and a) native microbial community, b) bioaugmentation with KB-1® and c) sterilized
anoxic control.
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The growth of two microbial species, Dhc and GeoSZ, were monitored in the three DHT-2 soil
microcosms bioaugmented with KB-1®. The DAc population increased from an average abundance
of 1.33 x 10 (£4.00x107) 16S rRNA gene copies/ L after bioaugmentation to a maximum of 1.76
x 10° (£1.59 x 10°%) 16S rRNA gene copies/ L after 30 days. The Dhc population then declined to
6.20 x 103 (£3.27 x 10%) 16S rRNA gene copies/ L at the end of the experiment (57 days) as the
electron acceptor (chlorinated ethenes) had been depleted by day 44 to 51. The GeoSZ population
increased similarly from an initial abundance of 2.73 x 10* gene copies per L (1 reactor; 2 reactors
were below the instrument detection limit of 2.50 x 10* 16S rRNA gene copies/ L) to a maximum
of 4.30 x 10* (£1.09 x 10%) 16S rRNA gene copies/ L after 30 days and decreased to below the
detection limit after 57 days.

I11.2.2. Modeling Results

The model parameter values were taken from the literature and are listed in Table R.2.1.

Table R.2.1. Microcosm Dechlorination Model Parameters.

Symbol Parameter Name Value Reference
Krcpnayy TCE half saturation constant 0.00102 mM (Clapp et al. 2004)
Kpcgnayy DCE half saturation constant 0.00192 mM (Clapp et al. 2004)
Kychayy VC half saturation constant 0.18027 mM (Clapp et al. 2004)
K;rcg  TCE inhibition constant same as Krcg haif (Christ and Abriola 2007)
K;pceg  DCE inhibition constant same as Kpcg naif (Christ and Abriola 2007)
Kive VC inhibition constant same as Ky ¢ hair (Christ and Abriola 2007)
yTCE TCE vyield coefficient 9.6 mg cell mmol™! (Clapp et al. 2004)
ky dechlorinator endogenous decay rate 0.05d71 (Chen et al. 2013)
K5k TCE gas escape rate constant 0.0071d71 measured
kpce DCE gas escape rate constant 0.0083 d™1 estimated from k%
£c VC gas escape rate constant 0.0103d71 estimated from k% g
kiry ethene gas escape rate constant 0.0154d 1 estimated from kf..
Kgqrce  TCE linear adsorption constant 1.34x107*L g~ measured
Kapce  DCE linear adsorption constant 45x107°L g™t  estimated from Ky rc
Kgyc  VClinear adsorption constant 26x107°L g™t estimated from Ky rc
Kypry  cthene linear adsorption constant 83x107¢Lg™!  estimated from Ky rcg
Q° average aqueous phase sampling rate —3.0x107%Ld1 measured

81



The DCE, VC, and ethene gas escape constants were estimated from the TCE gas escape constant
k% g by using Graham’s law of effusion

(R.2.1)

where My q; and M; are molecular weights.

A measured linear adsorption constant was used for TCE. An approximation (Karickhoff et al.
1979) based on the octanol-water coefficient K,,, was used to estimate the linear adsorption
constants for DCE, VC, and ethene, using the measured fraction of organic carbon f. in the soil.

Kq; = 6.17 X 107*f, K,,, (R2.2)

The final adjusted yield coefficient values were YPCE =29 mg cell mmol™! and YVC =
1.0 mg cell mmol™?. The corresponding best-fit maximum substrate utilization rates are listed in
the following Table R.2.2. An example plot of model results versus measured values is shown in
Figure R.2.4-6. The model under-predicts TCE and VC concentrations in some trials, but it
successfully matches the overall timing of the dechlorination process.

Table R.2.2. Best-Fit Maximum Substrate Utilization Rates (mmol/mg-cell day), and Mean Square Error
(MSE) (mmol?)

Trial krcEmax kpcemax kvcmax MSE

D2K-1 0.319 0.0903 0.222 0.0054
D2K-2 0.356 0.0742 0.222 0.0009
D2K-3 0.315 0.0774 0.176 0.0027

I11.2.3. Conclusions

Microcosm and batch reactor experiments demonstrated the need to bioaugment and biostimulate
the site in order to fully transform TCE to ethene. The native microbial population was capable of
transforming TCE to cis-DCE using the dissolved organic carbon in site groundwater but
completed the transformation more quickly when supplied with lactate as an electron donor. When
provided with lactate, the native microbial population in a subset of reactors did transform cis-
DCE to VC and ethene when provided with a suitably long timeframe (>140 days). The absence
of continued dechlorination in most reactors indicates a low population of Dhc harboring the
RDase genes necessary to produce VC and ethene and a non-uniform distribution of organisms at
the site. Bioaugmentation of reactors with KB-1® or BDI was successful and allowed TCE to be
fully transformed to ethene in an average of 37 days.

A robust numerical model incorporating adsorption of contaminants to soil and partitioning into
the bottle headspace was created to simulate microbial reductive dechlorination in the batch
reactors and microcosms. The numerical model and Matlab fitting routine were able to match the
chlorinated ethene and ethene concentrations observed in the KB-1® bioaugmented microcosms,
providing culture-specific yield coefficients and substrate utilization rates that were used in future
modeling results.
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Figure R.2.4. Model Results and Measured Values for Microcosm Trial D2K-1.
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I11.3. Aquifer Cell Transformation Studies

Two aquifer cell transformation studies were performed as described in Section 11.4.2 above. The
first aquifer cell contained an ASTM 20/30 background with four lenses of varying hydraulic
conductivity and organic carbon content. It was used to quantify the bioenhancement of back
diffusion from low permeability zones and to examine the distribution of Dhc and associated
RDase genes around soil heterogeneities. Results of this research are described in Section 111.3.1.
The second aquifer cell was constructed with site materials and was used to provide a laboratory
scale model of the pilot (DHT) test. This laboratory scale experiment was used to compare
numerical model predictions with observations and to develop parameters to model the pilot test.
Experimental and modeling results from this aquifer cell experiment are presented in Section
111.3.2.

I11.3.1. First Aquifer Cell; Experimental and Modeling Results
I11.3.1.1. Modeling First Aquifer Cell and Flow Field

To represent the actual experimental conditions of the aquifer cell, the numerical model was
implemented to consider all of the experimental features, including the flow and transport
properties of the lenses and clay layer, as well as the conditions associated with the influent
solution delivery system. Prediction accuracy for compound concentrations in the aquifer cell
depends primarily on an accurate simulation of heterogenous flow field. A schematic diagram of
the model domain for the aquifer cell is shown in Figure R.3.1.

Influent Effluent
0
0.05 20/30 Sand Background
o1 o Webster Soil (¢}
) )
0.15 | ° o Appling Soil

® <— Outlet

0

Figure R.3.1. First Aquifer cell construction for numerical simulation

Given the shallow depth of the aquifer cell, it was modeled as a pseudo two-dimensional system,
neglecting any parameter variations with depth. . Flow chambers, constructed as slotted stainless
steel wells to promote uniform flow distribution into the aquifer cell, were simulated by assigning
a hydraulic conductivity 6 orders —of- magnitude higher than that of the background sand to the
first and last column of the numerical grid cells. In the experiment, a stainless steel drop tube in
the influent chamber was used to supply influent solution from a constant head reservoir to create
steady flow field, and an effluent chamber drop tube was opened to the atmosphere at a fixed
height. In order to simulate these conditions, the numerical gridblocks associated with the flow
tubes in the inlet and outlet chambers (Figure R.3.1) were assigned as constant head cells. A fine
spatial discretization was applied to the model domain (grid spacing of 1 cm (length) X 0.25 cm
(height)) to adequately capture mass transfer processes (e.g., diffusion) in the vicinity of lenses
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and clay layers. An implicit finite difference scheme with upstream weighting on advection was
used to solve the transport equations, providing computational efficiency and robust numerical
solutions. An adaptive temporal discretization was applied to minimize numerical dispersion.

Given the controlled gradient experimental conditions, hydraulic conductivities and dispersivity
coefficients were calibrated in the model by matching 1) the average effluent flow rate and 2) the
breakthrough curves of the initial bromide tracer test. Here effluent tracer breakthrough curves
(BTC) were used to calibrate the hydraulic conductivity of the background sand, while sampling
port tracer data were mainly used to fit the hydraulic conductivities of the lenses and the clay layer.
The number of adjustable variables in the model prevented the use of a formal parameter
optimization procedure. Thus, an iterative parameter updating procedure was used to minimize
the root mean square errors between model simulation and BTC observations.

Initial model parameter values listed in Table R.3.1 were obtained from the literature for
experiments conducted using the same porous media. These parameters were then adjusted to
minimize the differences between model simulation and experimental observation, resulting in the
set of calibrated parameters shown in the same table (R.3.1). The subsequent abiotic experiment,
involving flushing of a solution of TCE, a sorptive compound, and a non-reactive tracer, bromide,
was then simulated using the calibrated parameters, validating the fitted coefficients and
facilitating the refinement of the assumed organic carbon content of the materials.

Table R.3.1. Initial and calibrated model parameters for first aquifer cell transport simulations

Porous Media Hydraul(ircn/Cd(;r;;luctiVity (C)(:ﬁ?:riz ?oiﬂz% Porosity, ¢ (-)

Calibrated Initial® Calibrated  Initial® Fixed

ASTM 20/30 200 330 - 0 0.45

Webster Soil 0.6 0.86 33 1.96 0.51

Appling Soil 5 10.2 0.75 0.66 0.33

Commerce St. Soil 5 1.7-6.9 0.1 0.1-0.3 0.3

F95 Sand 1 2.5 0.001 0.01 0.28

Commerce St. Clay 0.05 0.08 0.32 0.3 0.78

@ Obtained from (Chen et al. 2007; Gaeth et al. 2016; Marcet et al. 2018a; Taylor et al. 2001).
b Obtained from (Gaeth et al. 2016; Marcet et al. 2018a).

Experimental measurements of the total molar sum of chlorinated ethenes and ethene during the
biotic experiment were then compared with numerical simulations of sorption, desorption, and
diffusion in the absence of microbial reductive dechlorination (MRD) to assess the influence of
microbial activity on back diffusion and desorption. Influent TCE concentrations and flow rates
were set consistent with experimental conditions (Table M.4.2).

Other input parameters for soil and chemical properties were kept fixed during simulations
assuming no/minimal need for adjustment. Porosity was calculated using soil mass and volume
emplaced in the aquifer cell and a mid-range value of soil specific gravity. A K,. value of 126
L/kg was used for TCE (Pankow et al. 1996). Free-solution diffusivity of bromide and TCE were
taken from (Verschueren 2001) and (Li and Gregory 1974), with values of 2.01E-05 ¢cm?/s and
7.99E-06 cm?/s respectively.
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I11.3.1.2. Bromide Tracer Breakthrough

Calibrated parameters used in the tracer test model are listed in Table R.3.1. Experimental
measurements and the associated numerical simulation of the bromide BTC are plotted in Figure
R.3.2. Note that the hydraulic conductivity values of the emplaced media were reduced by a factor
of 1.5 to 2 from the assumed (literature) initial values to match the measured hydraulic gradient
and flow rate. An initial local longitudinal dispersivity value of 0.1 cm and a vertical to longitudinal
ratio of 0.1 cm was employed, following (Lyon-Marion et al. 2017). The longitudinal dispersivity
was then slightly adjusted to a value of 0.24 cm after calibration in order to match the rise and
tailing of the BTC.

(a) Effluent (b) Port 1E
2f ' ' [ T 12} ' ' ‘ '
<, Goodness of fit: '\E”°de'_ fit  bat Goodness of fit:
r ° Xperimen ata| 1 —
c | 0.86 P = 0.60
ol E
S 5
® . ®
= 5
c o
g -
[
S, | o
(&]
n L . ‘%\4 L L L
OO 0.5 1 1.5 2 25 3 1.5 2 2.5 3
Pore Volumes Pore Volumes
(c) Port 2C (d) Port 4D
12 ‘ ‘ ‘ ' 1 12 ' ‘ ‘ ‘
. Goodness of fit: | _ 10l . . Goodness of fit:
= =
= 0.82 = 0.79
= = 8
.2 .2
5 g o
= =
8 8 4+
c c
[] []
o O 2f
0

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Pore Volumes Pore Volumes

Figure R.3.2. Comparison of bromide tracer concentration measurements (open circles) and model fit
(solid lines) in (a) effluent and (b-d) ports.

Using the calibrated parameters, the model matched the experimental BTC with goodness of fit of
0.86, 0.60, 0.82, and 0.79 calculated by “goodnessOfFit” (MATLAB, The Mathworks, Natick,
MA) for data collected in effluent, and ports 1E, 2C, and 4D, respectively. An examination of
Figure R.3.2 reveals that the model was able to capture the asymmetrical shape of the effluent
BTC, but under-predicted the magnitude of the effluent tailing at late times, possibly associated
with diffusive mass transport from the clay layer at the bottom of the cell (Figure R.3.3). A mass
balance calculation, however, demonstrated that the bromide mass stored in the clay layer would
be unable to sustain such a high tailing after the majority of the mass was flushed out. Thus, this
high tailing level was attributed to residual bromide from a previous tracer experiment in the cell.
Model predictions for side port BTCs provided a close match to the breakthrough times and the
plateau maximum concentrations with minor differences in the tail (port 1E) and the width of the
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BTCs (ports 2C and 4D), resulting in the slightly lower goodness of fit values mentioned above.
In general, the model results displayed good agreement with experimental BTCs in terms of the
shape, arrival time, and plateau concentration, demonstrating the capability of the model to
simulate the heterogeneous aquifer cell and the suitability of calibrated parameters used in the
model.
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Figure R.3.3. Simulated aqueous concentration of bromide in aquifer cell at PV 1.96 (day 15) of tracer
experiment.

I11.3.1.3. Desorption and Back Diffusion under Abiotic Conditions

Following the tracer test, an abiotic flushing experiment of TCE and bromide was conducted to
investigate sorption-influenced back diffusion in the system. Results of experimental
measurements and numerical simulations for the effluent and selected ports during the flushing
experiment (PV 0 is the time that the influent TCE and bromide concentrations were reduced to 0
mM) are presented in Figure R.3.4 in both linear and log (inset) scales. The ports above the clay
layer (1E) and downgradient of the Commerce Street (2C) and F95 sand (4D) lenses are shown
because back diffusion and desorption were most pronounced in these regions, with a more than
28% enhancement of back diffusion for the chlorinated ethene. While the concentration of both
solutes dropped when flushing with 0 mM solution began, normalized TCE concentrations
remained 3 times and 7 times higher than the bromide concentration in the effluent and selected
side ports, respectively. After 9 PVs of flushing with the unamended solution, TCE concentrations
dropped to concentrations two orders-of-magnitude lower than the input concentration while
bromide concentrations leveled off at three orders-of-magnitude lower than the initial
concentration. The agreement between model predictions and experimental measurements shown
in Figure R.3.4 reflect a model capable of capturing TCE and bromide breakthrough, with
goodness of fits 0of 0.91 and 0.95 at the effluent, 0.88 and 0.91 at port 1E, 0.99 and 0.86 at port 2C,
and 0.98 and 0.84 at port 4D for bromide and TCE, respectively. Although the geometry of the
low permeability compartments was digitized based on image of the aquifer cell, it is difficult to
numerically capture details introduced during the packing of the aquifer cell, e.g. small-scale
variations in lens shape and compaction of the background coarse sand. This uncertainty may
partially account for the small discrepancies between model simulations and experimental BTC
measurements.
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Figure R.3.4. Comparison of experiment observation and model simulation of bromide and TCE
concentration plotted in linear and log scale (inset) during abiotic flushing experiment in (a) effluent (b)
port 1E (c¢) port 2C and (d) port 4D. Experiment data: circle—bromide, triangle—TCE; Simulation: dashed
line—bromide, solid line—TCE.

I11.3.1.4. Biodegradation Results

After bioaugmentation, TCE was rapidly biodegraded with cis-DCE detected in the effluent after
0.2 PVs and VC and ethene detected after 2 and 3.4 PVs, respectively. While the influent TCE
was maintained at approximately 0.5 mM, before reaching the effluent, all of the TCE was
transformed to cis-DCE after 2.0 PVs (5.6 days). After lowering the influent TCE concentration
to 0.04 mM (2.6 PVs, day 8.4), transformation of TCE yielded an effluent molar composition of
90% cis-DCE and 10% VC (Figure R.3.5). The proportion of VC and ethene in the effluent
increased to 33% and 27%, respectively after 4.4 PVs (13.8 days following bioaugmentation), after
which the proportion of cis-DCE and VC decreased and the proportion of ethene continued to
increase. Approximately 6.1 PVs (19.8 days) after bioaugmentation, 3.4 PVs (11 days) after
lowering the influent TCE concentration, ethene was the only analyte detected in the effluent. At
this point in the experiment, cis-DCE continued to be detected in the side sampling ports at
concentrations of 0.07 - 0.08 mM in ports 1A and 1E (near the influent, Figure M.4.1) and
concentrations of 0.02 — 0.03 mM in downgradient ports (columns 2 and 3, Figure M.4.1). When
the influent TCE concentration was further reduced to 0.01 mM (9 PVs, 29 days after
bioaugmentation), ethene continued to be detected in the effluent at a concentration of 0.04 to 0.06
mM, indicating continued back diffusion and desorption from the low permeability lenses and clay
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layer. In the sampling ports, ethene continued to be detected at concentrations of 0.01 — 0.02 mM
with the exception of ports impacted by the underlying clay and the higher organic carbon lenses
that measured higher concentrations (Figure R.3.5). The highest concentrations, 0.04 to 0.06 mM,
were measured in the lowest ports (ports 1E and 3E) where TCE continued to be released from the
underlying clay layer; see Figure R.3.5 (b) and (d). Downgradient of the high organic carbon
Webster and Appling lenses (ports 3A, 4A, and 4B), ethene was detected at concentrations up to
0.03 mM.

At the conclusion of the experiment, soil samples were analyzed for TCE and cis-DCE using the
methanol extraction procedure described in Section II.2.1. TCE was detected in the clay layer,
Webster lens, and Appling lens with concentrations averaging 1.94 ug/g (£0.57 ug/g), 0.022 pg/g
(£0.016 pg/g), and 0.37 ug/g (£0.19 pg/g), respectively. Due to the high detection limit for cis-
DCE (0.0026 mM), it was only detected in the clay with an average concentration of 49 ng/g (£23
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Figure R.3.5. Chlorinated ethene concentrations during biotic experiment in (a) effluent, (b) port 1E, (¢)
port 2C, and (d) port 4D. Bioaugmentation occurred at PV 0 (day 0). Vertical lines represent the reduction
of influent TCE concentration from 0.5 mM to 0.04 mM and from 0.04 mM to 0.01 mM, respectively.

I11.3.1.5. Desorption and Back Diffusion under Abiotic and Biotic Conditions

To explore the influence of MRD on solute transport, the abiotic flushing of TCE was predicted
by numerical simulation using the input and flow conditions for the biotic experiment and
compared with measurements made during the biotic experiment. Differences in magnitude and
shape of the data and simulated curves can then be attributed to microbially enhanced back
diffusion. Predicted and experimentally measured concentrations of total chlorinated ethenes and
ethene in the effluent and selected ports are plotted in Figure R.3.6. The simulated curves (in the
absence of MRD) generally follow the trends of the biotic experiment curves. This similarity is
attributed to the use of a coarse sand background, which results in advection-dominated transport
in which the flow rate and input concentration are the primary determinants of concentration.
Biotransformation of TCE to lesser-chlorinated products, which have different physical and
chemical properties (i.e., diffusivity in water and sorption to solid phase organic carbon), affects
rates of loading into and release from the low permeability lenses, and thus, the elution curve. For
example, sampling ports directly impacted by mass transfer out of low permeability layers,
displayed more pronounced differences from the abiotic simulation than the effluent BTC (Figure
R.3.6), which integrates the effect over the whole aquifer cell.
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Figure R.3.6. Total molar concentration of chlorinated ethenes and ethene during biotic experiment
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Bioaugmentation: PV 0 (day 0); influent switched to 0.04mM: PV 2.9 (day 8); influent switched to 0.0 1mM:
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To quantify the extent of bioenhanced back diffusion, cumulative mass was calculated and
compared between experimental data and the model simulation with the following expression:
CMey, — CM

sim
= X 1009 R.3.1
Smrp M, 00% ( )

where 8y rp represents the percent enhancement by biotransformation, CM,,, is the cumulative
mass calculated using experiment data for a specific location, CM;,, is the cumulative mass
calculated using the model simulation at the same location. The &,,zp Was calculated for effluent
and side port BTCs (Figure R.3.7) during the period from the lowering of the influent TCE
concentration (PV 2.9, day 8) to the end of experiment, as greater enhancement was expected when
a concentration gradient between the lenses and background was present. The &yzp for each port
over the entire biotic experiment are shown in brackets in Figure R.3.7. The extent of localized
bioenhancement calculated was higher than the 12% bioenhancement calculated for the effluent
for all locations except port 4B. The highest enhancements of 40% and 53% were observed at two
ports, 1E and 3E, located in close proximity to the bottom clay layer (lowest permeability with
higher sorption capacity than the background sand). The ports immediately downgradient of the
Webster, Commerce Street and F-95 soil lenses were associated with notable amounts of
bioenhanced mass transport, ranging from 20-35%, indicating the impact of biotransformation on
back diffusion and desorption of contaminants around/within low permeability zones. However,
lower 8,,rp Was observed at the port 4B, immediately downgradient of the Appling soil lens, which
could be attributed to volatilization losses of the higher volatility of TCE biodegradation products
(cis-DCE, VC, and ethene) (this port is located near the free surface in the aquifer cell).
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Figure R.3.7. Bioenhancement of back diffusion, §yzp (%) in effluent and selected port.
I11.3.1.6. Growth of Dehalococcoides Population

Total Dhc abundance increased by greater than two orders-of-magnitude over the course of the
experiment from an average over the 12 ports sampled of 2.84x10° (+4.43x10°) gene copies/mL
following bioaugmentation to 3.78x107 (£1.50x107) gene copies/mL at the conclusion of the
experiment (Figure R.3.8, Appendix B.9). Although the population was uniformly distributed
across the sampling ports at the beginning and end of the biotic experiment, at intermediate
sampling time, 5.2 PVs (6 days) after bioaugmentation, Dhc cells were more abundant in
downgradient ports (columns C and D) where less chlorinated ethenes (cis-DCE and VC) were
present than in the upgradient ports (columns A and B); average Dhc abundances of 9.64x10°
(£6.12x10%) gene copies/mL and 7.07x107 (+4.6x107) gene copies/mL were measured in
upgradient and downgradient ports, respectively. Where TCE 1is present, i.e. at the upgradient
ports, Geo cells are more efficient than D/c cells at transforming TCE to cis-DCE and outcompete
Dhc (Amos et al. 2009; Duhamel and Edwards 2007). When cis-DCE and VC are the available
electron acceptors, the Dhc population faces no competition for those election acceptors, resulting
in the higher abundances observed in downgradient ports (Figure R.3.8). The uniform Dhc
population at the conclusion of the experiment indicates a lack of competition by Geo in the last
phase of the experiment (lowest TCE influent) as the populations were limited by a lack of electron
acceptor.

In soil samples collected at the conclusion of the experiment, total Dic abundance was uniform in
the background sand samples (aligned near the sampling ports), averaging 6.58x107 (£1.44x10%)
gene copies/4.82 g of wet soil (the mass of soil containing 1 mL of pore water). Within the lenses,
Dhc abundances were 2.39x10% (£1.49x10%) gene copies/6.38g, 1.26x10% (+£7.28x107) gene
copies/3.54g, 1.09x107(£1.03x10%) gene copies/7.17g, 1.71x107(+£5.24x10°) gene copes/7.81g,
and 4.06x10° (£2.23x10%) gene copies/2.14 g throughout the Appling lens, Webster lens,
Commerce Street lens, F-95 sand lens, and clay layer, respectively (Appendix B.9). At the
sampling port locations, the cell abundances measured in the aqueous sample and soil sample could
be used to determine the number of cells attached to the soil phase. In all but 3 locations, 77 —
100% of the cells were associated with the aqueous phase. This finding is typical of cells lacking
necessary growth substrates and is expected as electron acceptors (chlorinated ethenes) were
depleted by the end of the experiment (Capiro et al. 2014). Downgradient of the Webster and
Appling lenses (port 4B), lenses which continued to release electron acceptor through back
diffusion and desorption, 53% of the Dhc 16S rRNA gene copies measured were associated with
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the solid phase rather than the aqueous phase. Near the influent (ports 1B and 1E), where TCE had
been introduced throughout the experiment, most of the cells (90% and 74%, respectively) were
attached to the solid phase as there was still sufficient electron acceptor present.
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Figure R.3.8. Log aqueous Dhc abundance (gene copies/mL) in sampling ports for samples collected 0.6,
2.6,5.2,and 9.8 PVs (2-, 8-, 16-, and 37-days) following bioaugmentation.

I11.3.1.7. Distribution of RDase Genes

The Dhc RDase gene abundance measured in the aqueous samples varied with the type and
availability of chlorinated ethenes serving as an electron acceptor as shown in Figures R.3.9.
Shortly after bioaugmentation, while the influent TCE concentration was 0.5 mM, samples
collected from the first column of ports, near the influent, showed a higher proportion of cells
harboring the tced gene (43 — 99%) while the downgradient ports consisted primarily of cells
harboring the verd gene (62 — 99%), all values as percentage of total RDase genes. In the
subsequent samples, 2.6 PVs (8 days) following bioaugmentation and prior to reducing the
concentration of TCE in the influent to 0.04 mM, samples from ports where TCE was predominant
(1B, 1E, 2A, 2B, 2C, 3C, 4D) contained cells harboring a combination of all three RDase genes
(28-54% vcrA, 27-53% bvcA, 12-45% tceA) while ports where cis-DCE and VC concentrations
were highest (3E, 4A, 4B) mostly contained cells harboring the verd gene (70-95% verA, 4-30%
bvcA, 0-3% tceA). The remaining two ports (3A, 4C) had not yet formed measurable
concentrations of VC and contained a higher abundance of cells harboring fced (67-85%) at the
expense of ver4. After reducing the influent TCE concentration, in samples collected 5.2 PVs (16
days) after bioaugmentation (Figure R.3.9), cells harboring the hvcA and tceA were in excess of
35% of the total cells harboring Dhc RDase genes only in the first column of ports (1B, 1E) and
immediately downgradient of the organic carbon-containing Webster and Commerce Street soil
lens (ports 2A, 2C), locations where TCE and cis-DCE were present in the highest concentrations.
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By the end of the experiment, 9.8 PVs (37 days) following bioaugmentation and 1.8 PVs (8 days)
after lowering the influent TCE to 0.01 mM, aqueous samples collected in all but 2 ports had a
similar proportion of cells harboring the hvcA and verd genes (81-92% verA, 6-18% bveA, 0-4%
tceA). In the samples above the clay layer (1E, 2D), where TCE continued to diffuse out, cells
harboring fce4 continued to make up a larger proportion of RDase genes than in the other port
locations (14-27%) while those harboring the verA gene made up a smaller proportion than in the
other port locations (64%).

The presence of and associated mass transfer from the lenses impacted the growth of specific Dhc
strains and the associated detection of predominant RDase genes by altering the transport and mass
transfer of chlorinated ethenes. In locations where TCE was present, cells harboring the fce4 gene
were detected early in the experiment, then, as the terminal electron acceptor shifted to less
chlorinated ethenes, cells harboring the vcrA gene predominated over other strains. The proportion
of cells harboring the bvcA gene varied from 0 to 53% of the total RDase genes. The relative
abundance of cells harboring bvc4 was greater in locations where cis-DCE was available as an
electron acceptor, downgradient of the low permeability lenses when influent TCE was high (0.5
mM) and near the influent when influent TCE was reduced to 0.04 mM. Overall, the abundance
of RDase genes exceeded the abundance of Dhc 16S rRNA genes by an average of 3.64-fold
(£5.61) as has been observed previously (Capiro et al. 2015; Damgaard et al. 2013a; Van Der Zaan
et al. 2010).

In soil samples collected at the conclusion of the experiment, nearly all of the cells in the
background porous media harbored the ver4 gene (75-100%) (shown in Figure R.3.10), consistent
with the findings in the aqueous sampling ports. In ports 2B (near the Commerce Street lens) and
2E (above the clay layer), cells harboring the tce4 gene made up a larger proportion of the total
(27-36% vcrA, 1-2% bvcA, 62-73% tceA). There were variations in the proportions of RDase genes
detected within the various porous media. In the clay layer, cells harboring hvcA were predominant
(13-45% vcrA, 47-83% bvceA, 2-6% tceA). In the deep clay sample near the influent chamber, the
location with the highest TCE and cis-DCE concentrations (2.7 and 95 ng/g, respectively), tceAd
was the only RDase gene detected at the conclusion of the experiment. D/ic cells harboring the
bvcA gene were also predominant along the top and downgradient edges of the Commerce Street
(94-96%) and F-95 sand lenses (44-73%), both low permeability lenses with low organic carbon.
The downgradient edge of the Appling soil lens also had a higher proportion of cells (32%)
harboring the bvcA gene than the samples collected from the background sand around the lens
(0.02% to 14%). In the middle of the Webster, Commerce Street, and F-95 lenses, cells harboring
tceA were present at the end of the experiment consisting of 15%, 19%, and 45% of the total
RDases in each lens, respectively. The total gene copies contained in each sample are presented in
Appendix B.9.

The spatial variation in the proportion of cells harboring each RDase gene can be explained in
terms of the hydraulic and sorptive properties of the lens materials and the effect of these properties
had on the mass transfer of electron acceptors (i.e. chlorinated ethenes). The Webster and F-95
lenses had the lowest hydraulic conductivity, impeding the flushing of TCE from these lenses and
resulting in longer exposure of cells to TCE and cis-DCE, thus favoring cells harboring the fceA
and bveA gene. Although Appling soil has a hydraulic conductivity comparable to the Commerce
Street material, its position downgradient of the influent caused TCE to be flushed from the lens
rapidly, favoring Dhc cells harboring the verA gene (87%). The overall abundance of RDase genes
was approximately 1 order-of-magnitude lower in the clay, 2.53x10° (+1.3x10°) gene copies/g,
when compared with the background porous media and lenses (2.52x107 (+4.9x107) gene
copies/g), likely due to the slower diffusion of electron donor into the clay and the probability of
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a smaller initial biomass due to limited penetration of the inoculum into the clay during
bioaugmentation.
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Figure R.3.10. RDase abundance and composition in soil samples at end of experiment, 9.8 PVs (37 days)
following bioaugmentation.
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As with the total Dhc abundance, nearly all of the verd and bveA genes measured at port sample
locations were associated with the aqueous phase samples (93% to 100%) with a few exceptions.
In ports 1B, 1E, and 4B, 45% to 87% of the vcrA genes detected were associated with the solid
phase, likely due to the accessibility of electron acceptor near the influent and to that desorbing
from the organic carbon in the Webster soil lens. Cells harboring the tce4 gene were associated
with the solid phase (31% to 100% attached) in all locations but four, indicating that cells harboring
tceA may be able to remain attached even when lacking a growth substrate. In ports 1B, 2B, 4C,
and 4D, only 0% to 7% of the tce4 genes measured were associated with the solid phase. These
are locations that are not impacted by the clay or high organic carbon lenses, had the lowest total
ethene, and were regions facing the greatest electron acceptor limitation.

I11.3.2. Second Aquifer Cell; Experiment and Modeling Results
I11.3.2.1. Modeling of the Second Aquifer Cell and Flow Field

The second aquifer cell domain (Figure R.3.11) was constructed to incorporate the experimental
multi-layer packing configuration, as well as the flow distribution system, using the same approach
employed for the first aquifer cell experiment, described in Section II1.3.1 above. Higher hydraulic
conductivity (6 orders-of-magnitude lower than that of the Commerce Street soil) was assigned to
the first and last column of the numerical grid cells, which represented the flow chambers. In order
to simulate the controlled head gradient created by drop tubes in the influent and effluent chambers,
the numerical grids at the inlet and outlet locations of the tubes were assigned as constant
head/concentration cells. A refined uniform grid spacing (5 mm (length) X 2 mm (height)) was
applied in the upstream-weighting implicit finite difference scheme to resolve transport processes,
ensure computational stability, and improve predictive accuracy.
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Figure R.3.11. Second Aquifer cell construction for numerical simulation

Experimental data from the non-reactive tracer experiment were used in conjunction with the
numerical model to characterize the flow field. Porosities were estimated by using soil mass and
soil volume emplaced in the aquifer cell. A set of hydraulic conductivities was initially estimated
by using the time-lapse tracer images of concentration front travel distance, in conjunction with,
head gradient measurements. The estimated material properties are provided in Table R.3.2. A
longitudinal dispersivity of 0.1 cm and a vertical to longitudinal dispersivity ratio of 0.1 were
employed, following Lyon-Marion et al. (2017). The simulated results were compared
qualitatively with the experimental effluent BTC and visually with photographed tracer images to
examine the suitability of these parameters.

Table R.3.2. Parameters for soil properties used in 2" aquifer cell modeling

Porous Media Hydraulic Conductivity (m/day)  Porosity, ¢(-)

L7 1.16 0.45 (0.51)°
L6 0.58 0.51

LS 1.47 0.45

L4 231 0.45

L3 2.79 0.45

L2 0.69 0.4

L1 1.47 0.5

Clay 0.11 0.56

4 The porosity of L7 was adjusted to fit tracer data. The adjusted value in the parentheses was used in the model.

A few other chemical property parameters were obtained from literature and kept fixed in the
model (Table R.3.3). K; rcp was set as as 0.12 L/kg and 0.35 L/kg for upper layer materials and
the clay, respectively, consistent with batch sorption measurements in section III.1.11 (Gaeth
2017). The K4 pcr and K, ¢ were obtained by scaling K rcr based on the ratio of Ky ;/Koc rcE»
where K, ; is organic carbon partitioning coefficient (L*>/M) for component i. Ethene, lactate, and
H> were assumed to be non-sorptive constituents.
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Table R.3.3. Chemical component properties for 2" aquifer cell modeling

Properties mw? (gram/mole) D,,* (m?*/day) K, (L/kg)
TCE 1314 6.90e-5 126

DCE 96.94 7.80e-5 48

VvC 62.5 9.20e-5 26

ETH 28.05 1.16e-4 -

LAC 89.07 1.27¢-4 -

H» 2.01 3.32e-e -

4 Dy, 1s the molecular diffusivity. Parameters from Christ and Abriola (2007) and Chen et al. (2013).
b From Mackay et al., 2006.
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Figure R.3.12. Measured initial ports concentration for chemical components, (a) TCE, (b) cis-DCE, (¢)
VC, (d) ethene, and (e) lactate.
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Table R.3.4. Batch-calibrated parameters used in the Monod kinetics model for reductive dechlorination.

Parameter Microcosm Literature?

