
[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Guaranteeing Real-Time

Requirements on Multicores

Bjorn Andersson and Dionisio de Niz

2

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required
for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

DM18-1338

3

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Why Multi-Core Processors?

Processor development trend

• Increasing overall performance by integrating multiple cores

Embedded systems: Actively adopting multi-core CPUs

• Automotive:

– Freescale i.MX6 4-core CPU

– NVIDIA Tegra K1 platform

• Avionics and defense:

– Rugged Intel i7 single board computers

– Freescale P4080 8-core CPU

4

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Shared Hardware: Multicore Memory System

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

L1/L2

Core N
…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…

5

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Shared Hardware: Multicore Memory System

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

L1/L2

Core N
…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…

Cache

Mem

Bus

6

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Shared Hardware: Multicore Memory System

L1/L2

Core 1

L1/L2

Core 2

DRAM

Bank 0

DRAM

Bank 1

Cache

Mem

Bus

7

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

How Bad?

2.98
5.1 6

14 15

103

0

20

40

60

80

100

120

Pelli10 Nowo12 Sha16 Kim14 Nowo14 Yun15

Slowdown

8

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Different for Applications (PARSEC Benchmark)

• 1 attacker Max 5.5x increase

• 2 attackers Max 8.4x increase

• 3 attackers Max 12x increase

0

200

400

600

800

1000

1200

N
o

rm
.
e

x
e

c
u

ti
o

n
 t
im

e
 (

%
)

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

We should predict, bound and

reduce the memory interference

delay!

12x increase

observed

9

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 1: Partitioning

L1/L2

Core 1

L1/L2

Core 2

DRAM

Bank 0

DRAM

Bank 1

Cache

set 1

Mem

Bus

Cache

set 2

10

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solutions 1: Virtual Memory “Coloring”

Task 1

Task 2

V
ir

tu
a

l
M

e
m

o
ry

V
ir

tu
a

l
M

e
m

o
ry

Physical Memory

Color: set that do not interfere:

- Different cache set

- Different memory bank

DRAM

Bank 0

DRAM

Bank 1

11

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 1: Challenge – Conflicting Partitions

16 15 14 13 12
Address bits

Cache Color Index

6

Cache sets

One page

19 18 17

Bank Color Index

XOR

20

XOR

XOR

12

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 2: Coordinated Approaches

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

P
S

.c
a
n

n
e
a

l

P
S

.s
tr

e
a

m
-

c
lu

s
te

r

P
S

.f
e
rr

e
t

P
S

.f
lu

id
-

a
n

im
a
te

P
S

.f
a
c
e
s
im

P
S

.f
re

q
m

in
e

P
S

.x
2
6

4

S
P

E
C

.l
e
s
lie

3
d

S
P

E
C

.m
c
f

S
P

E
C

.m
ilc

S
P

E
C

.s
p
h
in

x
3

Cache coloring only

Our coordinated approach

Challenge: Small Number of Partitions

13

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 3: Predictable Sharing of Partitions
Bank 1

Columns

R
o
w

s

Row Buffer

L1/L2

Core 2

L1/L2

Core 1
Memory Controller

Bank 2

Columns

R
o
w

s

Row Buffer

Request Queue Bank 1

Request Queue Bank 2

I use CPU
Others use CPU

My Mem Reqs. Others Mem Reqs.

Challenge: Need Processor Documentation (not always public)

14

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

15

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at

different times no slowdown

16

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue and red tasks execute at

the same time slowdown increased execution time of blue and red.

17

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at

the same time slowdown increased execution time of all tasks.

18

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at

the same time slowdown increased execution time of all tasks.

Co-runner

set

Speed

{} 1

{red} 0.5

{green} 0.45

{red,green} 0.25

Cblue=4

19

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at

the same time slowdown increased execution time of all tasks.

Co-runner

set

Speed Exec

time

{} 1 4

{red} 0.5 8

{green} 0.45 8.88

{red,green} 0.25 16

Cblue=4

20

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

Schedulability

analysis

{yes,no}
Obtain taskset

Parameter

(e.g., through

measurements)

Taskset

parameters

21

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

Schedulability

analysis

{yes,no}
Obtain taskset

Parameter

(e.g., through

measurements)

Limitation: Scalability

Advantage: Able to offer real-time guarantee even for h/w that is

not documented (assuming that task parameters are OK)

Taskset

parameters

22

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

MemGuard
What is the problem?

Tasks on different processors may access the memory bus
simultaneously; then one has to wait.

How does MemGuard work?

