

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

GOVERNANCE OF A SOFTWARE PRODUCT LINE:
COMPLEXITIES AND GOALS
Robert Ferguson
Senior Engineer
Software Solutions Division

November 2018

Introduction

My prior blog post on product lines in DoD sustainment described the complexity of contractual rela-

tionships in a DoD software product line. Recall that a software product line is a collection of related

products with shared software artifacts and engineering services that has been developed by a single

organization in support of multiple programs serving multiple missions and different customers. A prod-

uct line will reduce cost of development and support. In exchange, it can be a cause of conflicting pri-

orities between customers much like the similar problem in joint program management. This blog post

describes a set of guidelines and goals for establishing governance and monitoring the product line for

long-term success.

The Complexity of Sustaining a Software Product Line

In this article, I refer to the core components and services as the platform. In the context of DoD ac-

quisition and sustainment, each independent DoD program serves a unique mission. Each program

benefits from the use of the platform components. Each program also develops its own unique capa-

bility to support its mission.

The Venn-diagram below illustrates the situation. The central circle represents the core platform com-

ponents and services. Each of the three larger circles represents a single program. Each program uses

some portion of the platform capability to develop its mission capability. A portion of the central plat-

form may lie outside the context of a specific program that does not require some specific function. The

programs may also overlap representing the potential for sharing additional capability across multiple

programs. This shared capability also represents the potential to be captured into the platform compo-

nents and services.

https://insights.sei.cmu.edu/sei_blog/2018/10/decisions-for-sustaining-a-software-product-line.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure: Shows programs sharing the core platform

Analysis of the Venn diagram reveals the complexity of decisions in the product line:

 Product releases must be coordinated between programs and platform.

 The combined programs provide funding for platform sustainment and development.

 The platform is responsible for recapture of technology developed by a program when the tech-

nology can support additional programs.

 The platform is responsible for “commonality and customization” capabilities of the product line.

Specific Goals of the Product Line Governance Function

Governance of the product line must support the following goals and identifiable measurable outcomes:

1. Quality: Core components have exceptionally high quality. Defect density of core compo-

nents should be typical of best-in-class products when compared to industry benchmarks for

software intensive products. The required high quality of the core can be measured. Extra

costs are associated with resolving core defects for two reasons. First, programs must demon-

strate that bugs are not part of program software and should be resolved instead by the plat-

form developer. Second, the platform developer must then apply the fixes to the other pro-

grams to maintain the integrity of the product line.

2. Cost of Sustainment: Sustainment costs of platform are reduced for participating pro-

grams. The program community should see the cost of sustaining the platform as a fraction of

a benchmark estimate for the platform cost. Working our way through an example, suppose

the core is 1 million lines of code (MLOC), and there are five programs using the product

line. We estimate the annual benchmark cost of the platform is 16 people (10 for code, 4 for

testing, 1 for configuration management, 1 for documentation). We estimate the cost of sup-

porting a single program is two additional people for liaison and configuration. Supporting 5

programs the annual cost looks like the following.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Platform sustainment cost must include cost of support to programs:

Benchmark Cost + overhead*Number of programs=Platform Cost

Example: 16+2*5 = 26 people

Program cost of platform components is reduced by cost sharing but adds some overhead:

 Platform Cost/number of programs + overhead = Program Cost

 Example: 16/5 +2 = 5.2 people

3. Reduced time to add features to programs: New features in the core can be rapidly de-

ployed to multiple programs in the product line.

Rapid deployment is achieved by product design that isolates variability to a smaller number

of specific components. It is also achieved because propagating an improvement to one pro-

gram simplifies the effort required to provide the same functionality to another program. The

high quality of the core platform contributes significantly to the reduced time to deliver.

4. Reduced time to distribute capability between programs. The core platform has the

strategic capability to recapture newly developed program capabilities into the core

platform.

Capability captured by the core platform provides all the product line capabilities to other

programs (documentation, testing, etc.). Cost of recapture should be weighed against the cost

of changing multiple individual programs.

5. Releases occur on a regular schedule. Releases are synchronized within a reasonable

timeframe to avoid increasing the difficulty of managing multiple different configura-

tions of the core.