Kinax,i (umol/(mg-cell d))

TCE 330 2.4-366
DCE 80 1.7-48
VC 210 2.6-48
LAC 60* 120

Ks; (uM)

TCE 1.0 0.54-1.5
DCE 1.9 0.54-3.3
VC 180.0 0.54-360
H>-GEO 0.1¢ 0.015-0.1
H>-DHC 0.1¢ 0.015-0.1
LAC 2.5 2.5

K;; (uM)

TCE = Ks,cE B

DCE = Rg,pcE -

VC =Ksyc 100-500
Y; (mg-cell/mmol)

TCE 9.6 3.3-22.6
DCE 2.9 3.3-9.8
VC 1 3.3-9.8
LAC 4v 1.5-6.3
C;ll,th,j (nM)

GEO 2¢ -

DHC 2¢ -

kpj (1/day)

GEO 0.05 0.05-0.1
DHC 0.05 0.05-0.1
FEM 0.05 0.05-0.1

8 Not simulated in the microcosm model. Fitted in the aquifer cell model.

b Not simulated in the microcosm model. Taken from Fennell and Gossett (1998), adjusted form 35 °C to
laboratory temperature.

¢ Not simulated in the microcosm model. Taken from Christ and Abriola (2007).

dTaken from Clapp et al. (2004), Lee et al. (2004), Christ and Abriola (2007), and Chen et al. (2013). Literature
values for lactate were taken from Fennell and Gossett (1998) and Chen et al. (2013).

For the second aquifer cell model, the initial time was set to be the end of the recirculation phase
or the beginning of the flushing period (Table M.4.3). Transformation rate parameters, half
saturation constants (K ;), inhibition constants (K ;) and microbial yield coefficients (¥;) were

adopted from the microcosm modeling (section II1.2.2) and used as initial values in the aquifer cell
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model. The average of Kp,q,; for the three microcosm trials was used for initial simulations (Table
R.3.4). The fermentation process was not simulated in the microcosm model, as electron donor
was assumed to be in excess. Thus, rate parameters for lactate transformation in the aquifer cell
were obtained from the literature (K 4c, and Y, 4c) or fit to match the experimental lactate
concentration (k4 1ac)- Side port measurements of chemical and biomass concentrations (Figure
R.3.12 and R.3.13) were processed by using a 2-D scatter data interpolation algorithm, “griddata”
(MATLAB, The Mathworks, Natick, MA), to obtain initial concentration contours used in the
aquifer cell model (Figure R.3.14 and R.3.15).
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Figure R.3.13. Measured initial ports biomass concentration for dechlorinators: (a) Geo, and (b) Dhc
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Figure R.3.14. Interpolated initial concentration for chemical components, (a) TCE, (b) cis-DCE, (¢) VC,
(d) ethene, and (e) lactate.
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Figure R.3.15. Interpolated initial biomass concentration for dechlorinators: (a) Geo, and (b) Dhc.
I11.3.2.2. Modeling the Bromide Tracer Test

The bromide tracer test data exhibited significant tailing in the effluent samples (Figure R.3.16)
and a maximum bromide concentration of 40% of the influent concentration. Photographs of the
erioglaucine A (blue dye) tracer experiment revealed the existence of a layer of higher permeability
in the center of the aquifer cell, corresponding to soil from the 33 to 34 ft bgs depth of borehole
DHT-2 (Figure R.3.17). Transport through this higher permeability layer was assumed to have
created the early peak in the effluent bromide tracer curve and subsequent tailing, as bromide was
slowly flushed from the lower permeability layers above and below it. Using the set of the
estimated parameters, the model was able to provide a reasonable fit to the experimental BTC with
a calculated normalized root mean square error of 32% (Figure R.3.16).
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Figure R.3.16. Comparison of experimental and model simulated effluent BTC. Experimental data: pink
circle; Model simulation: blue solid line.

The simulated BTC matched the general shape and arrival time of experimental BTC but displayed
discrepancies in terms of peak concentration and tailing concentration at the end, possibly due to
variations in layer configuration. It is difficult for the model to numerically characterize the
detailed changes of layer shape introduced during the packing processes. The mismatch in early
time concentration before tracer breakthrough was likely caused by a preferential flow pathway
allowing a small proportion of influent solution to bypass the porous media. A small area of blue
dye (erioglaucine A) was observed at the bottom of the effluent screen in a photo taken 5.4 hours
after beginning the tracer test (Figure R.3.17). The adequacy of the estimated parameters was
confirmed by a visual inspection between simulated and photographed concentrations (Figure
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R.3.17). Minor adjustment was made to the porosity of L7 to improve the goodness of fit,
associated with possible loose packing and air entry in the top (Table R.3.2). In summary, the
simulation results displayed good agreement with experiment data, ensuring the credibility for
follow-up simulations of reductive dechlorination.
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Figure R.3.17. Photographed (left) and simulated (right) tracer concentration for selected time: (a) hour
5.4, (b) day 1.8, (¢) day 3.1, (d) day 4.1, and (e) day 4.9. Color in the photos is enhanced.
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I11.3.2.3. VOC and VFA Results

The chlorinated ethene and ethene concentrations measured in aquifer cell effluent samples are
shown on Figure R.3.18. As soon as lactate was introduced to the aquifer cell, at the beginning of
recirculation, TCE was transformed to cis-DCE by the native microbial population, similar to the
results of the microcosm experiments. After bioaugmentation, TCE was no longer detected and
effluent ethene concentrations began to increase. The ethene concentration peaked at the end of
the recirculation phase as chlorinated ethenes were reintroduced in the influent as cis-DCE and
VC and had additional time to be dechlorinated. After recirculation, when lactate was no longer
being introduced, effluent ethene concentrations dropped and cis-DCE and VC concentrations
began to increase.
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Figure R.3.18. Chlorinated ethene and ethene concentrations in Commerce Street Aquifer Cell effluent.
Vertical lines represent, from left to right: 1. Beginning of recirculation with lactate; 2. Bioaugmentation 3.
End of recirculation; 4. Beginning of lactate pulse; 5. End of lactate pulse; 6. Beginning of lactate pulse; 7.
End of lactate pulse; 8. Decrease in flow rate; 9. Beginning of lactate pulse; 10. End of lactate pulse; 11.
Increase in flow rate; 12. Beginning of lactate pulse; 13. End of lactate pulse.

After each lactate pulse, cis-DCE was partially transformed to VC and ethene. When the aquifer
cell rate flow rate was reduced to 0.05 mL/min (16 day residence time), more of the influent TCE
was transformed to ethene with effluent concentrations of 5% cis-DCE, 17% VC, and 78% ethene
on a molar basis compared to 60% cis-DCE, 23% VC, and 17% ethene when the residence time
was 37 days (0.1 mL/min flow rate). The flow rate was then increased to 0.15 mL/min for 16 days
to complete a final bromide tracer test. A 5 mM lactate pulse was introduced concurrent with the
bromide tracer. With the faster flow rate and shorter residence time (25 days), the proportion of
ethene in the effluent decreased to 54% while the VC and cis-DCE proportions increased to 23%
and 22%, respectively. VC and ethene concentrations peaked approximately 1 PV after each lactate
pulse, then declined as electron donor became limited. Between the first and second lactate pulses,
35 days (approximately 5 pore volumes) elapsed allowing a small amount of TCE (up to 18% on
a molar basis) to past through the aquifer cell untransformed. The fact that a majority of the TCE
introduced into the aquifer cell was transformed into cis-DCE, VC, and ethene after each lactate
pulse suggests that electron donor was present in the background groundwater solution as organic
carbon. Analysis of VFAs in the aquifer cell effluent revealed large spikes in VFA concentration,
primarily acetate, lasting 1 to 2 pore volumes after each lactate pulse, after which VFAs were no
longer detected, providing further evidence that other forms of organic carbon are serving as an
electron donor (Figure R.3.19).
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Figure R.3.19. VFA concentrations in Commerce Street aquifer cell effluent. Vertical lines represent, from
left to right: 1. Beginning of recirculation with lactate; 2. Bioaugmentation 3. End of recirculation; 4.
Beginning of lactate pulse; 5. End of lactate pulse; 6. Beginning of lactate pulse; 7. End of lactate pulse; 8.
Decrease in flow rate; 9. Beginning of lactate pulse; and 10. End of lactate pulse.

I11.3.2.4. Modeling Reductive Dechlorination in the Second Aquifer Cell

The set of hydrogeological parameters obtained from calibration to the tracer test was used, in
conjunction with dechlorination rates from the microcosm experiments, as inputs for the enhanced
version of MT3DMS to simulate dechlorination after recirculation. Modeling results (Figure
R.3.20) revealed that application of microcosm-derived parameters did not yield good agreement
(average relative error of 108%) with aquifer-cell observations of chlorinated ethenes and ethene
concentrations. Specifically, production of VC was overpredicted by a factor of 4 and production
of ethene was underpredicted by a factor of 5. The predicated behavior was associated with the
competitive inhibition imposed on VC transformation.
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Figure R.3.20. Comparison between simulated and experimental effluent concentrations for chlorinated
ethenes and ethene by using Mircrocosm-fitting parameters.
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A better fit to the experimental observations was obtained with relative errors of 16%, 19%, 40%
and 20% for cis-DCE, VC, ethene and lactate by removing the competitive inhibition on
transformation of cis-DCE and VC (Figure R.3.21). A close match to the experimental
concentration of cis-DCE and ethene was achieved through the simulated period, while ethene
concentration was under-predicted, but came close to the observed data at the end. The large
predictive error for ethene could be attributed to the uncertainty in interpolating the initial ethene
and biomass concentrations. Specifically, the lack of sampling ports in L7 and the clay layer could
have potentially led to underprediction of the total initial mass of ethene and dechlorinators.
Prediction of cis-DCE and VC was likely less sensitive to their initial concentrations which were
lower than that of ethene. Fitting of the lactate concentration confirmed the appropriateness of the
parameters used in fermentation Monod kinetics.
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Figure R.3.21. Comparison between simulated and experiment effluent concentrations for (1) chlorinated
ethenes and ethene components, and (b) lactate. Competitive inhibition in the Monod kinetics was removed
in this simulation.

The simulation results displayed little sign of inhibition between chlorinated products, which was
contrary to the batch experimental observations. The aquifer cell system with a realistic ratio of
porous media to aqueous phase may provide microenvironments to protect microbial cells from
inhibitory high concentrations, while the microcosm system with a lower ratio of soil to water
could potentially expose microbial cells to sudden changes of conditions in the aqueous phase.
Microcosm simulation with removal of inhibition did not yield good matches to the experimental
data (Figure R.3.22), which further supports the hypothesis of different inhibition behavior in the
well-mixed, aqueous dominated and more complex, porous media-dominated systems.
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Figure R.3.22. Microcosm simulation with removal of competitive inhibitions for a triplet experiment of

the KB-1 culture.

I11.3.2.5. Modeling the Influence of Heterogeneity on Reductive Dechlorination

An additional simulation was conducted for a homogeneous domain, with averaged hydraulic
conductivities, and porosities to explore the influence of soil heterogeneity on reductive
dechlorination. Comparison of simulation results for models employing both heterogeneous and

uniform domain properties, incorporating the same domain size and transformation rate

parameters, reveals that ethene production was under-predicted by the uniform property model
(Figure R.3.23). cis-DCE concentrations were first under-predicted and then over-predicted.
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Coupling of laboratory observations with these modeling results suggests that transformation to
ethene varied spatially within the domain, primarily associated with low permeability layers
(Figure R.3.24). On one hand, the low permeability zones provided longer residence times for
complete dechlorination, which was rate-controlled. On the other hand, they acted as reservoirs to
supply electron donor when substrates in the permeable zones were depleted. This variation in
transformation productions between the two simulations demonstrates the influence of local
heterogeneity on dechlorination prediction accuracy. The results also suggest that sparse sampling
at field sites will necessarily result in models that use average soil properties and will increase
prediction uncertainty
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Figure R.3.23. Model prediction in homogeneous domain with uniform soil properties.
I11.3.2.6. Growth of Dehalococcoides Population

Dhc abundance was measured in aqueous samples collected from the sample ports at three times
during the aquifer cell experiment: 1 to 2 days before the end of recirculation, 20 to 25 days after
the first lactate pulse, and at the conclusion of the experiment. These data exhibit little change in
the total Dhc abundance, with an average across the ports of 3.26 x 10® (+ 5.02 x 10?), 7.80 x 108
(£1.68 x 10%), and 2.69 x 10® (£2.59 x 10®) 16S rRNA gene copies/L in each round of sampling,
respectively (Figure R.3.25). The data suggest that a sufficient population of DAc was distributed
throughout the aquifer cell during recirculation and remained relatively constant over the course
of the experiment. Although there may have been an increase in Dhc abundance during lactate
pulses, the samples analyzed did not include these time points.
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Figure R.3.25. Commerce street aquifer cell Log Dhc abundance (16S rRNA gene copies per L) in port
aqueous sample 1 to 2 days before the end of recirculation, 20 to 25 days after the first lactate pulse, and at

the end of the experiment.
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II1.3.3. Conclusions

This first aquifer cell experiment quantified the contribution of bioenhanced back diffusion to the
overall mass flux of chlorinated solvents from porous media, knowledge that will allow predictions
of bioremediation performance to incorporate bioenhanced desorption and back diffusion and,
thus, improve the accuracy of predicting cleanup times. By accounting for this bioenhancement,
predicted cleanup times will be reduced and bioremediation can be proposed as a remedy for sites
where chlorinated solvent mass is stored in low permeability or highly sorptive materials.

The shift in the predominant strain of Dhc with changes in electron acceptor abundance
demonstrates the importance of maintaining a robust dechlorinating community harboring multiple
RDase genes. If the necessary genes are present, the microbial population is able to adapt to
changes in electron acceptor availability caused by the transport of chlorinated ethenes out of low
permeability and highly sorptive soils, even if these locations have not been identified due to the
paucity of samples, typical of field applications. These population shifts will allow efficient
transformation of chlorinated solvents to ethene over the course of a bioremediation application.

The successful implementation of bioaugmentation and biostimulation in an aquifer cell packed
with porous media lens with a range of hydraulic permeabilities and organic carbon content
revealed that:

* Heterogeneity in hydraulic conductivity and organic carbon content affected the rate of
contaminant mass transfer, especially the rate and capacity for contaminant sorption,
controlling the back diffusion of sequestered mass from low permeability zones.

* Organohalide respiring bacteria were able to enhance the mass transfer of TCE out of the
low permeability regions, when compared with abiotic processes alone, thus enhancing
mass flux of chlorinated ethenes from the domain.

*  Dhc cells were capable of penetrating low permeability porous media including clays.

* The distribution of specific Dhc strains was influenced by the availability of electron
acceptors within and near soils of differing physical properties.

In the second aquifer cell experiment, TCE was transformed to a combination of cis-DCE, VC,
and ethene.

o The numerical modeling studies of the VOCs and VFAs further showed that:

e Observed aquifer cell microbial transformation rates were consistent with batch-fitted values,
when permeability variations were accounted for and competitive inhibitions were removed.

e Multi-dimensional models with uniform properties or 1-D models, using microcosm
dechlorination rates, were unable to predict aquifer cell performance.

Heterogeneity in soil properties influences the complete dechlorination of TCE to ethene. Inclusion
of heterogeneity in numerical modeling is crucial to predictive accuracy of reductive
dechlorination.
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I11.4. Modeling the influence of coupled mass transfer processes on mass flux down-gradient
of heterogeneous DNAPL source zones

Motivated by the aquifer cell observations (Section II1.3) and the background literature review
presented in Section I1.5.1, a series of transport simulations was undertaken for a suite of DNAPL
source zone realizations in 2- and 3-D heterogeneous domains to more comprehensively explore
the influence of dissolution, sorption, and diffusion process coupling on source longevity and near-
source plume persistence in complex geologic environments. The sections below describe results
of these simulations. Modeling methodology and simulation parameters can be found in Sections
11.5.2-3.

111.4.1. DNAPL Infiltration Simulations

Representative simulated 2-D and 3-D PCE-DNAPL saturation distributions are shown in Figure
R.4.1 and Figure R.4.2, respectively. Examination of these figures reveals that the low
permeability layers act as capillary barriers to vertical migration. Until a new vertical pathway is
encountered, the PCE DNAPL continues to accumulate and extend horizontally. Visual inspection
of the permeability fields reveals that the occurrence of very high DNAPL saturations (>0.7) is
associated with infiltration into high permeability media that are surrounded by low permeability
media, which prevent the DNAPL from moving horizontally or vertically.

In comparison to the 2-D simulations, the 3-D simulations exhibit different migration pathways,
with less vertical penetration and more extensive lateral movement of the DNAPL. The difference
between maximum saturations in the 2- and 3-D simulations is, however, small (<2.2%), which
suggests a relatively small influence of dimensionality in determining maximum DNAPL
saturation. On the other hand, a comparison of (a) and (b) in Figures R.4.1 and R.4.2 reveals that
DNAPL distributions for fields 1 and 2 differ markedly, attributed to the locations of low
permeability layers in the domain. For field 2 simulations, much of the DNAPL spreads and pools
above low permeability layers at the bottom of the domain. For field 1 simulations, the DNAPL
either resides in the top part of the domain, or penetrates down and accumulates on the bottom
boundary.

/L.0.0 Years ¥

Figure R.4.1. Selected realizations of PCE-DNAPL source zones for field 1 (a) and field 2 (b) with color
map for DNAPL saturation, copper color map for background permeability field.
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Figure R.4.2. Initial PCE-DNAPL saturation distribution in 3-D for field 1 (a) and field 2 (b).
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A comparison of initial DNAPL distribution (Table R.4.1) shows that 3-D simulations exhibit
fewer pools/high saturation cells than those in 2-D, attributed to the greater lateral spreading, and
field 1 has more DNAPL pools than field 2, attributed to the low permeability layer configuration.
The slight reduction in average DNAPL mass compared to the initial release volume is attributed
to DNAPL migration out of the domain across vertical boundaries during the infiltration

simulation.

Table R.4.1. 2-D and 3-D DNAPL spill distribution statistics.

Distribution (%) of cells containing DNAPL

Domain-
DNAPL omatn mass at four saturation levels
averaged  PF
Mass (kg) Saturat; -
aturation 10°-0.15  0.15-0.3  0.3-0.7 0.7-1
D 128.62 0.0062 0.56 89.62 531 0.99 4.08
Field #1 | (10.15) (#7.3¢)  (£0.11) (£3.87)  (¥2.40) (£1.80) (£2.58)
33.33 16.83 5.80 52.25
(+8.75)  (£19.06) (+8.45) (£19.59)
D 129.66 0.0062 0.44 92.54 4.20 0.92 2.34
Field #2 | (£0.03) (+1.6e%)  (£0.13) (£2.97)  (#2.52)  (£1.39) (x1.26)
46.39 14.89 7.07 37.76
(+9.86)  (£8.93)  (£7.70) (+13.59)
3-D 516 2.96¢ 0.44 70.72 24.43 1.40 3.44
Field #1 70¢ : ' ' : '
27.95 4431 4.07 28.94
3-D 515 2.95¢ 0.30 97.71 0.65 0.46 1.18
Field #2 79¢ : ' ' ' '
66.75 2.95 5.54 28.07

The 2-D results represent the ensemble mean with the standard deviation in parentheses.
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111.4.2. 2-D Transport Simulations

Three restoration metrics, total plume longevity, DNAPL removal time, and post-DNAPL plume
longevity, were considered to evaluate the influence of DNAPL dissolution and sorption-retarded
diffusion on near-source plume behavior for 2-D and 3-D transport simulations. Total plume
longevity is defined as the period during which contaminant concentration along a transect of
compliance (located 8 meters down-gradient of the PCE-DNAPL infiltration location) is sustained
above 0.001 mg/L, excluding the 30-year loading period. DNAPL removal time measures the time
for removal of 99.99% of the initial DNAPL. Post-DNAPL plume longevity is calculated by
subtracting DNAPL removal time from total plume longevity; it represents the period during which
plume tailing is sustained by sequestered mass (sorbed and aqueous phase) only. Flux averaged
concentration and maximum concentration at down-gradient transects of compliance were used to
determine total plume and post-DNAPL plume longevity. The pool fraction (PF) metric, defined
as the fraction of DNAPL mass in pool regions, was used to quantify the evolution of the DNAPL
mass distribution and to study the interplay between DNAPL dissolution and transport processes
This metric can be calculated by separating (or categorizing) source zone mass spatially into
ganglia (i.e., residual or finger) (s,, < s;**) and pool regions (s, > s;7*¥), using the maximum
residual DNAPL saturation (s;7**) as the ganglia—pool saturation threshold. Metrics and metric
statistics were evaluated for the ensemble of 2-D simulations, and for 3-D simulations for four
sorption cases: no sorption (nosp), linear sorption (kdsp), Freundlich sorption (kfsp) and rate-
limited sorption (rlsp). In total, 160 numerical simulations were conducted for the 2-D fields, and
8 numerical simulations for the 3-D fields.

111.4.2.1. Influence of Sorption on Restoration Metrics in 2-D

The simulation results for the ensemble of 20 realizations for hypothetical field 1 were used to
investigate the coupled effect of sorption and BD on near-source plume tailing. Figure R.4.3
presents median ensemble statistics calculated based on the flux averaged concentration along the
down-gradient boundary. Inspection reveals that the presence of sorption substantially increases
plume persistence; total plume persistence increases by 22%, 52%, and 55% for the cases with
linear, nonlinear, and rate-limited sorption, respectively. However, the median DNAPL removal
time for the three sorption cases is only 2-3% higher than that of the no sorption case, indicating a
small influence of sorption on the DNAPL dissolution process. Thus, the effect of sorption on total
plume persistence is attributed primarily to its influence on post-DNAPL plume persistence.
Indeed, the median post-DNAPL persistence is 6 times larger for the linear sorption case, and the
other two sorption cases exhibit even more persistent post-DNAPL plumes, with persistence times
a factor of 10 larger than those observed for the no sorption case. Extreme outliers for the two
metrics of total plume longevity and DNAPL removal time are observed for all of the four cases,
while there are no outliers for the metric of post-DNAPL plume longevity. Under almost all
simulation conditions, DNAPL removal time represents more than half of the total plume
longevity. Thus, the large variances in total plume longevity and DNAPL removal time can be
attributed to the heterogeneity (in space and magnitude) of the initial DNAPL saturation
distribution. The metric outliers are generally associated with persistent DNAPL in certain parts
of the domain.

Inspection of Table R.4.2 reveals that the metric means for the four cases follow the trends
observed for the metric medians. Note that the variance of total plume longevity decreases as the
sorption model changes, from no sorption, to linear sorption, to nonlinear sorption, to rate-limited
sorption. This reduction in the variance of total plume longevity is associated with a reduction in
its range, as the minimum longevity values increase more than the maximum. In contrast, for the
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post-DNAPL plume longevity, the range (and variance) increases with sorption complexity. This
observation suggests that the sorbed mass has a larger influence on concentration tailing under
conditions where the DNAPL source doesn’t persist. This apparent effect can be explained by
considering that, while the remaining DNAPL mass is dissolving in a small part of the domain, the
plume is being sustained by BD and desorption in other parts. The DNAPL dissolves away at
different rates. Depletion of one cluster of DNAPL pools initiates mass discharge from low
permeability layers, which is controlled by sorption and diffusion.
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Figure R.4.3. Boxplot comparing flux averaged concentration based on total plume longevity, DNAPL
removal time and post-DNAPL plume longevity for the no sorption, linear sorption, nonlinear sorption and
rate-limited sorption cases for 20 source zone realizations of field 1 (The bottom and top of the box represent
the first and third quartiles, and the band in the box is the median. The lower and upper ends of the whiskers
represent the minimum and maximum data within the interquartile range (IQR) from the bottom and top of
the box. Outliers are plotted as asterisks).

Table R.4.2. Statistics for flux averaged concentration based and maximum concentration (in parentheses)
based total plume longevity, DNAPL removal time and post-DNAPL plume in the no sorption, linear
sorption, nonlinear sorption and rate-limited sorption cases for 20 source zone realizations of field 1.

Sorption  Mean StD Minimum Maximum
nosp 268.4(270.2) 223.8(223.7) 83.6(84.9)  925.0(926.3)
Total plume kdsp 291.5(311.8) 220.5(218.7) 96.7(107.2)  939.8 (953.9)
longevity (Years)  kfsp 322.8 (428.6) 211.4(209.5) 115.9(167.9) 941.6(1029.0)
rlsp 336.8(397.1) 208.4(210.8) 137.2(178.9) 953.9 (1028.8)
nosp 2.8 (4.6) 1.9 (1.5) -2.9(1.9) 5.9(7.3)
Post-DNAPL kdsp 212 (41.5)  13.5(18.6)  4.1(8.4) 55.1(81.2)
plume longevity
(Years) kfsp 54.2(159.9) 48.0(63.0)  5.1(33.2) 174.7 (324.7)
rlsp 68.4 (128.7) 48.4(39.0) 1.1 (39.1) 157.7 (204.4)
nosp 265.6 223.6 80.4 923.6
DNAPL removal  Kdsp 270.3 224.1 83.6 929.5
time (Y ears) kfsp 268.7 223.2 83.0 925.5
rlsp 268.4 2233 82.4 925.5
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For the simulations with a persistent DNAPL, sequestered mass in low permeability layers in the
vicinity of depleted DNAPL pools may have sufficient time to fully diffuse into transmissive
zones. Thus, the existence of persistent DNAPL influences not only the removal rate of DNAPL
but also the duration of the post-DNAPL period. For the 20 simulations, faster DNAPL removal
is usually associated with a longer post-DNAPL tailing period and vice versa. Figure R.4.4
illustrates mass discharge from low permeability layers as the DNAPL mass is dissolved,
demonstrating that local mass transfer behavior is governed by different processes in different
parts of the domain.
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Figure R.4.4. Aqueous concentration contour (left column) and DNAPL saturation distribution (right
column) at selected times for the example simulation of field 1. The boxed areas show plumes sustained by
sequestered mass in low permeability layers.
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The total longevity, DNAPL removal time, and post-DNAPL longevity, as determined by
maximum concentration along the down-gradient boundary, are presented within parentheses in
Table R.4.2. In comparison to the flux averaged concentration, the maximum concentration is
linked to local mass transfer behavior. The negative minimum values reported for post-DNAPL
persistence in the no sorption case are attributed to meeting the maximum concentration target
prior to complete DNAPL depletion.

To further understand the interplay between DNAPL dissolution, sorption, and BD, it is illustrative
to examine a representative simulation. Figure R.4.5(a) presents the initial DNAPL saturation
distribution for a selected example, along with the corresponding permeability field.

5ok 1100 1r
100F —no
499 — linear
—nonlinear
o 498 0.8 non
T | 3 - rate-limited
E Jo7 2
3 & 506
g g g
b= L [ ©
g Ilnegr dos = ugi
e ~-nonlinear — -
[} e o 204F
o - rate-limited| 494 < ot
» 0.1 z o
3 <
o \ - @
s k) = 3
z 12 3 v 4 & 0.2f
001f e T
B%
i . |
v or e ——
0.001 1 1 1 1 e v 1 1 90 " " L " ]
0 50 100 150 200 250 300 350 0 50 100 150 200 250
Time (years) Time (Years)

(2) (b)

Figure R.4.5. Flux averaged concentration through effluent boundary (a) and temporal change of pool
fraction in the domain (b) for the example simulation shown in Figure R.4.1(a) of field 1.

The evolution of flux averaged concentrations along the down-gradient boundary and DNAPL
pool fraction are plotted in Figures R.4.5 (a) and (b) for the four sorption cases. The right y-axis
in Figure R.4.5(a) plots the associated % removal for the final 10% of the entrapped DNAPL mass.
The curves are divided into four segments, corresponding to four regimes, each dominated by a
different mass transfer process. The first regime is associated with the dissolution of low saturation
ganglia (<0.23) and is characterized by a sharp decrease in down-gradient concentration and a
steep rise in pool fraction. The second regime is associated with the dissolution of high saturation
DNAPL pools and exhibits a decreasing concentration trend with several ‘bumps’. Here, as the
pool fraction decreases, localized high concentrations are emitted from pool areas and travel down-
gradient creating concentration spikes which characterize the second regime. The pool fraction
continues to decrease until the pools become ganglia, dissolution of which then results in a small
increase in pool fraction. The depletion rate for individual pools varies with size and accessibility.
Thus, pool fraction displays a decreasing trend with a series of small peaks during the second
regime. In the third regime, the down gradient concentration is governed by the slow depletion of
persistent or flow inaccessible DNAPL, resulting in concentration plateaus. The pool fraction
during this third regime exhibits a “stepped” decrease. Each “step” represents slow dissolution of
one cluster of DNAPL saturations existing in the domain. The final “step” associated with a pool
fraction of 0, persists for a long period of time. In this realization, the last remaining DNAPL
ganglia are either trapped in low permeability layers or enclosed by low permeability materials.
Due to the similar initial DNAPL release location and the presence of a low permeability zone at
this location for each of the field 1 realizations, the entrapped DNAPL tended to create long
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plateaus in most simulations for field 1. The presence of these small inaccessible DNAPL zones
is also the reason for the outliers observed in Figure R.4.3. The complete removal of DNAPL
depends on the dissolution rate of this flow-inaccessible mass for the field 1 ensemble. The fourth
and last regime is the post-DNAPL period, during which the down-gradient plume is influenced
solely by mass diffusing out from low permeability zones. The concentration curves for the four
sorption cases begin to deviate from each other during this final regime.

111.4.2.2. Influence of Permeability Field

To investigate the general validity of the findings presented above for a different permeability
configuration within the release zone, transport simulations were conducted for the ensemble of
field 2 PCE source realizations. In these field 2 simulations, the PCE is released within a more
permeable material and tends to penetrate much further into the domain. The boxplot in Figure
R.4.6 presents data for flux averaged concentration-based and maximum concentration-based
metrics. The trends of the median total plume persistence, DNAPL removal time and post-DNAPL
plume persistence follow the pattern of simulation results for field 1, with the shortest longevity
for the no sorption case and the longest for the rate-limited sorption case.
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Figure R.4.6. Boxplot for (a) flux averaged concentration-based and (b) maximum concentration based
total plume longevity, DNAPL removal time and post-DNAPL plume longevity for the no sorption, linear
sorption nonlinear sorption and rate-limited sorption cases for 20 source zone realizations of field 2.

The time scales for plume evolution in these two different scenarios, however, differ substantially;
the median total plume persistence for the field 2 ensemble simulations is halved and the median
DNAPL persistence is reduced by 2/3 in comparison with the field 1 values. This difference is
attributed to the existence of a lower pool fraction and less DNAPL mass entrapment in low
permeability zones in the field 2 scenario, which were examined in section III.5.1. The median
post-DNAPL plume longevity increases by several years (<10) for field 2. This behavior is
attributed to three factors: 1) the increased storage capacity for aqueous and sorbed mass in the
thick low permeability zone at the bottom of the domain that has pooled DNAPL above; 2) the
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reduced flow accessibility to sequestered mass in the thick low permeability zones compared with
those in the more distributed low permeability layers for realizations of field 1; and 3) the greatly
shortened DNAPL removal time (regime 3). The comparison of these two scenarios suggests that
the configuration of low permeability regions is a fundamental determinant of plume persistence.
We observed a major dependence of source zone configuration on locations of low permeability
layers with extensive horizontal correlation length (Wang, 2013).

111.4.2.3. Influence of Dissolution Mass Transfer

There are two factors potentially contributing to the determination of dissolution rate in the kinetic
dissolution model (equation M.5.4): 1) the lumped mass transfer coefficient, k*™ and 2) the
solubility, Cg,. In this study, k%" is calculated by the Powers et al (1994) correlation (equation

M.5.5). This correlation was developed from column dissolution experiments for s, < 0.18; this
saturation range encompasses saturations present in the majority of cells for the 2-D (81.07%-
97.51%), and 3-D (74.70% and 97.87%) simulations. It is noted, however, that none of the
Sherwood number correlations (e.g., Imhoff et al., 1994; Miller et al., 1990; Nambi and Powers,
2003; Powers et al. 1994) available in the literature has been developed for as wide a range of
initial DNAPL saturations as that observed in this study (trace to 0.9). Among the available
correlations, the Nambi and Powers (2003) correlation is valid for a slightly wider range of
condition (s,, < 0.35). Comparison of simulations conducted using the Nambi and Powers (2003)
and the Powers et al. (1994) (not shown here) revealed that predicted plume longevities were not
very sensitive to the choice of correlation. Additional tests (not shown here) were conducted by
increasing the magnitude of the lumped mass transfer coefficient to approximate equilibrium
dissolution. The results were similar to the original ones simulated by the Powers et al. (1994).
Christ et al. (2006) showed that the selection of a mass transfer correlation for DNAPL dissolution
has more influence on late time mass transfer (>95% DNAPL removal) and suggested that use of
a ganglia-based mass transfer correlation may predict faster DNAPL removal and shorter source
longevity. Our simulation results, however, showed that longer DNAPL persistence is not
necessarily linked to longer post-NAPL plume persistence. Plume persistence in this study was
found to be the result of the interaction between DNAPL dissolution, diffusion, and sorption.

Solubility is another property that has been shown to influence source longevity (e.g., Seyedabbasi
et al., 2012). To explore this factor, post spill transport simulations were conducted for a higher
solubility DNAPL, with properties consistent with that of TCE, to compare with behavior observed
in the previous PCE simulations. Input properties for the DNAPL included: a solubility of 1000
mg/L, density of 1466 kg/m?, aqueous phase diffusivity of 9.1E-6 cm?/sec, and K, of 126 L/kg
(three times smaller than that of PCE). The cases with no sorption and linear sorption were
simulated for a release in one selected realization for fields 1 and 2. Simulations results (Table
R.4.3) reveal that the total longevity decreased dramatically for the TCE plume, attributed to faster
DNAPL dissolution. While the post-DNAPL period was sustained for a longer time for TCE in
the linear sorption cases, the no sorption case simulations exhibited slightly shorter post-DNAPL
longevity for TCE than for PCE. In the no sorption cases with TCE, it is likely that the higher
concentration gradient between transmissive and low permeability zones drives faster release of
the sequestered mass from low permeability zones. For the linear sorption cases with TCE, two
factors are most likely contributing to longer post-DNAPL times: 1) larger quantities of dissolved
mass in the inaccessible zones in the domain and 2) the more rapid DNAPL dissolution relative to
the period of desorption and BD, which are occurring at rates similar to that of PCE. Thus, the
relative contribution of sorbed and low permeability sequestered mass to contaminant persistence
increases as the contaminant solubility increases. These simulation results also indicate that the
loading and release of stored mass in low permeability zones are very sensitive to the inclusion
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and simulation of sorption. It should be noted here, that the TCE DNAPL spill distribution was
assumed to be the same as that for PCE in these simulations. If the actual spill release were
simulated, TCE spills would not be expected to penetrate as deep vertically due the smaller density,
which would significantly impact the mass distribution and persistence simulation results.

Table R.4.3. Comparison of downgradient mass flux persistence for TCE and PCE.

Compound  Sorption DNAPL Post- Total Loaded Initial DNAPL
p P removal DNAPL  Persistence Mass Mass
(Years)  (Years) (Years) (kg) (kg)
PCE no 174.6 2.6 177.2 130.7 129.8
PCE linear 179 20.7 199.7 134.2 129.8
Field 5
TCE no 23.6 1.9 25.5 122.9 117.3
TCE linear 27.7 29.5 57.2 146.4 117.3
PCE no 72.8 04 73.2 130.7 129.8
PCE linear 72.4 7 79.4 136.1 129.8
Field 7
TCE no 9.7 0.2 9.9 124.6 117.3
TCE linear 9.7 29.1 39.0 160.4 117.3

I11.4.3. 3-D Transport Simulations

To explore the influence of model dimensionality on remedial metrics, simulations were conducted
on two selected 3-D saturation realizations (one for each of the fields), with the four different
sorption treatments. Again, the three flux-averaged concentration based metrics were examined
(Figure R.4.7). The 3-D results generally follow the trends predicted in the “2d mean” simulations:
(1) the inclusion of sorption results in prolonged plume persistence (i.e., total and post-DNAPL),
the extent of which depends on the sorption complexity; (2) the total plume persistence is greater
in field 1 than field 2; (3) the DNAPL removal time is not sensitive to sorption type, and varies
within 6% of the no sorption case; and (4) the DNAPL removal time is greater in the field 1
scenario than in the field 2 scenario. The post-DNAPL removal time varies within a certain range
for both fields in each sorption case, appearing to be negligibly affected by the field configuration.
The consistency of trends observed between the 2-D and 3-D simulations supports conclusions
reached above relating to the importance of sorption and permeability field heterogeneity in the
source zone to the accurate prediction of plume persistence.