For each task, assign a budget and a period associated with that

budget. At run-time, the number of memory accesses that a task is
allowed to perform in a time interval equal to the period is at most the
budget; if exceeded, then the task is suspended.

Pro

Provides some temporal isolation wrt to memory bus

Con

Overly pessimistic; Designed only for soft real-time

23

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

PREM
What is the problem?

Tasks on different processors may evict each other’s cache blocks and
then use other resources in the memory system.

How does PREM work?

Structure a task into three phases. 1st phase: fetch data; 2nd phase:
perform computation; 3rd phase: Write back. Memory accesses that
result in cache misses are not allowed in the second phase.

Pro

Provides temporal isolation wrt to all resources; works for hard
real-time

Con

Assume working set of a task fits in local memory; typically requires
specialized hardware (scratchpad memory)

24

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

PRET
What is the problem?

Today’s processors are designed for high average-case performance
rather than time-predictability.

How does PRET work?

Don’t use caches. Use multithreading to hide memory latency.

Pro

Provides temporal isolation wrt to all resources; works also for hard
real-time

Con

Requires specialized hardware; does not work for COTS processors

25

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Summary

Preliminary Solutions
• Partitions

• Coordinated Partitioning

• Shared Partitions

• White / Black Box approaches

Limitations
• Small number of partitions

• Processor documentation not always available

Work Ahead
• Intra-task partitions: shared partitions for lightly used regions

• Increase scalability of black-box approaches

• Unmanaged features / resources:

– Speculative execution

– Memory bus

– I/O

• Parallel tasks

• Tile Processors

26

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

Thanks!

27

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

28

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Kirk89] D. Kirk, “SMART (Strategic Memory Allocation for Real-Time) Cache Design,” RTSS, 1989.

Main idea: The hardware is designed so that a cache is composed of M partitions and one shared pool. There is also a hardware unit called mapping
function which translates each memory access (based on memory address and user id and other info) to a decision on whether the memory access
should operate on the shared pool or one of the partitions (and if so, which partition). A task can be assigned more than one partition. The decision on
how to allocate partitions to tasks is performed with the idea of maximizing the marginal reduction in the utilization of the taskset.

[Wolfe94] A. Wolfe, “Software-Based Cache Partitioning for Real-Time Applications,” International Workshop on Responsive Computer Systems, 1997.
Main idea: Use the virtual-to-physical address translation to make sure that for different processes, the physical addresses generated map to different
cache sets (and hence avoid cache eviction).

[Mueller95] F. Mueller, “Compiler Support for Software-Based Cache Partitioning,” ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Real-Time Systems, 1995.

Main idea: Use the idea in [Wolfe94] but let the compiler do the cache coloring.

[Liedtke97] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-controlled cache predictability for real-time systems,” RTAS, 1997.
Main idea: Similar to [Wolfe94] but with OS perspective.

[Bellosa97] F. Bellosa, “Process Cruise Control: Throttling Memory Access in a Soft Real-Time Environment,” Technical Report, University of Erlangen-
Nürnberg, 1997.

Main idea: If a given process performs more accesses to the memory bus than it is allowed, then the process is slowed down (by having the TLB
miss handler executing NOP instructions).

[Schönberg03] S. Schönberg, “Impact of PCI-bus load on applications in a PC architecture,” RTSS, 2003.
Main idea: Compute the slowdown (from DMA accesses causing memory bus accesses which contend with the program’s accesses on the memory
bus) of the execution of a program

[Edwards07] S. Edwards and E. Lee, “The Case for Precision Timed (PRET) Machine,” DAC, 2007.
Main idea: Hw and sw abstractions need to change to be time predictable; e.g., cache should be replaced with scratchpad.

[Rosén07] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus Access Optimization for Predictable Implementation of Real-Time Applications on
Multiprocessor Systems-On-Chip,” RTSS’07.

Main idea: Create a TDMA bus schedule according to the needs of a program (both message passing and cache misses).

[Pellizzoni07] R. Pellizzoni and M. Caccamo, “Toward the Predictable Integration of Real-Time COTS based Systems,” RTSS’07.
Main idea: Find a bound on the number of cache misses of a program and a bound on the number of front-side bus accesses from I/O device and
compute additional execution time of program. Round-robin bus. Also, perform policing of I/O device.

29

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Steffens08] L. Steffens, M. Agarwal, and P. Wolf, “Real-Time Analysis for Memory Access in Media Processing SoCs: A Practical Approach,”

ECRTS, 2008.

Main idea: Analyze cumulative delays of cache misses (low latency streams) using network calculus and also consider message passing.

Configure enforcement. Simulation-based approach to obtain cumulative delays of cache misses.

