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Why Multi-Core Processors?

Processor development trend

• Increasing overall performance by integrating multiple cores

Embedded systems: Actively adopting multi-core CPUs

• Automotive: 

– Freescale i.MX6 4-core CPU

– NVIDIA Tegra K1 platform

• Avionics and defense:

– Rugged Intel i7 single board computers

– Freescale P4080 8-core CPU
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Shared Hardware: Multicore Memory System
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Shared Hardware: Multicore Memory System
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How Bad?
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Different for Applications (PARSEC Benchmark)

• 1 attacker   Max 5.5x increase

• 2 attackers  Max 8.4x increase

• 3 attackers  Max 12x increase
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Solution 1:  Partitioning 
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Solutions 1:  Virtual Memory “Coloring”
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Solution 1: Challenge – Conflicting Partitions
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Solution 2: Coordinated Approaches
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Solution 3: Predictable Sharing of Partitions
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at

the same time  slowdown  increased execution time of all tasks.

Co-runner 

set

Speed Exec

time

{} 1 4

{red} 0.5 8

{green} 0.45 8.88

{red,green} 0.25 16

Cblue=4



20

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis

Schedulability

analysis

{yes,no}
Obtain taskset

Parameter

(e.g., through

measurements)

Limitation: Scalability

Advantage: Able to offer real-time guarantee even for h/w that is 

not documented (assuming that task parameters are OK)

Taskset

parameters



22

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

MemGuard
What is the problem?

Tasks on different processors may access the memory bus
simultaneously; then one has to wait.

How does MemGuard work?

For each task, assign a budget and a period associated with that

budget. At run-time, the number of memory accesses that a task is
allowed to perform in a time interval equal to the period is at most the
budget; if exceeded, then the task is suspended.

Pro

Provides some temporal isolation wrt to memory bus

Con

Overly pessimistic; Designed only for soft real-time
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PREM
What is the problem?

Tasks on different processors may evict each other’s cache blocks and
then use other resources in the memory system.

How does PREM work?

Structure a task into three phases. 1st phase: fetch data; 2nd phase:
perform computation; 3rd phase: Write back. Memory accesses that
result in cache misses are not allowed in the second phase.

Pro

Provides temporal isolation wrt to all resources; works for hard
real-time

Con

Assume working set of a task fits in local memory; typically requires
specialized hardware (scratchpad memory)
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PRET
What is the problem?

Today’s processors are designed for high average-case performance
rather than time-predictability.

How does PRET work?

Don’t use caches. Use multithreading to hide memory latency.

Pro

Provides temporal isolation wrt to all resources; works also for hard
real-time

Con

Requires specialized hardware; does not work for COTS processors
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Summary

Preliminary Solutions
• Partitions

• Coordinated Partitioning

• Shared Partitions

• White / Black Box approaches

Limitations
• Small number of partitions

• Processor documentation not always available

Work Ahead
• Intra-task partitions: shared partitions for lightly used regions

• Increase scalability of black-box approaches

• Unmanaged features / resources: 

– Speculative execution

– Memory bus

– I/O

• Parallel tasks

• Tile Processors
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Thanks!
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