Despite the similarities, 2-D models tended to predict longer plume persistence than 3-D in these
simulations. The “2-D mean” total plume persistence and DNAPL removal time are approximately
two fold greater than the corresponding metrics in 3-D in all four sorption cases for both fields.
The differences between “2-D mean” and 3-D, however, could be an artifact of the single
realization associated with the 3-D DNAPL infiltration simulation. To further explore the influence
of dimensionality, additional transport simulations were performed for the four sorption cases and
both fields in 2-D with DNAPL spills and permeability fields extracted from the center x-z cross
section in the 3-D spill scenarios. Results of these simulations (labeled ‘2d in 3d’) are also
presented in Figure R.4.5. Although closer to the 3D simulations than those of the 2D mean, these
additional simulations produced longer total plume and DNAPL persistence times for both fields
in comparison with the 3-D simulations. Trends in post-DNAPL persistence time, however, were
less clear.
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Although the same volume (80L) of DNAPL was released in the center slice of the 3-D domain as
the 2-D domain, only a small portion of DNAPL was eventually retained in the center cross section
of the 3-D domain. Consequently, horizontal migration and spreading of DNAPL in the 3-D
simulation resulted in increased access of the DNAPL to groundwater flow and an acceleration of
dissolution. The spreading also resulted in access of dissolved mass to a larger medium volume
but did not necessarily lead to more mass sequestration. The sequestration of mass depends on the
spatial distribution of the sorptive properties of the medium. Therefore, the post-DNAPL
persistence can be longer (field 2 case) or shorter (field 1 case) in 3-D than persistence in the 2D
in 3D simulations. In a heterogeneous domain, the 2D in 3D or 2D simulations may not be
representative of real conditions, as the center of mass of the DNAPL and sequestered mass may
not be in the transect where the source is released.

To further explore the contribution of sequestered mass to near-source plume persistence, the ratio
(percent) of post-DNAPL time to total plume persistence was calculated (Figure R.4.7).
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Figure R.4.7. Flux averaged concentration-based (a) total plum longevity, (b) DNAPL removal time, (c)
post-DNAPL time, and (d) percent of BD to total plume persistence for the four sorption cases. “3d”
represents 3-D infiltration and restoration simulation results; “2d mean” represents the mean metrics for a
suite of 2-D infiltration and restoration simulation in section 3.1; “2d in 3d” represents 2-D restoration
simulation results by extracting NAPL saturation distribution and permeability field from the center cross-
section of 3-D simulation.

Comparison of the results for fields 1 and 2 shows that the influence of sequestered mass on plume
persistence is highly dependent on the configuration of the permeability field in both 2-D and 3-
D. Field 1 appears to be DNAPL-dominated while field 2 is the opposite. In addition, the influence
of the sequestered mass on plume persistence is also associated with the sorption complexity of
media. Figure R.4.7 shows that there is little or no effect of sequestered mass and BD on plume
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tailing in the no sorption case, regardless of model dimension. Sequestered mass becomes a more
important contributor to plume tailing when sorption is a present (e.g., in the linear, nonlinear and
rate-limited sorption cases). Thus, BD alone appears to be only a minor factor in sustaining
downgradient plumes compared to DNAPL dissolution when low permeability layers are thin and
not very sorptive. Conversely, predictions based upon assumptions of no sorption or linear sorption
could be mistakenly optimistic about plume persistence times when the sorption properties of site
media are complex. In addition, the discrepancies between 2-D and 3-D predictions of post-
DNAPL time become larger as sorption is included. This suggests that model dimensionality and
sorption representation together can play important roles when predicting plume longevity for a
heterogeneous field that is highly sorptive or has nonideal sorption in low permeability zones. Use
of 3-D simulations may be more appropriate for sites with nonideal sorption, where spreading in
the transverse (lateral) direction will affect mass exchange between transmissive and low
permeability zones.

Discrepancies between 2- and 3-D simulations can be also understood in the context of the
influence of reduced dimensionality on PCE migration vertical pathways (Wang, 2013). The
DNAPL spill simulations demonstrated that 2-D releases resulted in deeper penetration than the
3-D cases. For mildly heterogeneous permeability fields, Christ et al. (2005) came to the same
conclusion for vertical spreading in 2-D and 3-D. They also reported smaller GTP values in 2-D
than in 3-D, which means that simulations in 2-D scenarios were associated with more pooling
and, consequently, longer persistence of down-gradient plumes. Thus, for both mildly and highly
heterogeneous fields, these results suggest that 2-D predictions cannot represent 3-D ones. The
initial averaged saturation per bulk volume calculated for 3-D is smaller than 2-D, which could
partially contribute to the more rapid cleanup in the 3-D simulations. A thorough study that
includes the whole ensemble of 3-D simulations would be needed to reach a more general
conclusion.

111.4.4. Discussion and Conclusions

Simulations conducted herein reveal that accurate representation of sorption processes in transport
models is crucial to the accurate prediction of plume longevity, especially for the prediction of
post-DNAPL dissolution longevity. While diffusive mass rebound or back diffusion has been
heavily emphasized in previous investigations (e.g., Ball et al., 1997; Chapman et al., 2012;
Chapman and Parker, 2005; Liu and Ball, 2002; Matthieu et al., 2014; Parker et al., 2008;
Seyedabbasi et al., 2012), the results of this study suggest that sorption processes will dominate
the rate of mass release to transmissive zones.

Simulations that neglected the storage capacity of low permeability compartments for sorbed
contaminants, tended to substantially underestimate the mass loading in low permeability
compartments during the pre-remediation period. These results indicate that the achievement of
remediation objectives would likely be compromised by “optimistic predictions” of plume
longevity, if sorption processes are neglected or an inappropriate sorption model is assumed. Note,
however, that the simulations conducted herein revealed a very limited effect of sorption on the
rate of DNAPL dissolution. Chemical or biological transformations were not included in the
modeling studies presented here. If such reactions were simulated, the longevity of DNAPL and
the aqueous source contaminant would likely be reduced. The transformation products, however,
would contribute to down gradient flux and plume persistence.

Simulation results also demonstrated a strong influence of source zone complexity (e.g.,
heterogeneity of the permeability field, DNAPL architecture, process coupling) on source zone
mass transport and near-source plume persistence. Results suggest that the presence of DNAPL
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tends to control the clean-up rate in the near source area in most cases. Simulations demonstrate
how small, isolated, pockets of DNAPL can evolve and persist in heterogeneous domains. The
removal of the last few percent of the DNAPL or trace DNAPL mass is especially important in
terms of reducing plume tailing time, since this part of the DNAPL mass usually represents the
most persistent source. Although neat phase DNAPL is not typically detected at most sites, this
work suggests that trace amounts of DNAPL source mass present in the field can be as influential
as sequestered sorbed and dissolved mass in controlling plume tailing, and that these small
quantities of DNAPL mass can be difficult to differentiate from the diffused and sorbed mass
without exhaustive characterization. Thus, by neglecting consideration of the influence of DNAPL
architecture and dissolution, previous studies would presumably have tended to over-emphasize
the importance of BD and may have been relatively inaccurate in their predictions of plume
behavior and longevity.

The simulations presented herein also demonstrate that the evolving plume is directly linked to the
spatial heterogeneity of the medium, source mass distribution, and sorption properties. The
inclusion of DNAPL dissolution, sorption, and diffusion allows the model to capture the interplay
between these processes in aged heterogeneous source zones. Due to the presence of heterogeneity,
different regimes within the domain, where local mass behavior is governed by different processes
(i.e., dissolution and BD), were shown to exist before complete NAPL removal from the domain.
In other words, the release of sequestered mass does not begin at the same time at every spatial
location. A common method used to model a DNAPL source in previous studies has been to use a
source loading function, followed by period during which this loading is halted to allow for BD.
Using this approach, the spatial variations of source zone DNAPL architecture are greatly
simplified; this approach cannot capture the interplay between different transport processes at the
local scale that has been demonstrated here to be crucial in determining down-gradient
concentrations in highly heterogeneous sites. In addition, the large variability among the predicted
longevity metrics of the simulations in this work also points to the importance of source zone
heterogeneity in plume longevity predictions. The location of low permeability layers, especially
thick and laterally persistent layers, is controlling for both the formation of the source zone
architecture and the solute plume. In sum, these results imply that simplified models that idealize
subsurface stratigraphy/or neglect process coupling will be unable to adequately predict plume
persistence.

The conclusions drawn above are associated with the specific simulation conditions assumed in
this work, i.e., the selected DNAPL, permeability, and associated media sorption characteristics.
The low permeability zones in this work were consistent with a silty sand or coarse-grained silt.
The hydraulic conductivity of these materials, however, are one to two orders of magnitude higher
than those of clays, which have been considered as low permeability zones in previous studies. If
a smaller hydraulic conductivity material were used for low permeability zones, the discharge of
stored mass out of the low permeability zones would be expected to be slower. However, the
penetration depth and the amount of mass loaded into these zones would also likely be reduced.
For the lower conductivity materials, longer DNAPL persistence might also be possible due to
more areas of flow bypassing. Thus, further work would be useful to explore behavior in other
depositional environments.

This study showed that reduced dimensionality has a substantial impact on predictions of plume
longevity. Although results from the limited number of 3-D simulations presented are not
exhaustive, the large discrepancies observed between plume longevity predicted by the 3-D and 2-
D simulations suggest that 2-D simulations, although computationally efficient, are only useful for
examining trends in plume metrics in highly heterogeneous formations. It is likely that predictions
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obtained by 2-D simulations will be most misleading in cases where strong nonideal sorption is
present. A more quantitative comparative analysis would require additional simulations in 3-D.

All of the scenarios considered here explored near-source zone (within 10 m of the DNAPL zone)
plume evolution. An examination of transport at larger distances down gradient of a DNAPL
source zone is a topic that is worthy of further investigation. The complex interplay of
heterogeneity and sorption/BD processes will likely also be important at this larger plume scale.
For example, relative to DNAPL mass, the influence of sorption and BD would be expected to
become more significant along transects further down-gradient from a source zone, as the plume
encounters more opportunities for sorption and diffusion into low permeability zones (NRC,
2005). However, plume concentrations would also be more diluted by mixing with transport
further down gradient, reducing concentration gradients for mass sequestration into less permeable
zones. In addition, concentration rebound and BD fluxes depend on the local contrasts between
concentrations in the more mixed transmissive zones and the less permeable zones, suggesting that
BD rates and flux averaged concentrations would be greatly affected by local heterogeneity.

Based upon the simulation comparisons for no sorption, linear sorption, nonlinear sorption and
rate-limited sorption models presented above, it is anticipated that the plume tailing sustained by
the sequestered mass will vary with different specifications of Koc and sorption mass transfer rate;
it is likely that the effect of BD and sorption on plume tailing will be less significant with smaller
Koc and faster mass transfer. The importance of including sorption and using a field-specific
sorption model and associated parameters may also depend on the heterogeneity of the
permeability field, as has been suggested in previous studies (Rivett et al. 2006; Rodriguez 2006).
Thus, it will be important for site managers to explore sensitivity to sorption parameters for the
permeability fields and properties representative of their particular field site and release conditions.

IIL.5. Parameter Upscaling and Screening Model Tools
II1.5.1. Regressed Models for Multi-rate Mass Transfer in Heterogeneous Media
II1.5.1.1. Parameters Sensitivity

Prior to the fitting of the upscaled model to the fine-scale model simulations, it is helpful to explore
the behavior of the upscaled system of equations (M.6.23) - (M.6.25). To this end, a parameter
sensitivity analysis was undertaken. Figure R.5.1 illustrates the influence of the different upscaled
parameters on solute breakthrough, when they are increased or reduced by a factor of ten. Increased
velocity (increased effective conductivity K¢//) naturally gives faster breakthrough. Another
impact of increased flow rate is reduced late-time tailing. This can be explained by the larger
concentration gradients induced between the sand and clay, which result in faster diffusion out of
the clay. In addition to this, the flow rate has an impact on several of the other parameters (Section
I11.5.1.2), but for this illustration, only one parameter at a time is modified. The effective
longitudinal dispersivity o ¢// has little effect on the long term behavior, but early breakthrough is
smoother when it is increased. With good communication between the sand and the "surface of the
clay", i.e. large first-order rate o1, the breakthrough is smoother, since the solute diffuses faster
out of the clay. A similar effect is obtained if there is more of the clay that has good communication
with the sand (larger capacity ratio f). When the communication between the interior of the clay
and the sand is good (large a), more of the solute is flushed out at early times, which substantially
reduces the cleanup time. On the other hand, if there is more of this clay (larger /), the cleanup
time is delayed. In summary, the largest impacts on late-time tailing are due to the smaller of the
two first-order rates, o2, and the corresponding capacity ratio /», in addition to the flow rate.
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Figure R.5.1. Illustration of the impact of upscaled parameters on the scaled effluent mass flux
(breakthrough curve), in a domain of initially uniform concentration that is being flushed with pure water.
Only one parameter at a time was changed from this case. We used fi,, = 0.31; @ = @, = 0.1 m and R = 6.

I11.5.1.2. Fitted parameters

Figure R.5.2(a) presents goodness of fit results for each individual fine scale simulation. A review
of the figure reveals that cases with large retardation factors and large Peclet numbers are best fit.
Figure R.5.2(b) illustrates break through curves corresponding to the best and worst fits. The best
fit is indistinguishable from the simulation result, and the worst fit also displays small errors
compared with differences between cases. Based upon their relatively small size, fitting errors are
neglected in the discussion below.
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Figure R.5.2. a) Goodness of fit, b) Scaled effluent mass flux corresponding to the best and the worst fit.
The best fit is for one of the simulations applying R = 11; a; = 0.22 m and a, = 0.14 m. The worst fit is
for one of the simulations applying Ri» = 1; a; = 0.22 m and a, = 0.18 m. Other parameters are as defined
for the base case.
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The uniqueness of the fit was tested for two simulation cases that have fi» = 0.3; @, = 0.1 m and ax
= 0.1 m respectively a, = 0.22 m. Three sets of initial guesses were applied, involving a base case,
initial guesses a factor of two smaller, and initial guesses a factor of two larger. The fitted
parameters vary within a few percent from the base case, which is small compared to the difference
between cases, cf. Section I11.5.1.3.

II1.5.1.3. Regressions

Based upon the fitted parameters, regression expressions were sought. Tested regression
expressions and coefficients of the chosen models are presented in Tables R.5.1 and R.5.2,
respectively. The range of validity of these models is given by the range of tested parameters
(Table M.6.2). Figure R.5.3 illustrates the performance of the chosen regression models (bolded
models in Table R.5.1.

As demonstrated by the high R’ of the first effective hydraulic conductivity model (K% / Ksana)o
(Table R.5.2), the scaled effective hydraulic conductivity is proportional to the volumetric fraction
of low-permeability material, and explained very well with only this parameter. Because the low-
permeability inclusions have negligible conductivity, model 0 would represent a weighted average
if Ap = -1, 1.e. the upscaling that would be expected for layers parallel to the flow. The A1p model
value of -1.67 indicates a faster rate of permeability reduction, and was expected, since the
inclusions are not parallel to the flow. The model allowing for a constant not strictly 1 (model 1)
gave no improvement and was therefore disregarded. Model 2, incorporating the geometry of clay
inclusions, a,=ay, together with the volumetric fraction of clay, fit the effective conductivity very
well, with high R? and all points in Figure R.5.3(a) close to the ideal line. This model was chosen.

As shown in Figure R.5.1, the breakthrough curves (especially at late times) are not very sensitive
to the effective dispersivity. Nevertheless, for completeness, this parameter was also regressed.
There is a large spread in its values and the regression is not as good as for the other effective
parameters (Figure R.5.3(b)). The effective dispersivity scaled by the fine-scale dispersivity is
expected to be larger than one, and tending to one when fi,, ® 0.

Model 1 allows for this but is not significantly better than model 0, which allows the parameter to
tend to zero. Again, taking into account the geometrical properties (model 2) improves the result,
as could be expected. The effective dispersivity is approximately proportional to square root of
a/ay for a given fin. A comparison of models 2 and 3 show that there is negligible gain in allowing
for a nonlinear dependence on f». Therefore, model 2 was chosen.

The Sherwood numbers were found to increase with increasing Peclet number. Allowing for a
nonlinear dependence on the Peclet number yielded an improvement for Sk, corresponding to the
lower first-order rate, but not for Sha. In addition, faster transfer was obtained with increasing
sorptive capacity, i.e. larger Ri». For Sha, corresponding to the higher rate, model 3 was chosen,
incorporating the Peclet number and R;,. For Sh it was important to include the geometrical
properties (model 5). The relative proportion of low-permeability material corresponding to the
faster rate, b, was found to increase with reduced retardation factor, reduced volumetric clay
fraction and reduced Peclet number. It also slightly increased with reduced a./an, i.e. flatter
inclusions have relatively more of the clay represented by the faster rate. Although models 3 and
4 have the same R’, the Peclet number is modeled by addition because model 4 has a more even
distribution of errors between low and high values of . Thus this form was kept in the chosen
model (5), which also takes geometrical factors into consideration.

The regressed model for K¢ can also be applied for vertical flow. Note that the inverse relation
between a, and aj 1s used.
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Table R.5.1. Regression models numbered by subscripts. R? of the chosen models are marked in bold.

Model R?

(Keff/Ksand)O =1+ /IOfim 0.95
(KT |Ksana)1 = Ao + A1 fim 0.95
(Keff/Ksand)Z =1+ /IOfim(av/ah)/ll 0.99
(af,eff/az)o = Aofim 0.58
((Y,eff/at)l = Ao+ A fim 0.60
@7 Jan)y = Ao fim(ay/an)™ 0.70
((Yfff/m)3 = o+ A f{2 (av/an)® 0.73
Sha() = /l()Pe 0.74
Shay = AgPet 0.74
Shay = Ag + A1 Pe 0.74
Shay = AgPeR}"! 0.84
Shay = AgPeR;) (a,/ap)™* 0.85
Shas = /l()Pe,”"lel,fl(av/ah)’13 0.85
Sho = /l()Pe 0.67
Shy = AgPet 0.71
Sh2 =Ap+ /llPe’b 0.71
Shy = AgPeR} 0.75
Shy = /loPeR;{,Z(av Jap)*2 0.80
Shs = AgPeV' R (ay /ap)® 0.88
by = A9 + L1Rim 0.44
by = A0+ \1Rim fim 0.52
by = Ag + A\ Rim f12 0.52
by = Ao + A1 Rim fim Pe® 0.78
by = Ao + A1 Rim fim + A2Pe™® 0.78

bs = Ao + LiRim fim + A2 Pe3(ay/an)™  0.83

Table R.5.2. Coefficients and R? of regressed models.

Parameter Ao A4 A2 A3 A4 R?

KT |Ksana -1.748  0.1802 0.99
o7 oy 87.90  0.4822 0.70
Sha 0.2122  0.3929 0.84
Sh 0.2539  0.6940  0.2528 -0.4457 0.88
b 0.7176  -0.0661 -0.005800 0.5567 0.3650 0.83
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Figure R.5.3. Regression performance for a) scaled effective hydraulic conductivity, b) scaled effective
dispersivity, ¢) Sherwood number for the higher first-order rate, d) Sherwood number for the lower first-
order rate, and ¢) fraction of low-permeability material corresponding to the faster rate. Model numbers are
indicated in the titles and the different cases used for the regression are explained in the captions. Subfigures
f) and g) show the applicability of regressed models to simulations with vertical flow.

Although fitting to the analytical model does not give an effective transverse dispersivity, the
implemented model at large scale must also provide this parameter. For comparison, the regressed
model obtained with horizontal flow was applied to simulation results with vertical flow, again
interchanging the meaning of a, and an. There is a large spread in dispersivities that is not
explained by the model. However, given the small impact of the longitudinal dispersivity on
tailing, it may be anticipated that the transverse dispersivity also has relatively small impact on the
late-time tailing.
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I11.5.1.4. Model Verification

All regressions were obtained using the boundary and initial conditions described in Section
11.6.2.2 and other properties as defined in Tables M.6.1-2. In this section, the fitted and regressed
parameters are tested for other initial and boundary conditions, and other geostatistical properties.

Ten control simulations were run with Ry, = 9, av=ar = 0.12 m, delta(h) = 0.015 and other
properties as the base case. These were not used as data for the regressions. Applying the
regressions to these simulations yielded good results (see Figure R.5.3). Simulations were also
performed to test the impact of initial and boundary conditions on the utility of the regression
expressions. In these simulations, R;, = 6, a,2=a, = 0.1 m, fi= 0.31 and delta(#) = 0.01. The fitted
parameters are K% = 9.060 m/ day, o= 0.01841 m, o,; = 0.2471 day™', a= 0.05477 day’', Bi=
0.2997 and £> = 0.2709. The fitted Peclet number is 229.

Figure R.5.4(a) shows the fine-scale breakthrough curve and the analytical multi-rate solution that
is fitted to this curve. Here, the initial- and boundary conditions of the base case (Step 2) were
used. Inspection of the figure reveals that the fit is very good. The fitted parameters were also used
in a numerical simulation of the multirate model, which yielded the same breakthrough curve and
similar square root of SSE>/N. In Figure R.5.4(b), rather than flushing the domain with pure water
at t > 0, the solute concentration of the influent water is zero only for the first 100 days, and later
it is equal to the initial concentration. Also here, the fine-scale solution agrees well with the
simulated multi-rate solution. Figure R.5.4(c) shows the breakthrough curve for a Dirac pulse
injection. This scenario is quite different from the scenario that was used for fitting of parameters,
and the errors are larger than for the previous cases. Nevertheless, the late-time tailing, which is
the main focus here, is well described using the same fitted upscaled parameters. Figures R.5.4(d-
f) present simulations corresponding to those of Figures R.5.4(a-c), but here, parameters were
obtained from the regression expressions (Figure R.5.3) rather than the fitted parameters. Again,
breakthrough curves are close to the fine-scale solutions, confirming the usefulness of the
regressed parameters.

The stability of the models with respect to the initial condition was also explored. Figure R.5.5
displays the fine-scale concentration after 1.2 days when the solute (concentration 1 kg/ m?) was
initially placed in the zone between x= 0.24-0.50 m. Other conditions are as in Figure R.5.4(a).
The solute concentration in clay is highest where the solute was initially placed, whereas the
concentration in the sand is larger downstream of this location.

Figure R.5.6(a) presents concentrations averaged over y and Figure R.5.6(b) shows the
corresponding breakthrough curves. MRMT results are in good agreement with the fine-scale
simulations.

I11.5.1.5. Discussion

As discussed by Carrera et al. (1998), when studying breakthrough in an aquifer, it may be
challenging to distinguish between the effects of physical mass transfer and sorption, because both
produce tailing. In addition, the impacts of mechanical dispersion may be confounded with the
former two. In this work, the different effects were separated as a part of the fitting procedure. We
used zero porosity of low-conductive zones when fitting dispersivity and effective conductivity,
and we used these fitted parameters together with an assumed known sorption capacity when
fitting mass transfer parameters. Upscaled simulations were run using parameters that were
regressed to the geostatistical parameters, hydraulic gradient (via the Peclet number) and sorption
capacity. The upscaling of dispersion has been an extensive topic of previous work, see e.g. the
review by Gelhar et al. (1992). The effective dispersivity has often been expressed as dependent
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on the overall scale of observation. This is not accounted for in our fitting, as the domain size was
fixed to reflect an anticipated typical cell size of large-scale simulations. Use of our regressed
values produced good agreement with fine-scale breakthrough curves using both the analytical
solution and a discretized model with centimeter size cells in the flow direction. This may be partly
due to the low impact of effective dispersivity on our results. Applications using very different
grid sizes should consider previous work on dispersion but be careful if those investigations
accounted for mass-transfer in effective dispersion coefficients.
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Figure R.5.4. Effluent mass flux (kg/m’day) using fitted parameters (top row) and regressed parameters
(bottom row). The three columns represent inlet boundary conditions 1 - H(t) (left), step function (center)
and Dirac pulse (right). Numbers in the legends represent square root of SSE»/N, although here no scaling
of the flux was performed. For the Dirac pulse, the error was calculated based on 4 orders of magnitude
range in the breakthrough curve, including the largest value.

Previous investigations have shown that parameter fitting to a single-rate model produces a first-
order rate that varies with the duration of solute exposure and experimental time (Flach, 2012;
Guan et al., 2008; Maraqa, 2001). In contrast, we are able to obtain good matches using constant-
in-time first-order rates that are relatively insensitive to the initial and boundary conditions such
as exposure time. The success of this approach may be attributed to our two-stage fitting procedure,
as well as, the ability to resolve early and late-time diffusion with respectively the faster and the
slower of the two first-order rates. We can also compare our results with the analytical multi-rate
expressions derived by (Haggerty and Gorelick, 1995), which were developed to represent
diffusion between a well-mixed mobile zone and a sphere or layer of negligible conductivity.
These authors scaled the first-order rates, as well as, the diffusion coefficient with Rim .
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Figure R.5.5. Fine-scale concentration after 1.2 days, along the flow direction (top row) and at the effluent
boundary (bottom row). Values are in the range 0-1 kg/m3 as represented by colors blue to red. The center
and right columns shows results restricted to the high respectively low-permeability zones. See error
measure description in Figure R.5.4, here measured at t > 1.
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Figure R.5.6. a) Concentration along the flow direction at 1.2 days (1.16 days fine-scale and 1.24 days
MRMT), averaged over y, and b) effluent mass flux (kg/m?day). For error measure in label, cf. caption to
Figure R.543, here with t > 1. The results are from fine-scale simulation and an MRMT simulation using
regressed parameters.
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They showed that the slowest Sherwood number is a factor 4 smaller than the second slowest
Sherwood number for spherical inclusions. For layers, their two Sherwood numbers differed by a
factor of 9. The relation between our faster and slower Sherwood numbers, when using a truncated
series, varies over a larger range (3-10) but the present work suggests a greater influence of other
parameters in comparison with the geometries of inclusions.

Contrary to the analytical results of (Haggerty and Gorelick 1995), the Sherwood numbers
obtained here are sensitive to the Peclet number. In fact, the faster of the two Sherwood numbers
increases linearly with Pe, whereas the slower rate is slightly less sensitive to Pe. Also, it is shown
that there is a nonlinear dependence on R;» , and that only the slower rate is significantly affected
by the geometry of inclusions. These results are more similar to the work of (Powers et al. 1994)
who regressed a Sherwood number for a first-order dissolution model. Their regression takes into
account the flow rate (Reynolds number) and parameters representing the dynamic interfacial area
between phases. This further confirms that Sherwood numbers are affected by the flow field in
real media with complex geometries and non-uniformity of mobile concentrations. This
dependence on Pe applies also to the ratio between the pore volumes representative of the different
Sherwood numbers. The use of MRMT models in large domains with varying flow conditions in
space or time should make use of this by applying the local and current Pe when calculating the
upscaled parameters.

II1.5.1.6. Conclusions

The robustness of the regressed model was verified against fine-scale simulations with inputs and
initial- and boundary conditions differing from those used in the regression process. The regressed
models developed in this work can, thus, be used for performing MRMT simulations without the
need for time-consuming fine-scale simulations. Based on the results presented herein, the
following observations can be made:

e An MRMT model with two constant-in-time first-order rates can successfully reproduce
fine-scale breakthrough curves in three-dimensional heterogeneous sorptive media.

e To capture the average behavior and ensemble variability of the full three-dimensional
system, it is necessary to base the upscaling on three-dimensional simulations.

e Uniqueness of the fits with respect to the initial guess was demonstrated when using step-
wise fitting.

e The fitted parameters and the regressed models were shown to be robust with respect to
initial and boundary conditions.

e Consistent with the results of (Dentz et al., 2011), we found that physical mass transfer
cannot be upscaled independently of reactive transport.

e For parameter ranges outside the scope of this work, a similar approach could be used to
regress parameters and subsequently use them in upscaled simulations.

I11.5.2. Bioenhanced Dissolution Screening Tool Development (based on Phelan et al. 2015)
I11.5.2.1. Comparison of Measured and Predicted Bioenhancement Factors

To assess its suitability as a screening-level predictive tool, the developed model (Equations
M.6.37-38) was applied to published bioenhanced dissolution laboratory column studies. Here the
goal was to provide better than order-of-magnitude estimates of bioenhanced dissolution, aiding
in remedial design. To this end, the model was employed to predict the dissolution enhancement
observed in four experiments, performed by (Amos et al., 2009 and Yang and McCarty, 2002). In
these experiments, packed sand columns were contaminated with PCE-DNAPL and augmented

131



with microbial cultures capable of dechlorinating PCE to lesser-chlorinated daughter products.
Table R.5.3 presents the associated experimental parameters.

Table R.5.3. Experimental Parameters.

Column Flow Porosit Column Cross- | DNAPL Source | Average Initial
Rate Y| sectional Area Zone Length Saturation
Author Substrates (mL/min) ) (cm?) (cm) (%)
pentanol

Yang & oleate ’

McCarty, 3.2 0.340 491 30
2002 1:1 v/v PCE:olive 4
oil
Amos et . .
al., 2009 3:1 PCE:hexadecane 0.25 0.375 1.81 10 23.7

Figures R.5.7 and R.5.8 present column effluent data for PCE and associated biotransformation
products for the (Amos et al., 2009, Yang and McCarty, 2002) columns, respectively. The authors
of both studies do not compute bioenhancement factors for their experiments, although Amos et
al. (2009; Figure 1) present a cumulative bioenhancement factor, but they define that value as the
ratio of eluted masses as opposed to the ratio of steady-state mass fluxes described in equation
(M.6.35). To estimate bioenhancement factors from the data reported in both studies, a steady-
state (or, a pseudo-steady-state) regime for each experiment (both biotic and abiotic) must first be
identified. The steady-state bioenhancement factor is then computed as the time-averaged ratio of
the steady-state effluent concentration to the steady-state effluent concentration measured in an
abiotic control column under the same flow conditions.
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Figure R.5.7. Bioenhancement factor estimated by Amos et al. (2009) from column data. The approximate
steady-state portion of this curve is denoted by the square symbols (occurring after about 29 pore volumes.
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Figure R.5.8. Total effluent chloroethene and ethene concentrations measured by Yang & McCarty (2002).

To help identify the steady-state regime for each column, the effluent data were processed through
several smoothing algorithms (kernel smoothing, local regression smoothing, median smoothing,
and adaptive smoothing (Parametric Technology Corporation, 2010). The temporal concentration
derivative (i.e., dC/dt) was then calculated from these smoothed data using a second-order-accurate
finite-difference approximation. These analyses for the (Yang & McCarty, 2002) columns suggest
that steady-state conditions exist for the control column from about 100 days to the end of the
experiment, from about 100 to 115 days for the pentanol column, from about 170 to 210 days for
the oleate column, from about 280 days to the end of the experiment for the olive oil column
(although only data up to 300 days will be used), and from about 20 days to 25 days for Amos et
al.’s (2009) hexadecane column. The corresponding time-averaged bioenhancement factors (and
corresponding 95% confidence intervals) are 2.44 +0.24, 3.24 +£ 0.09, 4.08 £ 0.18, and 13.1 + 0.80
for the pentanol, oleate, olive oil, and hexadecane columns, respectively.

As described in section 11.6.2, the bioenhancement factors are nonlinear functions of the
Damkohler 1 and 2 Numbers (Da; and Da;), the Péclet Number (Pe), and the dimensionless half-

saturation constant ( K:) The following sections describe how these four dimensionless

parameters were estimated for the selected column experiments.

The Damkdohler 1 Number (kz L / v) requires quantification of the pore velocity (v) and the lumped

interphase mass transfer coefﬁcient(kl ) The pore velocity varies slightly over time and distance

along the column due to changes in DNAPL saturation (S,) as dissolution proceeds. Table R.9.2

presents the spatially averaged DNAPL saturations and the calculated pore velocities (see Table

R.9.1 for flow rate and porosity data). The velocity reported in Table R.9.2 is averaged over the
send

range of saturations observed, i.e., v= I [Q/qﬁ(lSn)A]dSn/(S:egm _S;nd), to reflect a

begin
S

. . . begi d
representative velocity value over the course of the column experiment. Here S7*" and S
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denote the DNAPL saturations at the beginning and end of the pseudo-steady-state portion of each
experiment, respectively. This averaging procedure is used when reporting all quantities that

depend, usually through pore velocity, on non-aqueous phase saturation (i.e., Re, Sh, &, , Daj,
Da,, D, Pe, and E).

Table R.5.4. Initial and final DNAPL saturations and average pore velocities.

Steady-state S, (%)
Substrate i v (cm/d)
begin end
pentanol 1.91 1.91 1.96
oleate 1.83 1.78 1.96
olive oil 3.74 3.71 1.99
hexadecane | 22.9 22.4 11.4

It should be noted that neither set of authors measured the non-aqueous phase saturations at the
beginning and end of the steady-state periods as presented in Table R.5.4. Rather, these values
were calculated by scaling the initial non-aqueous phase saturations by the total mass of
chlorinated ethenes remaining in the column divided by the initial mass of PCE in the columns.

The Sherwood Number correlation of (Powers et al. 1994) was used to estimate the lumped mass
transfer coefficient, as it incorporates aqueous-phase velocity, soil texture, and changing DNAPL
saturation:

0.673 a
Sh = 4.13Re"™ [ﬁ] U [S—] (R.5.1)
d ! Sbegm
M n
where Sh is the Sherwood Number is given as:
Sh = s (R.5.2)
D

m

Here dso is the mean grain size of the porous media and D,, is molecular diffusion coefficient
(8.70x107° cm?/s for PCE; (Montgomery 2007)). The Reynolds number is:

Re PPl (R.5.3)
M,

where p,, and x4, are the density and dynamic viscosity of water, here assumed to be taken at 20°C
(ow =998 kg/m? and 14, = 1.02x1073 Pa-s; (Mott and Untener 2014)). Other quantities in equation
(R.5.1) include du, the diameter of a “medium” sand grain (0.5 mm) as defined by the United
States Department of Agriculture (Driscoll 1986), U; is the uniformity coefficient of the porous
media, S;””’"’l is the initial DNAPL saturation (see Table R.5.3), and the exponent « incorporates

the effect of porous medium texture on the DNAPL interfacial area:

a=0.518+0.114%+o.wi (R.5.4)

M

Table R.5.5 summarizes values for grain size parameters, and the saturation-averaged Reynolds
number, mass transfer coefficients, and Damkohler 1 Numbers.
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Table R.5.5. Damkdohler 1 Number Development.