[Schliecker08] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, R. Ernst, “Reliable Performance Analysis of a Multicore Multithreaded

System-on-Chip,” CODES+ISSS, 2008.

Main idea: Compute cumulative delay of memory accesses considering contention on the memory bus. Assume work-conserving memory bus

but except from that, make no assumption on arbitration.

[Pellizzoni08] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of CPU and I/O Transactions in COTS-based Embedded

Systems,” RTSS, 2008.

Main idea: Extension of [Pellizzoni07]. Intel Core2. Implementing the policer.

[Bui08] B. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of Cache Partitioning on Multi-Tasking Real-Time Embedded Systems,” RTCSA,

2008.

Main idea: Use genetic programming to decide how many cache colors a task should have.

[Bourgade 08] R. Bourgade, C. Ballabriga, H. Cassè, C. Rochange, and P. Sainrat, “Accurate analysis of memory latencies for WCET

estimation,” RTNS, 2008.

Main idea: DRAM memories are organized as banks with one row buffer for each bank. If a memory access has a memory address such that

for the bank that holds that data, its row contains the data to be accessed, then the memory latency is small; otherwise it is large. This paper

considers this effect in WCET analysis.

30

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Andersson09] B. Andersson, A. Easwaran, and J. Lee, “Finding an Upper Bound on the Increase in Execution Time Due to Contention on the

Memory Bus in COTS-Based Multicore Systems,” RTSS-WIP, 2009.

Main idea: Model the memory bus of COTS multicore as work-conserving (cache misses). Obtain model from traces.

[Paolieri09] M. Paolieri, E. Quiones, F. Cazorla, G. Bernat, and M. Valero, “Hardware Support for WCET Analysis of Hard Real-Time Multicore

Systems,” ISCA, 2009.

Main idea: Create hardware that makes timing predictable. Use TDMA bus and h/w cache partitioning. Implement a WCET computation mode

(which ensures that that time a memory operation takes is equal to its maximum).

[Kinnan09] L. Kinnan, “Use of multicore processors in avionics systems and its potential impact on implementation and certification,” DASC,

2009.

Main idea: General discussion on the topic. Mentions the importance of service history. Mentions that cache coherency protocols can operate

much faster in multicores than in multiprocessors on separate chips. Mentions that contention/eviction on a shared L2 cache is particularly

severe if two tasks on different processor cores run the same software synchronized (this might be an issue if a multicore is used to achieve

fault-tolerance). Also points out that certification requires transparency of hardware but chip makers typically do not want to disclose details.

Points out that processor cores within a multicore share clock signals and power signals and hence are less fault tolerant than multiprocessors

implemented with multiple chips.

31

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Pellizzoni10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele, “Worst Case Delay Analysis of Memory Interference in

Multicore Systems,” DATE, 2010.

Main idea: Compute upper bounds on extra execution of a task due to bus contention. Assume TDMA scheduling of tasks. Assume different

types of bus arbitration (RR,FCS,priority).

[Schranzhofer10] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo, “Worst-Case Response Time Analysis of Resource

Access Models in Multi-Core Systems,” DAC, 2010.

Main idea: Extend [Pellizzoni10] with new models for accessing shared hardware resources; one of them is “dedicated phases” which only

allows implicit-communication in the beginning and end of a superblock. Use TDMA bus.

[Pellizzoni10] R. Pellizzoni and M. Caccamo, “Impact of Peripheral-Processor Interference on WCET Analysis of Real-Time Embedded

Systems,” IEEE Transactions on Computers, 2010.

Main idea: Extend [Pellizzoni07] to a journal article.

[Chattopadhyay10] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling Shared Cache and Bus in Multi-cores for Timing Analysis,”

SCOPES, 2010.

Main idea: Analyze shared cache and memory bus jointly. Assume TDMA bus and use abstract interpretation in cache analysis. Consider an

application comprises multiple tasks with potentially precedence constraints between these tasks. Non-preemptive partitioned scheduling.

[Fuchsen10] R. Fuchsen and R. Winterheim, “How to address certification for multi-core based IMA platforms: current status and potential

solutions,” DASC, 2010.

Main idea: Measure slowdown of execution because of sharing resources in the memory system.

[Lv10] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining Abstract Interpretation with Model Checking for Timing Analysis of Multicore Software,”

RTSS, 2010.

Main idea: Describe a program with a control flow graph (CFG) and use abstract interpretation to classify memory accesses in each basic

block and then formulate a timed automaton for each task with each basic block being a sequence of locations and then analysis bus

contention delay with a Timed-Automata model checker (Uppaal).

