
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Automating Static Analysis Alert
Handling with Machine Learning:
2016-2018

Lori Flynn, PhD

Software Security Researcher

Software Engineering Institute of Carnegie Mellon University

2
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering

Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON

AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-1078

3
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

s
cs

Overview

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

66 effort days

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

Classification algorithm development using “pre-
audited” and manually-audited data, that

accurately classifies most of the

diagnostics as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Problem: too many alerts

Solution: automate handling

4
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Select
candidate code
bases for
evaluation

5
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Run SA Tool(s)
collecting code alerts
and metrics (e.g.
complexity)

6
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Convert alerts to
common format and
map to CERT Secure
Coding Rules/CWEs

7
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Humans evaluate the
violations, e.g.
marking them as
TRUE or FALSE

8
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Use the training data to
build machine learning
classifiers that predict
TRUE and FALSE
determinations for new
alerts

9
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

What do TRUE/FALSE
mean? Are there
other determinations
I can use?

10
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

One collaborator reported using the determination True to indicate

that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was

wrong with the diagnosed code, even if the specific issue reported

by the alert was a false positive!

What is truth?

11
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development!

12
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our

collaborators

• Includes a standard set of well-defined determinations for static

analysis alerts

• Includes a set of auditing rules to help auditors make

consistent decisions in commonly-encountered situations

Different auditors should make the same

determination for a given alert

Improve the quality and consistency of audit data for

the purpose of building machine learning classifiers

Help organizations make better-informed decisions

about bug-fixes, development, and future audits.

© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Audit Lexicon And Rules

Lexicon

14
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Audit Determinations

Supplemental Determinations

Audit
Determinations

Choose ONE per alert! Choose ANY NUMBER per alert!

Dangerous
construct

Ignore

Inapplicable
environment

Dead

Basic Determinations

Unknown (default)

True False

Complex Dependent

15
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Basic Determinations

True

• The code in question violates the condition indicated by

the alert.

• A condition is a constraint or property of validity.

- E.g. A valid program should not deference NULL pointers.

• The condition can be determined from the definition of the

alert itself, or from the coding taxonomy the alert

corresponds to.

- CERT Secure Coding Rules

- CWEs

Dataset Quality & Consistency: Audit Lexicon And Rules

16
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Basic Determinations
True Example

char *build_array(size_t size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
return array;

}

ALERT: Do not
dereference

NULL
pointers!

Determination:
TRUE

17
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Basic Determinations

False

• The code in question does not violate the condition indicated

by the alert.

char *build_array(int size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
if(array == NULL) {

abort();
}
array[0] = first;
return array;

}

ALERT: Do not
dereference

NULL
pointers! Determination:

FALSE

18
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Basic Determinations

Complex

• The alert is too difficult to judge in a reasonable amount of

time and effort

• “Reasonable” is defined by the individual organization.

Dependent

• The alert is related to a True alert that occurs earlier in the code.

• Intuition: fixing the first alert would implicitly fix the second one.

Unknown

• None of the above. This is the default determination.

19
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Basic Determinations
Dependent Example

char *build_array(size_t size, char first, char last) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
array[size - 1] = last;
return array;

}

ALERT: Do not
dereference

NULL
pointers!

Determination:
TRUE

ALERT: Do not
dereference

NULL
pointers!

Determination:
DEPENDENT

20
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Supplemental Determinations

Dangerous Construct

• The alert refers to a piece of code that poses risk if it is not
modified.

• Risk level is specified as High, Medium, or Low

• Independent of whether the alert is true or false!

Dead

• The code in question not reachable at runtime.

Inapplicable Environment

• The alert does not apply to the current environments where the
software runs (OS, CPU, etc.)

• If a new environment were added in the future, the alert may
apply.

Ignore

• The code in question does not require mitigation.

21
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create_file(const char *base_name) {
// Add the .txt extension!
char filename[BUF_MAX];
snprintf(filename, 128, "%s.txt", base_name);

// Create the file, etc...
}

ALERT:
potential

buffer
overrun!

Determination:
False

+
Dangerous
Construct

Seems ok…but
why not use
BUF_MAX

instead of 128?

© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Audit Lexicon And Rules

Rules

23
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Audit Rules

Goals

• Clarify ambiguous or complex auditing scenarios

• Establish assumptions auditors can make

• Overall: help make audit determinations more consistent

We developed 12 rules

• Drew on our own experiences auditing code bases at CERT

• Trained 3 groups of engineers on the rules, and incorporated their feedback

• In the following slides, we will inspect three of the rules in more detail.

24
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Example Rule: Assume external inputs to the program are
malicious

An auditor should assume that inputs to a program module (e.g. function parameters,

command line arguments, etc.) may have arbitrary, potentially malicious, values.

• Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization

• Suppose an alert is raised for a call to readObject, citing a violation of the CERT

Secure Coding Rule SER12-J, Prevent deserialization of untrusted data

• An auditor can assume that external data passed to the readObject method may be

malicious, and mark this alert as True

- Assuming there are no other mitigations in place in the code

25
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Audit Rules
External Inputs Example

import java.io.*;

class DeserializeExample {
public static Object deserialize(byte[] buffer)

throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;
bais = new ByteArrayInputStream(buffer);
ois = new ObjectInputStream(bais);
return ois.readObject();

}
}

ALERT: Don’t
deserialize
untrusted

data!

Without strong
evidence to the

contrary, assume
the buffer could be

malicious!

Determination:
TRUE

26
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Example Rule: Unless instructed otherwise, assume code must be
portable.

When auditing alerts for a code base where the target

platform is not specified, the auditor should err on the side

of portability.

If a diagnosed segment of code malfunctions on certain

platforms, and in doing so violates a condition, this is

suitable justification for marking the alert True.

27
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Audit Rules
Portability Example

int strcmp(const char *str1, const char *str2) {
while(*str1 == *str2) {

if(*str1 == '\0') {
return 0;

}
str1++;
str2++;

}

if(*str1 < *str2) {
return -1;

} else {
return 1;

}
}

ALERT: Cast to
unsigned char

before comparing!

This code would be safe on a
platform where chars are unsigned,

but that hasn’t been guaranteed!

Determination:
TRUE

28
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Example Rule: Handle an alert in unreachable code depending on
whether it is exportable.

Certain code segments may be unreachable at runtime. Also called dead code.

A static analysis tool might not be able to realize this, and still mark alerts in code that

cannot be executed.

The Dead supplementary determination can be applied to these alerts.

However, an auditor should take care when deciding if a piece of code is truly dead.

In particular: just because a given program module (function, class) is not used does not

mean it is dead. The module might be exported as a public interface, for use by another

application.

This rule was developed as a result of a scenario encountered by one of our

collaborators!

© 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Classifier Development and Testing

30
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Machine Learning with Static Analysis Audit Archives

Combined use of:
1) multiple analyzers, 2) variety of features,
3) competing classification techniques

Problem: too many alerts

Solution: automate handling

Competing Classifiers to Test

Lasso Logistic Regression
CART (Classification and Regression
Trees)

Random Forest

Extreme Gradient Boosting (XGBoost)

Some of the features used (many more)
Analysis tools used
Significant LOC
Complexity
Coupling
Cohesion
SEI coding rule

Develop

Model

Validate

Model

Rule 01 Data

Per-rule alert classifiers Classifiers for all alerts

All Data, and RuleIDs

as a feature

Develop

Model

Validate

Model

Rule n Data

Develop

Model

Validate

Model

Archived Audit Data

31
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Data Used for Classifiers

Data used to create and validate classifiers:

• CERT-audited alerts:

- ~7,500 audited alerts

• 3 collaborators audit their own

codebases with our auditing research

prototype tool “enhanced SCALe”

We pooled data (CERT + collaborators) and

segmented it:

• Segment 1 (70% of data): train model

• Segment 2 (30% of data): testing

Added classifier variations on dataset:

• Per-rule

• Per-language

• With/without tools

• Others

32
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

CERT- Audited Archives Characterization

• 58 CERT coding rules with 20 or more audited

(labeled) alerts

• 25 rules all (or nearly all) determined one way (True

or False)

• Other 324 CERT rules have little or no labeled data

• Labeled data for 158 of 382 CERT rules

• 2,487 True and 4,980 False

33
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Archive sanitizer: enabled collaborator data use

Added data sanitizer to “enhanced SCALe”

• Anonymizes sensitive fields

• SHA-256 hash with salt

• Enables analysis of features correlated with alert confidence

Audit archive for project is in a database

• DB fields may contain sensitive information

• Sanitizing script anonymizes or discards fields

- Diagnostic message

- Path, including directories and filename

- Function name

- Class name

- Namespace/package

- Project filename

34
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Classifier Result Highlights: Data All Sources

Also, 15 one-way “classifiers”.