Substrate | dso(mm) | Ui(-) | Re(x10% | « Sh k (d) | Da
pentanol 6.04 0.478 4.83 74.1
oleate 2.73! 22.1! 6.03 335 [ 0459 4.65 71.4
olive oil 6.15 0.481 4.87 732
hexadecane 0.32 1.867 4.14 0.777 | 0.0362 | 265 232

"Harmon et al. (1992)
2Chen et al. (2013)

The Damkohler 2 Number (km XZ/Cqu) requires estimation of several parameters, the most

challenging of which is the biomass concentration (X). Yang and McCarty (2002) stated that each
column had about 1 mg of biomass per 100 mL of pore volume. It is reasonable to assume that not
all of this biomass is active so a value one- to two-orders-of-magnitude (i.e., 1.5-orders-of-
magnitude) lower will be used for this analysis. Amos et al. (2009) estimated an active
dehalogenating (PCE to cis-DCE and cis-DCE to ethene) biomass concentration of 16.6x10° cells
in the pore volume of their column and a typical cell density of 10-'? g/cell. The sensitivity of
bioenhancement factor values to these assumptions will be explored below.

Table R.5.6. summarizes the batch experiment-derived kinetic parameters, the biotransformation
rate constants, and the resulting Da; values. Note that a large range of Da; values is represented,
reflecting the wide variation in experimental systems.

Table R.5.6. Damkohler Number 2 Development.

kmax X KS Ceq
Substrate | (umol/mg-d) | (mg/L) | (uM) | (UM) K; Da,
pentanol
900 | 2.22x10* | 1.97
oleate 366! 0.316 | 0.2!
olive oil 819 2.44x10* | 2.13
PCE/HD 0.094° 40.8 0.54* | 300 1.80x10° | 11.2

Lee et al. (2004)
2Chen et al. (2013)

The Péclet Number (vL/ D) requires estimation of the longitudinal hydrodynamic dispersion
coefficient. The conventional approach for estimating this parameter was employed (Bear 1988)

D=av+tD, (R.5.5)

where a, is the longitudinal dispersivity coefficient, assumed to be 1 cm for column experiments

of this size (Chen et al., 2013; Gelhar et al., 1992) and 7 is the tortuosity, assumed to be % (Bear
1988). Table R.5.7 summarizes the transport parameters for these experiments and the resulting
Péclet Numbers.
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Table R.5.7. Péclet Number Development.

Substrate a.(cm) 7(-) D (cm?d) | Pe
pentanol 2.46 23.9
oleate 2.46 23.9
1 %
olive oil 2.50 24.0
hexadecane 11.9 9.58

Figure R.5.9 compares the observed and predicted bioenhancement factors. Error bars for the
observed bioenhancement factors reflect the experimental standard deviation. The error bars on
the predicted bioenhancement factors reflect the variability resulting from time-variant, spatially
averaged DNAPL saturation over the course of the experiments. There is relatively good
agreement, often within one-tenth of one order of magnitude, between the experimental
bioenhancement factors and the zero-order and Monod predictions (relative errors range from
about approximately 10% to 25%). Differences in the predicted and observed factor may be due

to (1) poor characterization of the mass transfer rate coefficient (k, ), (1) differences in microbial

activity (i.e., kmax and K;) reported by (Lee et al. 2004) and observed in the columns, and (ii1) a
lack of information on the biomass concentration (X) in the column source zone. The order-of-
magnitude over-prediction of the (Yang & McCarty, 2002) bioenhancement factors (i.e., pentanol,
oleate, and olive oil) derived with first-order kinetics is not surprising, considering that the steady-
state effluent concentrations of PCE are between two- and four-orders-of-magnitude greater than
the half-saturation constant. Although expected, it is important to note this over-prediction, since
it is not uncommon in field applications to simplify Monod biotransformation processes with a
pseudo-first-order kinetic approach. Further, the close agreement between the zero-order and
Monod kinetics predictions indicates that this process can successfully be modeled as a zero-order
process for these experimental conditions.
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Figure R.5.9. Observed and predicted values for the bioenhancement factors. The height of the observed
bar is the bioenhancement factor over the steady-state portion of the experiment; the error bars represent
the time-weighted standard deviation. The error bars on the predicted values reflect the variability due to
uncertainty in the non-aqueous phase saturation.
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I11.5.2.2. Sensitivity of Bioenhancement Factor to Biomass Concentration

Successful validation of the bioenhancement factor approach relies on the selection of an
appropriate biomass concentration. Both Yang & McCarty (2002) and Amos et al. (2009) reported
a biomass value within the experimental columns (based on a measurement of unattached
biomass), but these values are subject to a significant level of uncertainty, especially with respect
to how much of the reported biomass is actually active and able to take part in biotransformation.
For example, Chen et al. (2013) determined that the ratio of total to unattached biomass in the
Amos et al. (2009) column ranged from 1 to 20, depending on the organism and location within
the column. An analysis was undertaken to explore the sensitivity of the bioenhancement factor
predictions to the biomass concentration values. Figure R.5.10 presents predicted bioenhancement
factors (using Monod kinetics) over a range of biomass concentrations from 1 pg/L to 1 g/L for
the Yang and McCarty (2002) columns.
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Figure R.5.10. Sensitivity of predicted Monod-kinetics bioenhancement factors to assumed biomass
concentration. Symbols indicate predicted and best-fit results from individual column experiments.

The prediction scaled sensitivity of the bioenhancement factor to biomass concentration is also
shown. Here the prediction scaled sensitivity (pssy) is computed as (Hill 1998):

_OE_X 100% (R.5.6)
X 100% E

The prediction scaled sensitivity represents the percentage change in the bioenhancement factor
produced by a one-percent change in the biomass concentration. Overlain on the bioenhancement
factor and prediction scaled sensitivity curves are a set of circular symbols representing the model-
predicted bioenhancement values and corresponding prediction scaled sensitivities for the
assumed biomass concentration in each column. The diamond symbols represent the biomass
concentration value required to obtain the bioenhancement factor observed in the experimental
results. As might be expected, the bioenhancement factor curve is sigmoid; at low biomass
concentrations little bioenhancement is observed due to low biomass (£ is asymptotic to one),
while at high biomass concentrations bioenhancement is limited by dissolution kinetics. E

PSSy
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asymptotically approaches a value dependent on Pe, Da;, and K:. An analytical expression of this

relationship does not exist, but can be evaluated numerically. Inspection of Figure R.5.10 reveals
that the predicted bioenhancement factors for the Yang & McCarty (2002) experiments all fall in
aregion of moderately high sensitivity to biomass concentration while the prediction for the Amos
et al. (2009) experiment is very sensitive to biomass concentration. This suggests that careful
evaluation of this parameter is necessary when employing this simplified bioenhancement factor
approach to field-scale situations. The fact that all experiments demonstrated relatively large
values of pssx suggests that this sensitivity may be more likely the rule than the exception in many
engineered bioremediation systems. Field-scale sensitivity to this parameter will be explored in
section I11.5.2.4.

Additionally, Figure R.5.10 reveals rapid reduction in the magnitude of the parameter scaled
sensitivity in the region of a biomass concentration of 10 mg/L (Yang & McCarty (2002)
experiments) and 100 mg/L (Amos et al. (2009) experiment). These concentrations are the
approximate values required to make Da; (i.e., the biotransformation rate) equal to Da; (i.e., the
dissolution rate). This indicates that efforts to increase biomass concentration in an attempt to
increase the bioenhancement factor are worthwhile up until the point that the bioenhancement
factor becomes strongly limited by the dissolution rate. At this point additional increases in
biomass are not effective. It can be observed from Figure R.5.10 that the rate at which this
sensitivity reduces from its maximum value to zero is inversely proportional to the half-saturation
constant.

I11.5.2.3. Model Application

To aid in the application of this screening model, a series of nomographs was developed to provide
a simplified tool that can be used for engineering bioremediation systems (Mohamed and Hatfield
2011). The nomographs visually depict the dissolution enhancement one can expect when
adjusting engineered parameters such as groundwater velocity (residence time) or biomass
concentration. Figure R.5.10 is a three-dimensional surface plot that depicts the behavior of the
zero-order bioenhancement factor (Ey) as a function of the three dimensionless numbers, Pe, Day,
and Da,. Six isosurfaces are presented for a range of bioenhancement factor values. Inspection of
the isosurfaces reveals an increase in bioenhancement (£y) with increasing mass transfer rate (Day)
and biotransformation rate (Daz). Further, for a given set of transport conditions (Pe) and
biotransformation rate (Daz), the sensitivity of the bioenhancement factor to dissolution rate (Day)
decreases as the dissolution rate becomes large. An analogous observation can be made for the
biotransformation rate (Daz) for a given set of transport conditions (Pe) and dissolution rate (Day).
This reflects the fact that as the biodegradation rate becomes larger, bioenhancement begins to be
rate-limited by dissolution and vice-versa. Similarly, in advectively dominated systems (i.e., Pe
values greater than approximately one), the sensitivity of the bioenhancement factor to Pe becomes
very small. The residence time is simply too short to allow for further bioenhancement. An
analogous figure could be developed for the first-order and Monod bioenhancement factors,
although generation of the equivalent Monod figure would be very computationally costly.

Figure R.5.11 (and its first-order and Monod analogs) is useful for drawing general conclusions
about the behavior of the bioenhancement factor. For example, an increase in pore velocity
corresponds to an increase in the Péclet Number and decrease in the Damkohler 1 and 2 Numbers,
which leads to a decrease in the bioenhancement factor. Unfortunately, however, the three-
dimensional format of Figure R.5.11 makes it difficult to use in the analysis and design of
bioremediation systems.
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Figure R.5.12 transforms the three-dimensional isosurface plots to a series of contour plots of the
zero-order kinetics bioenhancement factor as a function of dissolution rate (Da;) and
biotransformation rate (Daz) for a selection of different transport regimes (i.e., constant values of
Pe). The Péclet Number was held constant, as opposed to the Damkdohler 1 or 2 Numbers, due to
the relationship between pore velocity and the hydrodynamic dispersion coefficient (see equation
(R.5.5)), which may make the Péclet Number difficult to control in an engineered system. Note

the discontinuity in slope (i.e., OE, / dDa, and OF, / dDa, ) along the line Da; = Da; resulting from
the piecewise nature of equation (M.6.38).

E=1.05 E=15

Figure R.5.11. [sosurfaces plots depicting the bioenhancement factor as a function of Péclet and Damkdhler
Numbers assuming zero-order kinetics.

For situations where first-order kinetics may be appropriate, Figure R.5.13 presents the
corresponding set of contours for first-order kinetics. Here the behavior of E; is varies smoothly
in the vicinity of the line Da; = Da;. The numerical Monod bioenhancement factor simulator
described previously was used to examine dimensionless half-saturation constants ranging from
106, reflective of an actual half-saturation constant six-orders below the equilibrium solubility
(typical of an analytical detection limit for a compound like PCE), to 1, reflective of an actual half-
saturation constant on the order of the equilibrium solubility. As an example, Figure R.5.14 depicts
the contours for a dimensionless half-saturation constant of 10°!; the supplemental information
contains the corresponding plots for Monod kinetics given a range of these dimensionless half-
saturation constants. Note that bioenhancement factor plots for dimensionless half-saturation
constant values less than 10 are visually indistinguishable from the zero-order plots. These
figures (i.e., Figures R.5.12 — R.5.14) are useful from a remedial design perspective; through a set
of simple calculations, anticipated enhancements in mass removal can be estimated graphically.
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Figure R.5.12. Contour plots of the zero-order-kinetics bioenhancement factor as a function of Damkdhler
1 and 2 Numbers. Each individual plot represents bioenhancement factor values at different Péclet Number
values
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Figure R.5.13. Contour plots of the first-order-kinetics bioenhancement factor as a function of Damkdhler

1 and 2 Numbers. Each individual plot represents bioenhancement factor values at different Péclet Number
values.
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Figure R.5.14. Contour plots of the Monod-kinetics bioenhancement factor as a function of Damkdhler 1
and 2 Numbers and a dimensionless half-saturation constant of K*; = 10"!. Each individual plot represents

bioenhancement factor values at different Péclet Number values.
I11.5.2.4. Application to a Field Site

The SABRE (Source Area Bioremediation) project is a well-known field and laboratory
demonstration of in situ biotransformation of a trichloroethene-DNAPL source zone (Zeeb and
Houlden 2010). Using available data from the literature and realistic assumptions regarding grain
size distribution, dispersion parameters, and temperature, summarized in Table R.5.8, estimates of
the four dimensionless numbers were developed as Da; = 109, Da; = 0.437, Pe = 12.5, and

K: =9.56x10™". Source-zone TCE concentrations are initially in the 1700-1900 pM range

(Wilson and Cia 2012; Zeeb and Houlden 2010), which are significantly higher than the half-
saturation constant of 8.00 uM reported by (Cupples et al. 2004b). This suggests that the kinetics
operative at the SABRE site can likely be modelled with a zero-order assumption. Using Figure
R.5.12 yields an estimated bioenhancement factor of 1.4, which is in relatively close agreement
with the value of 1.6 developed from the ratio of post-biostimulation flux to pre-biostimulation
flux data at the site (Zeeb and Houlden 2010).
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Table R.5.8. Parameter Used to Estimate Bioenhancement Factor for SABRE Site.

Dimensionless
Dimensionless Number
Number Parameter Value Reference Comments Value
v 7.72x10°° m/s Zeeb & Houlden
L 125m (2010)
a I m Gelhar et al. (1992) | Assumed
Péclet . % Assumed Pe=12.5
D 10 cm?/s Kresic, (2006)
D 0.077 em?/s N/A Computed using
equation (13)
dso 8 mm N/A Assumgd for fine
to medium gravel
Ui 1 N/A Assumed
. 1000 kg/m?
Damkahler 1 P l\él(c))st“and Untener, 1A()S§gmed for Dar = 109
L 1.30x10° Pass | (2014)
Sn 3.5% Rivett et al., (2010)
; Computed using
1
kl 5.82d N/A equation (10)
Harkness and Fisher,
X 50 mg/L (2013)
Estimated from
Damkéhler 2 FKimax 3.90 pumol/mg-d batch Das = 0.437
Cupples et al. (2004) | experiments. :
K 8.00 uM
Ceq 8.37x10° uM Wilson & Cai (2012)
Dimensionless Half-Saturation Constant K. =9.56x107"

As previously stated, analysis of the Yang & McCarty (2002) and Amos et al. (2009) data suggests
that bioenhancement number predictions are sensitive to biomass concentration estimates (see
Figure R.5.10). A similar analysis was undertaken here to explore the sensitivity of the
bioenhancement factor estimated for the SABRE site to the biomass concentration. Figure R.5.15,
similar to Figure R.5.10, depicts the bioenhancement factor obtained using the parameters in Table
R.5.8 and biomass concentrations ranging from 10! to 10° mg/L. The parameter scaled sensitivity
to biomass concentration (pssx) is presented as well. The circle and diamond symbols indicate the
bioenhancement factor and parameter scaled sensitivity values, respectively, for the SABRE site.
Inspection of Figure R.5.15 reveals that the bioenhancement number predicted for the SABRE site
1s moderately sensitive to the biomass concentration (pssx = 0.3), although not as sensitive as the
bioenhancement number predictions for the Yang & McCarty (2002) and Amos et al. (2009)
experiments (see Figure R.5.10). This emphasizes the importance of representative biomass
concentration measurements in remedial efforts. Further, Figure R.5.15 suggests that the predicted
bioenhancement factor can be substantially increased with an increased biomass concentration; the
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bioenhancement factor does not become insensitive to biomass concentration until concentrations
exceed 10,000 mg/L. The magnitude of this biomass concentration value suggests that the system
may not ever become mass-transfer limited.

T T T T T

102 f O SABREE

107 10° 10' 102 108 104 10°

03[0 _verer) T
= osf e | 1
<05 s ! 1
g 04 / | 4

03+ ya | ]

! _- \ ]

0 L = e /I 1 1 1 \

107" 10° 10° 102 10° 10* 10°
X (mg/L)

Figure R.5.15. Sensitivity of predicted Monod-kinetics bioenhancement factors to assumed biomass
concentration. Symbols indicate predicted and best-fit results from individual column experiments.
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Figure R.5.16. Regions of dominant parameter-scaled sensitivity for zero-order kinetics. The zero-order
kinetic bioenhancement factor is never more sensitive to the Péclet Number than the Damkohler Numbers.

The SABRE results suggest that when optimizing remedial approaches that exploit bioenhanced
dissolution, it can be helpful to identify if a given system is most sensitive to transport mechanisms
(Pe), mass transfer (Day), or biotransformation kinetics (Daz). Stated alternatively, will the largest
increase in bioenhancement be realized by attempting to alter the Péclet or Damkohler Numbers?
This can be assessed by identifying the largest parameter scaled sensitivity among these three
dimensionless numbers,

|0E Pe 100%| | OE Da, 100%| | € Da, 100%| (R.5.7)
|0Pe100% E [|oDa, 100% E |’|oDa, 100% E |

DS = max(

Figure R.5.16 presents a region plot that identify regions where the Damkohler 1 and Damkdhler
2 Numbers have their respective maximum parameter scaled sensitivities for zero-order kinetics.
For the zero-order kinetics case, the biotransformation factor is always more sensitive to the
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Damkohler Numbers than the Péclet Number and, in fact, the regions of maximum parameter
scaled sensitivity ( pss,, . = DSSpy, VS PSS, = pSSDaz) are independent of the magnitude of the
Péclet Number.
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Figure R.5.17. Regions of dominant parameter-scaled sensitivity for first-order kinetics. Unlike the zero-
order kinetic model, the first-order bioenhancement factor has regions where it is sensitive to the Péclet
Number. In general, designs that try to equalize the Damkohler Numbers yield the greatest bioenhancement
factors.

For potential situations where first-order kinetics are appropriate, Figure R.5.17 reveals regions
where decreasing the Péclet Number (less advectively dominated), increasing the Damkohler 1
Number (increased mass transfer kinetics), or increasing the Damkohler 2 Number (increased
biotransformation kinetics) leads to the greatest increase in the bioenhancement factor. Due to the
difficulty in controlling the Péclet Number in engineered systems, owing to the nature of
hydrodynamic dispersion in porous media, the Péclet Number region is subdivided into two
regions that indicate the dimensionless number (Da; or Daz) with the second-highest parameter
scaled sensitivity. Fortunately, the region where the bioenhancement factor is most sensitive to
transport processes (i.e., Péclet Number) is relatively small and only occurs when transport is not
advectively dominated (Pe < 1 in Figure R.5.17). Inspection of Figures R.5.16 and R.5.17 further
reveals that, in general, optimizations that attempt to equalize the Damkohler 1 and Damkohler 2
Numbers (i.e., equalize mass transfer and biotransformation rates) will yield the greatest increase
in bioenhancement factor. Put simply, if a remedial system is biotransformation-rate limited (i.e.,
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Da; > Da;) the design should be modified to increase the biotransformation rate (Daz) or,
conversely, if a remedial system is mass transfer rate limited (i.e., Da; < Da3) the design should
be modified to increase the mass transfer rate (Da;). Although the figures are not presented here,
a similar analysis of the Monod kinetics parameter scaled sensitivities yields the same conclusion.
For example, at the SABRE site (Da; = 109, Da; = 0.437), designing a remediation strategy that
increases Day (i.e., increasing the biotransformation rate constant) will lead to an increase in the
bioenhancement factor. This conclusion is consistent with the results of the biomass concentration
sensitivity analysis described earlier. One way this could be achieved is through additional
bioaugmentation efforts. Alternatively, at a hypothetical site with Pe = 10, Da; = 0.1, and Da; =
10 and first-order kinetics, increasing the mass transfer rate (Daj) will lead to an increase in the
bioenhancement factor. The Powers ef al. (1994) correlation suggests that the most practical way
to increase Da; would be to reduce the pore velocity. However, reducing the pore velocity will
also increase Da,, as both Da; and Da; are inversely proportional to this quantity. Thus, steps may
have to be taken to maintain Da; values while attempting to increase Daj.

II1.5.2.5. Conclusions

In this work, the first-order bioenhancement factor described in Christ and Abriola (2007) was
extended to incorporate zero-order and Monod kinetics. The zero-order bioenhancement factor can
be computed through a closed-form expression that is slightly more complex than the first-order
expression presented in Christ and Abriola (2007). Both the zero-order and first-order
bioenhancement factor expressions can be cumbersome and time consuming to use, involving
evaluation of complicated exponential and hyperbolic trigonometric functions. Therefore, a pair
of nomographs was presented to facilitate graphical solution of the bioenhancement factor
expressions. Further, a closed-form expression for the Monod bioenhancement factor does not
exist; in this work, it is computed numerically and presented as a series of nomographs, similar to
the zero- and first-order bioenhancement factor nomographs, that can be useful in the analysis and
design of remedial systems. The ability of these tools to quantify the expected benefits of
bioenhanced dissolution was assessed using four sets of relatively well-described column
experiments. Results indicate that bioenhancement factors estimated directly from laboratory data
match very well with those values computed using experimental parameters (well within an order
of magnitude). Considerable uncertainty in bioenhancement factor predictions is due to uncertainty
in biomass concentrations, which is often difficult to predict when designing remedial approaches
that exploit bioenhanced dissolution. Sensitivity results suggest that bioenhancement factor
predictions are sensitive to the estimated value of biomass concentration and that uncertainty in
this parameter must be considered during the design stage. The ability of these tools to estimate
the bioenhancement factor for a well-described field site was also evaluated. Results indicated that
this approach could match the field data very well — the bioenhancement factors computed using
the nomographs under-predicted the bioenhancement factor estimated from field data by
approximately 12.5%. This is considered good agreement, especially considering the uncertainty
introduced by the heterogeneous, multi-dimensional nature of a field site. Similar to the column
experiments, this prediction was found to be sensitive to biomass concentration. The implications
of biomass concentration uncertainty notwithstanding, the bioenhancement factor approach can be
of value in the design and operation stages of a given site remedy. When evaluating
bioenhancement factor behavior as a function of the Péclet and Damkohler Numbers, practitioners
can use either the equations (for zero- and first-order kinetics) or the contour plots. These plots
allow practitioners to estimate bioenhancement factors of existing or proposed site remedies and
identify potential operating or design changes that will lead to increased bioenhanced dissolution
and, ideally, more rapid site cleanup and closure.
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I11.6. Statistical Characterization Tool Development and Application
I11.6.1. Data Preparation

In this work, the statistical model, BRAINS, based on Equations M.7.4-7, was trained using mass
distribution data generated from multiphase flow and transport model simulations in
heterogeneous permeability fields. A detailed description of the infiltration and transport
simulations, as well as summaries of the input parameters used in TPROGs, M-VALOR and
MT3DMS simulations, can be found in Section .5 (Yang et al., 2018). These
MVALOR/MT3DMS simulation results provided the raw data for preprocessing as input data for
the statistical model. Six time points (i.e. t=1, 3, 4, 6, 7, 10 years after a spill loading time of 1
year) were taken from each MT3DMS simulation, for an ensemble of 40 hypothetical permeability
fields. In order to properly evaluate the statistical model, these selected realizations were
partitioned into training, cross-validation, and test sets. The train-validation-test set split ratio was
40:10:50. Each of the selected time points were treated as independent observations. However,
simulation data were kept together when splitting the data into training, cross validation and testing
data sets. That is, all 6 time points of any single MT3DMS simulation (i.e. single permeability
realization) were kept in the same data set (either train, cross validation or test). This was done to
assure that the model was trained, validated and tested with data from all available time regimes.
The process of model training, cross validation and testing are explained in detail below.

The two hydrological quantities of interest, DNAPL saturation and aqueous concentration, were
quantized into discrete labels by binning continuous values of these properties. Saturation values
which fall between 0 and 1 were discretized into 4 categories or labels. For concentration, the
values span over a wider range between 0 and 150 [mg/L], where the distinctions in lower values
are important, as well as capturing values on the high end of the range. Therefore, concentration
values were binned into seven categories of labels, split into roughly logarithmic ranges. Table
R.6.1 presents the upper lever boundary for each of these saturation and concentration categories.

Table R.6.1. Upper level limits for concentration and saturation categories.

Categories 0 1 2 3 4 5 6
Concentration (mg/L)‘ 1.0E-3 1.0E-2 1.0E-1 1 10 100 150

Saturation ‘ 1.0E-3 0.15 0.6 1 - - -

I11.6.2. Model Features

The features h;(y) used in the models are based on saturation and concentration borehole data from
MT3DMS simulations and permeability values at each pixel. Features are measurable properties
calculated from the raw data that can help us build a predictive model. For example, a feature could
be the average value of some quantity in a region of the image. Each pixel in the image that
represents the domain will have a feature vector, a vector of calculated or extracted features that
corresponds to that pixel. It is desirable to use as few features as possible that can produce an
informative model, as more features result in more parameters to optimize. The following
quantities were extracted from borehole data for each pixel i and used as intermediate calculations
for more complex final features that were ultimately used in the model:

e dy, dp: distance between pixel i and the closest up-gradient and down-gradient boreholes.
e (y,Cp: mean aqueous concentration at closest up-gradient and down-gradient boreholes
respectively over a window centered on the elevation of pixel i in the borehole (See Figure
R.6.1). The length of this averaging window is proportional to transverse dispersion length
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scale (lyr = ./4aydyp), which is related to vertical transverse dispersivity (ay) and
distance from pixel i to the closest up-gradient or down-gradient borehole (dv, dp). This
length was specifically chosen to consider the effect of vertical transverse dispersion in the
model.

e S,,Sp: mean saturation at closest up-gradient and down-gradient boreholes respectively,
over a 3-pixel window centered at the elevation of pixel i.
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Figure R.6.1. Illustration of borehole features for a pixel between two borehole columns.

The averages over the borehole windows were then weighted based on how close the boreholes
are to the pixel for which the features are being calculated. In particular, the features for borehole
saturation and aqueous concentration are distance-weighted averages of the values of the quantities
at the closest boreholes on either side of each pixel as shown in (M.6.1).

) fp (X)) = %p (1-

Using these quantities, the features that comprise the feature vector h,(y) are listed in Table R.6.2.
These features can be summarized as a bias term always equal to 1; distance weighted average of
saturation values at up-gradient and down-gradient boreholes at site i (fu(S:), fp(S;)); distance
weighted average of aqueous concentration at up-gradient and down-gradient boreholes at site i
(fu(Ci), fp(Ci)); the difference in average concentrations at up-gradient and down-gradient
boreholes (Cp — Cy); the value of permeability at pixel i (log(ki)); and lastly the ratio between the
observed permeability at site i and the pixel just below it (log{k(row;, column;) / k(row;+1,
column;)}).

Table R.6.2. List of final features used in the model.

dy
dy+dgr

dp
dy+dpgr

fy (X)) = Xy (1 -

) ; where X:C or (R.6.1)

FEATURE NO. SATURATION CONCENTRATION

1 Bias term; 1 Bias term; 1

2 log(ki) log(ki)

3 log{k(row;, column;) / k(row;+1, column;)}  log{k(row;, column;) / k(row;+1, column;)}
4 fu(S) + p(Sy) fu(S)

S Cp—Cy fo(Si)

6 fu(C) fu(C)

7 fo(Cy) fp(Cy)

These set of features were mainly selected considering the physical processes involved in this
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problem such as advection, dispersion and capillarity. Furthermore, the selection of model features
occurred over a process of trial and error by testing the model over multiple set of candidate
features to optimize the model performance. Due to different processes involved in DNAPL
infiltration and dissolution, slightly different sets of features were used for predicting NAPL
saturation and aqueous concentration distributions. For example, the difference between average
concentrations at downstream and upstream boreholes (Cp — Cy) could be a good indicator of the
presence of DNAPL between those two boreholes, however it might not give any valuable
information about the aqueous phase concentration between boreholes.

I11.6.3. Parameter Estimation; Model Training

Let 8 = {wy, vy} k, | € L be the set of parameter vectors for the association and interaction
terms involved in the DRF model defined in Section 11.7 (Equations M.7.4-7). Since there is one
wi vector for each possible label, there will be |L| association parameter vectors, each of length N,

where N is the number of features in the feature vector. Each vy parameter vector corresponds to

. : - LI+DILl . .
a pair of labels where vy = vy, so there will be (|L|+22 N = (|L|2+1) = W interaction parameter

vectors of length N to account for every combination of pairs of labels neighboring pixels can take.

Estimating these parameters requires calculating the partition function in (M.7.4), which is an
intractable problem [Li, 2009]. However, this calculation can be avoided by solving for the
pseudolikelihood rather than the likelihood so that the parameters are estimated as:

oML ~ argmax [Th=1[lies P(x™ X3, ¥™, 6) (R.6.2)

where m indicates an image in the training set M. Lastly as in (Kumar and Hebert 2006) a
regularization term is introduced to keep the interaction potential parameters from dominating the
function. With this final regularization term and by combining (M.7.4) and (R.6.2), (R.6.2)
becomes

~ 1
0 = arg;naXZ%ﬂ ZiES{Ai(xi'Y) + ZjeNi I; (xi: Xj,Y) - logzi} - ;VZ (R.6.3a)

z; = Yuer exp(ACx, ¥) + Xjen, (%1%, ¥)) (R.6.3b)

where z; is the i component of normalization term corresponding to pixel i and 7 is the model
hyperparameter, which is trained through cross validation. Cross validation is a hyperparameter
optimization method, which involves reserving a particular sample of the dataset (here 10% of the
dataset) for use in cross validation set subsequent to training. In this technique the model
parameters (i.e. 0 = {wy, vy, }) are trained for different values of t, using the training data set.
Later the cross-validation set is used, as an independent dataset, to find the optimal hyperparameter
(1) which minimizes the objective cost function (i.e. maximizes the pseudolikelihood) as described
in section I11.6.5.

To estimate the model parameters, the w; parameters are initialized using a multinomial logistic
regression classifier where vy are set to zero everywhere. This initialization provides a starting
point to achieve a more local optimization than would be attained by using a random or zero
initialization approach. For each value of 1, the parameter vectors wi and vy are trained
sequentially by successively fixing one set of parameters and estimating the other through
stochastic gradient descent (Jones et al., 2001).
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I11.6.4. Metropolis-Hastings Sampling; Simulations

Once the model is trained on the forward simulation data, realizations from the model can be
obtained through sampling. In particular, we use Metropolis-Hastings sampling, described by the
following algorithm (Table R.6.3), where the cost of assigning a specific label refers to the negative
pseudolikelihood as described in (R.6.3a and R.6.3b). The Metropolis-Hastings (MH) method is
one of the most popular and widely applied forms of Markov Chain Monte Carlo (MCMC)
algorithms used to simulate nonstandard, complex multivariate distributions (Hastings 1970;
Martino and Elvira 2017; Metropolis et al. 1953; Robert 2015).

Table R.6.3. Metropolis-Hastings Sampling Algorithm

1:  Initialize domain as a uniform distribution across all possible labels

2:  for each pixel i in the domain (except the borehole pixels) do

3 Propose new label from uniform distribution across possible labels

4 if proposed label does not equal current label at pixel i then

5: Calculate current cost (using current label)

6. Calculate proposed cost (using proposed label)

7 Accept new label with probability Pcce, = min {1, exp(current cost - proposed cost))}
That is, if P(proposed label) > P(current label), proposed label is accepted and if
P(proposed label) < P(current label), the proposed label is accepted with probability Paccep

8: endif

9: end for

10: repeat 2-9 for N=2000 times, where N is the number of equiprobable realizations

II1.6.5. Results and Discussion

After training and validating the model parameters in BRAINS, the simulator was used to estimate
DNAPL saturation and aqueous concentration distributions from borehole measurements and
permeability data for realizations in the test data set. Figure R.6.2 presents examples of the
ensemble mean (Figure R.6.2(d)) and variance (Figure R.6.2(e)) of 2000 equiprobable DNAPL
saturation and aqueous concentration realizations at two different times for the input permeability
field shown in Figure R.6.2(a) and input borehole data shown in Figure R.6.2(b). The MT3DMS
simulation results (i.e. true labels) are presented in Figure R.6.2(c). These simulations were
performed based on the knowledge of 7 equally spaced boreholes in the domain.

Inspection of these and similar model results indicate that BRAINS (i.e. Figure R.6.2(d)) can
reconstruct the general structure and distribution of contaminant mass observed in the true results
(Figure R.6.2(c)), producing realistic saturation and aqueous concentration fields given the
permeability and input borehole data. By visually comparing the model predictions (Figure
R.6.2(d)) with true labels (Figure R.6.2(c)) we can infer that the joint probabilistic model performs
best in the prediction of aqueous concentration labels. This behavior can be explained by the
continuous nature of aqueous phase concentration, in comparison to the sparse and discontinuous
saturation distribution, especially at later times (Figure R.6.2.1I1). However, as shown in Figures
R.6.2.1 and R.6.2.III, BRAINS is capable of modeling the presence of highly saturated pooled
DNAPL on top of low permeability layers, associated with highly heterogeneous aquifers that
contain continuous stratigraphy and sufficient textural contrast. The modeling of these high
saturated DNAPL pools is mainly achieved by concurrent utilization of two saturation model
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features: average concentration difference at up-gradient and down-gradient boreholes (Cp — Cy),
and the ratio between the observed permeability at site 1 and the pixel just below it (log {k(rowi,
column;) / k(rowi+1, column;)}).
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Figure R.6.2. Example of saturation (I, III) and concentration (II, IV) prediction results at (I, II) t =1 year
and (III, IV) t = 10 years after spill. (a) Input permeability, (b) Input borehole data, (c) MT3DMS results
(i.e. true labels), (d) average and, (e) variance of 2000 equiprobable realizations.

The variability among realizations of the model (Figure R.6.2(¢)) can be used as a measure of
uncertainty at every point in the domain. That is, for each pixel in an image, the variability in the
values of saturation and concentration across realizations provides insight into the uncertainty of
the model, given the observed borehole data. These uncertainty fields (Figure R.6.2(¢e)) could be
used to design optimal sampling strategy inferring the statistically optimal location for additional
borehole measurements to characterize source zones under realistic field conditions.

Despite the successful performance of BRAINS model in predicting DNAPL source zone
architecture and distribution, two major sources of error (i.e. type I and type II errors) are involved
in these models and can be observed in Figures R.6.2.1 and R.6.2.1I1. Type I error (i.e., false
positive) is the incorrect prediction of DNAPL (either pool or ganglia) in a specific region of the
domain where no DNAPL actually exists. Some examples of type I error can be seen in the down-
gradient (i.e. right hand) side of Figures R.6.2.1(d) and R.6.2.111(d). These false positive errors
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often occur at interfaces of lower permeability beneath high permeability regions and are
associated with higher uncertainty (variance) as evident in Figures R.6.2.1(e) and R.6.2.11I(e). Type
I error (i.e. false negative) refers to a failure to reproduce DNAPL source zones that are present
in the true image (e.g. top half of Figure R.6.2.11I(d)). These types of errors are usually caused by
insufficient borehole data and often observed at later times.

Ensemble mean results for saturation and concentration fields simulated by BRAINS are compared
below (Figure R.6.3) with the realizations obtained from classical ordinary kriging approach
(Krige 1951; Matheron 1963). The kriging packages from SURFER software (version 15.0,
Golden Software Inc., Golden, CO, USA) were used to calculate the experimental semivariograms
and estimate the saturation and aqueous phase plume architectures. First, for each saturation and
concentration realization, the experimental semivariograms obtained from sampled borehole data
were fit to two-dimensional exponential models. These exponential variogram models were then
used as the input for kriging to generate saturation and concentration realizations based on
observed borehole data.

