

REV-03.18.2016.0

Modeling the Effects of Software-Related

Decisions on Early System Cost Estimates:

Experience Report from the Software

Attributes Trade-off Tool (SWATT) Project

Sarah Sheard

Rita Creel

Patrick Donohoe

Michael J. Gagliardi

Michael D. Konrad

Gabriel A. Moreno

September 2018

SPECIAL REPORT

CMU/SEI-2018-SR-029

Program Name

[Distribution Statement A] Approved for public release and unlimited distribution

http://www.sei.cmu.edu

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Insti-

tute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be

construed as an official Government position, policy, or decision, unless designated by other documenta-

tion.

References herein to any specific commercial product, process, or service by trade name, trade mark, man-

ufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or fa-

voring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,

MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF

ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-

tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for

internal use is granted, provided the copyright and “No Warranty” statements are included with all repro-

ductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed

in written or electronic form without requesting formal permission. Permission is required for any other ex-

ternal and/or commercial use. Requests for permission should be directed to the Software Engineering In-

stitute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

ATAM® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity.

DM18-1072

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[DISTRIBUTION A] Approved for public release: distribution unlimited

Table of Contents

Acknowledgments iv

Executive Summary v

Abstract vi

1 Introduction 1

2 SWATT Project Results 3
2.1 The Open Architecture Configurable Rating Checklist Tool 3
2.2 The Cost Estimation Tool 3
2.3 Using the SWATT Tool Set 6

3 FY2016 Summary of Activities and Results 7
3.1 Software Cost Estimation tool 7
3.2 Computing estimated costs 8
3.3 Demonstration: Scenarios 9

4 FY2017 Summary of Activities and Results 13
4.1 Security Checklist 13
4.2 Quadcopter Security Issues and Cost of Architectural Improvement 15
4.3 Cost Estimation Results 16

5 Observations and Lessons Learned 19
5.1 Caveat 19
5.2 Observations and lessons learned from the SWATT project 19

6 Future Work 22

Appendix A. Demonstration slide set 23

Appendix B. Software package: Cost estimation using COCOMO 50

Appendix C. Security Architecture (SA) Workbook 55

Appendix D. Initial Security Analysis 58

Appendix E. Quadcopter architecture as revealed by code 62

References 63

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

[DISTRIBUTION A] Approved for public release: distribution unlimited

List of Figures

Figure 1. Estimation of Effort using COCOMO II 4

Figure 2. Using COCOMO II in Estimation Tool 5

Figure 3. Inputs to Estimation Tool 5

Figure 4. Output of Estimation Tool 6

Figure 5: SWATT Approach in FY2016 8

Figure 6: Cumulative Estimated Yearly Software Costs – Baseline Case 9

Figure 7: Estimated Costs with Open Architecture Risks Factored In 10

Figure 8: Estimated Costs of Re-Architected and Relocated FCP Software 11

Figure 9: Life Cycle Cost Comparison of Two Architecture Trajectories 12

Figure 10: SWATT Approach in FY2017 13

Figure 11. Estimation results for 15 years 17

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

[DISTRIBUTION A] Approved for public release: distribution unlimited

List of Tables

Table 1: Security Mechanism Categories and Evidence Criteria 14

Table 2. Cost Estimation Results, first 8 years 16

Table 3. Cost Estimation Results, last 7 years and total 17

Table 4. Actual effort implementing change in drone software 18

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[DISTRIBUTION A] Approved for public release: distribution unlimited

Acknowledgments

The authors gratefully acknowledge:

 Technical assistance and/or review feedback from Chris Alberts, Felix Bachmann, Stephen

Blanchette, Grady Campbell, Brad Clark, Roman Danyliw, Neil Ernst, Peter Feiler, Scott

Hissam, Nancy Mead, Tom Merendino, Linda Northrop, Mike Phillips, Fred Schenker,

Forrest Shull, Mary Catherine Ward, and Carol Woody.

 Logistical assistance from Heidi Brayer, Julie Cohen, Jill Diorio, Michele Falce, Kevin Fall,

Mark Klein, Jim Over, and Jerry Pottmeyer.

 Editorial contributions from Tamara Marshall-Keim.

 Collaboration and contributions from our collaborating organization. Their contributions are

highly valued.

 Patience and additional resources for this report from David Zubrow, Charles Holland, and

others on the SEI management team.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

[DISTRIBUTION A] Approved for public release: distribution unlimited

Executive Summary

Although today’s major systems rely heavily on software-enabled capabilities, many defense pro-

grams look first at the physical items to be developed, assuming the contractors for those items will

provide all needed software for the capability. But software by its nature spans physical items. As a

result, software engineering considerations are not addressed in early system trades.

Software is unduly affected by hardware-first early decisions partly because the main way information

is communicated today, within and external to a military system, is through software. Software is re-

quired to knit together the information about programmatic decisions made by different contractors,

which tend to be optimized to their physical components. This may make the software design unable

to be efficient and easy to modify; in fact, constraints may prevent the software from meeting appro-

priate quality goals, as quality attributes are enabled by the software architecture. The resulting design

may have significantly worse software complexity, quality, and life-cycle cost than another design

could have. Thus, uncertainty, risk, and cost overruns are practically designed-in on such programs.

If software concerns are addressed at the same time as the physical solution is conceptualized, it is

much easier to choose a slightly different physical system whose software architecture is tuned to opti-

mize the ability to provide required capabilities.

The Software Attributes Trade-off Tool (SWATT) project was a two-year (FY2016 and FY2017)

investigation into the feasibility of incorporating the effects of software architectural decisions into

early estimates of system lifecycle costs, using the expertise of a collaborating government organiza-

tion.

SWATT began in FY2016, with a focus on how the openness of a software architecture affects system

costs. The project developed a proof-of-concept implementation and demonstrations for a collaborat-

ing government organization. The FY16 SWATT project created a modified version of an open archi-

tecture configurable checklist tool and an implementation of the Constructive Cost Model (COCOMO

II) estimation equations. The parameters of the cost model are adjusted by the quantified ratings of

openness and security that are computed by the checklist tool. The tool chain permits reasoning about

the effects of architectural modifications on system costs in several ways: by comparing a baseline

system with one modified to support openness or security; by comparing different architectural ap-

proaches to achieve the same architectural quality; or by investigating the tradeoffs of openness versus

security.

The FY2017 work focused on the domain of drone avionics and extended the cost focus to include

some aspects of the architectural quality attribute of security.

Ultimately, the aim of this work is to equip early program staff with as much insight as possible into

the implications on the software development effort of early system decisions. Programs sometimes

are unaware that early program decisions have specific software architectural implications. A compre-

hensive SWATT-like tool would clarify these early decisions, and quantify them to the point where

their downstream effects on system lifecycle costs could be conclusively demonstrated.

This report also includes a number of lessons learned on the SWATT project.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

[DISTRIBUTION A] Approved for public release: distribution unlimited

Abstract

This report describes the results obtained and the experiences gained on a two-year (FY2016-2017)

SEI project named the Software Attributes Trade-off Tool (SWATT) project that investigated the rela-

tionship of software design decisions to key system-level performance parameters and costs. The

FY2016 project created a tool that takes the results of a software openness checklist and converts it

into an estimate of software development and maintenance costs. The FY2017 project evaluated how

to address the security issues that mission sequences create, when the scenarios to be used depend on

architectural features. With significant analyst assistance, this tool can be used first to determine what

security concerns a given software architecture may have and then to estimate development and

maintenance costs for a number of architectural options that improve security countermeasures.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION A] Approved for public release: distribution unlimited

1 Introduction

In the pre-Milestone-A phase of the system engineering lifecycle, analysts compare potential solutions

in trade-off studies. The DoD has invested significant funds to improve modeling and simulation of

these solutions, enabling millions of design choices to be evaluated against required capabilities. The

goal is to narrow the solution space to the most promising designs long before investing in physical

prototypes. However, the design choices modeled today concentrate on physical items and almost

entirely exclude software considerations. As a result, decisions are made that intensify software devel-

opment complexity, increase the difficulty of developing software that meets critical system require-

ments, and increase system lifecycle cost and risk.