General results (not true for every test)

• Classifier accuracy rankings for all-pooled test data:

XGBoost ≈ RF > CART ≈ LR

• Classifier accuracy rankings for collaborator test data:

LR ≈ RF > XGBoost > CART

• Per-rule classifiers generally not useful (lack data), but 3

rules (INT31-C best) are exceptions.

• With-tools-as-feature classifiers better than without.

• Accuracy of single language vs. all-languages data:

C > all-combined > Java

All-rules (158) classifier accuracy:

- Lasso Logistic Regression:

88%

- Random Forest: 91%

- CART: 89%

- XGBoost: 91%

Classifiers made from all data, pooled:

* Small quantity of data, results suspect

Single-rule classifier accuracy:

Rule ID Lasso LR Random Forest CART XGBoost

INT31-C 98% 97% 98% 97%

EXP01-J 74% 74% 81% 74%

OBJ03-J 73% 86% 86% 83%

FIO04-J* 80% 80% 90% 80%

EXP33-C* 83% 87% 83% 83%

EXP34-C* 67% 72% 79% 72%

DCL36-C* 100% 100% 100% 100%

ERR08-J* 99% 100% 100% 100%

IDS00-J* 96% 96% 96% 96%

ERR01-J* 100% 100% 100% 100%

ERR09-J* 100% 88% 88% 88%

35
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Tool as Feature Helped

Using toolname as a

feature improved

classifier performance

Dots show performance

of tool alone

36
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Rapid Expansion of Alert
Classification

Problem 2

Too few manually audited alerts

to make classifiers (i.e., to

automate!)

Problems 1 & 2: Security-related

code flaws detected by static analysis

require too much manual effort to

triage, plus it takes too long to audit

enough alerts to develop classifiers to

automate the triage accurately for

many types of flaws.

Extension of our previous alert

classification work to address challenges:

1. Too few audited alerts for accurate

classifiers for many flaw types

2. Manually auditing alerts is expensive

Solution 2

Automate auditing alerts, using

test suites

Solution for 1 & 2: Rapid expansion

of number of conditions with labeled

alerts by using test suites, plus

collaborator audits of DoD code.

Approach

1. Automated analysis of test suite

programs to label data for many

conditions for classifiers

2. Collaboration with MITRE:

Systematically map CERT rules to

CWE IDs

3. Test classifiers on alerts from real-

world code: DoD data

Problem 1: too many alerts

Solution 1: automate handling

37
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Create alert classifiers trained on many conditions, then use DoD-audited data to validate

the classifiers.

Technical methods:

- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts.

o Juliet (NSA CAS) 61,387 C/C++ tests

o IARPA’s STONESOUP: 4,582 C tests

o Refine test sets for rules: use mappings, metadata, static analyses

- Metrics analyses of test suite code, to get feature data

- Use DoD-collaborator SCALe audits of their own codebases, to validate classifiers. Real codebases

with more complex structure than most pre-audited code.

Overview: Method, Approach, Validity

Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types

Solution 2: automate auditing alerts, using test suites

38
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Precise mappings: Defines what kind of non-null relationship, and if overlapping, how.

Enhanced-precision added to “imprecise” mappings.

If a condition of a program violates a CERT rule R and also
exhibits a CWE weakness W, that condition is in the overlap.