(a) MT3DMS (true) results (b) BRAINS results (c) SURFER (Kriging) results
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Figure R.6.3. Comparison of Saturation and Concentration results from ordinary kriging and joint
probabilistic models
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For these comparisons, the predicted categorical labels from BRAINS (i.e. {0,1,2,3} for saturation
and {0,1,...,6} for concentration) had be converted into a true range of continuous values (i.e.
between 0 to 1 for saturation and 0 to 150 mg/L for concentration). Based upon a logarithmic scale
of saturation and concentration category limits (Table R.6.1), the following procedure was chosen
for this conversion. As the first step, the ensemble means of 2000 predicted categorized saturation
and concentration realizations for each permeability field and at each specific time were calculated.
As shown in Figure R.6.2(d) saturation and concentration values in these average realizations
range continuously between 0 to the maximum number of categories (i.e. 3 for saturation and 6 for
concentration). To convert these average realizations into true ranges of saturation and
concentration values, a representative value from the true range of values was assigned to each
saturation and concentration category. These representative values were determined from a
representative forward MT3DMS simulation result by extracting the pixels belonging to each
category and calculating the average value (i.e. saturation or concentration) of those groups of
pixels as a representative value for that specific category (e.g. for example the representative value
for saturation category 1 and 2 were assigned to be 0.053 and 0.245, respectively). Consecutively
the mean categorized realizations were converted (by logarithmic transformation) to the true range
of continuous values using these representative values.

It is clear from Figure R.6.3 that the concentration results from kriging (i.e. Figures R.6.3.11(c) and
IV(c)) are similar to BRAINS model results (i.e. Figures R.6.3.1I(b) and IV (b)), qualitatively match
the MT3DMS (true) results (i.e. Figures R.6.3.1I(a) and IV(a)). As before, this is attributed to the
continuous nature of concentration data. However, the BRAINS model produces a more realistic
DNAPL saturation field both at early and late times (i.e. Figures R.6.3.I(b) and III(b)). Similar to
results presented by Maji R. et al., (2006), the kriging method tends to smooth out the sharp spatial
variations observed and expected in DNAPL source zone architecture (i.e. Figures R.6.3.1(c) and
III(c)). In other words, the kriging approach predicts a higher mass of low saturation DNAPL (i.e.
ganglia) around observed borehole data, while it is not successful in reconstructing the higher
saturated pooled DNAPL in the domain. This smoothing tendency is likely to result in lower
predicted pool fractions compared to realistic (true) DNAPL architecture.

To better evaluate the performance of both models, the saturation and concentration metrics for
predicted and true results are compared at different times. Seven different metrics are calculated
for the true and predicted concentration and saturation fields at 4 different time points for each
permeability realization in the test data set and plotted in Figures R.6.4 and R.6.5, respectively for
BRAINS and the kriging model. These metrics include total DNAPL mass (Figures R.6.4(a),
R.6.5(a)), total aqueous and sorbed mass with linear equilibrium sorption assumption (Figures
R.6.4(b), R.6.5(b)), pool fraction (PF) (Figures R.6.4(c), R.6.5(c)), x and z center (Figures
R.6.4(d), R.6.4(e), R.6.5(d), R.6.5(¢e)) and spread (Figures R.6.4(f), R.6.4(g), R.6.5(f), R.6.5(g)) of
mass. The coefficient of determination, R?, is a measure of correlation between predicted and true
metric values.
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Figure R.6.4. Saturation and concentration metrics, predicted vs. true for BRAINS model. (a) Total
DNAPL mass, (b) Total aqueous and sorbed mass (linear equilibrium sorption assumption), (c) Pool
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Figure R.6.5. Saturation and concentration metrics, predicted vs. true for kriging approach
DNAPL mass, (b) Total aqueous and sorbed mass (linear equilibrium sorption assumption), (c) Pool
fraction (PF), (d) x-center of mass, (¢) z-center of mass, (f) x-spread of mass, (g) z-spread of mass. Negative
R?value in (c¢) implies that a horizontal line fits the data better than x=y line.

153

. (a) Total



These results indicate that both models can provide reasonable reconstruction of aqueous and
sorbed phase mass distributions based on borehole data. However, recognizing that most of the
contaminant mass is stored in the DNAPL phase, a major drawback of the kriging method is its
performance in predicting DNAPL saturation architecture. This disadvantage mainly arises due to
failure of ordinary kriging to capture localized peaks at unsampled locations, and to the smoothing
nature of kriging algorithm. (Maji et al. 2006) also observed similar behavior, for both kriging and
TP/MC models, while reconstructing contaminant source zones using limited borehole data.
Comparison of Figures R.6.4(c) and R.6.5(c) shows that the BRAINS model performs favorably
in estimating realistic pool fraction, while kriging tends to greatly under-predict the pool fraction.
This is specifically important as recent studies (e.g., Christ et al., 2006, 2010) have shown that the
distribution of DNAPL between ganglia and pool regions, indicated by pool fraction, controls the
DNAPL dissolution characteristics and therefore can serve as a useful metric to predict source
zone longevity. It is also evident from Figures R.6.4(a) and R.6.5(a), that both models under-
predict the total DNAPL mass at later times due to sparse and limited saturation borehole data at
those time regimes. This behavior is more pronounced in the case of the kiging model (Figure
R.6.5(a)).

With the goal of validating and examining the robustness of the joint probabilistic model, the
trained BRAINS model was tested to explore its performance with borehole spacing configurations
different from those used in the model training (i.e. base case or Case 1). Accordingly, two more
sets of simulations (Case 2-3) with different saturation and concentration borehole configurations
were performed over the 80 realizations (i.e. 20 permeability realizations at 4 time points) in the
test data set. For Cases 2 and 3, 6 and 5 equally spaced boreholes, respectively, were selected. It
should be noted that the test data sets in these two cases were the same as those for Case 1. In other
words, permeability realizations and the true saturation and concentration distributions in these
sets were the same as the base case scenario and only the number and location of concentration
and saturation boreholes were different from the Case 1.

In addition to different borehole configurations the model was also tested for various spill
scenarios. For this purpose, realistic spatial distributions of DNAPL and aqueous phase
contaminants under 4 different spill scenarios (Case 4-7) were generated using numerical
simulation (i.e. “true” results). These simulations were conducted with the original 20 permeability
realizations (test data set). The trained model was then applied to predict the DNAPL and aqueous
phase contaminant mass distributions for each of the new spill scenarios using the saturation and
concentration borehole observations in conjunction with the known permeability fields. Table 4
presents the spill rate and initial volume of PCE DNAPL for each spill scenario including the base
case (i.e. the case used in the model training).

Table R.6.4. DNAPL spill scenarios.

Spill Scenarios Casel Case4 Case 5 Case 6 Case 7

(base) (higher rate)  (lower rate)  (higher volume)  (lower volume)
Spill rate (L/day) ‘ 2 20 0.5 2 2
Spill Volume (L) ‘ 80 80 80 160 40

Finally, BRAINS performance was also tested using a different set of 20 permeability field
realizations. These realizations were taken from the “field 1”” ensemble simulations in Yang et al.
(2018). In contrast to the permeability fields used as training data (i.e. field 2 scenario, Figure 5.a)
the low permeability layers in these realizations (i.e. field 1) are mostly present in the top part of
the domain (see Figure 1 in Yang et al., 2018). Note that both of these hypothetical permeability
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fields, however, share the same geostatistical characteristics (i.e. consistent transition probability
matrices and volumetric portion of lithofacies). The PCE release rate in the new simulations was
the same as that of Case 5 (i.e. 0.5 L/day, lower rate than the base case).The contaminant borehole
configuration was the same as Case 1 (i.e. 7 equally spaced boreholes).

The relative performance of BRAINS for each of these cases was evaluated using normalized root
mean square error (NRMSE) for each of the metrics shown in Figure R.6.4. NRMSE, defined as
the root mean square error (RMSE) normalized by the mean value of the observed metric, ranges
between 0 and 1 and facilitates the comparison of model performance for metrics with different
scales. The expression for NRMSE for each saturation or concentration metric is given as:

NRMSE = m% \[%217;1 |(my), - (ma)l-]2 (R.6.4)

where 7 is the number of realizations in the test data set (i.e. n=80 for 20 permeability realizations
and 4 time points), (mp)i and (m,); are the predicted and actual (true) metrics respectively for

the i realization, and 7, is the mean value of saturation or concentration metric for the actual
realizations. The NRMSE values for each of the metrics shown in Figure R.6.4 is listed in Tables
R.6.5 and R.6.6 for different borehole configurations and various spill scenarios. In addition, Table
R..6.5 includes the kriging simulation results (with borehole configurations similar to Case 1) for
the base case spill scenario.

Table R.6.5. NRMSE estimation of different metrics for various borehole configuration vs. kriging
approach results for the base case spill scenario.

Kriging Case 1 Case 2 Case 3
Borehole configuration

(7 boreholes) (7 boreholes) (6 boreholes) (5 boreholes)
Total DNAPL mass 0.44 0.28 0.36 0.33
Total aqueous and sorbed mass | 0.14 0.07 0.08 0.12
Pool fraction 0.85 0.23 0.26 0.18
x-center of mass 0.10 0.15 0.17 0.17
z-center of mass 0.17 0.21 0.19 0.21
x-spread of mass 0.18 0.24 0.26 0.29
z-spread of mass 0.27 0.24 0.24 0.29

It is clear from Table R.6.5 that BRAINS in general outperforms the kriging approach even in the
cases with fewer boreholes (i.e. Cases 2 and 3), although as would be expected, the performance
of BRAINS is sensitive to borehole numbers and locations. These results also indicate that kriging
can capture the spatial moments of the contaminant plume slightly better than BRAINS, however
this approach performs poorly in predicting total DNAPL mass and pool fraction.

Table R.6.6 suggests that BRAINS performance is robust for a wider range of spill rate and spill
volume conditions than those used in the training data. The exception is for Case 7, where a lower
accuracy in predicting DNAPL plume architecture was observed. This lower accuracy was
attributed to the lower spill volume and associated sparse saturation observations in the selected
boreholes for this case. The NRMSE results for Case 8 indicate that the trained model can
reasonably predict contaminant mass distribution independent of the permeability field structure
(i.e. location of low permeability layers in the domain).
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Table R.6.6. NRMSE estimation of different metrics for different spill scenarios

Spill Scenarios Cuse | Case4 Case5 Case6  Case7 Case 8
(base) (higher  (lower  (higher  (lower  (field 1, lower
rate) rate)  volume) volume) rate)
Total NAPL mass 0.28 0.28 0.31 0.26 0.36 0.37
Total aqueous and sorbed mass 0.07 0.07 0.09 0.09 0.08 0.06
Pool Fraction 0.23 0.28 0.18 0.24 0.29 0.22
x-center of mass 0.15 0.11 0.13 0.13 0.12 0.13
z-center of mass 0.21 0.19 0.18 0.10 0.29 0.26
x-spread of mass 0.24 0.28 0.21 0.17 0.38 0.23
z-spread of mass 0.24 0.26 0.20 0.17 0.47 0.36

I11.6.6. Summary and Conclusions

This section has described the development and successful application of a discriminative random
field model for contaminant source zone characterization and uncertainty quantification. The main
advantage of the DRF model over more traditional MRF/CRF-type methods is its ability to capture
a broader range of dependencies over longer spatial scales between the conditioning data (borehole
observations and perm field) and variables to be modeled (maps of NAPL saturation and aqueous
phase concentrations). Furthermore, the DRF method contrasts starkly with a ‘brute force’
(stochastic) MC approach, which would require running an abundant number of forward flow and
transport simulations for various spill scenarios, hydrological boundary conditions, and
permeability realizations. In addition, accounting for the measured borehole data in such stochastic
forward simulations is not straightforward. The DRF model, in contrast, is completely
characterized by a collection of parameters (i.e. w and v vectors), and need only be trained once.
Although the training data are obtained from forward model simulations of NAPL entrapment and
subsequent dissolution via groundwater flow, it is important to emphasize that far (i.e. at least 2
orders of magnitude) fewer forward simulations are needed than would be required for a traditional
MC approach (e.g. Koch & Nowak, 2015, 2016). Once the DRF parameters are determined, the
model can be used to generate realizations of the NAPL saturation and aqueous phase
concentration using off-the-shelf Metropolis sampling methods.

By comparing the predicted and true metrics for contaminant mass distributions, it was shown
above that the trained DRF model (BRAINS) produced realistic saturation and concentration fields
conditioned to borehole data for different NAPL spill scenarios at different times. The predicted
concentration and saturation results from BRAINS were also compared with those obtained from
a widely used ordinary kriging approach. This comparison clearly illustrated that BRAINS
outperformed the kriging approach significantly in reconstructing NAPL saturation distribution
and architecture. Specifically, the kriging approach fails to predict the pool fraction of NAPL mass
in the domain successfully. This can be explained by the smoothing nature of kriging method as
well as the fact that kriging fails to capture localized peaks in NAPL saturation in unsampled
locations.

It is important to note that, in this work, the permeability was assumed known at all pixels in the
domain. However, in real-world applications only a few measurements of permeability are
typically available from borehole logs and core sampling. This assumption of perfect knowledge
can be lifted by generating stochastic realizations of the permeability field, conditioned on
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measured permeability borehole data and based on some general geostatistical knowledge of the
subsurface domain. Then BRAINS can be applied to these permeability realizations to generate
equiprobable realizations of the contaminant source zone, conditioned to concentration and
saturation borehole measurements. The ensemble averages over realizations of this stochastic
process represent the expected values for concentration and saturation fields, while the variances
provide a quantifiable measure of the uncertainty associated with the permeability and contaminant
source zone mass distribution. These uncertainty measurements can help to infer the optimal
locations for further borehole sampling.

Assessing computational effort, the methodology presented in this paper is significantly more
efficient than other stochastic (forward or inversion) approaches. For example, for the 2D problem
presented herein, approximately 30 minutes was required to generate 2000 saturation and
concentration realizations for 100 equiprobable permeability fields (2x10° realizations) using the
trained DRF model. These computations employed 100 CPU cores, in parallel, each with 128 GB
of memory. It is anticipated that a stochastic approach, based on forward flow and transport models
and similar to that presented in Koch & Nowak (2016), would require more than 10° transport
model runs prior to application of rejection sampling for conditioning the source zone distribution
on borehole data. This large number of forward simulations would demand more than 20 days of
computation time using the computational resources applied in the current study.

In conclusion, this study demonstrates the successful development of a discriminative random field
model as a promising method for contaminant source zone characterization and uncertainty
quantification. The developed model, however, can be further optimized to reduce the type I and
IT errors observed in NAPL saturation reconstruction, either by adopting a more advanced machine
learning methods such as generative adversarial networks (GANSs) or application of permeability-
based features that carry more information about the permeability of surrounding and neighboring
pixels. Future work should focus on exploring the performance of the trained DRF model under
different geologic environments and across different scales of heterogeneity. It is anticipated that,
while the developed features and model structure are robust, the DRF model itself will need to be
retrained for applications to different depositional environments. Thus, the present study should
be viewed as a proof of principle for the application of this modeling approach and as the first step
in generating a 3D characterization tool (i.e. library of models) that can be applied over a wide
range of conditions observed at contaminated sites.

II1.7. Predictive Modeling of Field-Scale Remediation, Optimization and Uncertainty -
Sensitivity/Sampling Optimization Modeling

II1.7.1. Synthetic Test Cases

The uncertainty quantification/optimal sampling design approach described in Figure M.8.1, was
demonstrated through application to two numerically generated source zone scenarios, one with
architecture dominated by ganglia, with a pool fraction (PF) of 0.44 (case 1), and the other
dominated by pools with PF equal to 0.73 (case 2). The forward flow and transport model setup
and the generation of realizations of the four random variables are briefly discussed below. All
simulations of DNAPL infiltration, dissolution, and solute transport were conducted on two-
dimensional (2-D) domains, with the intention of illustrating and assessing the performance of our
approach in the design of sampling networks for FAC uncertainty reduction. A two-dimensional
implementation was selected both to reduce computational time and to make use of the DRF
algorithm for generating realizations of the initial aqueous concentrations and DNAPL saturations.
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I11.7.1.1. Permeability fields

The approach discussed in section I1.5.2 was applied to generate a series of 100 equiprobable three-
dimensional (3-D) permeability realizations conditioned on 22 synthetic borehole measurements
with the same discretization. X-z cross section center slices of the 3-D realizations were extracted
to form 2-D domains, where one borehole was located at the down-gradient transect and another
three boreholes were located within the modeled domain, equi-distant from each other. Among the
100 realizations, one permeability domain was selected as the “true” case (Figure R.7.1). This
domain was then used to generate “true” initial distributions of DNAPL, aqueous and sorbed mass.

As the FOSM method propagates the uncertainties in system parameters into the results to first-
order accuracy, the mean FAC can be obtained by employing the solution of the flow and transport
equations for the mean of the realizations. The average log conductivity of the 100 2-D
conductivity realizations and the corresponding variance are shown in Figure R.7.2. Comparison
of the “true” and averaged conductivity fields reveals that the averaged conductivity field captures
the general horizontal stratigraphy in the formation, with some fine detail lost due to smoothing at
locations without observations.

@ X ® X

Figure R.7.2. Statistical properties of the 2-D log conductivity fields. (a) Averaged 2-D log conductivity
field over 100 realizations; (b) variance of the 100 2-D log conductivity realizations. White rectangles
indicate the four borehole locations
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I11.7.1.2. True Initial Conditions

DNAPL release and migration were modeled using the approach presented in section 11.5.2. After
the initial DNAPL distribution was obtained (Figure R.7.3(a)), transport modeling was conducted
to obtain the “true” initial aqueous and sorbed concentrations. A detailed description of transport
model set up is presented in sections 11.5.2 and 11.5.3.3.
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Figure R.7.3. True PCE-DNAPL source zone, initial aqueous concentration, and sorbed concentration of
ganglia-dominated case (left (a), (¢), (¢)) and pool-dominated case (right (b), (d), (f)), respectively

Consistent with the two-stage simulations, a 1 year “loading stage” was first simulated, during
which PCE DNAPL dissolved, but no change in saturation was permitted. Linear equilibrium
sorption was assumed. The aqueous and sorbed concentrations at the end of the loading stage were
considered as the “true” initial distributions of aqueous and sorbed concentrations corresponding
to case 1 (Figure R.7.3(c), (e)). The change of DNAPL saturation was then allowed, and the
DNAPL dissolution and solute transport were simulated for approximately 4.7 years. The DNAPL
saturation, aqueous, and sorbed concentration distributions at 4.7 years were selected as the “true”
initial conditions for case 2 (Figure R.7.3(b), (d), (f)). In Figure R.7.3, borehole locations are those
used for generation of the permeability realizations.

I11.7.1.3. Realizations of Initial DNAPL Saturation, Aqueous, and Sorbed Concentration
Distributions

The DRF model (BRAINS), incorporating full knowledge of the conductivity field, as well as the
“true” aqueous concentrations and DNAPL saturations in the four boreholes, were then used to
generate 2000 realizations of aqueous concentration and DNAPL saturation for each conductivity
field. The sorbed concentration distribution was obtained by assuming equilibrium with the
aqueous concentration. Averaged aqueous concentration, DNAPL saturation, and sorbed
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concentration distributions for the 200,000 realizations, as well as the corresponding variances, are
shown in Figure R.7.4 for both cases. Visual inspection of the averaged contaminant mass in the
different phases reveals that the realizations generated by the DRF method are qualitatively
consistent with the “true” initial concentrations.
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Figure R.7.4. Conditional mean and variance of DNAPL saturation (la-1b for casel, 2a-2b for case 2),
conditional mean and variance of aqueous concentration (1c-1d for case 1, 2¢-2d for case 2), and conditional
mean and variance of sorbed concentration (1e-1f for case 1, 2e-2f for case 2).

I11.7.2. Sensitivities of Down-Gradient FACs to System Properties

The sensitivity analysis results, which form the basis for the data worth analysis, are discussed in
this section. The sensitivities S;;, which represent the FAC change due to an incremental change
in each model parameter, have different units for each parameter. So that the sensitivities can be
readily compared to each other, a scaled, dimensionless local sensitivity coefficient can be
introduced:

s 0Cg
ij R.7.1
Y 6p] p* ( )
5 = 5y 2
y=Si 5 (R.7.2)
fi

where Op; is the parameter scaling factor, and o is the FAC prediction scaling factor. In the

context of data worth analysis for the prediction phase, the parameter scaling factor is defined as
the expected parameter uncertainty, while the prediction scaling factor is chosen as the acceptable
prediction uncertainty (Finsterle 2015).

Computed sensitivities of down-gradient FACs with respect to log hydraulic conductivity, initial
aqueous concentration, initial sorbed concentration, and initial DNAPL saturation for the ganglia
dominated case corresponding to selected times (1 year, 5 years, 10 years, and 20 years) are
presented in Figure R.7.5. Inspection of the sensitivity results reveal that largest sensitivities
propagate from down-gradient to up-gradient as time increases and that local hydraulic
conductivity values have the greatest impact on the FAC predictions. At the same distance from
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the down-gradient transect, locations with lower hydraulic conductivities are associated with larger
sensitivities over longer time periods. This is consistent with the fact that the hydraulic
conductivity field is the major factor controlling the flow and transport processes, as well as the
sorption capacity and DNAPL dissolution. Furthermore, initial aqueous and sorbed concentrations
have a major effect on FAC predictions at early times, while the influence of initial DNAPL
saturation persists for longer periods. Notably, sensitivities of down-gradient FAC predictions with
respect to initial DNAPL saturations are significant as the DNAPL dissolves away. This is
attributed to the fact that, with the presence of DNAPL, a small change in DNAPL saturation only
leads to minor changes in the DNAPL dissolution rate, and, thus has a small impact on down-
gradient FAC. When the DNAPL dissolves away, however, a small addition of DNAPL makes a
large contribution to the FAC.

The sensitivities of down-gradient FAC with respect to the four random variables corresponding
to the pool-dominated case are not shown here, as the results display similar patterns as those
presented above.
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Figure R.7.5. Absolute local sensitivities of down-gradient FAC with respect to log conductivity (1a-1d),
initial aqueous concentration (2a-2d), initial sorbed concentration (3a-3d), and initial DNAPL saturation
(4a-4d) at selected times

I11.7.3. Assessment of the First-round Sampling

The above averaged log conductivity and contaminant mass distributions served as inputs for the
modified groundwater flow and transport model. Down-gradient FACs were estimated at 1, 5, 10
and 20 years for both cases. Covariance matrices corresponding to four random variables were
calculated from the 200,000 equiprobable realizations. The uncertainties in FAC predictions were
then be evaluated via the FOSM method, coupling sensitivities and covariances.

I11.7.3.1. Down-gradient FAC Predictions

Conditional means and variances of FACs are presented in Table R.7.1. Here the CV (the standard
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deviation over the mean), which is an integral outcome of prediction precision and extension of
variability, was adopted to quantify the uncertainties associated with the predictions. The true
FACs, conditional means, and corresponding error bounds E[C¢] £ o, are presented in Figure
R.7.6 and Table R.7.1 for both cases.

Table R.7.1. true, conditional mean, standard deviation, and coefficient of variation of down-gradient FACs
(mg/L)) at selected times (years) for both cases

time  “true” Mean (mg/L) StD (mg/L) CvV

sta - pnd 2nd I Expected!  2m- 2nd I 2nd 2nd

FOSM®  uniform® FOSM  uniform FOSM  uniform
ganglia dominated case
1 1097 1149 10.77 11.66 8.08 5.24 3.02 6.74 0.70 0.28 0.58
5 1.96 7.79 6.10 8.03 9.68 6.84 6.06 9.07 1.24  0.99 1.13
10 1.13 429 375 1.83 3.61 1.23 3.17 4.02 0.84 0.84 2.20
20 1.0o1  0.89 1.05 1.14 272 0.70 2.06 2.39 3.05 1.96 2.09
pool dominated case

1 298 557 461 4.28 427 1.24 4.13 4.09 0.77 0.90 0.96
5 1.18 386 2.28 2.23 542 1.23 2.21 3.10 1.40 0.97 1.39
10 1.01 1.29 1.23 1.26 345 0.79 1.98 1.66 2.67 1.61 1.32
20 084 0.62 0.69 0.54 228 0.61 1.02 1.44 3.67 147 2.67

2 first-round sampling based on four borehole measurements

b second-round sampling based on six borehole measurements, two additional boreholes were selected based on
FOSM and data worth analysis

¢ second-round sampling based on six borehole measurements, two additional boreholes were located evenly at
the center of the domain

4 expected standard deviation reduction before conducting second-round sampling

Comparison of the true value and prediction at 1 year reveals that, for case 1, the mean FAC of
11.49 mg/L is very close to the true value of 10.97 mg/L. The relatively small standard deviation
and the good estimate lead to a CV smaller than 1, indicating reasonable prediction accuracy. The
FACs at 5 and 10 years (7.79 mg/L and 4.29 mg/L), however, are 3-4 times higher than the true
values (1.96 mg/L and 1.13 mg/L), with the true FACs lying close to the lower error bounds of
the predictions. This overestimation, along with large standard deviations and increased CVs, can
be attributed primarily to the poor estimation of initial DNAPL mass and the continuous
dissolution of DNAPL. As the estimated initial DNAPL mass is much higher than the true value,
higher aqueous concentrations emitted from ganglia and pools arrive at the down-gradient
boundary over longer time periods, resulting in higher FACs. Inspection of the FAC prediction of
0.89 mg/L at 20 years indicates good agreement with the true value of 1.01 mg/L. This better
agreement at later time is attributed to the fact that FAC is mainly controlled by the dissolution of
DNAPL pools at later times and that the DNAPL saturation hot spots (close to 0.9) are well-
reproduced by the model.

The predictions of FACs at selected times corresponding to case 2, however, exhibit a different
trend. In this pool dominated case, the ganglia dissolve rapidly, resulting in a sharp decrease in
down-gradient FAC, and the initial aqueous concentrations in most of the region are smaller than
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the solubility. The initial DNAPL saturation distribution, thus, makes the most contribution to
FAC predictions at early times. Since the conditional mean of the initial DNAPL source zone
incorporates more low saturation ganglia than the true distribution, the predicted FACs at 1 and 5
years (5.57 mg/L and 3.86 mg/L), are much higher than the true values (2.98 mg/L and
1.18 mg/L). At later stages, the FACs are mainly governed by the dissolution of high saturation
pools and the slow depletion of persistent or flow inaccessible DNAPL, resulting in concentration
plateaus. As both true and predicted FACs reach this regime, the FAC forecasts corresponding to
the pool dominated case of 1.29 mg/L and 1.62 mg/L at 10 and 20 years are comparable to the
true values of 1.01 mg/L and 0.84 mg/L.

It is noteworthy that the CV increases as time goes by; in other words, the uncertainties associated
with the FAC predictions become more significant. This can be attributed to the uncertainty
propagation that occurs with time. Although the mean forecast at 20 years is comparatively
accurate, with the predicted FAC of 0.89 mg/L and 0.62 mg/L compared to the true FAC of
1.01 mg/L and 0.89 mg/L for ganglia- and pool-dominated case, respectively, the uncertainties
associated with the predictions are still obvious with the CV larger than 1 (3.05 and 3.67),
indicating additional site investigation is required to ensure prediction precision.
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Figure R.7.6. True, first-round conditional mean, and the error bound of FACs at selected times for ganglia
dominated (a) and pool dominated (b) cases.

I11.7.3.2. Sampling Strategy Design

The data worth analysis introduced in section 11.8.2.2 was then applied to guide the optimal
sampling network design. Here the cost of additional measurements was justified by the difference
in the FAC uncertainty before and after extra data collection. Thus, observations associated with
the highest expected data worth, i.e., the largest uncertainty reduction, were selected for additional
measurements. Consistent with the first phase sampling patterns, measurements of hydraulic
conductivity and initial contaminant mass in different phases were evaluated along vertical lines
(boreholes). The expected data worth of additional measurements for the prediction of FAC at four
selected times of case 1 are shown in Figure R.7.7.

After calculating the expected variance reduction, which quantifies how the measurements along
additional individual boreholes could reduce the variance of the prediction, two more boreholes
were selected for sampling (white rectangles in Figure R.7.7). The expected variance reduction for
each column measurements, calculated based on Equation M.8.7 are shown in Figure R.7.8. As
can be seen, the model guided sampling strategy recommends additional sampling locations that
vary with the prediction time window. In general, the additional selected sampling locations are
further down-gradient for early time predictions and move up-gradient with prediction time. This
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trend can be explained by considering the fact that DNAPL dissolution and contaminant transport
closer to the down-gradient boundary have an earlier impact on FAC; the up-gradient entrapped
and sequestered contaminant mass, in contrast, affect down-gradient FAC at later times.

1E+2
1E-0
1E-2
1E-4
1E-6

Figure R.7.7. Data worth of additional log conductivity, initial aqueous concentration, sorbed
concentration, and DNAPL saturation measurements for flux averaged concentration prediction at 1 year
(a), 5 years (b), 10 years (c), and 20 years (d) for the ganglia dominated case.

The two more sampling locations for phase 2 together with the expected values and conditional
variances of the four parameters for case 1 are shown in Figure R.7.9 and R.7.10, respectively.
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Figure R.7.8. Expected variance reduction of additional log conductivity, initial aqueous concentration,
sorbed concentration, and DNAPL saturation borehole measurements for FAC prediction at 1 year (a), 5
years (b), 10 years (c), and 20 years (d) for the ganglia dominated case
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Figure R.7.9. Sampling results with conditional means of log conductivity (la-1d), initial aqueous
concentration (2a-2d), initial sorbed concentration (2a-3d), and initial DNAPL saturation (4a-4d) for FAC
predictions at selected times of ganglia dominated case. White rectangles represent 1° round sampling
locations, black rectangles represent 2™ round sampling boreholes
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Figure R.7.10. Sampling results with conditional variances of log conductivity (la-1d), initial aqueous
concentration (2a-2d), initial sorbed concentration (2a-3d), and initial DNAPL saturation (4a-4d) for FAC
predictions at selected times of ganglia dominated case. White rectangles represent 1° round sampling
locations, black rectangles represent 2" round sampling boreholes
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Inspection of the sampling patterns reveals that locations with low hydraulic conductivities are
good potential candidates for additional measurements. Since lower hydraulic conductivities are
associated with lower velocities, larger residence times, and larger potential for DNAPL
entrapment, it is apparent that lower hydraulic conductivities have stronger impact on the FAC
predictions. In addition, the dissolution of DNAPL mass makes the greatest contribution to the
evolution of FAC. Consequently, locations with high saturations are chosen with priority. Based
on the DNAPL infiltration and formation mechanics, high saturation pools will be formed where
vertically migrating DNAPL encounters lower permeable strata and starts to spread laterally. The
chosen high DNAPL saturation measurements together with the underlying low permeability
layers, thus, are highly informative since they provide information not only about the volumetric
flow rate through the source area, but also the source zone longevity, the total contaminant mass
flux, and the plume evolution further down-gradient. In addition to the significant impact of
hydraulic conductivities and DNAPL saturations on the FAC predictions, the potential borehole
measurements are also linked to high parameter variances, reflecting the propagation of large
parameter uncertainties to the FAC prediction.

The resulting data worth and variance reduction of the additional borehole measurements for FAC
predictions corresponding to the pool dominated source zone are depicted in Figures R.7.11 and
R.7.12. Similar to the ganglia-dominated case, the migration of selected sampling locations from
down-gradient to up-gradient was observed for different prediction windows, except for FAC
prediction at 10 years. This inconsistency at 10 years may be attributed to the large sensitivities of
the FAC to the low hydraulic conductivity lens, which are about two orders of magnitude larger
than the sensitivities at other locations. It is noteworthy that, comparing the data worth plot with
the variance of log conductivity field, the low data worth locations are associated with the low
hydraulic conductivity variances, which further demonstrates the dominant control of hydraulic
conductivity on FAC predictions.

1E+2
1E-0
1E-2
1E-4
1E-6

(] 4 8 12 16 0 4 8 12 16
X (m) X (m)

Figure R.7.11. Data worth of additional log conductivity, initial aqueous concentration, sorbed
concentration, and DNAPL saturation measurements for FAC prediction at 1 year (a), 5 years (b), 10 years
(c), and 20 years (d) for the pool dominated case
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Figure R.7.12. Expected variance reduction of additional log conductivity, initial aqueous concentration,
sorbed concentration, and DNAPL saturation borehole measurements for FAC prediction at 1 year (a), 5
years (b), 10 years (c), and 20 years (d) for the pool dominated case

Figures R.7.13 and R.7.14 present the two selected borehole locations for phase 2 sampling with
conditional means and variances of the four random variables for the pool-dominated case.

The concentration and DNAPL saturation measurements in the selected boreholes are associated
with the positions of large variances, which then translate to a better source zone characterization
and a reduced FAC variance at early times. The borehole selections also exhibit a tendency to
place additional measurements in low hydraulic conductivity regions for all prediction targets,
which can be attributed to the combined effects of high variance and large sensitivity impact. The
resulting measurements at these locations help to better capture the flow field through the source
area and characterize the DNAPL source zone architecture.
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Figure R.7.13. Sampling results with conditional means of log conductivity (la-1d), initial aqueous
concentration (2a-2d), initial sorbed concentration (2a-3d), and initial DNAPL saturation (4a-4d) for FAC
predictions at selected times of pool dominated case. White rectangles represent 1% round sampling
locations, black rectangles represent 2" round sampling boreholes
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Figure R.7.14. Sampling results with conditional variances of log conductivity (1a-1d), initial aqueous
concentration (2a-2d), initial sorbed concentration (2a-3d), and initial DNAPL saturation (4a-4d) for FAC
predictions at selected times of pool dominated case. White rectangles represent 1% round sampling
locations, black rectangles represent 2™ round sampling boreholes

I11.7.4. Assessment of the Second-round Sampling

The precise worth of additional observations can only be quantified after performing the
measurements. Recall that, to identify the new sampling locations, it was assumed that the most
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likely values of the measurements were their expected values and that linearization about the last
prediction was appropriate (eq. M.8.3). To explore the appropriateness of these assumptions and
the effectiveness of the modeling framework for identification of optimal sampling locations, the
second-round borehole measurements were used as the basis for generation of new parameter
realizations with the DRF model and subsequent FOSM analyses. Implementing the DRF model
including these new sampling locations resulted in four new sets of conditional means and
variances of hydraulic conductivity field and initial contaminant mass distributions for each case
based on different prediction targets. These results are shown in Figure R.7.15-R.7.22. The flow
and transport model were then applied using the mean distributions to yield new FAC predictions
at the selected times.
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Figure R.7.15. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 1 year of ganglia dominated case
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Figure R.7.16. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 5 years of ganglia dominated case
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Figure R.7.17. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 10 years of ganglia dominated case
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Figure R.7.18. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 20 years of ganglia dominated case
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Figure R.7.19. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 1 year of pool dominated case
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Figure R.7.20. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 5 years of pool dominated case
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Figure R.7.21. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 10 years of pool dominated case
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Figure R.7.22. Conditioned means and variances of log permeability field (a,b), initial aqueous
concentration (c,d), initial sorbed concentration (e,f), and initial DNAPL saturation (g,h) for second-round
FAC prediction at 20 years of pool dominated case

I11.7.4.1. Down-gradient FAC predictions

Figure R.7.23 compares the means and error bounds of FAC predictions for both sampling
campaigns. Examination of the figure reveals a closer agreement with the true fluxes and a
significant reduction in the variances, as well as the CVs for both cases after performing second-
round sampling, indicating reduced uncertainties in the FAC predictions. With enhanced
characterization of the hydraulic conductivity field and initial contaminant mass distributions, the
relative error of the predicted mean FAC at selected times decreased by 2.6%, 86.23%, 47.79%.,
and 7.92% for the ganglia dominated case, and by 32.21%, 133.9%, 5.94%, and 8.33% for the pool
dominated case, respectively. Detailed numbers are given in Table R.7.1.