Because software provides an increasingly large and critical amount of capability for DoD systems, its

lack of representation in such early decision making is concerning. A reason given for such exclusion,

that the contractors who are selected to build the system will also build its component parts including

software, implies that software can be handled like other materials. However, our experiences have

shown that software’s size, extent (connecting everything together) and dynamism (frequent changes)

increasingly have a substantial impact on a system’s capabilities and cost. For this reason, the Soft-

ware Analysis Trade-off Tool (SWATT) project was initiated to clarify in what ways early decisions

impact software and how this affects system performance and cost.

The SWATT project (FY2016 and FY2017) investigated the feasibility of incorporating the effects of

software architectural decisions into a tool chain that models the downstream consequences of those

decisions on a system’s operation and maintenance (O&M) costs over a period of several years

[Sheard 2015, Sheard 2016]. The SWATT project toolkit can be used to analyze software costs (at a

rough order of magnitude) for any high-level software architecture, including software architectures

that are newly proposed, updates to existing, or legacy.

The SWATT work was performed in collaboration a government organization that is automating the

analyses used to select system concepts for potential development. Their computers run a large num-

ber of complex programs that take thousands of physical parameters as input, calculate projected sys-

tem performance, and output system parameters. The results narrow the field from hundreds of thou-

sands of design concepts to a few that can be fleshed out more fully. Currently, all the input

parameters used reflect behaviors and contributions of physical components: None reflects software.

The SWATT project toolkit combines a modified version of an open architecture configurable check-

list tool with an implementation of the Constructive Cost Model (COCOMO II) parametric estimation

equations [Boehm 2000, USC 2000] to generate cost estimates that take into account the openness and

security of the architecture. The checklist tool provides the architectural “scores” that are used to re-

fine the inputs to the cost model. In this way it is possible to estimate the costs of architectural deci-

sions about openness and security against baseline cost estimates generated without the refined inputs.

The tool can produce graphical representations of how the estimated costs change over time. The de-

sired outcome is to produce evidence that including software in a system’s early trade-off decisions

can give a better system architecture that has less risk and less cost (because of avoided rework) over

time.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION A] Approved for public release: distribution unlimited

These initial capabilities of the SWATT toolkit were established in FY2016. The existing open archi-

tecture checklist tool was an Excel spreadsheet. This was adapted for use on a notional architecture for

Army-type fighting vehicles (e.g., a tank). The inputs to the tool were characteristics of the architec-

ture; outputs were ratings on a 0-5 scale of the architecture in terms of modularity, layering, and inter-

face standards. Then these refined parameters were fed into the cost estimation tool, the COCOMO II

model implemented in the R programming language. The FY2016 work included demonstrations and

a proof of concept for our collaborators [Gagliardi 2016].

FY2017 work focused on a different domain (drone avionics) and extended the FY2016 work to study

the architectural quality attribute of security. Analogous to the way in which architectural decisions

affect the openness of a system, they also affect many other quality attributes, including security. The

SWATT team created a checklist of security mechanisms to address security concerns in the software

architecture of a commercial mini drone (quadcopter1), and incorporated it into the tool to gauge the

effects of security-related architectural changes on estimated system costs.

The remainder of this report provides more details on the SWATT project and on the evolution and

use of the tools during the two years of the project. Section 2 describes the elements of the SWATT

project’s tool chain. Section 3 summarizes the project activities and results obtained in FY2016; Sec-

tion 4 does the same for FY2017. Section 5 provides some observations and lessons learned from the

SWATT project experience, and Section 6 briefly discusses possible future work.

1 A quadcopter, also called a quadrotor helicopter or quadrotor, is a multirotor helicopter that is lifted and

propelled by four rotors. (Wikipedia)

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION A] Approved for public release: distribution unlimited

2 SWATT Project Results

The tools developed by the SWATT project in FY2016 include a slightly-modified open architecture

configurable checklist tool (originally created for a government organization) and a cost estimation

program that uses the COCOMO parametric estimation equations along with ratings from the check-

list tool. The checklist tool is an Excel spreadsheet, and the cost estimation tool is an implementation

of the Constructive Cost Model (COCOMO II) in the R programming language as a Jupyter Note-

book. The tools developed in FY2017 exist in a draft state; including a comparable security architec-

ture checklist tool. The novelty of the SWATT approach is the linking of architecture ratings to a cost

model to produce cost estimates that incorporate software architectural considerations.

2.1 The Open Architecture Configurable Rating Checklist Tool

The Open Architecture Configurable Rating Checklist is an existing tool developed by SEI for a gov-

ernment organization. It is not intended as a self-assessment tool for program offices. Rather, it is in-

tended to be used by an objective observer speaking with project architects to help assess to what ex-

tent a system with the proposed software architecture will be able to meet specific program objectives.

The assessment is applied to each “key software component” in a software architecture. The inputs to

the assessment are

 A high-level software architecture that identifies key software components, their relationships,

and properties. (Software architects provide the necessary explanations and justifications).

 An agreed-upon rating for each criteria (0 to 5, with 5 being the highest) per attribute, per compo-

nent. (Inspection of artifacts and interviews of system and software artifacts provide the ratings.)

The output is a calculated set of weighted scores (0 to 5, with 5 being the highest) for each key attrib-

ute (Modularity, Layering, and Interface Standards) of an assessed software component. The weighted

scores (also called ratings) are then used to fine-tune the parameters of the cost estimation tool. (The

original checklist tool also included a fourth key attribute, namely Use of Open and Accessible Tools,

which this project does not use, as it was deemed less germane.)

2.2 The Cost Estimation Tool

COCOMO II is a well-established, validated cost-estimation model [Boehm 2000, USC 2000]. The

cost-estimation part of the SWATT tool chain is an implementation of the COCOMO II equations in a

tool (an R program in the Jupyter Notebook application) designed to interface easily with our collabo-

rating organization’s computers (which the scientists program with the R programming language and

the Jupyter Notebooks application).

An algorithm was created that uses the ratings from the checklist tool to fine-tune the values of a

subset of variables used in the COCOMO II equations, in order to more accurately reflect the effect of

open architecture characteristics of a component on the software development effort. The variables

chosen for modification were those that would be most affected by architectural characteristics. Our

modifications of those variables was limited, in a range set up in the cost estimation program: if the

value of the variable was within a range depending on the architecture ratings, we left it alone; if it

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION A] Approved for public release: distribution unlimited

was outside the range we changed the value to be the closest number that was in range. No modifica-

tions are made to the COCOMO II equations, only to its input parameters, and no changes are made to

the range of values for the affected “component” terms (e.g., terms such as SU, UNFM, CPLX, and

FLEX).2 This interpretation and our modifications of the COCOMO II parameters were approved by

an author of COCOMO II, who also provided other useful suggestions.