Mappings
Precise 248
Imprecise TODO 364

Total 612

Imprecise mappings
(“some relationship”)

Precise mappings
(set notation, often more)

Now: all CERT C rules

mappings to CWE precise

Make Mappings Precise

Problem 3: Test suites in different taxonomies (most use CWEs)

Solution 3: Precisely map between taxonomies, then partition tests using precise mappings

2 CWEs subset of CERT rule,
AND partial overlap

CWE YCWE Z

CWE N

CERT
Rule c

Problem 2: too few manually audited alerts to make classifiers

Solution 2: automate auditing alerts, using test suites

39
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Test Suite Cross-Taxonomy Use

Some types of CERT rule violations not tested, in

partitioned test suites (“0”s).
- Possible coverage in other suites

CWE test programs useful to test CERT rules
STONESOUP: 2,608 tests

Juliet: 80,158 tests

Partition sets of thousands of tests relatively quickly.
Examine together:
- Precise mapping
- Test suite metadata (structured filenames)
- Rarely examine small bit of code (variable type)

CERT rule CWE Count files that match

ARR38-C CWE-119 0

ARR38-C CWE-121 6,258

ARR38-C CWE-122 2,624

ARR38-C CWE-123 0

ARR38-C CWE-125 0

ARR38-C CWE-805 2,624

INT30-C CWE-190 1,548

INT30-C CWE-191 1,548

INT30-C CWE-680 984

INT32-C CWE-119 0

INT32-C CWE-125 0

INT32-C CWE-129 0

INT32-C CWE-131 0

INT32-C CWE-190 3,875

INT32-C CWE-191 3,875

INT32-C CWE-20 0

INT32-C CWE-606 0

INT32-C CWE-680 984

Problem 3: Test suites in different taxonomies

(most use CWEs)

Solution 3: Precisely map between taxonomies,

then partition tests with precise mappings

40
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers

• Directly for CWEs

• Using partitioned test suite data for CERT rules

Test classifiers

Process

Problem 1: too many alerts

Solution 1: automate handling

Problem 2: too few manually audited alerts to

make classifiers accurate for some flaws

Solution 2: automate auditing alerts, using

test suites

Problem 3: Test suites in different

taxonomies (most use CWEs)

Solution 3: Precisely map between

taxonomies, then partition tests using precise

mappings

41
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

- We automated defect identification of Juliet flaws with location 2 ways

- Used 8 static analysis tools on Juliet programs

- Automated alert-to-defect matching

- Automated alert-to-alert matching (alerts fused: same line & CWE)

- These are initial metrics (more EC as use more tools, STONESOUP)

Analysis of Juliet Test Suite: Initial CWE Results

Number of “Bad” Functions 103,376
Number of “Good” Functions 231,476

- A Juliet program tells about only one type of CWE
- Exact line defect metadata, for TPs
- Function line spans, for FPs

Lots of new
data for creating
classifiers

Alert Type Equivalence Classes:
(EC counts a fused alert once)

TRUE 13,330
FALSE 24,523

42
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

• Big savings: manual audit of 37,853 alerts from non-test-suite programs would take an

unrealistic minimum of 1,230 hours (117 seconds per alert audit [1]).

- First 37,853 alert audits wouldn’t cover many conditions (and sub-conditions) covered by the

Juliet test suite!

- Need true and false labels for classifiers.

- Realistically: enormous amount of manual auditing time to develop that much data.

• These are initial metrics (more data as we use more tools and test suites)

[1] Nathaniel Ayewah and William Pugh. "The Google FindBugs fixit." Proceedings of the

19th International Symposium on Software Testing and Analysis. ACM, 2010.

Analysis of Juliet Test Suite: Initial CWE Results

Lots of new data for
creating classifiers
(37,853 labeled alerts)

Alert Type Labeled fused alerts
(counts a fused alert once)

TRUE 13,330
FALSE 24,523

43
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Juliet Test Suite Classifiers: Initial Results (Hold-out Data)

Classifier Accuracy Precision Recall AUROC

rf 0.938 0.893 0.875 0.991

lightgbm 0.942 0.902 0.882 0.992

xgboost 0.932 0.941 0.798 0.987

lasso 0.925 0.886 0.831 0.985

44
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

2016-2018 Static Analysis Alert Classification Research

2016 2017 2018

• Issue addressed: classifier
accuracy

• Novel approach: multiple
static analysis tools as
features

• Result: increased accuracy

• Issue addressed: too little
labeled data for accurate
classifiers for some
conditions (CWEs, coding
rules)

• Novel approach: use test
suites to automate
production of labeled
(True/False) alert archives
for many conditions

• Result: high accuracy for
more conditions

• Issue addressed: little use
of automated alert
classifier technology
(requires $$, data, experts)

• Novel approach: develop
extensible architecture with
novel test-suite data method