Comparison of the true aquifer properties with the new generated conditional statistics indicates
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improved characterization of source zone architecture. The new source zones exhibit reduced total
mass, resulting in more reasonable FAC predictions at early times for both cases. At later stages
(20 years), the suggested sampling locations that target low hydraulic conductivity lenses and high
DNAPL saturation pools, lead to prediction of slower flow and DNAPL dissolution rates, thus
producing higher FAC predictions that are closer to the true values.

The expected and real variance reductions after the second-round sampling, however, display a
slightly different trend than anticipated (Table R.7.1). In the data worth analysis (eq. M.8.6),
perfect knowledge was assumed by setting the true additional measurements to the expected values
and the variances to zero. When the site investigation is actually performed, however, the true
measurements may differ from their conditional means. Hence, different sensitivity effects of FAC
predictions to parameters can be anticipated from the first-round sampling. Due to the differences
between the expected and real sensitivities of FAC after executing the second-round sampling, the
expected and real FAC variance reductions are different. With DNAPL saturation hot spots and
low hydraulic conductivity lenses being captured in and around new boreholes after performing
the second-round sampling, larger impacts of parameters on FAC predictions can be expected.
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Figure R.7.23. True, first and second round FOSM conditional mean, and the error bound of FACs at
selected times for ganglia dominated (a) and pool dominated (b) cases

I11.7.4.2. Sampling Patterns for Further Assessment

Subsequent to the second-round sampling, a data worth analysis was again performed. The
resulting data worth of additional measurements together with the location of two more optimal
sampling boreholes (outlined in white) are shown in Figures R.7.24 and R.7.25 for both cases. The
ganglia-dominated case exhibits sampling patterns that reflect measurements down-gradient and
at locations with high DNAPL ganglia saturation uncertainties due to their early time effects on
FAC predictions. Low hydraulic conductivity samples are again targeted for later time FAC
predictions. The lower the hydraulic conductivity under the source zone, the higher potential for
DNAPL persistence and the longer impact on down-gradient FACs. Therefore, the plume is far
more likely to maintain concentration plateaus over longer times, resulting in more reasonable
FAC predictions at later times.

Sampling patterns corresponding to the pool dominated case display similar trends compared to
previous sampling phase. The early time sampling locations support the impact of initial aqueous
concentration by selecting the measurements with large concentration uncertainties. Hydraulic
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conductivity and DNAPL saturation measurements exploring the source zone architecture and the
highly irregular flow pattern are still the focus of further site investigation, since these parameters
are associated with the largest sensitivity impact and maximum uncertainty reduction. The
coupling of these two parameters controls DNAPL dissolution rate, sorption capacity, and plume
longevity, as well as the down-gradient FAC.

1E+2
1E-0
1E-2
1E4
1E-6

0 4 8 12
X (m) X (m)

Figure R.7.24. Data worth of additional log conductivity, initial aqueous concentration, sorbed
concentration, and DNAPL saturation measurements for flux averaged concentration prediction at 1 year
(a), 5 years (b), 10 years (c), and 20 years (d) for the ganglia dominated case
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Figure R.7.25. Data worth of additional log conductivity, initial aqueous concentration, sorbed
concentration, and DNAPL saturation measurements for flux averaged concentration prediction at 1 year
(a), 5 years (b), 10 years (c), and 20 years (d) for the pool dominated case

I11.7.5. Comparison to Alternative Sampling Approaches

To further explore the usefulness of the FOSM-guided sampling approach, FAC predictions were
compared to those obtained using a uniform sampling approach, where the two additional
boreholes were evenly spaced between previous sampling locations. In addition, in order to
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confirm the time-specific optimization of an individual sampling pattern, the optimal sampling
design corresponding to a single time prediction was applied to the other three times for both cases.

Conditional means, standard deviations, CVs, and error bounds of FACs based on FOSM-selected
and uniform spacing for second-round sampling are presented in Table R.7.1 and Figure R.7.26.
The resulting FAC predictions and the corresponding standard deviations and CVs, employing the
time-specific sampling patterns for other simulation times, are summarized in Table R.7.2 and
R.7.3 for the ganglia- and pool-dominated cases, respectively.

Inspection of Tables R.7.1 to R.7.3 reveal that the predicted FACs of case 1 based on the FOSM
method are closer to the true values, compared to those obtained from other sampling patterns, for
all but one time (10 years) (where the best estimate is obtained with the uniform sampling
approach). Since the FOSM sampling design takes into account the changing sensitivity of FAC
to various parameters with time, more accurate FAC predictions can be expected compared to
other sampling approaches. The uniform sampling strategy, however, resulted in a lower pool
fraction estimate than did the optimal sampling strategy. This lower pool fraction led to a more
rapid dissolution rate, with a sharper decrease in FACs compared to optimal sampling patterns.
Thus, the FAC prediction at 10 years was more comparable to the true value essentially by
coincidence.

The FAC prediction at 1 year for case 2 is slightly higher in comparison to the uniform sampling
result. As discussed above, the criterion for estimation of the optimal sampling pattern is based
upon expected values. However, the FOSM guided sampling locations provide parameter
information different from the expected values. In this case, sampling encountered low flow and
high DNAPL saturation zones, resulting in higher FAC at early time. The similar predictions at 5
and 10 years can be explained by predicted transport reaching a concentration plateau. In the
uniform sampling approach, the high DNAPL saturation pools were not encountered, and a lower
prediction was achieved in comparison to both true and FOSM estimates at 20 years. Compared
to the conditional mean FACs after applying time-specific sampling patterns to other prediction
goals, more accurate results were achieved with the FOSM based optimal sampling patterns for
case 2 at the four selected times.

A comparison of the standard deviations of FACs based on the optimal and alternative sampling
approaches for both cases indicates that the lowest standard deviations were achieved when
performing the optimal sampling patterns for all the selected times. As expected, the standard
deviations and CVs of second-round FAC predictions based on the FOSM sampling patterns, are
smaller for all selected times, in comparison with those that result from the uniform sampling,
indicating decreased uncertainty and better confidence in the predictions.

The uncertainty reductions of FAC predictions (i.e., the standard deviation differences before and
after the second-round sampling at four simulation times), are quantified in Figures R.7.27 for both
cases. Collecting new data based on the time-specific optimal sampling pattern results in the
greatest uncertainty reduction of FAC predictions for that time. The uniform sampling pattern did
not consider interaction between different parameters and the FACs spatially and temporally,
hence, valuable information about better source zone characterization was neglected, leading to
less accurate predictions. The FOSM method achieves 0.98%-46.04% more uncertainty reduction
with the same number of sampling positions than the uniform sampling approach for FAC
predictions.

The worst performance of mean FAC prediction was found for pattern 2d when applied to predict
case 2b, while the largest FAC uncertainty was found for pattern 1b when applied predict case 1a.
This can be explained by the fact that these two patterns lay their focus on opposed features in
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their respective design objectives. Improved ganglia characterization and reduced parameter
uncertainties were focused for early time predictions, in contrast, high saturation pools with the
low hydraulic conductivity lens underlaying were preferred for later time estimates. These
comparisons further demonstrate the dominant influence of site characterization on FAC
predictions.

These examples have demonstrated that the coupling of FOSM uncertainty quantification with the
data worth analyses can provide reasonable FAC predictions together with the corresponding
uncertainties. The FOSM-based optimal sampling patterns outperform the alternative sampling
approaches for most of the prediction goals with more accurate estimates and better confidence
intervals.
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Figure R.7.26. True, second round uniform and FOSM conditional mean, and the error bound of FAC at
selected times for ganglia dominated (a) and pool dominated (b) cases
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Figure R.7.27. Reduced variance of FAC predictions based on prediction targeted sampling patterns for
ganglia dominated (a) and pool dominated (b) cases
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Table R.7.2. Conditional mean (mg/L), standard deviation (mg/L), and coefficient of variation of down-
gradient FACs for every sampling design when applying to different prediction goals for the ganglia
dominated case

Case la Case 1b Case 1c Case 1d
Pattern Mean StD CV  Mean StD CV  Mean StD CV  Mean StD CV
la 10.77 3.02 028 6.44 947 147 3.75 5.18 138 049 1.61 3.28
1b 11.22 853 0.76 6.10 6.06 099 344 447 130 044 151 344
lc 12.74 484 038 8.57 1020 1.19 3.75 3.17 084 0.75 1.72 2.29
1d 1237 334 027 853 759 089 444 445 101 1.05 2.06 1.96

Table R.7.3. Conditional mean, standard deviation, and coefficient of variation of down-gradient FACs for
every sampling design when applying to different prediction goals for the pool dominated case

Case 2a Case 2b Case 2¢ Case 2d
Pattern Mean StD CV Mean StD CV Mean StD CV Mean StD CV
2a 4.61 4.15 090 295 395 134 172 344 200 050 1.26 2.52
2b 525 473 090 228 221 097 1.14 155 136 061 148 242
2c 521 438 084 329 224 0.68 123 198 1.61 049 1.19 243
2d 566 589 1.04 396 527 133 1.79 199 1.11 0.69 1.01 147

II1.7.6. Discussion and Conclusions

An efficient FOSM method, honoring borehole observations and designed to estimate the FAC
and its corresponding variance at distinct times, was presented and validated. Data worth analyses
were performed to provide more accurate mean FAC predictions and to reduce uncertainty to the
maximum extent, thereby ensuring a maximum return on investment in future data acquisition.
Unlike Monte Carlo simulations, which have large computational demands, the FOSM method,
coupling adjoint state theory, is computationally efficient.

By considering the process coupling of DNAPL dissolution, sorption, diffusion, and mass
transport, simulation results in this study indicate that among the four system parameters
considered, hydraulic conductivity dominates the FAC predictions, as the hydraulic conductivity
values affect the velocity field, which further governs the concentration distribution down-
gradient. Spatial heterogeneity of the DNAPL mass distribution, in addition, was also
demonstrated to influence the FAC, with the presence of DNAPL tending to control the source
plume persistence through dissolution.

Data worth assessments were conducted to investigate the usefulness of the proposed model
framework for guiding acquisition of additional data that can most efficiently predict the FACs.
Because of the nonlinear dependence of FACs on log hydraulic conductivities, as well as the initial
contaminant mass, predictions with high variances may be biased. It is of particularly import to
explore to which extent the effectiveness of FOSM method may be compromised by nonlinear
model behavior. Simulation results suggested that the linearity assumption underlying the
methodology does not invalidate its usefulness in evaluating data worth as it pertains to predictions
of future FACs. In general, although observation worth outcomes varied to some extent for
predicting FACs at different times based on widely varying parameter fields, the relative worth of
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additional measurements of the same type were typically consistent, with potential locations
associated with low hydraulic conductivity regions, as well as high DNAPL saturation pools.

It was demonstrated that potential measurement candidates vary with different prediction time
windows, with selected locations closer to the down-gradient transect for early time predictions,
but moving upgradient when the prediction of FAC at later times is targeted. The resulting optimal
sampling patterns are consistent with the heterogeneous flow field, associated varying DNAPL
dissolution rates. A comparison with alternative sampling approaches verified the effectiveness
and superiority of the FOSM method for FAC predictions, and also demonstrated the importance
of considering spatial heterogeneity and the interplay between different transport processes at the
local scale.

The analysis in this study was restricted to 2-D to reduce the computational burden. Although it
was demonstrated by Yang et al. (2018) that reduced dimensionality has a crucial impact on
predictions of plume longevity, 2-D simulation results are useful for examining trends in plume
metrics. Since the post-DNAPL removal regime was not considered in this study, and the relative
importance of different system parameters for FAC predictions, as well as the optimal sampling
network design, were the primary concern, the 2-D simulations were still capable of demonstrating
the utility of the approach, quantifying data worth in reducing prediction uncertainty and
developing an optimal sampling network.

The model framework proposed herein, although demonstrated on 2-D synthetic cases, has been
shown capable of ranking yet-to-be acquired data in order of its importance for making predictions
of future system behavior. Simulation comparisons of the optimal sampling network
corresponding to FOSM method with alternative sampling approaches, demonstrated that the
method can provide valuable guidance in selecting additional borehole measurement locations.
Overall, the developed sampling strategy, coupling sensitivity analysis and uncertainty
quantification, demonstrates promise for enhancement of the ability to guide characterization of
source zones under realistic field conditions.
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IV. Design and Implementation of Pilot Downhole Treatability Test
IV.1. Design and Implementation

As discussed in Section 11.4.2.3, laboratory studies tend to overestimate potential treatment
effectiveness. For example, a comparison of 138 chlorinated solvent bioremediation field and
laboratory studies revealed that median laboratory rate constants were consistently higher (up to
one order-of-magnitude) than the observed field rate constants (Suarez and Rifai 1999). Most
laboratory treatability studies do not adequately mimic mass transfer processes, such as rate-
limited dissolution, diffusion and desorption, that may control system performance at a
heterogeneous field site. The underlying premise for the pilot (DHT) test methodology
proposed herein is the recognition that: (a) even advanced assessment tools, such as molecular
probes, fail to provide the reaction rate information necessary to predict the extent of remediation
in complex subsurface environments, and (b) the tool or method should provide information that
is relevant at the field scale and can be readily incorporated into model(s) that are able to simulate
remediation performance and account for uncertainty.

The pilot (DHT) test was designed to test the application of effective rate parameters in the
performance assessment of field-scale remediation technologies. In conjunction with the
microcosm transformation studies (Section I11.2) and the aquifer cell experiments (Section 111.3),
the pilot test allowed the comparison of MRD rate parameters across systems of increasing
complexity.
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Figure P.1.1. Interpolated head contours in 2011 (left) and 2014 (right). The interpolation was based on
available head measurements from wells displayed in the maps.
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Prior to designing the pilot test, efforts centered on analyzing available site data and selecting the
optimal location(s) for installation of a multi-level well transect, down gradient of the main source
area. This selection was based on concentration and head observations which provided evidence
of the source location, groundwater flow direction, plume evolution, and accessibility
considerations. Inspection of available data revealed a complex source zone, characterized by non-
uniform groundwater flow, a number of high concentration areas, and multiple chlorinated solvent
plumes. Measurements of groundwater contamination and hydraulic head were inspected and
interpolated with the software ArcGIS using two methods; the Inverse Distance Weighted method
and the Empirical Bayesian Kriging method. The two methods yielded similar interpolations.
Contours developed using the Inverse Distance Weighted method are shown in Figures P.1.1
(hydraulic head) and P.1.5 (concentration) and discussed below.

The contaminated sand unit is approximately 12.2 m (40 ft.) deep. It is relatively homogeneous,
but with a slightly fining trend downwards, and is bounded below by a consistent clay layer.
Recorded (interpolated) groundwater levels display a small gradient from the northern part of the
site towards both the southwest and the southeast (Figure P.1.1). While the southeasterly flow
follows the surface topology in that direction, the southwesterly flow component is thought to
originate from intermittent sump pumping in residential buildings on the western part of the site,
performed to mitigate basement flooding. The rate of pumping is unknown. There is a shallow
brook to the southeast of the transect locations, with low flow.

IV.1.1. Site Groundwater Flow Model Development

A site groundwater flow model was developed based on site data using Visual MODFLOW Flex,
encompassing a domain that is considerably larger than the DHT study area. The elevations of the
ground surface and clay layer were prescribed based on existing topographical and geophysical
data (Figure P.1.2). Heterogeneous hydraulic conductivity fields corresponding to different depths
below ground surface were generated using a Kriging interpolation method based on permeability
measurements in CMT-1 and CMT-5 (Figure P.1.3). The measured values vary within one order-
of-magnitude. To account for the formation layering, modeled vertical conductivities were set one
order-of-magnitude lower than those in the horizontal direction. Prescribed heads were set at all
lateral boundaries in the modeling process. These values were first obtained based on the
interpolated groundwater elevation contour at the boundaries, and then calibrated to better fit the
measured and interpolated groundwater levels within the domain. Natural recharge was prescribed
based upon the available hydrologic data, while no-recharge boundary conditions were prescribed
at the locations of paved roads and buildings. The small brook was treated as a very shallow and
narrow river with a riverbed conductivity one order of magnitude lower than the average measured
horizontal hydraulic conductivity. In addition, two pumping wells with different screen depths and
pumping rates were included at the western and southern parts of the site (Figure P.1.4), to capture
the effect of intermittent sump pump discharge. The flow model was calibrated to approximate
measured groundwater levels. The sump pump discharge rates were used as another fitting
parameter to capture the measured drawdown at these locations. In general, the simulation
reproduces the interpolated groundwater elevation contours quite well and the normalized root
mean squared error of the simulated versus observed head is small (Figure P.1.4).
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Figure P.1.4. Comparison of interpolated groundwater elevation contour based on well observations and
the simulated groundwater elevation contour

IV.1.2. Downhole Treatment (DHT) Transect Locations

Inspection of available site contaminant concentration data revealed the presence of a complex
source zone, characterized by a number of high concentration areas, and multiple chlorinated
solvent plumes, see Figure P.1.5. Contoured data suggested the existence of more than one source
area at the site. A persistent high concentration area (source) close to Commerce Street was chosen
as the focus of this project, see Figure P.1.6. Head observations in this area indicate that vertical
groundwater flow is negligible and that the lateral flow direction in the proximity of this source
area is towards the southeast. In addition, comparison of plume contours between the years 2000
and 2011 (Figure P.1.5) revealed that plume spreading occurred towards the southeast in this
period, consistent with the head data. Based on the concentration and head observations, which
provided evidence of the source location, groundwater flow direction, and plume evolution, and
based on accessibility considerations, optimal locations for installation of two multi-level well
transects were selected. These locations were down gradient (southeast) of the source area and
perpendicular to the estimated groundwater flow, see Figure P.1.6. The up-gradient and down-
gradient transects are approximately 18.3 and 36.6 m (60 and 120 feet) long, respectively, and
located within the properties labeled 19-30 and 19-32, where previously measured TCE
concentrations range from 5-50 mg/L.
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Figure P.1.5. Interpolated TCE concentrations (pg/L) in the years 2000 (top) and 2011 (bottom). The
concentration is shown for the shallow (0-20 ft below surface), intermediate (20-30 ft below surface), and

deep (>30 ft below surface) portions of the aquifer. The interpolation was based on available concentration
measurements from wells displayed in the maps.
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Figure P.1.6. Study area with positioning of new soil borings (#1 and #2) and transects with multi-level
(CMT) wells. The figure also shows interpolated head contours (cf. legend in Figure P.1.4) and the
interpolated TCE concentration in 2011 (depth >30 ft, cf. legend in Figure P.1.5).

IV.1.3. Pilot Test Treatment System

The treatment system consisted of four pumps and two tanks housed in a treatment trailer with
tubing connected to wells DHT-1, DHT-2, and CMT-1 (Figure P.1.7). Three Masterflex peristaltic
pumps (Cole Parmer; Vernon Hills, IL) were used to extract groundwater from DHT-2 and CMT-
1 as described below. A Series | HPLC pump (Scientific Systems Inc; State College, PA) was used
to inject amendments into DHT-1. A 75.7 L (20-gallon) polyethylene plastic tank (Ace Roto-mold-
Den Hartog Industries; Hospers, IA) was used to mix batches of groundwater and amendments.
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Additional batches of amendments were prepared in 40 L polyethylene totes. The second
polyethylene plastic tank, with a capacity of 284 L (75 gallons [Ace Roto-mold-Den Hartog
Industries; Hospers, 1A]), was used to collect and hold extracted groundwater prior to on-site
treatment and discharge. The effluent treatment system consisted of a submersible pump, a 10
micron bag filter, a 0.1 micron bag filter, and a 208 L (55 gallon) vessel of activated carbon. After
treatment, extracted water was discharged to the unnamed brook east of the site. During operation
of the pilot test, groundwater samples from the extraction wells were collected from a sample port
in the treatment trailer connected to the extraction tubing without additional purging.
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Mixing 4
Q Tank ™ vy "M Recirculation and
Lactate Pulse Phases
IngjperseTians Extraction Bioaugmentation
Pump Pump 7 only
\ 4
— Long-term
f— g
Monitoring Only
DHT-1 DHT-2 CMT-1
95m
1 to
H1 10.1m 10.1m | || 102m | [[|96m
] to to - - to —H
107 m 10.7 m 106m |—L 10{2 m
11.1m

Figure P.1.7. Pilot Test System Configuration.
IV.1.4. Pilot Test Operation

The pilot test system was operated in three configurations over the course of the experiment as
described below and show in Table P.1.1.

Table P.1.1. Pilot Test Operation.

Bromide = Lactate/ Monitoring
Lactate Bioaugmen- z Long-term
Tracer/lactate : : ; Biomass s w/ Reduced
: Recirculation tation ; ; Monitoring
loading Recirculation Flow Rate
Duration (days) 4 3 1 14 62 44
Pore Water Vel. (cm/d) 14.3 14.3 14.3 7.15 7.15 4.76
g Residence Time (days) 7 7 7 14 14 21
— core
@, 105:::: ;har;r;::.e, 5mM lactate; 1.5 L of 5mM lactate; 11;?[11[5[:'&1‘ 1 pulse of 37
Injections ' 0.85g/LKB-1 KB-1°® 0.85 g/LKB-1 ' mM lactate
0.85g/L KB-1 ; i ; : i lactate (14
: Primer inoculum Primer (22 days)
Primer® days)
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Step 1 — Lactate Injection (Establish Bioactive Zone)

During Step 1, groundwater was extracted from DHT-2 and reinjected into well DHT-1 at a target
flow rate of 16.5 mL/min (0.004 gallons per minute [gpm]) to achieve a target residence time of 7
days. A 38 L pulse containing 16.5 mM sodium bromide (conservative tracer), 5 mM lactate (a
microbial electron donor source), and 0.85 g/L KB-1 Primer® (used to create more ideal conditions
for bioaugmentation, e.g., neutral pH, dissolved oxygen below 0.5 mg/L and ORP below -150 mV
[SiIREM, Guelph, ON]) was delivered over 1.5 days at approximately 17 mL/min (seepage velocity
of 14 cm/day) as shown in Table 1. Here the volume and concentration of the injected bromide
tracer were chosen based on flow and transport model simulations employing a range of
longitudinal dispersivities. Following the 38 L pulse, extracted groundwater was amended with 5
mM lactate and 0.85 g/L of KB-1 Primer® prior to reinjection. A bromide probe (Cole Parmer;
Vernon Hills, IL) was placed in the flow stream from the DHT-2 pump to monitor the breakthrough
of the bromide pulse. Additional bromide and VFA samples were collected from the extracted
water to quantify the breakthrough of injected fluids. Step 1 continued for 7 days to ensure that
lactate passed through the target zone, anoxic conditions were established, and electron donor was
available for the PCE-to-ethene dechlorinating consortia, introduced in Step 2.

Step 2 — Bioaugmentation (Distribute Microorganisms)

Step 2, bioaugmentation, encompasses inoculation of the site and maintenance of conditions
suitable for the growth of the dechlorinating consortia. During Step 2, the recirculation system
continued to operate between wells DHT-1 and DHT-2. On day 8, 1.5 L of a PCE-to-ethene
microbial inoculum, KB-1® (SIREM; Guelph, ON), was delivered into well DHT-1 to establish an
initial Dhc population of approximately 10° cells/L within the 1 m treatment zone. Continued
recirculation with lactate electron donor and KB-1 Primer® amendment followed bioaugmentation
to further promote conditions conducive to organohalide respiration of the TCE plume. The system
continued to operate with a 7-day residence time (17 mL/min) in a recirculation mode in an effort
to create an anoxic zone conducive to the growth and activity of the introduced KB-1® inoculum.
Following the completion of bromide tracer measurements in the downgradient well (DHT-2
located 1 m from the injection at DHT-1), system operation was continued in a recirculation mode
for an additional week at a decreased flow rate of 8.5 mL/min, which corresponds to a seepage
velocity of 7 cm/day and a doubled residence time of 14 days (Table P.1.1). This longer residence
time within the treatment zone was selected to promote complete detoxification of TCE to ethene.

Step 3 — Pumping and Monitoring (Assess Performance)

Following Step 2, the target zone between DHT-1 and DHT-2 had a well-established community
of dechlorinating organisms and conditions suitable for organohalide respiration. At this time, the
recirculation system was disconnected and wells DHT-1 and DHT-2 were used for groundwater
monitoring. During Step 3, groundwater was extracted from the lowest three depths of CMT-1 at
approximately 450 mL/min to maintain hydraulic control of the contaminant plume and ensure
that VOC-impacted groundwater migrated into the bioactive zone and was captured by the
monitoring wells (Table P.1.1). At this flow rate, the residence time for groundwater between
DHT-1 and DHT-2 was approximately 14 days (7.15 cm/day pore water velocity). Extracted water
was discharged through the treatment system to the unnamed stream east of the site. After 62 days
(76 days following bioaugmentation), the extraction rate was reduced to 300 mL/min to provide a
longer residence time of 21 days between DHT-1 and DHT-2 (4.76 cm/day pore water velocity).

During Step 3, 2 pulses of lactate and KB-1 Primer® were introduced into DHT-1 to maintain
conditions suitable to biotransformation of TCE to ethene. The first pulse of 75 L of 13.1 mM
lactate and 0.85 g/L KB-1 Primer® was injected at 3.5 mL/min over the course of 14 days
beginning 16 days after bioaugmentation. The second pulse was also 75 L, containing 37 mM
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lactate and 3.4 g/L KB-1 Primer® injected at 2.8 mL/min over the course of 23 days beginning 48
days after bioaugmentation. The lactate concentrations were selected to maintain a concentration
of at least 5 mM lactate in the groundwater flowing through the injection well.

During Step 3, groundwater samples were collected periodically (1-2 times per month) from CMT-
6 (upgradient of bioactive zone), DHT-1 (bioactive zone), and DHT-2 (bioactive zone), and from
at least three levels in CMT-1 (downgradient of the bioactive zone). Samples from CMT-6, DHT-
1, and DHT-2 were collected using the modified low-flow sampling protocol described in Section
I1.3.2.2 above; samples from CMT-1 were collected at sampling ports in the treatment system.
Groundwater samples were analyzed for chlorinated ethenes, ethene, and VFAs using the methods
described in Section I1.2.2 with additional samples collected monthly for biological analysis.

IV.2. Pilot (Downhole Treatability) Test Results (Task III.1 and II1.2)

The following subsections contain the results of the Commerce Street pilot test including the
bromide tracer results, field parameter and VFA results, chlorinated ethene and ethene results, and
microbial abundance.

IV.2.1. Pilot Test Bromide Tracer

At the inception of the pilot test, bromide injected into DHT-1 was detected in DHT-2
approximately 9 days after beginning the injection, peaking after 11 days (Figure P.2.1). The pulse
was injected over the course of 4 days indicating a residence time of approximately 7 days between
DHT-1 and DHT-2. The successful detection of bromide in DHT-2 indicated good hydraulic
connectivity between the wells.

1V.2.2. Pilot Test Field Parameters and VFAs

Prior to beginning injections of lactate and KB-1® primer, the field parameters measured in pilot
test wells DHT-1 and DHT-2 were comparable to those in the CMT-wells. ORP was -110.8 and -
138.7 mv in DHT-1 and DHT-2 respectively and pH was 7.2 and 7.4 (Appendix B.9). Although
these conditions are suitable for bioremediation, the addition of KB-1® primer reduces ORP and
maintains a neutral pH as microbial reductive dechlorination is stimulated by the addition of
lactate. At the end of the 21-day recirculation phase (during which lactate and KB-1® primer were
introduced into DHT-1), the ORP in DHT-1 and DHT-2 was reduced to -330.0 and -225.2 mv,
respectively, while the pH was slightly reduced to 6.8 and 6.9. ORP and pH remained at their target
concentrations throughout the pilot test, although pH decreased to a low of 6.55 in DHT-2 as cis-
DCE was dechlorinated. Beginning in October 2017, high dissolved oxygen readings (>10 mg/L)
were recorded. As a negative ORP value was also recorded at these times, it is impossible for the
dissolved oxygen concentration to be as high as the measurements recorded. The water quality
meter’s dissolved oxygen probe was likely malfunctioning so dissolved oxygen values were no
longer recorded.
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Figure P.2.1. Bromide breakthrough curve in downgradient well DHT-2.

At the end of recirculation, VFA analysis of samples collected from DHT-1 and DHT-2 contained
lactate, acetate, and propionate with a total VFA concentration of 12.8 mM in the injection well
and 6.0 mM in downgradient well DHT-2 as shown on Figure P.2.2. During subsequent lactate
pulses, lactate and acetate were measured in the injection well while only acetate and propionate
were measured downgradient. This mixture of acetate and propionate (lactate fermentation
products) indicated an active microbial community and distribution of electron donor throughout
the pilot test area. In well DHT-2, VFA concentrations decreased after each pulse but remained at
concentrations above 0.28 mM total VFAs in all samples collected, indicating sufficient mixing of
VFAs in the pilot test area to maintain conditions suitable for microbial reductive dechlorination.

DHT-1 VFAs DHT-2 VFAs
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Acetate —8— Total VFAs
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Figure P.2.2. VFA concentrations in injection well DHT-1 and downgradient well DHT-2 during pilot test.
Vertical lines in each panel represent, from left to right: 1. Beginning of recirculation with lactate; 2.
Bioaugmentation 3. End of recirculation; 4. Beginning of lactate pulse; 5. End of lactate pulse; 6. Beginning
of lactate pulse; and 7. End of lactate pulse.

I1V.2.3. Pilot Test Contaminant Concentrations

Prior to beginning the pilot test, cis-DCE was the only chlorinated ethene detected in the pilot test
area with a concentration of 0.14 mM upgradient of the pilot test in well CMT-1 depth 2 and 0.11
mM in DHT-2, the downgradient pilot test well monitored throughout the experiment. Over the
course of the pilot test, the cis-DCE concentration upgradient (CMT-6) remained steady but
slightly higher than the initial sample, averaging 0.17 (+0.013) mM. Downgradient of the pilot
test, VC and ethene were first detected 14 days after bioaugmentation, the residence time between
DHT-1 and DHT-2 during this phase, reaching concentrations of 0.015 mM VC and 0.006 mM

192



ethene after 33.5 days. After an additional 15 days, the VC and ethene concentrations remained
nearly unchanged (0.021 and 0.005 mM, respectively). Because groundwater quality parameters,
including ORP and pH remained stable, the likely explanation for the lack of continued
dechlorination was decreasing electron donor availability. This conclusion is supported by VFA
sample results showing low levels of VFAs in DHT-2 14 days after ending the lactate recirculation
phase.

After the first lactate pulse, VC and ethene concentrations continued to increase reaching
concentrations of 0.046 and 0.017 mM, respectively, 79.4 days after bioaugmentation with the cis-
DCE concentration decreasing slightly from a peak of 0.15 mM to 0.13mM. In order to assess the
effect of residence time on the extent of dechlorination, 75 days following bioaugmentation and
coinciding with the beginning of the second lactate pulse, the extraction rate in DHT-1 was reduced
to increase groundwater residence time in the pilot test area from 14 to 21 days (4.8 cm/day pore
water velocity). The maximum ethene concentration of 0.10 mM observed during the pilot test
occurred 113.3 days following bioaugmentation (38 days after reducing the flow rate and 5 days
after the end of the second lactate pulse) while the VC concentration remained steady at 0.04 mM
and the cis-DCE concentration decreased to 0.053 mM. In the final samples collected 12 days later,
the ethene concentration in DHT-2 began to decrease slightly while VC and cis-DCE
concentrations increased, once again indicating a decrease in electron donor availability.
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Figure P.2.3. Chlorinated ethene and ethene concentrations in DHT-2, downgradient of injection well.
Vertical lines represent, from left to right: 1. Beginning of recirculation with lactate; 2. Bioaugmentation 3.
End of recirculation; 4. Beginning of lactate pulse; 5. End of lactate pulse; 6. Beginning of lactate pulse;
and 7. End of lactate pulse.

By reducing the extraction rate to increase residence time by 50%, the proportion of ethene in the
downgradient well increased from approximately 5% of total ethenes to 46% while the proportion
of cis-DCE declined from 79% to 28%, demonstrating the importance of maintaining sufficient
residence time to achieve complete dechlorination of TCE to ethene.

1V.2.4. Pilot Test Microbial Abundance

Total Dhc abundance, measured in samples collected from wells DHT-1 and DHT-2 during the
pilot test, increased from 6.2 x 10* and 4.9 x 10* 16S rRNA gene copies/ L, respectively prior to
bioaugmentation to 1.8 x 10% and 2.7 x 10° 16S rRNA gene copies/ L at the end of the
recirculation phase (Figure P.2.4). After an additional 32 days, Dhc abundance in DHT-1 and
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DHT-2 were nearly identical at 5.0 x 10% 16S rRNA gene copies/ L. The Dhc abundance
remained constant until the flow rate was reduced, after which it continued to increase to a
maximum abundance of 1.8 x 10' and 1.6 x 10'° 16S rRNA gene copies/ L in samples collected
from DHT-1 and DHT-2, respectively.
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Figure P.2.4. Dhc abundance during pilot test in injection well DHT-1 and downgradient well DHT-2.
Vertical lines represent, from left to right: 1. Beginning of recirculation with lactate; 2. Bioaugmentation 3.
End of recirculation; 4. Beginning of lactate pulse; 5. End of lactate pulse; 6. Beginning of lactate pulse;
and 7. End of lactate pulse.

Bioaugmentation with KB-1® successfully provided a large, viable Dhc population capable of
transforming cis-DCE to ethene over the duration of the pilot test as seen in the chlorinated ethene
and ethene results (Figure P.2.3). The lactate pulses were rapidly fermented (Figure P.2.2.) and
provided a growth substrate to increase the Dhc population (Figure P.2.4) although growth stalled
when the residence time of lactate in the pilot test area was insufficient to increase the degree of
cis-DCE dechlorination. Reducing the pumping rate in CMT-1 increased the residence time of
contaminants and amendments in the region between DHT-1 and DHT-2, increasing the extent of
transformation of cis-DCE to ethene and allowing the Dhc population to continue to increase in
abundance.

IV.3. Pilot (downhole treatability) Test Modeling Results

The laboratory-calibrated transport model was used to simulate the post-bio-recirculation portion
of the field-scale biotransformation study. Recall that the DHT comprised a bio-recirculation phase
and a long-term monitoring phase. The first phase was designed to create the active treatment zone.
The latter one was of main interest and selected for the simulation study.

The flow field used in the transport model with a dimension of 12 m (Y) x 9.5 m (X) x13 m (Z)
was extracted from the site flow model simulated by Visual MODFLOW Flex (Figure P.3.1).
Table P.3.1 shows the estimated hydraulic conductivities used in the flow model. Based upon the
very small water table slope in the selected treatment zone, the influence of the natural groundwater
gradient on contaminant transport was considered to be negligible. Groundwater flow during this
phase of the DHT was driven by pumping in the downgradient CMT 1 well. Based on the
knowledge of groundwater flow, concentration data of VOCs and lactate (Table P.3.2), and
preliminary mathematical modeling, an active treatment zone with uniform initial cis-DCE (0.18
mM) and lactate (1.1 mM) concentrations was established. A baseline concentration of 0.01 mM
was assigned to the other chemical components. Based on measurements from an upgradient CMT
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6 well, a constant source of 0.165 mM cis-DCE was introduced into the domain though simulation.
The model, parametrized with temperature-adjusted laboratory calibrated k,,,,; rates (Table
P.3.3), was used to explore the transferability and applicability of the laboratory-scale parameters
to a field scale system, as the size of the treatment zone and the aquifer cell are comparable.

