

Adam Welle

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM18-1104

Virtualized Wireless Networking

Benefits

Implementation

Screenshots

Future Work

Benefits

Permit centralized, wireless exploitation training/evaluation on virtual machines (without transmission of radio frequencies):

- All virtual -- no real wireless devices (cost effective)
- Enable use inside secure facilities (flexible)
- Eliminate interference from other RF devices (repeatable)
- Function like real Linux wireless interfaces (realistic)

Implementation

- Linux hardware simulation driver MAC80211 HWSIM
- User space application on host WMASTERD
- User space application on host WELLED
- User space application on host GELLED

Implementation – MAC80211_HWSIM

- Linux hardware simulation driver:
 - Included in the Linux source tree (MAC80211_HWSIM)
 - Simulates one or more 802.11 radios on a single virtual machine
 - Provides wireless API to user space applications for the purpose of software testing
 - Transmits frames to user space applications on virtual machine via netlink

Implementation - WMASTERD

- User space application on host:
 - Wireless Master Daemon (WMASTERD)
 - Can apply signal strength modifications to frames
 - Transfers frames to all guest VMs running WELLED via VSOCK
 - Tracks latitude and longitude for each virtual machine
 - Generates NMEA data for GPS simulation

Implementation - WELLED

- User space application on virtual machines:
 - Wireless Emulation Link Layer Exchange Daemon (WELLED)
 - Receives frames from WMASTERD via VSOCK
 - Sends frames to MAC8011_HWSIM via netlink

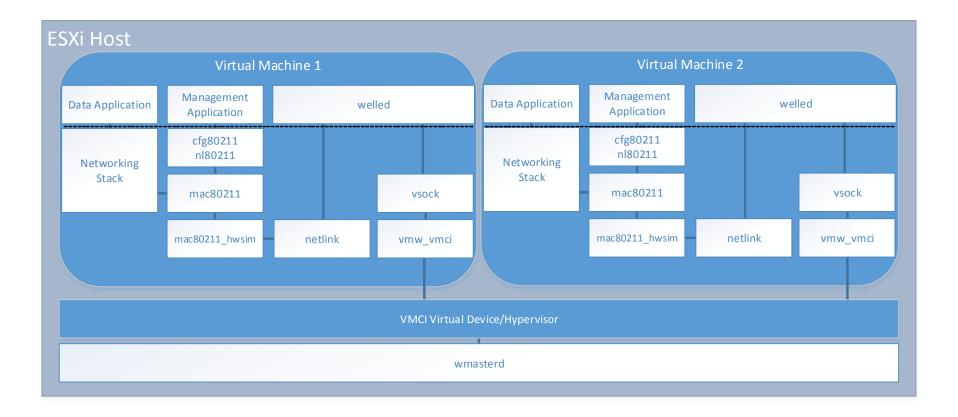
Implementation - GELLED

- User space application on virtual machines:
 - GPS Emulation Link Layer Exchange Daemon (GELLED)
 - Receives NMEA sentences from WMASTERD via VSOCK
 - Writes NMEA sentences to a simulated serial device

Wireless Simulation for Wi-Fi and GPS – Functionality

Benefits

- Wireless training does not require the purchase of hardware
- Wireless training can be conducted inside secure facilities
- Wireless training can be predictable and repeatable


Wi-Fi Simulation with WELLED

- Standard tools such as hostpad, wpa_supplicant, and aircrack-ng can be used
- Enables the training of wireless penetration testing

GPS Simulation with GELLED

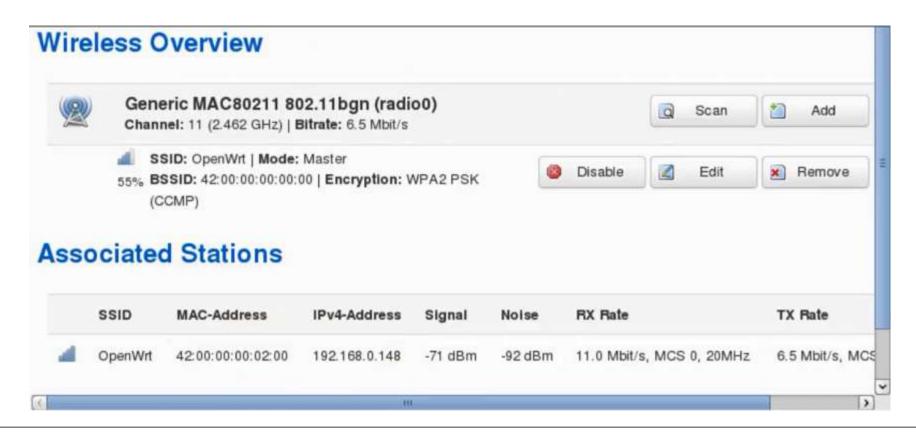
- Virtual machines can "move" throughout their virtual world
- Enables the simulation of vehicle control systems
- Enables the simulation of tracked mobile assets: convoys, ships, airplanes