The R-program produces the software-related cost estimates that can then be combined with hardware

costs from the our collaborator’s trade space tool to give a more complete picture of estimated costs

than a hardware-only analysis would produce.

Figures 1-4 show our adaptation of the COCOMO II for estimation.

Figure 1. Estimation of Effort using COCOMO II

2 The SWATT overview presentation provides more details on how checklist ratings were mapped to terms in the

COCOMO II equations [Gagliardi 2016].

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION A] Approved for public release: distribution unlimited

Figure 2. Using COCOMO II in Estimation Tool

Figure 3. Inputs to Estimation Tool

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION A] Approved for public release: distribution unlimited

Figure 4. Output of Estimation Tool

2.3 Using the SWATT Tool Set

The SWATT Toolkit demonstration slide package is included here as Appendix A, and the software

set used for the demonstration is included as Appendix B.

The original intent was to use SWATT’s products to estimate the costs of software architectural

decisions for actual early-phase DoD programs. However, disclosure and distribution restrictions with

respect to architecture and data caused the project to resort to using legacy data and a notional soft-

ware architecture for Army fighting vehicles in FY2017, and open-source quadcopter software archi-

tecture in lieu of a military unmanned aerial vehicle (UAV) in FY2017. Despite these limitations, the

proof of concept demonstrated in FY2016 was sufficiently convincing to our collaborators that they

are adapting it for their computers and plan to use it in future estimation efforts.

The next two sections provide more details on SWATT tool chain creation and use in FY2016 and

FY2017.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION A] Approved for public release: distribution unlimited

3 FY2016 Summary of Activities and Results

Work in FY2016 focused on the relationship between openness (“open architecture”) characteristics

of a high-level software architecture and that software’s contribution to system development and

maintenance costs. The open architecture checklist tool was used to assess three open architecture

parameters of a software architecture, on a per-major-software-component (CSCI) basis: modularity,

layering, and the use of interface standards. Ratings for these parameters were elicited through artifact

inspection and through interviews with program system and software architects.

The ratings of the open architecture parameters were used to refine the inputs to the COCOMO II soft-

ware estimation equations3 in the tool that SEI built in R code. The tool estimates the effort needed to

complete the software development and maintenance tasks for a DoD program. With input estimates

of labor rates, the tool converts effort estimates into cost estimates, which can then be combined with

hardware costs from the our collaborator’s trade space tool to give a more complete, software-inclu-

sive, picture of likely downstream program costs based on early decisions.

3.1 Software Cost Estimation tool

An algorithm was created that maps a component’s set of open-architecture-related ratings from the

checklist tool to adjustments in the allowed values of selected variables used in COCOMO II for effort

estimation.

COCOMO II[1] estimates costs by asking questions about different aspects of the software project

(such as software understanding, SU), getting answers such as “Very Low” or “Nominal” for each

variable (both “Effort Multipliers” and “Scale Factors” for development, and “Effort Multipliers” and

“Scale Factors” for maintenance). COCOMO II calls such answers “ratings” for each driver, but in

this document the word “rating” is reserved for the output from architectural checklists, so we are call-

ing them “answers”. When computing the estimate, COCOMO II translates such answers into numeri-

cal values.

In the SWATT estimation software, we modify the allowed COCOMO II answers for specific varia-

bles to account for high (or low) architectural openness. We do not change the effort estimation

equation nor what numerical values are assigned to each answer: we only modify which answers may

be used to rate the COCOMO variables (I.e. if modularity is high, SU is presumed to be high, so all

estimates of SU below High are re-answered as “High”). This interpretation and our modifications of

the COCOMO II variable ratings were reviewed at a meeting with an author of COCOMO II, who

considered the modifications to be basically sound.

3 One of the authors of the COCOMO II model validated the mapping from the architecture ratings to the COCOMO II

parameters.

[1] Gagliardi’s SWATT overview presentation provides more details on how checklist ratings were mapped to terms in
the COCOMO II equations [Gagliardi 2016].

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION A] Approved for public release: distribution unlimited

The COCOMO II variables whose ratings were selected for adjustment were those that would be most

affected by open architectural characteristics. The variables whose ratings were selected for adjust-

ment to reflect the open characteristics of a component were SU, programmer’s unfamiliarity with the

software (UNFM), product complexity (CPLX), and development flexibility (FLEX).[1]

Trajectories. The estimated software cost per year can be compared for two alternative “trajectories:”

1) keeping the legacy architecture, with its high maintenance cost, and 2) continuing to use the legacy

architecture for the time being, while developing a new, more open architecture that will have lower

maintenance costs. The first trajectory involves no development cost and high maintenance cost based

on the original architecture’s lack of openness. The second trajectory adds the cost of rearchitecting

the software as high development cost for the first few years to the continued high maintenance cost

for the old architecture during this time. Once the new architecture is in place, the second trajectory

shows only the lower maintenance cost for the new, open architecture software.

3.2 Computing estimated costs

Figure 5 shows the intended way to use the envisioned SWATT tool chain to compete these estimated

costs. We defined as our system a notional (military) tank with a legacy (non-open) software architec-

ture. For a baseline, one first obtains a naïve estimate of maintenance costs for the current architec-

ture, using the SWATT FY16 cost estimation tool without modifications due to openness. (This tool is

called a “widget” in the figure, though we ultimately moved away from that term as we determined

that our use of the term was inconsistent with the client’s). Then one calculates a more knowledgeable

maintenance cost for the first trajectory by evaluating the openness of the architecture and inputting

the checklist ratings into the SWATT FY16 cost estimation tool. For the second trajectory, one con-

siders how to rearchitect the legacy software to a more open version. The expected cost of rearchitect-

ing becomes the development cost. This rearchitected software is re-evaluated for openness using the

checklist tool, and then the maintenance cost is re-estimated using the SWATT FY16 estimation tool

with input openness ratings.

Figure 5: SWATT Approach in FY2016

[1] Gagliardi’s SWATT overview presentation provides more details on how checklist ratings were mapped to terms in

the COCOMO II equations [Gagliardi 2106].

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION A] Approved for public release: distribution unlimited

3.3 Demonstration: Scenarios

This approach was the basis for demonstration of SWATT conducted for our collaborators, using the

software architecture of the fire control processor (FCP) of a notional fighting vehicle, in this case a

tank. Each demonstration postulated a cost-estimation scenario and then ran the tool to predict the cu-

mulative costs over a fifteen-year period [Gagliardi 2016]. The Demonstration slide set is provided as

Appendix A. The software that performs the calculations below and in Appendix A is provided as

Appendix B.

Scenario 1: A program office acknowledges that the existing FCP software O&M costs are onerous

and wants to estimate those costs over the next fifteen years. In this baseline scenario, the cost estima-

tion tool is executed naïvely: without any modification based on openness as rated by the architecture

checklist tool. Figure 6 shows the cumulative estimated yearly software costs.

Figure 6: Cumulative Estimated Yearly Software Costs – Baseline Case

Thus the maintenance costs, in the absence of any architectural considerations to refine the estimation

process, are estimated at approximately $110M over 15 years.

Scenario 2: In this scenario, open architecture considerations are factored into the cost estimation. A

program office acknowledges that the existing FCP software O&M costs are higher than estimated

and are unsustainable, and that they do not currently have visibility into the factors associated with the

construction of the FCP software that contribute significantly to the O&M costs. They decide to base-

line the existing FCP software architecture risks with respect to open architecture, and account for the

open architecture risks in the cost estimations over the next fifteen years. Figure 7 shows the estimated

cost graph with open architecture risks factored in.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION A] Approved for public release: distribution unlimited

Figure 7: Estimated Costs with Open Architecture Risks Factored In

Now the estimated costs are approximately $200M after fifteen years. Comparing this with Figure 6,

there is an additional $90M, approximately, in O&M costs after fifteen years that result from factoring

in the (not-so-open) open architecture ratings.