Here, numerical simulation of the field-scale biotransformation was conducted for the last phase
of the DHT, during which a slower flow/ longer residence time was imposed (Table P.1.1). Results
indicate that observed transformation rates were not consistent with temperature-adjusted batch-
estimated parameters (Figure P.3.2). Predicted ethene concentrations in DHT-2 were substantially
higher than those observed in the field test, which is likely attributed to the upscaling effect on
laboratory measured local rate parameters. While the field model used coarser spatial resolution
and average soil properties for the numerical grid blocks, the aquifer cell (section I11.3.2) was
modeled with more detailed heterogeneities and fine grid blocks. Specifically, the variation of
hydraulic conductivities differs: with a range of 0.28-0.36 m/day for the treated depth (two layers,
2 ft) in the field model; with a range of 0.1-2.7 m/day for the active zone (203 layers, 1.3 ft) in the
aquifer cell. As have shown in the aquifer cell experiments (section III.3.2), transformation rates
were influenced by the local residence time. The presence of high permeable layers in the aquifer
cell reduced the transformation of cis-DCE to ethene due to shorter residence time (2.9 days, 10.3
days for the whole cell). The modeling results showed that the “effective” transformation rates
might be influenced by heterogeneity of soil properties, and further suggested the need to consider
the heterogeneous effect and upscaling when applying laboratory biodegradation results to
interpret field-scale remediation performance of biotransformation.

X (m)

0 o Y (m)

Figure P.3.1. Pumping at wells downgradient of the treatment zone after the recirculation phase.
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Table P.3.1. Hydraulic conductivities estimated for field. Values are bolded for the depth of DHT 1 and 2.

Depth bgs (ft)  Hydraulic conductivity (m/d)

0--10 3.4471
10--12 5.6667
12--14 7.5503
14-16 4.4221
16-18 1.1475
18-20 1.2263
20-22 1.2239
22-24 1.0420
24-26 2.1358
26-28 0.4982
28-28.5 0.6869
28.5-29 0.6869
29-29.5 0.6869
29.5-30 0.6869
30-30.5 0.8076
30.5-31 0.8076
31-31.5 0.8076
31.5-32 0.3917
32-32.5 0.3917
32.5-33 0.4030
33-33.5 0.3621
33.5-34 0.3621
34-34.5 0.2836
34.5-35 0.2836
35-35.5 0.2288
35.5-36 0.2285
36-36.5 0.2019
36.5-37 0.2019
37-37.5 0.2313
37.5-38 0.2313
38-38.5 0.2313
38.5-39 0.2313
39-39.5 0.2313
39.5-40 0.2313
40-bottom 0.1310

Table P.3.2. Initial concentrations (mM) measured in the wells.

Component CMT-6 DHT-1 DHT-2 CMT-I

TCE 5.2E-02 0.0E+00 0.0E+00 0.0E+00
cis-DCE 1.5E-01 1.6E-01 1.3E-01 2.9E-01
VC 0.0E+00 6.3E-03 4.6E-02 9.6E-04
Ethene 4.0E-03 S5.7E-03 1.7E-02 2.2E-03

Lactate 0.0E+00 2.2E+00 2.2E+00 4.2E-02
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Table P.3.3. Rate parameters used in the Monod kinetics model for field simulations.

Microcosm Field?

Parameter (20-23°C)  (17°C)

kmax,i (//‘mOI/(mg

cell*d))

TCE 330 223
Cis-DCE 80 53
VC 210 171
Lactate 60 47

2 Estimated based on studies by Friis et al., 2007.
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Figure P.3.2. Comparison of field-measured and model simulated results for chlorinated ethenes and ethene
in DHT-1 and DHT-2.
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V. Conclusions and Implications for Future Research / Implementation

Sections III and IV of this report detail the results of research conducted to develop and
demonstrate a remediation design and performance protocol that couples characterization of the
contaminant source with down-hole treatability testing and mathematical modeling to efficiently
assess the suitability of a remediation technology to estimate remedial performance (e.g., mass
removal/destruction) and the uncertainty associated with such predictions. It should be noted that,
although the mathematical tools developed in this research were applied herein to in situ reductive
dechlorination scenarios, these models and their associated implementation protocols are equally
applicable to a range of remedial technologies (e.g., in sifu oxidation, natural attenuation) for
which successful application may be hindered by heterogeneous mass distributions.

Appendix VIL.A presents a straightforward framework for implementation of the mathematical
models developed here for near source site characterization and plume response prediction. The
framework couples the 2D BRAINS model, described in sections I1.7 and II1.6 of this report, with
an existing upscaled mass transfer model previously developed under SERDP sponsorship (Christ
et al.,, 2010). The trained BRAINS model is used to generate a set of 2D representations of
contaminant mass distributions along a plume centerline. These representations are then used to
quantify effective, or upscaled, source characterization metrics along with estimations of their
uncertainty, which can be employed in the screening model to forecast interactions between the
source zone and long-term plume behavior, potentially facilitating adaptive site management
(ASM).

The modeling framework presented in Figure A.l1.1 represents the work flow for site
characterization and screening-level down gradient flux assessment. Here, once a DNAPL source
zone site has been identified, available data on the site geology/stratigraphy are collected and
matched to a representative site subsurface permeability model. The permeability models are then
linked to a library of machine learning characterization tools (i.e. BRAINS library). The research
summarized in Sections 1.7 and II1.6 demonstrated both the feasibility and methodology for the
development of the trained BRAINS model. If a characterization library that is consistent with the
subject site is not available, the methodology developed and presented in Sections II.7 and I11.6
could be implemented to develop a site-specific characterization tool. Such an exercise, however,
would be simulation intensive and likely require additional site data collection.

After a site-matched characterization tool is obtained, site managers employ BRAINS, along with
measured borehole data to estimate effective source zone metrics. It is important to note that this
procedure requires only the field-measured borehole data (permeability, saturation, sorption and
aqueous concentration) as inputs, as well as some geostatistical characteristics of the subsurface
domain. The borehole contaminant mass data should be obtained from the vicinity of the plume
centerline. This requirement arises from the fact that the BRAINS model was developed and
validated in 2D in this research. The requirement could be relaxed in the future by extending and
training the BRAINS model in 3D.

The framework developed and presented in this research is applicable to bench-, pilot-, and field-
scale scenarios that would generally be modeled using a traditional advection-dispersion-reaction
equation. Similar to the case study presented in Appendix VIIL.A, it is expected that this framework
will provide a reasonable order-of-magnitude flux-averaged concentration estimate by bracketing
the range of mass recovery behavior for most realistic source zone scenarios that are comprised of
a combination of NAPL pools and ganglia regions. ESTCP-supported research may provide an
avenue for extending the framework to a wider array of sites, and for determining framework
limitations that may be encountered in the field.
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Beyond this framework, high level conclusions associated with each phase of the research (as
presented in Figure B.1.1) are presented below.

V.1. Phase I Conclusions

Phase I research focused on the development and demonstration of new mathematical
characterization tools that use borehole observations of contaminant mass and porous medium
texture/sorption properties to estimate the spatial distribution of contaminant mass within the
source zone, averaged metrics (e.g., average saturation, pool fraction, total mass). and their
associated uncertainties. Here, the specific objective was to develop a protocol and software tools
that employ measured field data to produce realizations of a real (heterogeneous) subsurface source
zone that capture the features controlling source longevity and remedial performance. The
developed model, however, could be further optimized to reduce the errors observed in NAPL
saturation reconstruction, either by adopting more advanced machine learning methods such as
generative adversarial networks (GANs) (Goodfellow et al., 2014; Sun, 2018) or application of
permeability-based features that carry more information about the permeability of surrounding and
neighboring pixels. Future work should focus on exploring the performance of the trained DRF
model under different geologic environments and across different scales of heterogeneity. It is
anticipated that, while the developed features and model structure are robust, the DRF model itself
will need to be retrained for applications to different depositional environments. Thus, the present
study should be viewed as a proof of principle for the application of this modeling approach and
as the first step in generating a 3D characterization tool (i.e. library of models) that can be applied
over a wide range of conditions observed at contaminated sites.

e A discriminative random field (DRF) model (BRAINS) was developed and implemented
for contaminant source zone characterization and uncertainty quantification. The DRF
model is completely characterized by a small collection of parameters (w and v vectors). These
parameters are determined within the model through a ‘training’ process, employing a set of
source zone spill data specific to the selected DNAPL contaminant and geologic environment.
Once the DRF parameters are determined, the model is used to generate realizations of the
DNAPL saturation and aqueous phase concentration using off-the-shelf Metropolis sampling
methods. This methodology is far superior to Monte Carlo approaches, which require extensive
flow and transport simulations to generate a similar set of realizations and cannot easily
account for measured data. .

e Ensemble averages over realizations of the DRF model represent the expected values for
concentration and saturation fields, while the variances provide a quantifiable measure
of the uncertainty associated with permeability and contaminant source zone. These
uncertainty measurements were used in Phase III to identify optimal locations for further
borehole sampling.

e Model performance was assessed by comparing estimated and ‘true’ metrics for contaminant
mass distributions in a structured heterogeneous unconsolidated depositional aquifer
environment. The trained DRF model produced realistic saturation and concentration
fields, conditioned to borehole data for a range of NAPL spill scenarios (release rates,
spill ages, pool fractions). Comparison with a traditional kriging approach clearly
demonstrated the superiority of BRAINS in reconstructing DNAPL saturation
distributions and associated DNAPL architecture metrics.

V.2. Phase II Conclusions

Phase II research focused on batch and bench-scale laboratory testing, and upscaled mathematical
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model development to support the design and implementation of a field remediation strategy. The
performance of microbial reductive dechlorination was evaluated in heterogeneous aquifer cells,
representative of field conditions. Collected microcosm and aquifer cell data were employed, in
conjunction with an enhanced transport model, to assess the suitability of batch-measured
parameters and transformation rates for larger scale performance predictions. Mathematical
modeling was also used to estimate effective (upscaled) mass transfer rates for sorbed and
sequestered mass, as well as bioenhanced dissolution, and to elucidate the processes controlling
mass persistence and plume evolution under realistic conditions at the field scale.

A robust numerical model incorporating adsorption of contaminants to soil, gas-water
partitioning, and septa losses was created and implemented to simulate microbial
reductive dechlorination in batch reactor and microcosm experiments. The model was
successfully used to fit media- and culture-specific substrate utilization rates and yield
coefficients.

An industry-standard groundwater transport simulator, MT3DMS, was adapted in this
research to incorporate multi-order Monod Kkinetics coupled with a microbial growth
model to account for biotransformation of multiple components by multiple microbial
populations under isothermal conditions. A Monod kinetics subroutine was added to the
simulator and stepwise/accumulative mass budget subroutines for six chemical components:
TCE, cis-DCE, VC, ethene, lactate and H,. This model was used to simulate all aquifer cell
experiments, as well as the down hole test (Phase III).

Bioenhanced desorption and back diffusion of chlorinated solvents play an important
role in mass release in heterogeneous formations. For the examined experimental
conditions, the magnitude of this enhancement was observed to vary spatially and temporally
(range of 6-55%), with the largest enhancement measured at interfaces with fine-textured,
highly sorptive media. These results suggest that bioenhanced desorption/back diffusion can
significantly reduce plume persistence and remedial cleanup time frames. The experimental
observations also point to the need for upscaled mass transfer parameters that can account for
local scale heterogeneity.

Temporal and spatial population shifts in the predominant strain of Dhc are observed
with changes in electron acceptor abundance. These observations demonstrate the
importance of maintaining a robust dechlorinating community harboring multiple RDase
genes. When the necessary genes are present, the microbial population is able to adapt to
changes in electron acceptor availability associated with varying up gradient concentrations or
the back diffusion of chlorinated ethenes from low permeability and highly sorptive materials.
Thus, even if the locations of sequestered mass cannot be explicitly identified, due to the
incomplete characterization typical of field applications, these population shifts will allow
efficient transformation of chlorinated solvents to ethene over the course of a bioremediation
application.

Dhc cells are capable of penetrating low permeability porous media, including clays.

Multi-dimensional models with uniform properties or 1-D models, employing
microcosm-measured dechlorination rates, were unable to accurately predict aquifer cell
performance. However, observed aquifer cell microbial transformation rates were
consistent with microcosm-fitted values, when permeability variations were incorporated
in the model.
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Models must incorporate heterogeneity to make accurate predictions of dechlorination
Heterogeneity in material properties has a substantial influence on the rate and extent of
dechlorination of TCE to ethene. The extent of ethene formation is highly dependent on
hydraulic residence time (controlled by local permeability) and the availability of electron
donor (controlled by sorption capacity of and diffusion from low permeability layers).

Competitive inhibition was found to be of little significance in heterogeneous-packed
formations, attributed to microenvironments in the aquifer cell and differences in soil/water
ratios between microcosm and aquifer cell experiments.

Accurate representation of sorption processes (i.e., extent, rate limitations, and
nonlinearity) in transport models is crucial to the accurate prediction of plume longevity,
particularly for the prediction of post-DNAPL dissolution longevity; (de)sorption processes
were observed to dominate the rate of mass release (back diffusion) to transmissive zones,
following DNAPL dissolution. Sorption was shown to have little influence on the rate of
DNAPL dissolution.

Simulation results also demonstrated a strong influence of source zone complexity (e.g.,
heterogeneity of the permeability field, DNAPL architecture, process coupling) on source zone
mass transport and near-source plume persistence. Although neat phase DNAPL is not
typically detected at most sites, this work suggests that trace amounts of DNAPL source
mass present in the field can be as influential as sequestered sorbed and dissolved mass
in controlling plume tailing, and that these small quantities of DNAPL mass can be
difficult to differentiate from the diffused and sorbed mass without exhaustive
characterization.

Due to the presence of heterogeneity, different regimes exist in which local mass release
behavior is governed by different processes (i.e., dissolution versus back diffusion).
Simplified source loading and back diffusion models cannot capture the interplay
between different transport processes at the local scale that are crucial to the
determination of down-gradient concentrations and plume longevity at heterogeneous
sites.

An upscaled model was developed and parameterized to describe effective mass transfer
(desorption) rates in three dimensional heterogeneous systems. This Multi-Rate Mass
Transfer (MRMT) model, with two constant-in-time first-order rates, was shown to
successfully reproduce fine-scale breakthrough curves. Correlation expressions were
developed and implemented for calculation of effective model parameters from general
geometric, flow, and sorption properties. The model was shown to be robust with respect to
initial and boundary conditions.

A screening level model was developed and implemented to estimate bioenhancement of
DNAPL dissolution. Nomographs were presented to facilitate graphical estimation of
bioenhancement factor expressions for zero-order, first-order, and full Monod transformation
kinetics as a function of the Péclet and Damkohler Numbers. These nomographs can be useful
in the analysis and design of remedial systems. Results suggest that bioenhancement factor
predictions are sensitive to the estimated value of biomass concentration and that uncertainty
in this parameter must be considered during the design stage.

V.3. Phase III Conclusions

In this phase, a downhole treatability test was conducted at the selected field site (Commerce Street
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Superfund Site, Williston, VT) to estimate effective in situ transformation/reaction rates and to
support the design and assessment of site remediation strategies. A mathematical model, refined
and validated in Phase II, was employed to estimate effective field transformation rates. Estimated
rates were compared to aquifer cell-measured rates to shed light on the processes controlling
remediation at the field scale. A comprehensive transport/adjoint sensitivity model and associated
protocol for its application were also developed and demonstrated in this phase to quantify field-
scale transport model prediction uncertainty (based upon mathematical characterization tools
developed in Phase I) and to identify optimal borehole sampling locations for follow-on site
characterization work to facilitate the more accurate prediction of down gradient mass flux at
future times.

In this work, a first-order second-moment (FOSM) uncertainty analysis modeling
framework was developed and implemented to estimate variance in predicted flux
averaged concentration (FAC) along a transect down gradient of a DNAPL source zone.
The method honors borehole observations and enables consideration of the coupling among
aquifer heterogeneity, flow irregularity, and source zone mass distribution (morphology). In
the framework, an adjoint state method was adopted to evaluate the sensitivity matrix
(representing the sensitivities of down-gradient FAC to incremental changes in initial mass
and permeability distributions). Results show that the FOSM method is a computationally
efficient means to provide reliable conditional means of FAC and its corresponding variances.

Application of the FOSM method to numerically generated, field-scale, source zone
scenarios revealed that hydraulic conductivity variations and DNAPL saturation
distributions tend to dominate FAC predictions.

The FOSM model was coupled with data worth assessments and implemented in the
modeling framework to guide acquisition of additional site data. Model applications
revealed that selected borehole locations varied with the prediction time window, tending to
move up gradient as later prediction times were targeted. The selected locations for additional
borehole measurements were also generally associated with low hydraulic conductivity regions
and/or locations of high DNAPL saturation pools. A comparison with alternative borehole
sampling approaches verified the effectiveness and superiority of the FOSM method for
identifying additional borehole sampling locations to improve FAC predictions.

Down Hole Test results were consistent with trends observed in the aquifer cell
experiment. Bioaugmentation with KB-1® successfully provided a large, viable Dhc
population capable of transforming cis-DCE to ethene over the duration of the pilot test.
Lactate pulses were rapidly fermented and provided a growth substrate to increase the Dhc
population. Growth stalled when the residence time in the pilot test area was insufficient to
increase the degree of cis-DCE dechlorination. By reducing the pumping rate, the residence
time increased, increasing the extent of transformation of cis-DCE to ethene and allowing the
Dhc population to continue to increase in abundance.

Mathematical modeling results indicate that observed transformation rates were not
consistent with temperature-adjusted batch-estimated and aquifer-cell validated
parameters. Predicted ethane concentrations were substantially higher than those
observed in the field test. This failure to predict DHT performance is likely due to inadequate
model resolution of formation heterogeneity in the treatment zone. While the field model used
coarser spatial resolution and average soil properties for the numerical grid blocks, the aquifer
cell was modeled with more detailed heterogeneities and fine grid blocks. Transformation rates
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were likely strongly influenced by the presence of low permeability layers in the treatment
zone, which inhibited mixing.
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VII. Appendices

VII.A. Practical Considerations: Implementation of Site Characterization Tool/Screening
Model

Recognizing the importance of DNAPL source zone characterization for assessment of
remediation effectiveness and prediction of contaminant persistence, several approaches have been
developed to link averaged characterization metrics to mass discharge behavior and source zone
longevity (Christ et al., 2006, 2010; Jawitz et al., 2005; Saenton & Illangasekare, 2007). However,
accurate assessment of such source zone architecture metrics is quite challenging in real-word
applications.

This appendix presents a straightforward framework for implementation of mathematical models
for near source site characterization and plume response prediction. Application of this modeling
framework is illustrated with a hypothetical case study. The framework couples the 2D BRAINS
model, described in sections I1.7 and II1.6 of this report, with an existing upscaled mass transfer
model previously developed under SERDP sponsorship (Christ et al., 2010). The trained BRAINS
model is used to generate a set of 2D representations of contaminant mass distributions along a
plume centerline. The underlying assumption in this approach is that the source zone architecture
metrics calculated from these 2D realizations of contaminant mass along the plume centerline are
representative of 3D source zone metrics. These results enable the estimation of effective, or
upscaled, parameters employed in the screening model, as well as the estimation of the uncertainty
associated with screening model predictions.

It is important to note that, in this research, BRAINS was trained specifically for a highly
heterogeneous categorical formation. It is anticipated that, while the developed features and model
structure are robust, the model itself will need to be retrained for applications to different
depositional environments. This training will provide a library of trained models (i.e. BRAINS
library) applicable for different types of geological formations and across different scales of
heterogeneity. Thus, although the present work focuses on 2D application of the Discriminative
Random Field (DRF) model for a specific unconsolidated formation type, it should be viewed as
a proof of principle for the application of this modeling framework and as the first step in
generating a 3D characterization tool (i.e. library of models) that can be applied over a wide range
of conditions observed at contaminated sites.

The modeling framework presented in Figure A.l1.1 represents the work flow for site
characterization and screening-level down gradient flux assessment. Here, once a DNAPL source
zone site has been selected, available data on the site geology/stratigraphy are collected and
matched to a representative site subsurface permeability model. The permeability models are then
linked to a library of machine learning characterization tools (i.e. BRAINS library). The research
summarized in Sections 1.7 and II1.6 demonstrated both the feasibility and methodology for the
development of the trained BRAINS model. If a characterization library is not available, the
methodology developed and presented in Sections II.7 and II1.6 could be implemented to develop
a site-specific characterization tool. Such an exercise, however, would be simulation intensive and
likely require additional site data collection.

After a site-matched characterization tool is obtained, site managers employ BRAINS, along with
measured borehole data to estimate source zone metrics. It is important to note that this procedure
requires only the field-measured borehole data (permeability, saturation, sorption and aqueous
concentration) as inputs, as well as some geostatistical characteristics of the subsurface domain.
The borehole contaminant mass data should be obtained from the vicinity of the plume centerline.
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This requirement arises from the fact that the BRAINS model was developed and validated in 2D
in this research. The requirement could be relaxed in the future by extending and training the
BRAINS model in 3D.

As discussed in section 111.6.6, the first step in applying BRAINS to a real-word problem is to
generate multiple realizations of the permeability field, conditioned on measured permeability
borehole data and based on geostatistical knowledge of the subsurface domain. Generation of
permeability realizations can be accomplished using readily available geostatistical software
packages such as GSLIB (Deutsch & Journel, 1998), TPROGs (Carle, 1999) or SURFER (Golden
Software, LLC.) depending on the geostatistical characteristics of the formation (e.g. categorical,
Gaussian, etc.).

Once the permeability realizations have been generated, the site-appropriate trained BRAINS
model is applied to each of these permeability fields to generate a set of equiprobable realizations
of contaminant mass distribution along the plume centerline plane. Application of this model
ensures that all realizations are conditioned on the borehole data for (DNAPL) saturations and
(aqueous and sorbed) concentrations.

As explained in section I11.6, a set of source zone characterization metrics, such as DNAPL mass
spatial moments and pool fraction (PF), can be calculated from the average (saturation and
concentration) realizations for each permeability field. From these metric sets, 95 percentile
boundaries for each metric can be computed, as a measure of estimated range, using the mean ()
and standard deviation (s) of the metric over all permeability realizations (i.e. # + 2s). This
procedure provides a simple and straightforward approach to predict the estimated range of
characterization metrics across all equiprobable permeability realizations.

Once the estimated ranges for source zone (SZ) metrics have been estimated, the Protocol employs
the upscaled screening tool, presented by Christ et al., (2010), to predict mass recovery behavior.
This two-domain upscaled mass transfer model was shown to accurately estimate dissolution
behavior from ganglia- and pool-dominated source zones representative of the highly non-uniform
DNAPL mass distributions typical of real source zones for all levels of mass recovery (Christ et
al., 2010). Screening tool output can then guide preliminary site remediation decisions and future
in-source data collection.

The two-domain upscaled model (i.e. Equations A.l.1a,b) relates the flux-averaged effluent
concentration (CLof%) to a given level of mass removal (M/My) using three site-specific
parameters: the initial pool fraction (PFy), the fraction of flux eluting from these pool regions (f),

and the flux-averaged down-gradient contaminant concentration (C,).

1-PF{(

(l—PF}(%DJ]S{PFUO

]7026

()

Cot" _5_ 1_/&”5,[ o J [ l—ff’_o[ o (A.1.1a)
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5.6£2.6
M
(1- B oM A.l.1
e J1-01 PFO){I ((1—PFO)MJ J’f{MJS(I_PFo) (A.1.1b)

1 otherwise

where < is the equilibrium solubility of the contaminant. Equation A.1.1 is applicable to
unconsolidated aquifers contaminated with non-aqueous phase liquids and is expected to provide
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a reasonable flux-averaged concentration prediction regardless of the level of heterogeneity in the
permeability field.

All the characterization metrics involved in Equation A.1.1 can be determined from BRAINS’s
predicted average saturation and concentration realizations for each permeability field.

The initial pool fraction (PFo) metric, defined as the fraction of DNAPL mass in pool regions, can
be calculated from the average saturation realizations generated with BRAINS using Equation
A.1.2. Here source zone mass is separated (or categorized) spatially into ganglia (i.e., residual or
finger) ) (s, < s;y**) and pool regions (s, > sp*), using the maximum residual DNAPL

saturation (s;+**) as the ganglia-pool saturation threshold:

2 P spnAXAYAZY spzsiy Y spVsp2spytt

PF = =
Y ptspynAxAyAz Y. sn

(A.1.2)

where o' is the DNAPL density, s, is the DNAPL saturation, # is the porosity, and Ax, Ay, and Az
are the cell dimensions in the x, y, and z directions, respectively.

The steps for calculating initial fraction of flux attributed to pool dissolution (f;) in a 3D domain
is also straightforward (Christ et al., 2010). The idea here is that the fraction of flux emanating
from pool regions (f;) is proportional to the projected fraction of these pool areas onto the 2-D
down-gradient control plane, oriented perpendicular to regional flow (Figure A.1.2):

fp — Agrojected _ X vmax (Sn(:’y’z))zsﬁax (A 1 3)

X T 4P g - . max . max
AprojectedtAprojected LV max(sy (4y,2)) 2%+ 3,V max (s, (y,2) ) <si¥

g
projecte

down-gradient control plane.

Here Agm jectea and A q are the projected areas of DNAPL pools and ganglia onto the
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Figure A.1.2. (a) Three-dimensional distribution of pools in a non-uniform source-zone (b) resulting
contaminant concentration field at the down-gradient boundary with regions eluting from pool zones

AP ) highlighted.

projected

A similar approach can be applied to calculate £ in a 2D domain (i.e. average saturation results
from BRAINS) by calculating the fraction of projected pool regions across a 1D control line
(column) oriented perpendicular to the flow at the down-gradient boundary. Characterization of
pool locations within a source zone is achievable using the average saturation results from
BRAINS for each permeability realization.
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The initial flux-averaged down-gradient concentration (C,), can also be determined using the
average concentration results from BRAINS. This metric is calculated as the mean aqueous
concentration of the grids along the down-gradient column weighted by their permeability values.

— _ [KiCqdA _ Y KC,dA

Co = ff KidA  YKdaA (A.1.4)
where K is the hydraulic conductivity [LT™1], i is the hydraulic gradient [—], 4 is the area of
control plane [L?], C, is the aqueous phase concentration [ML™3]. The integral/summation is
applied along a down-gradient transect. It is noteworthy that, alternatively other estimates of flux-
averaged concentration, such as transect observations or in-situ flux meters can be employed for
calculating initial FAC.

By incorporating the extremes (i.e. 95 percentile boundaries) and expected values of these
predicted source zone metrics into the upscaled screening model, the mass recovery behavior can
be bracketed for most realistic source zone scenarios.

Case Study

This section presents an application of the modeling framework, including the Site
Characterization Tool and Screening Model, for the hypothetical case study described in Section
I1.7.

As explained in section III.7, a transition-probability-based Markov Chain (TP/MC) approach
using TPORGs software (Carle, 1999) was employed to generate a series of 100 equiprobable
three-dimensional (3-D) permeability realizations conditioned on synthetic borehole
measurements with the same discretization. X-Z cross section center slices of the 3-D realizations
were extracted to form 2-D domains, where one borehole was located at a down-gradient transect
(assessment location for screening level model predictions) and three other boreholes were
installed an equal distance apart. An example of a 2D permeability field reconstruction employing
a transition-probability-based Markov Chain (TP/MC) approach using TPROGs software (Carle,
1999) is shown in Figure A.1.3. These permeability field realizations were constructed based on
geostatistical characteristics of the Tubingen aquifer at the Herten site (Maji, 2005) (Table A.1.1).

Table A.1.1. Soil properties at Herten site.

Lithofacies Volumetric Proportion Permeability (m?)

Gs-x 29% 5.14E-12
GCm 57% 2.63E-11
S-x 6% 1.14E-10
bGem,i 6% 1.49E-08

Permeability borehole data

Z(m)
PN

o
o

X (m)

equiprobable permeability realizations
Figure A.1.3. Permeability field reconstruction from four permeability boreholes using TPROGs.
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Among these 100 realizations, one permeability domain was selected as the “true” case (Figure
A.1.4). This domain was then used to generate “true” initial distributions of DNAPL, aqueous and
sorbed mass. DNAPL release, migration and transport was modeled using MVALOR and
MT3DMS software to obtain the “true” initial aqueous and sorbed concentrations. A detailed
description of DNAPL infiltration and transport model set up is presented in 11.5.2 and 11.5.3.3.

bGem
S-x
Gem

GS-x

Figure A.1.4. True 3-D conductivity field and selected 2-D x-z plane center slice.

It should be noted that, in this case study the validated MVALOR and MT3DMS simulators were
adopted to reconstruct realistic field data. The permeability values, DNAPL distribution, aqueous
and sorbed mass concentrations simulated using the methods described above would be obtained
directly from the site in a real field application (as described in Figure A.1.1).

Using the “true” aqueous concentrations and DNAPL saturations in the four boreholes, the trained
BRAINS model was then applied to generate 2000 realizations of aqueous concentration and
DNAPL saturation for each permeability field. The sorbed concentration distribution was obtained
by assuming equilibrium with the aqueous concentration. The model outputs an average (saturation
and concentration) realization over 2000 equiprobable realizations for each of the 100 permeability
fields (i.e. 100 averaged saturation and concentration realizations). Examples of these averaged
aqueous concentration and DNAPL saturation distributions are presented in Figure A.1.5.

Aq phase ion borehole data

38 Chlorosolve
3 —
33?

0 5 10 15
X (m)

NAPL ion borehole data

Chlorosolve

ﬁ

~—
~—"
Z (m)
»
SOOO0S00000=0
a@ahvwhoN®o

6
4
2
0

-

6
4
2
0

Figure A.1.5. Equiprobable realizations of, (a) aqueous concentration, (b) DNAPL saturation generated
from BRAINS.
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Source zone characterization metrics can now be calculated for each of these average realizations
(Equations A.1.2-4), yielding a predicted range of values for each metric. Table A.1.2 compares
the predicted (i.e. from BRAINS) and true values for the two metrics (PFo and fF) used in the
upscaled screening model (Equation A.1.1). The initial flux-averaged down-gradient concentration
(Co), was calculated using the down-gradient borehole concentration and permeability data and
hence is the same for the true and predicted cases.

Table A.1.2. Comparison of predicted and true metrics used in upscaled screening model

METRICS PFo f ;’
True Predicted True Predicted
mean StD mean StD

0.432 0.487 0.058 0.143 0.234 0.04

The flux-averaged concentration (FAC) at the down-gradient boundary was then calculated by
incorporating these predicted source zone architecture metrics into the two-domain upscaled
screening model (Equation A.1.1). Figure A.1.6 presents the estimated range for mass recovery
behavior calculated using the upscaled screening model based on true metric values (solid green
line), as well as the expected and extreme (i.e. 95 percentile boundaries) of source zone metrics
determined from BRAINS (solid black and dashed lines). The true mass recovery behavior based
on MT3DMS forward simulation results is also presented in this figure (i.e. blue squares).

—_
o
N

—
<,
|

Predicted FAC Based on Average Metrics
Predicted FAC bases on True metrics
Upper Boundary of 95-Percentile

- | = === Lower Boundary of 95-Percentile

| @  True FAC - MT3DMS results

—
<
T

0.2 0.4 0.6 0.8 1
Fraction of Mass Removed (-)

Figure A.1.6. Comparison between predicted range and true mass recovery behavior (flux-averaged
concentration as a function of fraction of mass removed).

Flux-averaged Concentration, FAC (mg/L)
S 3
N o

o
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It is clear from Figure A.1.6 that the upscaled screening model provides realistic mass recovery
predictions given the true metric values (i.e. solid green line vs. blue squares). These results also
suggest that the FAC values predicted from the screening tool based on expected (average) values
of source zone metrics qualitatively match the ‘true’ results specifically for M/My < PFo. The
deviation observed between the predicted (solid black line) and true results (blue squares) for M/My

> PF, can be attributed to the higher f¥ values estimated using BRAINS compared to the true
metric value (i.e. 0.234 vs 0.143). Nonetheless, it is evident from these results that the upscaled
screening model can successfully predict the likely behavior of plume response to source mass
removal using the estimated source zone characterization metrics from BRAINS. For example,
consistent with the true results, the screening model predictions suggest that more than 90% of the
contaminant mass must be removed before the flux-averaged concentration at down-gradient
boundary drops an order of magnitude, suggesting that this is a poor candidate for remediation
technologies that employ flushing. This is mainly due to the fact that most of the contaminant mass
in this case is stored in high saturated DNAPL pools.

The framework developed and presented in this research is applicable to bench-, pilot-, and field-
scale scenarios that would generally be modeled using the advection-dispersion equation. Similar
to the case study presented here, it is expected that this framework will provide a reasonable order-
of-magnitude flux-averaged concentration range estimate by bracketing the mass recovery
behavior, for most realistic source zone scenarios that are comprised of a combination of NAPL
pools and ganglia regions.
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VIIL.B. Supporting Data

VIL.B.1. Groundwater Elevations

VIL.B.2. Groundwater Chlorinated Ethene and Ethene Measurements
VIL.B.3. Groundwater Water Quality Parameters

VIIL.B.4. Groundwater Dissolved Metals

VIL.B.5. Groundwater Microbial Abundance

VII.B.6. Soil Boring Logs

VIL.B.7. Soil Grain Size Results

VII.B.8. Soil VOC Results

VIL.B.9. Groundwater Water Quality Parameters During Pilot Test

VII.B.10. Derivation of Adjoint States Control Equations and Marginal Sensitivity of Down-
Gradient FAC with Respect to /n(K)

The control equations of forward flow and transport:

V(KVh) =0 (B.10.1)
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S = K4C, (B.10.4)
Differentiate the control equations with respect to InK:
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A performance measure that quantifies some state of the system is defined as:
P = U ¢(InK, h, C,, S, s,) dVdt (B.10.21)
Vit

where ¢(InK, h, C,, S, s,,) is a functional of the state of the system.