Multiple configurations of the platform add complexity to the sustainment and support, and,

thus, increase costs and cause quality problems.

Each of the above five goals suggests potential measures.

1. Measure defect density, frequency of bug reports and estimate changes in mission-capable

availability due to defect removal.

2. Monitor annual cost of platform sustainment and cost per program for support of platform

3. Track time to propagate technology to other programs after initial development.

4. Track time to recapture program developed capability into platform functionality.

5. Releases from platform occur within agreed schedule. Number of configurations of platform

is controlled.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Developing a Governance Policy

Governance requires a high-level decision authority, which often contributes to a slower decision pro-

cess. Therefore, policy must be carefully articulated to allow most decisions to be made at the platform

or program level to minimize the effects of the slower process.

The policy should address the following:

Programs share funding of core platform support. Funding of the platform can be considered as

similar to a license fee for normal support in implementing program changes. Certain program change

requests may require changes to the core platform. These changes may incur additional costs that must

be supported by the program office. Usually, core platform changes should be supported by the program

office requesting the change. However, changes to the underlying technology may need broader finan-

cial support. The product line governors should be prepared to help negotiate this larger scale request

across the program community.

Programs and core platform plan and execute a regular release cycle, probably between 12 and

24 months. While the actual program releases are all independent, any discussion of changes to platform

core, including documentation, testing and support, should be discussed jointly by programs. If pro-

grams operate independently, then the core platform will struggle to synchronize releases and will ex-

perience new sources of rework. The other participants in the product line need an opportunity to nego-

tiate schedule concerns.

Platform team leads release decisions for changes to the core affecting commonality and custom-

ization. Product lines are known for the ability to isolate product variation for customization. In fact,

the concept of variability separates product lines from small-grained reuse. See A Framework for Soft-

ware Product Line Practice, V5 (page 6). Changes to core products affect all elements of the product

line—code, documentation, test cases, etc. Insistence by programs on making frequent changes can

adversely affect the careful attention to the quality and support for variability suggested by the preceding

reference.

Programs and platform jointly evaluate new technology to determine whether changes to the core

are appropriate. Changes to system technology are often suggested to improve various aspects of sys-

tem performance, safety or security. Changing the core platform to support the technology will affect

core architecture, components, and modeling (variability and customization). These are expensive ef-

forts, often requiring investments across multiple releases. See Framework paper page 9.

Platform uses a consistent estimation method for changes to the core platform. The product line

concept introduces some additional complexity since the core platform essentially develops an infra-

structure supporting the various programs. The governors must understand the variable parts of the cost

equation when funding the core platform. A useful paper describing the estimation process was devel-

oped by Rolls-Royce. See Nolan, et. al A Case for Product Lines.

https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_495381.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_495381.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_495381.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/j.2334-5837.2016.00184.x

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Looking Ahead: A Shared Commitment

A product line in the DoD requires a shared commitment across a number of programs. Because each

program has its own program management office (PMO), some governance structure is needed to main-

tain the alignment of goals, thus keeping the product line viable across multiple releases of the products.

In the next post in this series, I will describe a decision process for release management. It is designed

to support both a single product and the core program for a product line.

Additional Resources

 Read the first post in this series.

 Read the series by Mike Phillips on Efficient and Effective Software Sustainment.

 View the podcast Software Sustainment and Product Lines by Mike Phillips and Harry Levinson.

Contact Us

Software Engineering Institute

4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479

Web: www.sei.cmu.edu

Email: info@sei.cmu.edu

https://insights.sei.cmu.edu/sei_blog/2018/10/decisions-for-sustaining-a-software-product-line.html
https://insights.sei.cmu.edu/author/mike-phillips/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=523821
http://www.sei.cmu.edu/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Insti-

tute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be

construed as an official Government position, policy, or decision, unless designated by other documenta-

tion.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF

ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-

tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for

internal use is granted, provided the copyright and “No Warranty” statements are included with all repro-

ductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed

in written or electronic form without requesting formal permission. Permission is required for any other ex-

ternal and/or commercial use. Requests for permission should be directed to the Software Engineering In-

stitute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM18-1332