Scenario 3: The program office acknowledges that the existing FCP software O&M costs are unsus-

tainable, and now decides that alternative architecture approaches need to be investigated. The alterna-

tive is to re-architect the FCP software to take advantage of expected open architecture benefits. To do

this they decide to relocate the FCP software out of the turret and into the main processing unit of the

vehicle. We redrew the architecture and estimated the size of the new software modules needed to

make this happen. We then input the size and other parameters back into the COCOMO II equation.

Figure 8 shows the estimated development costs (red upper curve) and maintenance costs (blue lower

curve) associated with this proposed architecture. (Note the expanded scaling of the vertical axes

when comparing this with previous figures.)

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION A] Approved for public release: distribution unlimited

Figure 8: Estimated Costs of Re-Architected and Relocated FCP Software

This figure shows only the cost of developing and then maintaining the new, more open architecture.

Development costs (top line) are high for the first 3 years, after which the development cost goes to

zero and the maintenance cost is estimated for this more open architecture (bottom line).

Scenario 4: This final scenario compares two architecture “trajectories.”

Trajectory T1

 Continue with maintenance of the existing FCP software for fifteen years

Trajectory T2:

 Continue with maintenance of the existing FCP software for three years.

 Re-architect for OA and implement the re-architected FCP software for three years.

 Cut over to the re-architected FCP software starting in year 4 and maintain it for twelve years.

A trajectories script file is an input to the software cost estimation tool. The trajectories script file

contains a number of user-specified projects, with start and end years. The tool generates cumulative,

yearly software estimates for each trajectory and plots the data for comparison purposes.

Figure 9 shows the estimated costs of these two trajectories.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION A] Approved for public release: distribution unlimited

Figure 9: Life Cycle Cost Comparison of Two Architecture Trajectories

For the first eight years, trajectory 1 (red lower curve, continue to use old architecture) is less expen-

sive than trajectory 2 (blue upper curve, build new software and then use it). However, the build-new-

architecture trajectory begins to outperform the use-old-architecture trajectory 1 starting in year 9,

resulting in approximately $75M in savings by year 15.

These four scenarios show some of the possible uses of the SWATT tool chain, and the relative ease

with which the openness of an architecture can be factored into system cost estimations. Our collabo-

rating organization plans to use the SWATT tool chain in future cost estimation analyses.

The FY2016 work benefited from being able to use an existing checklist tool for architecture open-

ness. The FY2017 work examined an architectural quality—security—for which there was no pre-

existing checklist tool. That work is the subject of the next section.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION A] Approved for public release: distribution unlimited

4 FY2017 Summary of Activities and Results

Work in FY2017 focused on extending SWATT to identify the effect of a different architectural

quality, security, on early system cost estimates.

Figure 10 is a variant of Figure 5, showing the envisioned way to use the SWATT tool chain in a

different domain (drone avionics) to account for different architectural considerations (in this case

security) in cost estimation.

Figure 10: SWATT Approach in FY2017

Whereas the FY2016 work made use of an existing open architecture checklist tool, no such tool

existed for security, so one of the major tasks of the FY2017 work was the creation of a draft security

checklist tool (see Appendix C for a description). The items in the security checklist differ in structure

and derivation from those in the open architecture checklist. Open architecture characteristics are con-

structive quality attributes (meaning they are determined at design time), whereas security is an opera-

tional quality attribute that, despite a fixed design that considers security, can vary depending on the

operational situation. The checklist items for open architecture evaluation focus on characteristic

structural attributes of openness. For security, the checklist items focus on functional mechanisms that

can be used to implement basic security controls. To develop items for the security checklist, one

needs some awareness of the type of system (e.g., IT or cyber-physical), the mission or capability of

interest, and the operational context.

4.1 Security Checklist

For the SWATT research effort, the original intent was to create the security checklist by analyzing

security threats to an actual UAV (e.g., an unauthorized user attempts to gain control of the drone by

exploiting a vulnerability) and interviewing UAV architects. However, as noted earlier, disclosure

restrictions resulted in the effort using a commercially available quadcopter instead. The quadcopter

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION A] Approved for public release: distribution unlimited

was based on a DJI Flame Wheel F450 frame4 with a Pixhawk®5 flight management unit6 running the

PX4 open-source autopilot software7. Therefore, the checklist developed for this work is at an early,

conceptual stage of development. Appendix C provides an introduction and description of the Security

Architecture workbook, which includes a security checklist (in the form of architectural mechanism

data) and supporting worksheets that characterize security benefit data and enable rating the resultant

checklist selections in terms of the security benefits they confer.

The security checklist comprises a set of six security mechanism categories, each of which has an

accompanying set of architectural security mechanisms that might be incorporated in the quadcopter’s

architecture. The security mechanism categories were selected from 20 security control families iden-

tified by the National Institute of Standards and Technology (NIST); the mechanisms are derived from

security controls [NIST, 2014b, 2017b; CNSS 2013, 2014]. The selected controls are termed “mecha-

nisms” to emphasize the fact that they would be implemented in the quadcopter architecture rather

than via security procedures.

Security Mechanism Categories. The six security mechanism categories are

1. Access control

2. Audit and accountability (i.e., to enable analysis and detection of events and access attempts)

3. Contingency planning (for safe-mode implementation only; other controls in this category are

primarily procedural rather than architectural)

4. Identification and authentication

5. System and communications protection

6. System and information integrity

This set of security mechanism categories is not meant to be exhaustive. Rather, it represents the ini-

tial categories of interest applied when evaluating the quadcopter architecture.

Table 1 shows three of the six mechanism categories and one example mechanism for each.

Table 1: Security Mechanism Categories and Evidence Criteria

Security Mechanism Categories Architectural Security Mechanisms (Controls)

Access Control The architecture incorporates mechanisms to control ac-

cess to information and system resources from ground con-

trol stations.

Identification and Authentication The architecture (communication protocol and compo-

nents) supports authentication of users.

4 https://www.dji.com/flame-wheel-arf. See [DJI 2016].

5 Pixhawk is a trademark of Lorenz Meier.

6 https://pixhawk.org/ See [Meier 2016].

7 http://px4.io/. See [Dronecode 2016].

https://www.dji.com/flame-wheel-arf
https://pixhawk.org/
http://px4.io/

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION A] Approved for public release: distribution unlimited

System and Communications

Protection

The architecture supports capacity, bandwidth, and

throughput monitoring and management to limit the effects

of information of information flooding denial-of-service

attacks.

Mission Threads. To create the checklist, the SWATT team created a “mission thread” [Gagliardi

2013] for the quadcopter. A mission thread is a sequence of end-to-end activities and events that takes

place to accomplish the execution of one or more of a system’s (or system of system’s) capabilities.

The team then assessed potential threats and vulnerabilities in each step, and created a set of security

threat scenarios for selected mission thread steps. The goal was to identify architecture-level mitiga-

tions for security attacks on the quadcopter software. Attack scenarios were identified using the

STRIDE8 threat model [Microsoft 2005, Howard 2006] supplemented by a literature search on a vari-

ety of research papers, NIST work on critical infrastructure cybersecurity and security and privacy

controls, and the Committee for National Security Systems (CNSS) standards on controls for national

security systems [NIST 2014a, 2014b, 2017a, 2017b; CNSS 2013, 2014].9

The initial STRIDE analysis, including mission steps and security scenarios, is provided as Appendix

D.