The marginal sensitivity of this performance measure with respect to InK is obtained by
differentiation equation:
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Adding these four equations (17), (18), (19), and (20) to the right side of equation (22):
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— V- (WIKVW,) — V- ($,KVE) + W,V - (KVE) (B.1024)
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0
1]—’; _t (nsalpa) =

0 0
ll—’; _t (nCaLPn) =37 (Lp;ncalpn)

lpa pb at -

d
a (lp;nsalpa) -

(Lpa pp¥s) — Wspy,

— l’lCaLpn F

ow;

I'ISal'IJa1 F

ow;

0¥,

ot

WV (q'%,) = V- (WiqY,) - Vs - (q°Ws)
—W:V - (KVW,C,) = —V - (WKVW,C,) + VW5 - (KVW,C,)

= -V (Y;KV¥,C,) + V- (P, KV¥:C,) — W,V

—y;v- (DAVY,) = -V (¥;DAVY,) + V¥; - (DAVY,)
= -V (¥;DAVY,) + V- (¥, DiVY;) — W,V - (DRVY;)

(oD} oD}
Py - KV¥,VC, | =V (¥; oq°

aga

, 0D}, oD}
=V-|¥; I KV#,VC, )~ V- (W ga

05 KV‘P*VC
aqa

(ceq ca)Kvwh

aaa

0
- a (npn'{’n) = - E (l.]Jr”l‘npann) + np,

Thus, the marginal sensitivity becomes:
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oD3
KVW¥,VC, | — VY5 -

na

aqa

) (Kvw;ca)

— KRV, VC, >

Kvw;vca> + W,V

(B.10.25)

(B.10.26)

(B.10.27)
(B.10.28)

(B.10.29)

(B.10.30)

(B.10.31)

(B.10.32)

(B.10.33)

(B.10.34)



P _ﬂ {ag(an,h,Ca,S,sn)+6g(an,h,Ca,S,sn)
Vit

dinK ~ dlnK oh h
d¢(InK, h,C,, S, s,) v, + d¢(InK, h, C,, S, s,) v
aC, 0s,
dc(InK, h,C,,S, s
+ s 25:5n) Wy + V(YL KVY,) — V(P KVY¥;)
o5 G, o
+ W, V(KVY¥;) + WL V(KVh) + —(‘P,jnsa‘}’ ) —ns,¥,—— ot
a aw* a o
+ a(qjancalpn) nC, ¥, —— at (‘Va pp¥s) — Wspy, ot

+V(¥q%,) - V¥ (g%, ) - V(W*Kvwh 2) + V(W,KV¥:C,)
— W, V(KV¥;C,) — W;V(KVhC,) — V(¥;DiV¥,)

,oD2
+V(¥,Divy;) — W,V(DEVY;) + V| W g L KVW,VC,
B B 1 (B.10.35)
oD} obg
—v(w, i LKVWVC, | + W,V T KV¥;VC,

(9D}
+ WV Fre

ok ok -
- < (c3t - ca)KqJ;;> + W ?(KVh)(qu —C.) + Y;k¥,

Ok . oq
b RVhVC, |+ V- aa — (C31 = CLKW, | — W,V

ov,
- a (Wanpn'¥n) +npp'¥p—=— V- < e “(c-c) K%)

ok ok
+‘VhV'<aqa .jq—ca)Ktp;;> vy 7q —(KVh)(C5? - C,)

— Wik, + WiV — LpngtPa} dvdt

239



P dc(InK, h,C,,S,s
- j j {lphl s 25:50) L oKvwr) — vKVYEC,)
Vit

dInK oh
oD3 . 0K | o .
+V <aga KV‘PaVCa> -V <a_ga(ca —C,)K¥; | +V
ok
< (C3% — C.)K¥; >l
d¢(InK, h,C,, S, s,) owv: i} - .
v, [ 5 c: = —ns, ata - @*VY¥; — V(DjVY;)
+kwr -k — Kdlpg‘l
d¢(InK, h, C,, S, s,) ov; N ov;
n ds, a5 T P05
d¢(InK, h, C,, S, s,) ov;
- [ % et (B.10.36)
dc(InK, h,C,,S, s AU
[ s I Ka ) + V(lp;;l(vwh) - V(tthqu;;)

+ W, V(KVh) + —(LP*ns ¥,) + (‘P*nC ¥ + (q’;pb‘lls)

+V (¥ qY, ) — V(¥ KVW,C a) + V(tthvwaca)
— Y;V(KVhC,) — V(¥;D2VY,) + V(W,DiV¥;)

oD2
+v(w;

oD2
3gs hgvy,ve, | - v(w,

aqa I KVW;VC >

pa

oD
+ ¥V <a_q: KVhVCa> +V- < e (ceq Ca) Kth)

+lp;;a a(KVh)(Ceq—C) v < Fro (gt - ca)Kth>
-y aa ~(KVh)(C5? - C )— (‘P np, n)l} dvdt

The arbitrary functions ¥}, W¥,, ¥y, and W are now defined in order to eliminate the state
sensitivities of ¥y, ¥,, ¥,,, and Ws, yielding:

ds(InK, h,C,, S, s oD2
5( i 25 50) V(KVY;) — V(KVY;C,) + V <aqa KVY;VC > v
o i (B.10.37)
- < (c3? - Ca)KlP;‘) +V- <a_qa (3 -c,) Klp;;) =0
d¢(InK, h,C,, S, s,) owv:

—ns,—= — @*V¥; — V(DEVW;) + k¥W; — k¥; —KqWs =0 (B.1038)

ac, at
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d¢(InK, h, C,, S, s,) ov; ov;
a —n a + pn
S, ot ot

dg(InkK, lg,sca, S,sn) o B;P W =0 (B.10.40)

Define T = t; — t as backward time, the governing equations of the adjoint states are:

ds(InK, h, C,, S, s,)

=0 (B.10.39)

pa

Dy
VCV‘P) \%

+ V(KVY,) — V(KC,V¥;) + V <

on T B.10.41
0K . eq . Ok | . . (B.1041)
o (G — C)K¥; |+ V- 5qe (Ca —C)K¥;)=0
d¢(InK, h, C,, S, s oy _ - -
s o 2550 + ns, 6: — V¥ — V(DAVY;) + kW; — kWi —KqWs =0 (B.10.42)
] q
d¢(InK, h, C,, S, s,) ov; ov;
=0 B.10.43
asa +n a 6 npn 61_ ( )
d¢(InK, h, C,, S, s,) ov;
Wi = B.10.44
5 +pp 5o+ ¥s =0 ( )
The marginal sensitivity turns out to be:
d¢(InK, h, C,, S, s,)
WKVY,) — V(W,KVY¥}) + W V(KVh
dan U‘/tl K +V(th) V(th)+ 1 V(KVh)
—(‘P*ns W)+ (qJ*nc W) + o (w;pbtps) +V(¥iq'¥, )
- V(LP*KV‘Ph 2D+ V(‘PhKVlP ca) - lP*V(KVhCa)
—V(¥;DAVY,) + V(¥, th)+v< aq >
V(v 9D; KVW;VC, | + WV 9D; KVhVC, | + V (B.10.45)
- h aqa El a |t Ya aga a
eq % al’i eq
: aa a(c — C,) KW, +LPa—a(KVh)(Ca —C,) -V
< T (c3t - ca)KWh> “a — (KVh)(ceq C.)
~ 5 (‘Pr’l“npn‘Pn)l dvdt
Boundary conditions of the forward flow and transport equations are
—(KVh)-n=0on I} (B.10.46)
—(D3vC,)'i=0o0n I (B.10.47)
— (D3VC, — g°C,) - Ti=g(x,t) on T, (B.10.48)
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Differentiate the boundary equations with respect to InK:

a
— 51 (KVh) -1 = (-KV¥;, — KVh) -1 = 0 (B.10.49)
— nNa aﬁla’ll * -
— K(D VC,) -1 = |-Divy, + a—qa(KW’h + KVh)VC,[-B=0 (B.10.50)
]
a g
- K(thc — q°C,) -
), .
= —|DpV¥, — Er (KV¥,VC, + KVhVC,) — q*¥, (B.10.51)

+ (KV¥, + KVh)Cal ‘n=0
Take an inner product of ¥}, with (49) and integrate:
U —V(¥Y,KVY¥, + Yy KVh) dVdt = 0 (B.10.52)
Vit

Take an inner product of W, with (50) and integrate:

~ D2
J jv t -V llP;DﬁVlPa — g aq: (KVY, + KVh)VCal dvdt = 0 (B.10.53)

Take an inner product of W; with (51) and integrate:

oD2
U V|¥:DAVY, — lP* Yiq*¥,
Vit (B.10.54)
+ ¥; (KVY, + KVh)Cal dvdt =0
Because:
Y, V(KVh) = V(¥;KVh) — V¥ (KVh) (B.10.55)
—W¥;V(KVhC,) = —V(¥;KVhC,) + V¥;(KVhC,) (B.10.56)
__(oD2 b2 (D2

YV o 2| =V{¥; og° KVhVC, | — V¥, og° KVhVC (B.10.57)

The initial conditions of adjoint states are defined as:
Yi(r=0)=¥(=0=%%r=0)=0 (B.10.58)

Then:
0
—(‘P*nsa‘P ) (‘P*nC v, ) (‘P;fpblps) (‘P np,¥,) terms vanish

The boundary conditions of adJ01nt states are defined as:
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pa

. oD} . 0k .
— [ KV¥} — KC,V¥; + K—2 VC,V¥; o K(C3? - C,)¥;

0
1 = (B.10.59)
+ I al— ca)w;;> H=0
— (Davw; + q*w;)-Ti=0on Iy (B.10.60)
(DiV¥;):i=0o0on T, (B.10.61)
The final expression of marginal sensitivity becomes:
d¢(InK, h,C,, S, s,)
— V¥ (KVh) + V¥;(C,KVh
dan th[ dlnK \% h( )+ a(a )
ob? (B.10.62)
-V < I b KVhvC > JT—C) (¥ — )| dvde

VIL.B.11. Derivation of Adjoint States Control Equations and Marginal Sensitivity of Down-
gradient FAC with Respect to C,’

The control equations of forward flow and transport:

V(KVh) = 0 (B.11.1)
a OS a na i eq
5:(15aCa) + pp 5= =V (¢, ) + V( BRVC,) +k(C5* - C.) (B.11.2)
0 -
P (nsppn) = —k(C3% - C,) (B.11.3)
S =K4Cy (B.11.4)
Differentiate the control equations with respect to C,°:
v 0 (KVh) | =0 (B.11.5)
ac,’ - S
a( o (1s.C.) | + 0 (65)
at aca() nsa a pb 6Cao at
(B.11.6)
I (9°C.) | + v 0 (BPVC,) | + — (RCE — kCa)
aCaO 2 Ta 6Ca° a acao a a
o (0 ok eq
E = - - B.11.7
acao <at (nsnpn)) aCaO (Ca Ca) ( )
AR (KqCa) (B.11.8)
ac,’  ac, 4 A

Let:
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aC, 9s. as

% o = Ya 3 o = ¥ 3 o = s (B.11.9)
a a a
Thus:
0 0W¥s
a (I’lSaLpa + nCa‘Pn) + Pp F
aga na aﬁ12’11
==V ga‘pa‘l‘ac—oca +V hV‘Pa‘l‘aC—oVCa (B.11.10)
a a
ok -
+ aCaO (Caeq - Ca) - klpa
0 ok -
a(—npntpn) =200 (c3?—cC,) + k¥, (B.11.11)
a
Y = Kq¥, (B.11.12)

Take an inner product of W; with (2) and integrate:

9 oW _
J j w la— (nsg'Wy +nCa'Wy) + pp =+ V (g%, ) — V(D}VY,)
vit t t a (B.11.13)

0k . o A
-——(Cs7—C,) + kW¥,[dvdt =0
0C,
Take an inner product of ¥, with (3) and integrate:
0 ok eq -
ﬂ Y |- =—(np,¥,) + — (C3% — C,) —kW,|dvdt = 0 (B.11.14)
vt ot aC,
Take an inner produce of Wy with (4) and integrate:
J ¥s [Ws — KqW,]dvdt = 0 (B.11.15)
Vit
A performance measure that quantifies some state of the system is defined as:
P= ﬂ 6(C,°% Cy, S, s,) dVdt (B.11.16)
Vit

where g(CaO, Cs S, sn) is a functional of the state of the system.

The marginal sensitivity of this performance measure with respect to C,° is obtained by
differentiation equation:

dp 95(C,°% Cs,S,sn)  95(C,°% Cy, S, 5n) 95(C,°% Ca, S, sn)
0~ j.[ 0 + lpa + lIJn
dC, vt aC, aC, s,
N 95(C,°% Ca, S, sn)
aS
Adding these three equations (13), (14), and (15) to the right side of equation (17):

(B.11.17)

W | dvde
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dC
ag(cao, Ca S, Sn)
+ 35 Y

0
+ ¥ [E (ns,¥, + nC,¥,) + pp

ok
ac,°

(C3—cCy)+ Rlpal
ok
ac,°

+ Wi [Ws — Kd‘Pa]} dvdt

d
+ lPn [_ a (npnlpn) +

Because:

0 9]
W 3t (ns,¥,) = p (W;ns,¥,) — ns,¥,

0 0
W 3t (nC,¥,) = P (¥;nC,¥,) — nC,¥,

OWs

ot

a

P _ U 05(Ca" CaS,5n) | 36(Ca” CarS,5n) , , 05(Ca® CarS,n)
L My ac,° ac,

n
0s,

¥ -
s v (q¥,) - v(Divw,)

(c9—c,)- Rlpal

d
Wipp TSR (Wipp¥s) — Wspp

oW
ot
oW
ot
oW

at

WYy - (gatpa) =V- (w;gawa) — VY- (galpa)

—y;v- (DAVY,) = -V (¥;DAVY,) + V¥; - (DAVY,)
= -V (¥;DiV¥,) + V- (¥, DiV¥;) — W,V - (DiV¥;)

d 0 0
. T (mpp¥p) = — a5t (Ynp,¥,) + np, ¥, T

Thus, the marginal sensitivity becomes:
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*
n

(B.11.18)

(B.11.19)

(B.11.20)

(B.11.21)

(B.11.22)

(B.11.23)

(B.11.24)



P _ U {ag(CaO,Ca,S,sn)+0g(CaO,Ca,S,sn)lp +6g(CaO,Ca,S,sn)qJ
Vit

ac,° aC, a s, n
ac(c,’ C,S, s d v
+ 5(Ca OSa ) Ys + 3t (W;ns,¥,) —ns, ¥, O_ta
a . ov; o 0w,
+ a (Lpancalpn) - rlCaLpn W + a (lpa pquS) - lpSpb ot +V

(Wiq?W, ) - V5 - (7%, ) - V- (WiDRVY,) + V- (WaDRVY:)  (B.11.25
) ( )

- ok -
-y,v- (DAVY;) —¥; 500 (C3% —C,) + Wik¥,
a

o 0¥, 0k |, o -
_a(q)nnpnlpn)+npn‘ljn i + o =(C31-C,) — ¥k,
a

+ W — w;xdlpa} dvdt

Wl ”
ﬂ { lag(Ca ,Ca,S,5n) s 0% _ @Y, — V(DAVY;) + k¥;
Vit

aC, 4 ot

. . 95(C,° Cy, S, 5n) oW ow;:

— k¥, — Kd‘PSl + ¥, l 2 Bs: =~ —nC, ata + np, atn
95(C,°% Ca, S, sn) 0w}

+‘Vsl aasa Pt +Ws

95(C,° Cy, S, 5n) (B.11.26)
+ 5 +—(‘P*nsalP ) + (‘P*nC Y) S

aC, ot

9 _ _
o (Pipp¥Ws) +V (¥iq¥,) - V(¥;D3VY,) + V(¥,Dive;)

~

ok ok
- lpr: H(C:q - Ca) + lprt aCa0 (Czq - Ca)

a(tp* Y )|¢dvdt
at nnpn n

The arbitrary functions W3, ¥}, and Wg are now defined in order to eliminate the state sensitivities
of ¥,, W¥,, and W, yielding:

95(Ca", Ca S5 ow; 5 o
o(C, G 2) - @V — V(DRVY;) + kW — k9 —KaWs =0 (B.1127)
a
ag(caor Ca) S,S ) alp* alp*
C = B.11.28
05, TNt P ( )
0 *
26(Ca ’a(;a' 5,5) — Pb G;P +W=0 (B.11.29)

Define T = t; — t as backward time, the governing equations of the adjoint states are:
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95(C,°% Cy, S, 5n) ow;

+ns,—— — @*V¥; — V(DEVY;) + kW; — k¥ —K W5 =0  (B.11.30)
aCa ot -
ag(CaO,Ca, S, sn) +nc 0v; owv; — 0 (B.1131)
ds, MaTe ~ P50 = S
95(C,° Cy, S, 5n) ow;
Wy =0 (B.11.32)
oS + P ot s

The marginal sensitivity turns out to be:

dp 95(C.°,CoS,sn) 0 Q. a .
I, [ (CCarS5) L 9 (s, ) + 2 (BinCay) + 2 (Wipy )

dc,’ ac,’
+V (w;galpa) — v(¥;DivY,) + V(W,DEVY;)
) ok ) ok e (B.11.33)
-y 3c.0 (C—Co) +W¥; 3c.0 (c?—cC,)
0
~ 5 (‘Pﬁnpn‘}’n)l dvdt
Boundary conditions of the forward flow and transport equations are
—(KVh)-n=0o0n I (B.11.34)
—(DivC,)'i=0o0n T (B.11.35)
— (D3VC, — g°C,) - Ti=g(x,t) on T, (B.11.36)

Differentiate the boundary equations with respect to C,°:
0
ac,’

(D§vC,) o =[-DiV¥,]-i=0 (B.11.37)

_ a(‘?_o("ﬁvca _ gaca) R=— [ﬁﬁvwa - gatpa] ‘R=0 (B.11.38)
a

Take an inner product of W, with (37) and integrate:
J j —V[¥;DiVY,]| dvdt = 0 (B.11.39)
Vit
Take an inner product of W, with (38) and integrate:
J j —V |¥;DiVY, — Wiq'W,| dvdt =0 (B.11.40)
Vit -

The initial conditions of adjoint states are defined as:
Yi(r=0)=¥(=0=%%r=0)=0 (B.11.41)
Then:
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0
(‘P*nC an) (‘Pa* pb‘PS) (lP*nanP ) terms vanish

0 ac,’
j j [& (tp;nsalpa)] dvdt = J [lp;nsawa|t=tf — Yins, ac_a" l dv
Vit v a lt=0 (B.11.42)
- j [ (t = 0)ns, (t = 0)] dV
v
The boundary conditions of adjoint states are defined as:
— (Davw; + q*w;)-Ti=0on Iy (B.11.43)
(Div¥;)-i=00nT, (B.11.44)
The final expression of marginal sensitivity becomes:
dpP
5= | =¥t = 0ns,c = 0)lav (B.11.45)
dC, v

VIIL.B.12. Derivation of Adjoint States Control Equations and Marginal Sensitivity of Down-
Gradient FAC with Respect to S’

The control equations of forward flow and transport:

V(KVh) =0 (B.12.1)
] as - A
5 (15,C2) + pp o=~V (¢, ) + v( BRVC,) +k(C5* - C.) (B.12.2)
) A
5t (@SnPn) = —k(C3'—C,) (B.12.3)
S =Kq4C, (B.12.4)

Differentiate the control equations with respect to S°:

< azo (KVh)) (B.12.5)

0 ( )+ d (68)
ot aso nsaCa) |+ 0o 550\ 3¢

; ; (B.12.6)
—_vy ( P Ch ca)) +V (W (ﬁﬁvca)) 5 (ke )
o (o ca _
— = 2.
N 9]
350 = @(cha) (B.12.8)

Let:
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aC, ds, as
950 Ya 950 ¥ 950 S ( )

Thus:

0 oV,
(nsa‘P +nC,¥,) + pp ats

aq? oD
— a -
= V<q Yo+ 555G >+v< gy 2 250 hgc > (B.12.10)

ok -
+550(Ca’ — Ca) - kv,

9
5¢ (7Pn'Pn) = aso (ceq —C,) + k¥, (B.12.11)

Yy = Ky, (B.12.12)

Take an inner product of W, with (2) and integrate:

9 oW, _
J j w l— (n5a¥, + nC W) + pp— > + V (@, ) — V(DEV¥,)
ve 2ot ot

ok A (B.12.13)
~ 550 (C3%—cCy)+ ktpal dvdt =0

Take an inner product of ¥, with (3) and integrate:

ﬂ W [ 50 (0P %) + ((:eq C.) — R‘Pal dvdt = 0 (B.12.14)
Vit

Take an inner produce of Wy with (4) and integrate:

J ¥s [Ws — KqW,]dvdt = 0 (B.12.15)
Vit
A performance measure that quantifies some state of the system is defined as:
P = U (8% C,, S, s,) dVdt (B.12.16)
Vit

where ¢(S°,C,, S, s,) is a functional of the state of the system.

The marginal sensitivity of this performance measure with respect to S° is obtained by
differentiation equation:

j j 06(% Ca,S,5n) | 06(5° Cay S, su) v+ 9 5(S8° Cy, S, sn) v
dS° Vi aS° 0C, ds,
N 06(S°%C,,S,spn)
aS
Adding these three equations (13), (14), and (15) to the right side of equation (17):

(B.12.17)

W | dvde
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0¢(8°,C,,S,s,)  06(S%C,, S, s,) 9¢(8%,C,,S,sp)
dS° U { 550t o, Bt 4, e
V,t a a
9¢(S%,C,,S,sp)
Y
+ aS S

9 oW _
+ [E (ns3'¥, + nCyWy) + pp — = (q¥,) - v(Divw,)

ok (B.12.18)
- ﬁ (Caeq - Ca) + kqjal
+ ¥ —E(np (ceq C,) — k¥
T at n¥ aso a a
+ Wi [Ws — Kd‘Pa]} dvdt
Because:
] ] o
W 3t (ns,¥,) = 3t (W;ns,¥,) — ns, ¥, TS (B.12.19)
] 0 o
W3 —t(nCa‘Pn) = —(‘P;‘nCa‘Pn) nCy ¥, —= (B.12.20)
oWs ow;:
Yapo 5 = (tl!g;pbws) Wspp - (B.12.21)
WV (q'w,) = V- (WiqY,) - Vs - (q°Ws) (B.12.22)
—y;v- (DiVY,) = -V (¥;DAVY,) + V¥; - (DEVY,) (B.12.23)
= —V-(¥;DivY, ) +V- (¥, Divy;) — W,V - (DEVY;) o
d ov;:
-, a(npnq’n) ——(LP np,¥,) + np, ¥, — P (B.12.24)

Thus, the marginal sensitivity becomes:

P _ ﬂ {ac(S".ca,s,sn) 05(5°, Ca S, s) , , 058 CarS50)
V.t

as0 T aca a 3s, n

9(S%,C,,S, s 0¥,
s( a; n) Ys + (‘P*ns W) —ns, ¥, —

o aw o ow;
+ a (an rlCalpn) - ncaan 7 + a (Lpa prPS) - l’IJSpb ot

' (‘Piﬂaq’a) AALE (ga‘l’a) — V- (UDRVY,) + V- (P, DAVY:)  (B.12.25)

+V

~ ok - d
- ¥V (DRVY:) — W:: 550 (Ca® = Ca) + Wik, — 5 (Winp,¥y)

*

v, i
+np, ¥, —— ot + ‘Pn

- Lp;Kdtpa} dvdt

350 (C3% = C,) — WikW, + WiWs
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d¢(S%,C,, S, so) 0¥a _ -
— @*V¥; — v(Davw;) + kw;
dSO ﬂ‘,t{ l ac, nsa 5~ 4V — V(DRVEL) + k¥

. \ 96(S°,C,, S, sp) ow; R
— k‘Pn — Kd‘PSl + ¥, l 652 LAY e npna—tn
9¢(S%C,,S,sp) ov;
lps[ as PG s
d¢(S°,C,,S, s
+ l s aSaO ) —(LIJ*nsal{J ) .|_ (Lp*nc w) (B.12.26)

9 _ _
o (lp;pblps) +V (lp;qalp ) —v(w;Davy,) + V(¥,Divy;)

—Lp; eq—(:)+lp;; 1-c,)

650 (C aso (C

~ 5% (‘Pnnpn‘}’n)l} dvdt

The arbitrary functions W3, ¥}, and Wg are now defined in order to eliminate the state sensitivities
of ¥,, W¥,, and W, yielding:

a SO’ C ) Sl S alp* —~ ~ ~
2 aca ) _ NSa ata — @*VY; — V(DVY;) + kW — kW —KqWs =0 (B.12.27)
a
95(S°% Ca,S,5n) 6‘11* P
e~ NG+ npy—==0 (B.12.28)
a
a SO’ C ) S,S al'IJ*
o 5 D, 2 oW =0 (B.12.29)
Define T = t; — t as backward time, the governing equations of the adjoint states are:
a SO’ C ) Sl S alp* —~ ~ ~
i e ) ns, ——— @'V¥; — V(DRVY;) + Wy — k¥ —K W5 =0 (B.12.30)
a
96(S% Cy, S, o P
d e " 4 nc, S npy = (B.12.31)
a
96(S° C,, S, s oW
o 5 L S +¥=0 (B.12.32)

The marginal sensitivity turns out to be:

9¢(8%,C,,S,sp) .
dsO jj l : —(l.]J*ngal.IJ ) + (qJ nC lIJn) + (lpa pquS)
Vit

aS°
+V (tp;gatpa) — V(¥;DiVY,) + V(LPaDﬁVlP;‘) (B.12.33)
ok ok 0
-y m(c§q —C.) +¥; 350 (c3t—c,) - P (W:np,W¥,)|dvdt

Boundary conditions of the forward flow and transport equations are
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—(KVh)'ni=0on I} (B.12.34)
—(D3vC,)'i=0o0n T} (B.12.35)
— (D3VC, — g°C,) - Ti=g(x,t) on T, (B.12.36)
Differentiate the boundary equations with respect to S°:

~ 350 (D VC,) i =[-Div¥,] =0 (B.12.37)

0 . ~ -
s (Bive, e [ gl Ao moa
Take an inner product of W; with (37) and integrate:

J j —V[¥;DiVY,]| dvdt = 0 (B.12.39)
Vit
Take an inner product of ¥; with (38) and integrate:

J j —V |¥;DiVY, — Wiq"W,| dvdt =0 (B.12.40)
Vit -

The initial conditions of adjoint states are defined as:
Yi(r=0)=¥(=0=%Y%r=0)=0 (B.12.41)
Then:

—(‘P ns, ¥, ) (lP*nC Y, ) (‘P*npn‘}J ) terms vanish

d as°
I| [5icoenwo]avae= | [w:pbwsh:tf —Wipy o ] av
V.t \% t=0
(B.12.42)
o R GO
v
The boundary conditions of adjoint states are defined as:
— (Davw; + q*w;)-Ti=0on Iy (B.12.43)
(Div¥;)-i=00nT, (B.12.44)
The final expression of marginal sensitivity becomes:
dpP
TR j [-W;(t=0)pp] dV (B.12.45)

VII.B.13. Derivation of Adjoint States Control Equations and Marginal Sensitivity of Down-
gradient FAC with Respect to s,’

The control equations of forward flow and transport:
V(KVh) =0 (B.13.1)
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9 9s _ R
= (52C) +pyp = = =V (@€, ) + V(DRVC,) + K(C5? — C.) (B.13.2)

0 -
P (nsppn) = —k(C3% - C,) (B.13.3)
S =KqC, (B.13.4)
Differentiate the control equations with respect to s,,°:
0
v 55,0 (KVh) | =0 (B.13.5)
(s.C.) | + 0 (65)
at\9s, 0 oaval | T Pbgs 0\ gy e
2 /. Q. 0 oeq ¢ o
=V (a"C) | + V{55 (DivC,) | + 5 (ke5? — key)
a (o ok
X (a “““"“)) = s (G ) (8.13.7)
as 0
350 @(cha) (B.13.8)
Let:
aC, s, as
95,0 T g5 0 o geo= s (B.13.9)
Thus:
0 W
a (nsalpa + rlCaLpn) + Py W
aq* - oD3
=-V{ @' +5=5Ca | + V( DRVY, + 5 VC, (B.13.10)
ok -
+5.5(Ca" = Ca) — k¥,
0 ok -
¢ (TnPntn) = —as—o(ch —C,) + k¥, (B.13.11)
Wy = K4, (B.13.12)

Take an inner product of W; with (2) and integrate:

S

) o, -
J jv ’tlpg la (ns, W, +nCaWy) +pp——=+V (gawa) — v(Divy,)

ok -
- as—o(ch —C.) + ktpal dvdt = 0

(B.13.13)
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Take an inner product of W, with (3) and integrate:

0 ok -
J fv t‘P;i l—a(npn%) + 35,0 (C3%—C,) — k¥, |dvdt =0 (B.13.14)

Take an inner produce of Wy with (4) and integrate:
J WS [Ws — KqW,]dvdt = 0 (B.13.15)
Vit
A performance measure that quantifies some state of the system is defined as:

P=U 6(s,°, C,, S, s,) dVdt (B.13.16)
Vit

where ¢(s,°, C,, S, s,) is a functional of the state of the system.

The marginal sensitivity of this performance measure with respect to s,° is obtained by
differentiation equation:

dp U [ac(sno.ca,S,Sn)+0§(Sn°.Ca;S,Sn)q, +0§(Sn°,Ca,S,Sn)lp
Vit

0o 0 El n
o Osn % 95 (B.13.17)
+ 96(n’. Car S, 5n) Y [ dvdt
asS S
Adding these three equations (13), (14), and (15) to the right side of equation (17):
dP _ H 96(5,%,Ca, S, Sn) N 3¢(s,°, Ca, S, Sp) v+ 9¢(s,, Cy S, 1) "
ds,? Vit 0s,,° aC, 0s,
ag(sl’lol Car S) Sn)
P
* S S ;
d R Y -
+ g lﬁ (nsg'Wy +nCa'Wy) +pp —= +V (q¥,) - v(Divw,)
ik B.13.18)
ok R (
=350 (C3¥—cCy) + ktpal
0 ok -
+ [— 50 (0P %) + 55,0 (c3—c,) - klPal
+ WS [Ws — Kd‘Pa]} dvdt
Because:
d d ov;
Fa o (ns,W,) = 3t (W:ns,¥,) — ns, ¥, a_ta (B.13.19)
d 0 ov;
Ya o (nC,¥,) = m (W:nC,¥,) — nC, ¥, a_ta (B.13.20)
L, 0¥ 0 0¥,
Wipb 7o = 3¢ (PapyWs) — Wspp — - (B.13.21)
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Yy - (gatpa) =V- (w;gatpa) — VY- (galpa) (B.13.22)

—y;v- (DAVY,) = -V (¥;DAVY,) + V¥; - (DAVY,)

- . - B.13.23
= -V (¥;DAVY,) + V- (¥, DiVY¥;) — W,V - (DRVY;) ( )
0 ) ow;,
—1}’1"1‘ a (npnlpn) = - E (l.IJr”l‘npann) + npn n at (B'13'24)

Thus, the marginal sensitivity becomes:

P _ H {GC(SHO, Ca,S,Sn)_l_ag(snO, ca,s,sn)lp +ag(sn0, C..S, Sn)qJ
Vit

ds,,° aca a 0s, n
ag(s °C,S, sp) . ov;
= OSa LA —(‘P ns,¥,) — ns,¥, TS
* Yow; 0 ;
+ a(q)ancalp ) —nC¥, —— 5t a(lpapblps) — Wspp ot +V

(Wiq*W,) - V¥ - (q*W.) - V- (WiDRVY,) + V- (W.DRVY:)  (B.13.25)

SO . ok
-p,v- (DAVY;) - ¥; 35,0
yr ok -
+ ¥ (c3?—c,) — vk,
n

(C3% —C,) + Wik¥,

a(tp* W)+ np, ¥, J
at l’lnpl’l n npl’l a

+ W — w;xdlpa} dvdt

95(5n%, Ca S, 54, 0w;
ﬂ{ lg(s @S5) o 2 _ qavy; — v(DRVY;) + RY;
Vit

ac, a At
. . 95(sn°, Cy, S, sn) ow; ov*
— k‘Pn — Kd‘PSl + ¥, l 1 Gs: 1 —nC, 5t + np, a_tn
95(sy°,Ca, S, 5n) ow;
Y — 0y —— 4+ P
+ S[ 25 Po 5 T s
d9¢(s,.%,C.,S, s
+l S 653 ) —(‘P*nsa‘P )+ (‘P*nC w) (B.13.26)

9 _ _
o (Pipp¥Ws) +V (¥iq¥,) - V(¥;DRVY,) + V(¥,Dive;)

~

ok
Js..0 (Caeq - Ca)

ok
—w;a O(C*"* C.) +W¥;

~ 5% (‘Pnnpn‘}’n)l} dvdt

The arbitrary functions W3, ¥}, and Wg are now defined in order to eliminate the state sensitivities
of ¥,, V¥, and W, yielding:

a S 0) C ) S) S aqj* —~ ~ ~
= aca ) _ NS, ata — @*VY; — V(DRVY;) + kW — k¥ —KqWs =0 (B.13.27)
R q
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0¢(sy° C,, S, sp) c ov; ov;

_ —2—=0
3s, nta T TP
95(sn’ Ca, S, 5n) ¥,
—pp—=——+PY =0
35 oG s
Define T = t; — t as backward time, the governing equations of the adjoint states are:
d¢(s;°,C,,S, s ov: _ . .
S(n”: Car S, Sn) +ns, — — @*V¥; — V(DEVW;) + kWi — kW — Kq¥Ws =0
0C, ot —
96(s,°%, C,, S, s) ov; oV
C — —=0
ds, T nta g T PG

96(s1% Cy, S, sn) oY,
%Fa Ly =
35 TP TS

The marginal sensitivity turns out to be:

dp 96(sp° Ca,S,80) 0 a a
= jjv‘t [ . + a(lpansalpa) + a(qjancal'pn) + E(Lpa pquS)

ds,0 ds,°
+V(¥iq*¥, ) - V(¥;DVY,) + V(¥ DivY;)
ok ok
— ¥ (c3%—cC,) +¥; P (c3?—c.)
n n

— %(‘P{;npnl}’n)l dvdt
Boundary conditions of the forward flow and transport equations are
—(KVh)-n=0on I}
—(D3vC,)'i=0o0n T
- (ﬁﬁVCa — gaCa) ‘n=gxt)onTl,

Differentiate the boundary equations with respect to s, °:

0
0s,°

(D§vC,) -n = [-Div¥,]- i =0

J /- - ~ -
S (BRvC, — q°C,) -1 = — [PV, — q*¥, |- Ti=0
n
Take an inner product of W; with (37) and integrate:

J j —V[¥;DiVY¥,]| dvdt = 0
Vit

Take an inner product of W; with (38) and integrate:
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(B.13.28)

(B.13.29)

(B.13.30)

(B.13.31)

(B.13.32)

(B.13.33)

(B.13.34)
(B.13.35)

(B.13.36)

(B.13.37)

(B.13.38)

(B.13.39)



J j -V [w;ﬁﬁvwa - tp;qalpa] dvdt = 0
V,t -

The initial conditions of adjoint states are defined as:
Yi(r=0)=¥(=0=%%r=0)=0

Then:
a . a . a |
a (l'pa nSal'pa); a (Lpa pbl'pS); a (lpnnpnlpn) terms vanish
a y * * aSno
J‘[ [a (%2 nCaan)] dvde = ,[ WinC, Wy ez, — WanC, Js. 0 dv
V,t v 2l
= J [W:(t = 0)nC,(t = 0)]dV
\%
a N * * aS1’10
J.[ [5 (annpnlp“)] dvde = J lpnnpnlpnlt=tf —W¥inp, 350 dv
Vit v 2

= | 1= 0mp,lav
The boundary conditions of adjoint states are defined as:
— (Davw; + q*w;)-Ti=0on Iy
(Div¥;)-i=0onT,
The final expression of marginal sensitivity becomes:

dp
ds,°

_ j [W; (t = 0)nC, (t = 0) — Wit = 0)np, ] dV
\%

ok ok
" HV L?S 7 (C" = Ca) + 9s. 0 (€51 = C) (W — W) | dvat
,t n n
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(B.13.43)

(B.13.44)
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