32

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Dasari11] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and Jinkyu Lee, "Response Time Analysis of COTS-Based Multicores

Considering the Contention on the Shared Memory Bus," TrustCom, 2011.

Main idea: Compute worst-case response times of tasks making no assumption on the arbitration policy for the memory bus except assuming

that the memory bus is work-conserving.

[Rosén11] J. Rosén, C. F. Neikter, P. Eles, Z. Peng, P. Burgio, and L. Benini, “Bus Access Design for Combined Worst and Average Case

Execution Time Optimization of Predictable Real-Time Applications on Multiprocessor Systems-On-Chip,” RTAS’11.

Main idea: Similar to [Rosén07].

[Yoon11] M.-K. Yoon, J.-E. Kim, L. Sha, “Optimizing Tunable WCET with Shared Resource Allocation and Arbitration in Hard Real-Time

Multicore Systems,” RTSS, 2011.

Main idea: Use special hardware that provides predictable WCET. Consider a TDMA memory bus so that the total utilization of the taskset

is minimized (e.g., a task with small period and/or many memory accesses should receive more slots in the TDMA schedule).

[Chattopadhyay11] S. Chattopadhyay and A. Roychoudhury “Scalable and Precis Refinement of Cache Timing Analysis via Model Checking,”

RTSS 2011.

Main idea: Extend WCET and CRPD analysis to use model checking for better precision.

[Radojkovic11] P. Radojkovic, S. Girbal, A. Grasset, E. Quinones, S. Yehia, and F. J. Cazorla, “On the evaluation of the Impact of Shared

Resources in Multithreaded COTS Processors in Time-Critical Environments,” ACM Transactions on Architecture and Code Optimization, 2011.

Main idea: Create stressing-benchmarks that stress different types of shared resources (e.g. instruction fetch stage in pipeline, later stages

in pipeline, L1 cache, L2 cache, memory bandwidth) and find experimentally how much the execution of a pair of stressing-benchmarks is

slowed down when executing in parallel. Also, experimentally find slowdown when an application executes in parallel with one of the stressing

benchmarks.

[Herter11] J. Herter, P. Backes, F. Haupenthal, and J. Reineke, “CAMA: A Predictable Cache-Aware Memory Allocator,” ECRTS, 2011.

Main idea: Memory allocator where a task specifies not only the size of requested memory block but also the cache color it the requested

memory block. This

provides more information to WCET analysis. The allocator is implemented by having one list of free memory blocks per cache color.

33

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Nowotsch12] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in avionics,” EDCC, 2012.

Main idea: Provide a test approach that models the worst-case behavior for the case of concurrent network and memory usage by multiple

applications.

[Mancuso13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-Time Cache Management Framework for

Multicore Architectures,” RTAS, 2013.

Main idea: Use profiling of memory accesses of programs and use it to guide cache allocation. Also, combine page coloring with cache

locking (use page coloring to map frequently accessed pages to certain cache sets and then lock cache blocks of those cache sets).

[Ward13] B. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS,

2013.

Main idea: Use cache coloring and treat cache sets as a shared resource; that is, a task must clock cache sets before starting to execute; then

it can release.

[Wu13] Z. Wu, Y. Krish, and R. Pellizzoni, “Worst-Case Analysis of DRAM Latency in Multi-Requestor Systems,” RTSS, 2013.

Main idea: Model the time it takes for a memory operation to be performed considering DRAM timing parameters. Then use this to compute

upper bounds on cumulative delay that a program can experience.

[Suzuki13] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar, “Coordinated Bank and Cache Coloring for

Temporal Protection of Memory Accesses,” ICESS, 2013.

Main idea: Setup the virtual-to-physical translation so that different tasks access different cache sets and different memory banks. This

provides cache and memory bank isolation.

34

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Kim14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, “Bounding Memory Interference Delay in COTS-based Multi-Core

Systems,” RTAS, 2014.

Main idea: Model the time it takes for a memory operation to be performed considering DRAM timing parameters. Then use this to compute

upper bounds on response times. Assume that a task ti performs at most Hi memory accesses.This work differs from [Wu13] in that

(i) schedulability analysis is performed (not just compute cumulative latency) and (ii) memory bank sharing is allowed.

[Lampka14] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, “A formal approach to the WCRT analysis of multicore systems

with memory contention under phase-structured task sets,” Real-Time Systems, 2014.

Main idea: Use PREM (that is a program is divided into three parts, fetch data, compute, and write-back result) and partitioned non-preemptive

scheduling. Consider the software as consisting of superblocks; a superblock has upper and lower bound on execution time and memory

accesses. For each processor core, find a function that is an upper bound on the number of memory accesses in a time interval of duration t.