4.2 Quadcopter Security Issues and Cost of Architectural Improvement

Understanding the software architecture of the quadcopter was not as easy as we had expected. The

software is open source, yet the architectural documentation available from the community of experts

familiar with the quadcopter is scarce. In the end, our software engineers had to reconstruct the archi-

tecture, identifying modules, interfaces, and operational dynamics from the open source code. Appen-

dix E provides a top-level diagram of the reconstructed architecture.

As a team, we discussed the identified security risks and how they would be handled by the as-is soft-

ware architecture. We then selected one risk, the ability of a malicious entity to send a successful “re-

boot” command while the quadcopter is in flight, and identified an essential architectural mechanism

that would mitigate the risk, authentication. We determined this was a feasible change to the architec-

ture: the design of a new version of the MAVLink protocol allowed authentication, but it was not im-

plemented in the existing architecture. Using the COCOMO II tool, we estimated the cost of building

the software to implement authentication. Our team’s expert software engineer implemented the

change, recording the effort required. We tested the quadcopter’s behavior before and after imple-

menting the change. Before the change, the attack succeeded, causing the quadcopter to drop abruptly;

after the change, the quadcopter was no longer susceptible to this attack. The cost and effort data are

presented in Section 4.3.

8 STRIDE stands for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Services, and Elevation of

Privilege [Microsoft 2005, Howard 2006].

9 The categories and criteria focus on architecture mechanisms to be incorporated into the quadcopter, rather than on
policy and procedural enablers of security.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[DISTRIBUTION A] Approved for public release: distribution unlimited

The architectural change also mitigated several other security risks that were enabled by a lack of au-

thentication. Note that selecting and properly implementing key, basic security mechanisms, such as

strong authentication, can often mitigate multiple risks.

4.3 Cost Estimation Results

As described in Section 4.2, we proposed mitigating the risk that a malicious actor would issue a “re-

boot” command to the quadcopter in flight. The mitigation consisted of implementing authentication

in MAVLink, on the quadcopter side only (not on the Ground Control Station side), in order to reject

the unauthorized access and command. We estimated the cost of such a change using our COCOMO-

based tool. A senior engineer then implemented the architectural change, monitoring effort.

Estimates. Tables 2 and 3 and Figure 7 show the estimated (via our COCOMO tool) costs for making

architectural updates to the quadcopter software to resolve the threat of a malicious party issuing a

“reboot” command while the quadcopter is in flight. Specifically, Table 2 shows the estimation re-

sults for years 1-8 and Table 3 shows the results for years 9-15 and total. (Note that in these tables

“drone” was used in place of “quadcopter.”) Figure 7 plots the estimation results for the entire 15

years.

Table 2. Cost Estimation Results, first 8 years

Name KSloc $K 1 $K 2 $K 3 $K 4 $K 5 $K 6 $K 7 $K 8

Drone_OA_UPDT_1_DEV 1 4 0 0 0 0 0 0 0

Drone_OA_UPDT_1_DEV 1 4 4 4 4 4 4 4 4

Drone_OA_UPDT_1_MAINT 78.463 376 400 419 444 469 489 519 546

Drone_OA_UPDT_1_MAINT 78.463 376 776 1195 1639 2108 2597 3116 3662

Drone_OA_REAL_MAINT 78.319 376 400 418 443 468 488 518 545

Drone_OA_REAL_MAINT 78.319 376 776 1194 1637 2105 2593 3111 3656

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION A] Approved for public release: distribution unlimited

Table 3. Cost Estimation Results, last 7 years and total

Name KSloc $K 9 $K10 $K11 $K12 $K13 $K14 $K15 $K Total

Drone_OA_UPDT_1_DEV 1 0 0 0 0 0 0 0 4

Drone_OA_UPDT_1_DEV 1 4 4 4 4 4 4 4

Drone_OA_UPDT_1_MAINT 78.463 578 602 637 672 711 743 785 8390

Drone_OA_UPDT_1_MAINT 78.463 4240 4842 5479 6151 6862 7605 8390

Drone_OA_REAL_MAINT 78.319 577 600 636 671 710 742 783 8375

Drone_OA_REAL_MAINT 78.319 4233 4833 5469 6140 6850 7592 8375

Figure 11. Estimation results for 15 years

Accuracy of Estimation of Effort: Validation Result. After the above estimates were created, one of

our senior engineers implemented and tested a change called for in the estimation. Table 4 shows the

software size (in SLOC) and effort (in hours) for two development efforts. While the total predicted

value was 27.7 hours, this would have included full regression testing, documentation update, and

other activities implied in COCOMO II. Thus, our engineer’s actual effort for just the coding and vali-

dation was high; however, this was his only experience coding for this “project” so he had zero learn-

ing curve.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

KSloc $K 1 $K 2 $K 3 $K 4 $K 5 $K 6 $K 7 $K 8 $K 9 $K10 $K11 $K12 $K13 $K14 $K15

Estimated Costs

Drone_OA_UPDT_1_DEV Drone_OA_UPDT_1_DEV

Drone_OA_UPDT_1_MAINT Drone_OA_UPDT_1_MAINT

Drone_OA_REAL_MAINT Drone_OA_REAL_MAINT

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION A] Approved for public release: distribution unlimited

Table 4. Actual effort implementing change in drone software

Adding Authentication to MAVLink (only on drone side, not the GCS;
includes only coding and testing effort)

 SLOC Effort (h) SLOC/h Predicted

 Before After Delta

 dataman 1235 1242 7

 mavlink 12253 12390 137

 TOTAL 13488 13632 144 10.3 14.0

Partial imple-
mentation 135 9.7

 TOTAL 279 20.0

Modifying MAVLink router and MAVLink to log the IP of the sender of unauthorized
messages

 SLOC Effort (h) SLOC/h Predicted

 Before After Delta

 mavlink router 154124 154165 41

 mavlink 12390 12437 47

 TOTAL 166514 166602 88 11.0 8.0

 Total (both) 31 27.7

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION A] Approved for public release: distribution unlimited

5 Observations and Lessons Learned

The SWATT project has been a pioneering attempt to incorporate the effects of software design

decisions into early system cost estimation efforts. The SWATT tool chain has been shown to be use-

ful in analyzing the effects of alternative architectural approaches (e.g., for achieving qualities such as

openness and security), on the estimated lifecycle costs of a system. The soundness of the approach of

using empirical architectural parameters to refine the inputs to a cost model has been confirmed by

one of the creators of COCOMO II, and our collaborating organization plans to use the SWATT cost

estimation tool in future cost estimation analyses.

5.1 Caveat

A caveat must be mentioned regarding these results. While the results showed the feasibility of our

approach on notional systems, the SWATT analyses have not yet been used on actual programs of rec-

ord. The FY2016 work analyzed the architecture of a notional tank (fighting vehicle) using legacy cost

data. The FY2017 work analyzed the open-source architecture of a quadcopter, not the preferred

UAV, and the lack of architectural documentation hampered the effort. Using the tool chain on a

program of record would validate the tool and would also help the program of record with an as-yet-

unmet need.

The overall approach of connecting quantified ratings of software architecture qualities such as open-

ness and security to a software cost prediction tool is both feasible and worthwhile.