• Result: extensible
architecture, API definition,
software to instantiate
architecture, adaptive
heuristic research

45
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Code

• API definition (swagger) and code development

• SCALe v2.1.3.0 static analysis alert auditing tool

- New features for prioritization and classification

• Fused alerts, CWEs, new determinations (etc.) for collaborators to generate data

- Released to collaborators Dec. 2017–Feb. 2018

- GitHub publication Aug. 2018

• SCALe v3.0.0.0 released Aug. 2018 to collaborators

• Develop and test classifiers. Novel work includes

- enabling cross-taxonomy test suite classifiers (using precise mappings)

- enabling “speculative mappings” for tools (e.g., GCC)

First public SCALe release (2.1.4)

46
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Non-code Publications & Papers 2018

• Architecture API definition and new SCALe features

- Special Report: “Integration of Automated Static Analysis Alert Classification and Prioritization with

Auditing Tools” (Aug. 2018)

• Technical Report: public version (Sep. 2018)

- SEI blog post: “SCALe: A Tool for Managing Output from Static Code Analyzers” (Sep. 2018)

• Classifier development research methods and results:

- Paper “Prioritizing Alerts from Multiple Static Analysis Tools, using Classification Models,”

SQUADE (ICSE workshop) (June 2018)

- SEI blog post: “Test Suites as a Source of Training Data for Static Analysis Alert Classifiers” (Apr. 2018)

- SEI Podcast (video): “Static Analysis Alert Classification with Test Suites” (Sep. 2018)

- In-progress conference papers (4): precise mapping, architecture for rapid alert classification, test

suites for classifier training data, API development

• Precise mappings on CERT C Standard wiki

1.Metadata for Juliet (created to test CWEs) to test CERT rule coverage

2.Per-rule precise CWE mapping

For collabs, others to implement

API calls or use new SCALe

Explain research methods & results

Static analysis tool

developers can

automatically test for CERT

rule coverage (some rules)For code flaws you care about,

understand your tool coverage

47
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Architecture

DataHub Module
- Store tool and alert information

- Store test suite metadata and alert
determinations

- Speculative mapping generation

Statistics Module
- Store, create and run classifier algorithms

- Store adaptive heuristic algorithms
- Store automatic hyper-parameter

optimization algorithms

Prioritization Module
- Store and evaluate prioritization formulas

API CallsAPI Calls

API Calls

API Calls

UI Module
- Store local projects

- Display project and alert data

User
Interface

48
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Architecture Development

Representational State Transfer (REST)

• Architectural style that defines a set of constraints and properties based on HTTP

• RESTful web services provide interoperability between systems

• Client-server

We chose to develop a RESTful API

• Swagger/OpenAPI open-source development toolset

- Develop APIs

- Auto-generate code for server stubs and clients

- Test server controllers with GUI

- Wide use (10,000 downloads/day)

49
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

SCALe Development for Architecture Integration

SCALe will make UI Module API calls in prototype system.

• Other alert auditing tools (e.g., DHS SWAMP) also can instantiate UI Module API.

50
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Next Steps and Collaboration Opportunities

Goal: increase automation of static alert auditing, using machine learning

• Work in progress through 2019:

- Using test suite data for classifiers, research adaptive heuristics

• How classifiers incorporate new data

• Test suite vs. non-test-suite data

• Weighting recent data

- Code development to complete 4-server system instantiation with SCALe as UI Module

• Collaboration opportunities:

- Implementation of API by collaborators to extend their own alert auditing tools

• Feedback on API, code system, and adaptive heuristics

- Alert audit data needed (sanitized fine)

- Precise mapping to more code flaw taxonomies

- Additional ideas welcome!

51
Automating Static Analysis Alert Handling with Machine Learning: 2016-2018
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Contact Information

Presenter / Point(s) of Contact

Lori Flynn (Principal Investigator)

Software Security Researcher

Email: lflynn@cert.org

Office: +1 412.268.7886

Additional Contributors

SEI Staff

Ebonie McNeil William Snavely

Zach Kurtz David Svoboda

Derek Leung

SEI Student Interns

Jiyeon Lee (CMU)

Lucas Bengtson (CMU)

Charisse Haruta (CMU)

Baptiste Vauthey (CMU)

Christine Baek (CMU)