For a processor core under analysis (denoted p), describe the upper bound of the number of memory accesses from other processor cores

and let us timed automaton represent the events that memory accesses are generated; this timed automaton must respect the upper bound

as mentioned. Then model the bus arbitrator as a timed automaton. And model a superblock as a timed automaton as well. Then state the

query that for all possible execution, the response time is at most certain bound. Do binary search on this upper bound. This gives us upper

bound on the response time. The paper shows that almost tight bounds can be computed.

[Ye14] Y. Ye, R. West, Z Cheng, and Y. Li, “COLORIS: A Dynamic Cache Partitioning System Using Page Color,” PACT, 2014.

Main idea: Use cache partitioning implemented in software (using the virtual-to-physical translation mechanism) and change the partitioning at

run-time (in order to support more tasks and so support changes in the memory footprint).

[Nowotsch14] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis

Leveraging Runtime Resource Capacity Enforcement,” ECRTS, 2014.

Main idea: Use static scheduling (TDMA) to schedule tasks. Assume a round-robin bus. Compute the execution times of tasks.

35

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Yun15a] Heechul Yun,, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha, "Memory Bandwidth Management for Efficient

Performance Isolation in Multi-core Platforms," IEEE Transactions on Computers, 2015.

Main idea: Perform policing on the memory bus. The available bandwidth is time-varying because some memory operations are fast (e.g., row

hit) and others are slow (e.g., row miss). For soft real-time: reclaim unused memory bandwidth; for hard real-time: disable the reclamation. The

sum of bandwidth should be kept below a certain threshold (e.g., 1.2GBps); this is typically much smaller than peak bandwidth (6.4GBps in the

system considered in the article).

[Graciolo15] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frölich, and R. Pellizzoni, “A Survey on Cache Management Mechanisms for Real-

Time Embedded Systems,” ACM Computing Surveys, 2015.

[Yun15b] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems,”

ECRTS, 2015.

Main idea: Modify [Kim14] so that the model the analysis is based on allows read-prioritization and multiple outstanding memory requests.

[Yun15c] H. Yun and P. K. Valsan, “Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Processors,” OSPERT, 2015.

Main idea: Evaluate the impact of co-runners on execution times. Do this evaluation on three platforms: ARM7, ARM15, and Intel Nehalem.

Find that in some cases the execution time can increase 103 times. Even with cache partitioning, the execution time can increase 14times; this

is because of the Miss Status Holding Register (MSHR).

[Panchamukhi15] S.A. Panchamukhi and F. Mueller, “Providing Task Isolation via TLB Coloring,” RTAS, 2015.

Main idea: Use the compiler/linker to allocate code and data of each task so that when the tasks run, TLB entries of one task does not evict

TLB entries of another task.

36

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2018 Carnegie Mellon University. All Rights Reserved.

References
[Li16] Y. Li, B. Akesson, K. Lampka, and K. Goossens, “Modeling and Verification of Dynamic Command Scheduling for Real-Time Memory

Controllers,” RTAS, 2016.

Main idea: Model many of the details of the memory controller (timing specifications by JEDEC) as a timed automaton. Then describe a

network of timed automata and compute the worst-case response time of a task.

[Sha16] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni, H. Yun, R. B. Kegley, D. Perlman, G. Arundale, and R. Bradford,

“Real-Time Computing on Multicore Processors,” Computer, 2016.

Main idea: A framework single-core equivalence (SCE) involving (i) cache locking, (ii) bank coloring, and (iii) memory guard (policing the

memory accesses). The memory guard makes the execution time of one task independent of the memory bus contention of other task but it

comes at the cost of low memory bandwidth (1Gbps). SCE uses an I/O partition. SCE assumes that the h/w supports cache locking and

performance monitoring counters. With SCE, the execution time of a task can increase by approximately 50% (see Figure 5) for 8 cores.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by

Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.

Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by

Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.

Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[CAST32A] Certification Authorities Software Team (CAST), Position Paper, CAST-32A, Multi-core Processors, COMPLETED November 2016

(Rev 0), Available at https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

[Sha16b] L. Sha, M. Caccamo, G. Shelton, M. Nuessen, J. P. Smith, D. Miller, R. Bradford, R. Kegley, D. Perlman, J. Preston, J. W. Wlad, M.

Storr, D. DeNiz, S. Chaki, M. Klein, B. Andersson, I. Bate, A. Burns, S. Palin, S. Bak, D. Kingston, M. Clark, T. Kim, and E. Pak, “Position Paper

on Minimal Multicore Avionics Certification Guidance,” August 4, 2016.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