5.2 Observations and lessons learned from the SWATT project

Here are some other observations and lessons learned from the SWATT project.

Intent of task

 Connecting open architecture aspects of a software architecture to a software cost prediction tool

is both possible and useful.

 To date, no one else has mapped architectural decisions to software maintenance operations and

cost.

Quality Attributes

 Operational quality attributes (e.g., performance, availability, or security) are not as simple to

analyze as constructive quality attributes (e.g., modularity or layering). Operational quality attrib-

utes are not characterized by the software alone; additional information is required about how the

operational system works in a particular context. Constructive quality attributes can be estimated

when the first architecture drawing is available.

 There is a definite need to understand the trade-offs between security and other quality attributes,

and the cost of building security into an architecture. However, checklists alone cannot ensure that

systems behave in a secure manner. Security experts need to be involved in analyzing operational

mission threads so they can understand the context and requirements for security relative to other

requirements, particularly if someone wants to use the SWATT tool chain to estimate cost of a

certain “expected” level of security.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION A] Approved for public release: distribution unlimited

Difference between Security and other Quality Attributes

 The original intention to create a security checklist for the avionics domain (and possibly others)

proved to be a complex analytic task. Security as a quality attribute involves much more than just

the structure of the architecture. We needed to posit mission threads, scenarios, attacks, vulnera-

bilities, and countermeasures. Terminology conflicts and different perspectives on security had to

be untangled, sorted through, and managed.

 The approach taken to adapt the open architecture (OA) checklist for security was accepted by the

developers of the OA checklist. Architecture specialists who attended a briefing on the approach

agreed that it made sense to include architecture non-specific “concerns” and architecture-specific

“security” because of the need for security investigations to start with some assumptions about

architectural features.

Activities

 A nominal mission thread should be developed at a high level. Security analysis consist of a se-

ries of questions: (1) what kinds of attacks could occur in each step (we used STRIDE as a frame-

work to identify attacks); (2) what vulnerabilities in the architecture could be exploited to enable

the attack; and (3) what kinds of countermeasures could reduce the likelihood and consequences

of the attack? These questions, which include architecture-specific countermeasures, are the basis

for security questions.

 The open architecture checklist is used to assess each “key software component” in a software

architecture. Previous SEI experience has shown that the ideal unit of assessment—the “sweet

spot” for incorporating architectural considerations into cost estimates—is the Computer Software

Configuration Item (CSCI). This implies that the software architecture has been determined at

least to that level.

Tools

 Normally one performs a COCOMO estimate using available detailed information about the

implementation. The SWATT project found a way to produce estimates without detailed imple-

mentation information, only architecture information.

 COCOMO II uses a large number of inputs for calibration, and it is not clear they all matter in the

SWATT context. (The complexity factor in particular was complex: it needed a 5 row by 6 col-

umn table just to understand it.) The SWATT project focused on just a few that proved useful

from an open architecture perspective. Other inputs were simply set to “Nominal.”

 STRIDE was useful as an initial, ready-made framework, but ideally we would have developed a

more robust threat classification model derived from multiple sources.

Architecture Documentation

 There was no documentation of the quadcopter software architecture. It was open source software,

with little effort expended in providing anything other than code. Even after requesting architec-

ture information in open-source forums, SEI researchers were unable to get any more information.

This is not an indictment of the code itself; the problem is that there is no accompanying docu-

mentation of structural elements that would have permitted reasoning about quality attributes.

Thus to determine if the quadcopter architecture satisfied the security scenarios, it was necessary

to analyze the code and recreate the architecture from the code interfaces. In addition, some of the

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION A] Approved for public release: distribution unlimited

things a scenario asked for (e.g., an attacker issues a command to reboot the system) needed infor-

mation below the level of architectural elements. SEI researchers had to examine the code itself

to answer these questions.

General lessons learned

 A project that anticipates using data from actual military programs will have its results restricted

even if none of the data actually used is from real programs. All of such a project’s communica-

tion and outputs will need to go through the release review process.

 It is easiest to find and use publicly accessible data. For a variety of reasons, the team may not

gain access to anticipated data from non-public sources. Collaborating projects may not provide

anticipated data. Architects and other implementers may be wary of sharing architecture-level

data. Concerns vary from classification to proprietary information disclosure. Even if agreements

are in place, those agreements may change.

 Collaborators’ priorities may change and as a result, they may defer completion of SEI work. Pro-

ject teams need to reach an agreement with collaborators on suitable response times for review

and approval, and on what data and information will and will not be acceptable for SEI to release.

Working to ensure collaborators understand the rationale for deadlines and guidance on releasable

content is also essential.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION A] Approved for public release: distribution unlimited

6 Future Work

To make the SWATT toolset comprehensive, it should evaluate all software-related attributes of a

candidate high-level software architecture. Its applicability across other domains will also need to be

validated. These are considerable challenges.

A more pragmatic, near-term alternative is to continue to analyze security (a single quality attribute

that has broad applicability) in order to evaluate other threats, vulnerabilities, and countermeasures,

and determine approaches to both estimate architectural contributions to security and to fix architec-

tures that lack adequate security. The SWATT project could also be applied for other vehicles that use

avionics (e.g., a larger-scale drone instead of a quadcopter). With this kind of enhancement it would

be possible, for example, to quantify the cost of implementing countermeasures or achieving mini-

mum vulnerabilities on an actual military vehicle.

The work to date provides a basis for a general method for deriving a security checklist for a different

domain. It could also be used to analyze tradeoffs between openness and security. In the near term,

SEI:

 Should continue to work with our collaborating organization and its contractors, to help them im-

plement our tools.

 Would like to analyze the cost/security tradeoffs when there are a number of identical or similar

drones together (such as in a swarm). Would there be economies of scale, or would the complex-

ity cause more problems than the configuration solves?

 Would like to look at the security and cost issues for a system that is part of a SoS.

 Would like to continue implementation work on the quadcopter, in order to reduce the likelihood

and cost of exploitation of vulnerabilities for other threats.

 Would like to automate analysis given some initial inputs, rather than requiring senior

engineers to review every step.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION A] Approved for public release: distribution unlimited

Appendix A. Demonstration slide set

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION A] Approved for public release: distribution unlimited

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[DISTRIBUTION A] Approved for public release: distribution unlimited

Appendix B. Software package: Cost estimation using COCOMO

SEI SWATT FY16 Toolkit Software – README

Overview

The SEI developed a software program (“SEI FY16 SWATT Toolkit Software”, referred to as “Toolkit Soft-

ware”) as part of the SEI FY16 LENS research project (“SEI FY16 SWATT Toolkit”, referred to as “SWATT

Toolkit”) which provides early life-cycle cost software estimation (development and maintenance) of high-

level software architectures. In addition, the SWATT Toolkit assesses the “openness” of high-level soft-

ware architectures with respect to three main architectural attributes (modularity, layering, and interface

standards) and accounts for the assessment results in the full life-cycle cost estimations. The “openness”

assessment is not included in the Toolkit Software and is a separate MS-Excel spreadsheet which provides

inputs to the Toolkit Software.

The Toolkit Software is written in “R” programming language, using the Jupyter Notebook interactive

computational environment (version 4.0.4) with the R Kernel.

Inputs

All of the inputs to the Toolkit Software are MS Excel spreadsheet files (CSV format).