Diagram

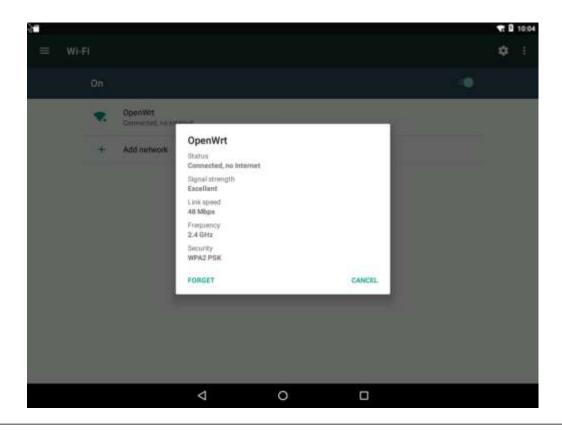
Guest Operating Systems

Example applications used in training scenarios to date:

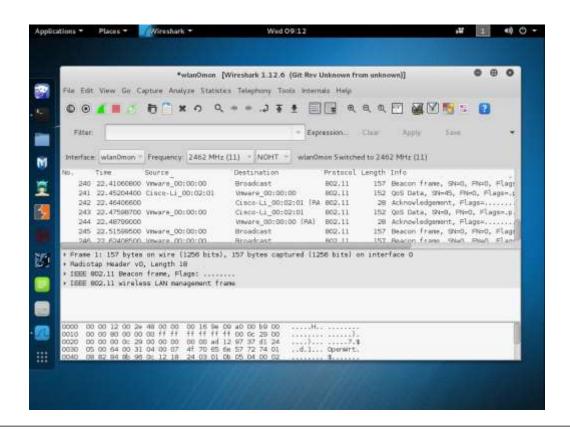
- Kali
 - kismet
 - aircrack-ng
 - gpsd
- OpenWrt
 - hostapd

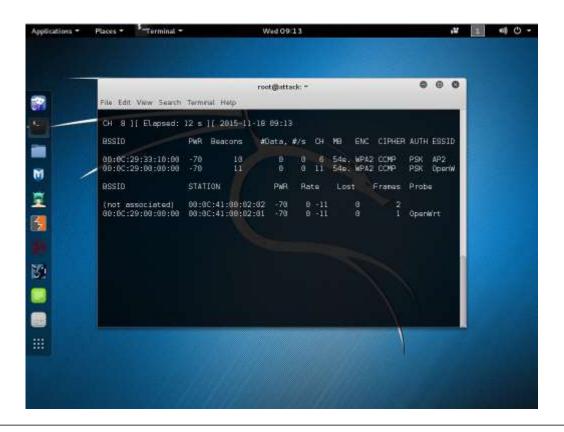

- Ubuntu
 - wpa_supplicant
- Fedora
 - wpa_supplicant
 - gpsd
- android
 - wpa_supplicant

Host Operating Systems


Operating systems used to host virtual machines running wireless simulation:

- Windows
- ESXi


OpenWrt Access Point


Android Client

Packet Capture with Wireshark

Wireless Survey with airodump-ng

NMEA Data for GPS Simulation

```
$GPRMC,094719.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*40
$GPRMC,094720.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*40
$GPRMC,094720.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*40
$GPRMC,094721.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*41
$GPRMC,094721.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*41
$GPRMC,094723.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*43
$GPRMC,094723.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*43
$GPRMC,094723.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*44
$GPRMC,094724.00,A,4457.0000,N,09245.0000,W,0.00,173.00,300816,,,D*44
```

Limitations and Future Work

Limitations

- Only applies basic signal strength variations according to distance
- Only available for Linux-based guest operating systems

Future Work

- Leverage GPS simulation to develop mobile simulations with vehicle-born networks
- Utilize wireless simulation to develop IoT simulations

Questions