Input File Types:

There are three input file types for the Toolkit Software, described below:

A. Script
o A Script file contains each “project” to be included in the cost estimation calculations. One

project per line in the script file.
o The script file naming convention is “<name>_Script.csv”. The user specifies <name> in the

first line of the Toolkit Software. Example from the software: Script_Name = "Demo_4"
o The user needs to develop a script file for their own usage.
o There is one script file input to the Toolkit Software.
o The Columns in the script file are:

 Input_File: project file name (See “Projects” below)
 Mode: D – Development, M – Maintenance. Specifies if the project is in develop-

ment mode or maintenance mode
 Start_Year: 1-15. Which year to start the cost estimations. Max of 15 years.
 Years: 1-15: Number of years for cost estimations
 T1_Start: Trajectory 1 start year (-1 = no trajectory)
 T1_Years: Number of years for the trajectory (-1 = no trajectory)
 T2_Start: Trajectory 1 start year
 T2_Years: Number of years for the trajectory
 T3_Start: Trajectory 1 start year (Max of 3 trajectories)
 T3_Years: Number of years for the trajectory

o An example “Demo_4_Script.csv” is provided below. This example has 3 projects, 2 of which
are in maintenance mode. This example also has 2 active trajectories (T1 and T2).

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION A] Approved for public release: distribution unlimited

B. Projects
o A project file contains all of the information pertaining to a high-level software architecture

needed for the toolkit software to perform life-cycle cost estimation.
o A project file can be either Maintenance mode or Development mode. For projects that

need cost estimations for both development and maintenance modes, they must use differ-
ent project files (via file naming conventions, see Script example above). The file formats are
the same for Maintenance and Development modes.

o Project names “<project>” are found in the Input_File column of the Script file (above).
o There are two types of Project input files for each project:

 Fixed Parameters File

 This file contains the COCOMOII parameters that are fixed for the entire
project

 The file naming convention is “<project>_Fixed_Input.csv”

 The columns in this file include the COCOMOII factors for this project. See
COCOMOII Model Manual v2.1 for detailed explanations.

 An example “Tank_As_Is_Fixed_Input.csv” is provided below:

 Component Parameters File

 This file contains the COCOMOII parameters that apply to each software
component in the project.

 Each software component in the project is contained in a separate line in
this file.

 The 1st column is the name of the SW component.

 The 2nd column is the estimated KSLOC for the SW component

 The 3rd-6th columns are associated with the OA ratings for this SW compo-
nent. See “OA Configurable Ratings Checklist” tool. A value of -1 indicates
no OA ratings are to be accounted for regarding this component.

 The remaining columns are the COCOMOII factors associated with the SW
component. See COCOMOII Model Manual v2.1 for detailed explanations.

 The file naming convention is “<project>_SW_Input.csv”

 An example “Tank_As_Is_SW_Input.csv” is provided below:

Input_File Mode Start_Year Years T1_Start T1_Years T2_Start T2_Years T3_Start T3_Years

Tank_As_Is M 1 15 1 15 1 3 -1 -1

Tank_OA_Endstate_Dev D 1 3 -1 -1 1 3 -1 -1

Tank_OA_Endstate_Maint M 4 12 -1 -1 4 12 -1 -1

OA1 OA2 OA3 OA4 FLEX PREC RESL TEAM PMAT DATA RUSE DOCU TIME STOR PVOL ACAP PCAP PCON APEX PLEX LTEX TOOL SITE SCED RELY CPLX A B LABOR

1 1 0 -1 5.07 2.48 1.41 1.1 3.12 1.28 1 1.23 1.29 1.17 1.3 0.71 0.76 0.81 0.81 0.85 0.84 0.78 0.93 1 1 1 2.94 0.91 25000

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[DISTRIBUTION A] Approved for public release: distribution unlimited

C. OA-to-COCOMOII Conversion Tables
o These files are used to translate OA Ratings for each high-level software component to the

applicable COCOMOII cost estimation factors within the Toolkit Software.
o There are three files of this type: “TABLE_OA1_CCII.csv”; “TABLE_OA2_CCII.csv”; and

“TABLE_OA3_CCII.csv”
o These files should not be changed by the user.
o An example “TABLE_OA1_CCII.csv” is provided below:

Outputs

There are two types of output files for the Toolkit Software, described below:

A. Script
o A script file contains the yearly software cost estimates for each project in the script. Each

project has two lines in a script output. The first project line is the yearly cost estimate, the
second project line is the cumulative cost estimate per year. Total cumulative costs are also
given.

o The script file naming convention is “<script>_Script_Output.csv”.
o There is one script file output to the Toolkit Software.
o An example “Demo_4_Script_Output.csv” is provided below:

Name KSLOC OA1 OA2 OA3 OA4 AA DM CM IM SU UNFM REVL PREC RELY CPLX GRWTH SWGRW AT

FCP-SM 150 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

FCP-FC 250 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

FCP-FS 100 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

FCP-MMI 150 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

FCP-C&C 150 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

RT_EXEC 75 0.77 0.95 0.4 -1 0 100 100 100 35 0.5 0 0 1 1 0.1 0.5 0

OA1 SU_MAX SU_MIN UNFM_MAX UNFM_MIN RESL_MAX RESL_MIN

5 25 10 0.17 0 2 1.41

4 30 15 0.33 0.17 3 2

3 35 20 0.5 0.33 4 3

2 40 30 0.67 0.5 5 4

1 45 35 0.83 0.67 6 5

0 50 40 1 0.83 7.07 6

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

[DISTRIBUTION A] Approved for public release: distribution unlimited

o A script also outputs chart graphics of the cumulative yearly costs for each Project and for
each Trajectory specified in the script input.

o An example “Demo_4_Script_Output” for the projects is provided below:

o An example “Demo_4_Script_Output” for the trajectories is provided below:

Name KSloc $K 1 $K 2 $K 3 $K 4 $K 5 $K 6 $K 7 $K 8 $K 9 $K10 $K11 $K12 $K13 $K14 $K15 $K Total

Tank_As_Is 875 9280 9770 10290 10832 11404 12010 12646 13317 14018 14763 15544 16367 17232 18142 19104 204719

Tank_As_Is 875 9280 19050 29340 40172 51576 63586 76232 89549 103567 118330 133874 150241 167473 185615 204719

Tank_OA_Endstate_Dev 685 16475 16475 16475 0 0 0 0 0 0 0 0 0 0 0 0 49425

Tank_OA_Endstate_Dev 685 16475 32950 49425 49425 49425 49425 49425 49425 49425 49425 49425 49425 49425 49425 49425

Tank_OA_Endstate_Maint 685 0 0 0 3454 3634 3824 4026 4233 4456 4689 4934 5192 5464 5754 6054 55714

Tank_OA_Endstate_Maint 685 0 0 0 3454 7088 10912 14938 19171 23627 28316 33250 38442 43906 49660 55714

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[DISTRIBUTION A] Approved for public release: distribution unlimited

B. Projects
o A project file contains the yearly software cost estimates for each SW component in the pro-

ject. Total cumulative costs are also given for each SW component, as well as, for each year.
o The script file naming convention is “<project>_Output.csv”.
o There is one project file output for each project in the script.
o An example “Tank_As_Is_Output.csv” is provided below:

Contact Information

Mike Gagliardi

Name KSloc $K 1 $K 2 $K 3 $K 4 $K 5 $K 6 $K 7 $K 8 $K 9 $K10 $K11 $K12 $K13 $K14 $K15 $K Total

FCP-SM 150 1591 1675 1764 1857 1955 2059 2168 2283 2403 2531 2665 2806 2954 3110 3275 35096

FCP-FC 250 2652 2792 2940 3095 3259 3432 3613 3805 4006 4218 4441 4676 4924 5184 5459 58496

FCP-FS 100 1060 1116 1176 1238 1303 1372 1445 1522 1602 1687 1776 1870 1969 2073 2183 23392

FCP-MMI 150 1591 1675 1764 1857 1955 2059 2168 2283 2403 2531 2665 2806 2954 3110 3275 35096

FCP-C&C 150 1591 1675 1764 1857 1955 2059 2168 2283 2403 2531 2665 2806 2954 3110 3275 35096

RT_EXEC 75 795 837 882 928 977 1029 1084 1141 1201 1265 1332 1403 1477 1555 1637 17543

Totals 875 9280 9770 10290 10832 11404 12010 12646 13317 14018 14763 15544 16367 17232 18142 19104 204719

Cumulative $K 9280 19050 29340 40172 51576 63586 76232 89549 103567 118330 133874 150241 167473 185615 204719

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

[DISTRIBUTION A] Approved for public release: distribution unlimited

Appendix C. Security Architecture (SA) Workbook

This appendix describes the Security Architecture (SA) workbook, also called the Security Architec-

ture Configurable Rating Checklist Tool. The workbook consists of a series of worksheets to be used

in trade-off analyses when configuring and rating the costs and benefits of security architecture mech-

anisms. The SA workbook is based on a security analysis of scenarios developed for the quadcopter

architecture and is not currently releasable. This appendix describes how the SA workbook was devel-

oped and compares it with the Open Architecture (OA) workbook, also called the Open Architecture

Configurable Rating Checklist Tool, which was presented in Appendix A.

About the Quadcopter Security Architecture Workbook

This security architecture (SA) workbook contains a draft set of worksheets for evaluating a quadcop-

ter architecture in terms of a basic set of security controls that can be implemented as architectural

mechanisms. When complete, the workbook will be used in architecture trade-off analyses that

consider whether an architecture includes essential security mechanisms, and calculate the cost to im-

plement them. The set of security mechanisms to be included in an analysis will be configurable,

based on a mission-focused security engineering risk assessment. In this assessment, security engi-

neering analysts select controls and corresponding mechanisms based on the risks identified through

mission thread analysis [Gagliardi 2013]. These risks are expressed in terms of threats to the mission,

corresponding architectural vulnerabilities that could be exploited in an attack, and the probability and

mission impact of a successful attack.

Comparison of Open Architecture (OA) Workbook with Security Architecture (SA) Workbook

The SA workbook is modeled after the Open Architecture (OA) workbook created for the US Air

Force (see Appendix A). Although the two workbooks are similar in structure and appearance they

differ in fundamental ways, as described below.

Maturity and Generality: The OA workbook is general and more mature.

The OA workbook can be used to evaluate the degree to which an architecture displays key attributes

of open systems. The OA workbook

 Has been piloted and is relatively mature.

 Applies to architectures in general.

 Is fairly stable, due to its maturity and generality.

The SA workbook is intended to focus on the degree to which security has been designed into an ar-

chitecture for unmanned aerial vehicles (UAVs). However, the draft set of worksheets focus on a sim-

ple, single quadcopter architecture. In contrast with the OA workbook, the SA workbook

 Is in an initial development stage, incomplete and not ready to pilot on other architectures.

 Was developed based on an analysis of threats and vulnerabilities in operating a particular

quadcopter (hobby) drone, rather than for a general UAV architecture.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[DISTRIBUTION A] Approved for public release: distribution unlimited

 Will evolve considerably to reflect the elements of, and security risks to, more complex UAV

architectures and missions, as well as results of pilot applications of the workbook.

This additional work will enable completion of the SA workbook, including the Architectural

Security Mechanisms worksheet and associated cost factors; the Benefit Data worksheet,

which describes the security benefits/attack types mitigated by the architectural mechanisms;

and the associated Graphs worksheet.

Types of Architectural Abstractions Evaluated

In addition to differences in maturity and generality, the worksheets in the OA and SA workbooks

target different architectural abstractions.

 OA workbook: Open architecture characteristics describe structural attributes of a system or

component that confer benefits of openness.

 SA Workbook: Security architecture characteristics describe mechanisms that confer what are

known in the security community as security attributes, i.e., the “benefit” of a security mech-

anism would be an improvement with respect to one or more security attributes.

Structure of the Draft SA Workbook

The structural components of the SA Workbook are described in the table below. Although the work-

book is not releasable, this information conveys the intended content and use of the workbook as a

tool for early-architecture security trade-off analysis.

Worksheet
Name

Purpose and Description Status

About this
Workbook

Explains the origin of the workbook and
the general maturity of its contents

Complete

About this
tool

Provides status and a description of
each of the worksheets

Complete

Arch-
MechData

(Security)

This is the “security checklist,” also
known as the “Security Configurable
Ratings Checklist.” The checklist is
structured into six “security mechanism
categories.” These six categories are
drawn from the 20 security and privacy
control families in the draft NIST 800-
53v5 [NIST 2017]. Each category con-
tains one or more architectural mecha-
nisms (ArchMech) for implementing se-
curity controls. The Score Weight,
Score, Weighted Score, and Justifica-
tion for Score columns are not yet in
use. The Comments and References
columns provide information on SWATT
implementation and recommendations
found in references.

Initial conceptual draft – work remaining:

Add more mechanisms (and, if applicable, more
categories), determine weights, and send for
broader review.

Provide a means to capture and analyze cost
data for implementing the security mechanisms
(ultimately, this may include software, firm-
ware, and hardware costs).



Provide tailoring guidance (based on type of
drone, mission risk, etc.); accordingly, enable
addition/removal of mechanisms/criteria.



 Pilot and refine.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[DISTRIBUTION A] Approved for public release: distribution unlimited

Worksheet
Name

Purpose and Description Status

BenefitData
The benefit data will be used to “rate”
security mechanisms according to the
security “benefit” conferred by the
mechanism. To clearly communicate
the benefit, security benefits are ex-
pressed as the traditional security at-
tributes coupled with the attack the at-
tribute mitigates. In an attempt to
follow the OA checklist, each Security
Mechanism Category is assumed to ei-
ther contribute to or detract from a
benefit. This may NOT hold true for se-
curity; further analysis is needed.

In work
Complete:

Benefits Identified
Not Complete:

Unweighted mapping of security mecha-
nism categories to security benefits

Determine whether it makes sense to apply
weights to the mappings and (a) if so, how
this should be done; (b) if not, how we
should modify the approach, which was de-
veloped for open architectures, for security.

(Security)

Graphs

(Security)

The graphs would be used to illustrate
the relationships between security
mechanisms and security benefits for
the architecture that is rated in the
ArchMech (Security) worksheet.

Not started

To generate graphs, this worksheet needs to be
linked to data in completed ArchMechData (Se-
curity) and BenefitData (Security) worksheets,
which are used to rate an architecture.

Guidelines for applying this SA workbook follow the guidelines developed for the OA workbook

When the SA workbook has been completed, an accompanying briefing will be developed entitled

“Security Evaluation Criteria,” similar to the briefing developed for the OA workbook. As for the OA

workbook, the SA workbook should NOT be used without this briefing, which will provide back-

ground, context, instructions, and examples.

The SA Workbook is not intended as a self-assessment tool for program offices. Rather, it is intended

to be used by an objective, expert observer to aid in the assessment of the suitability of security mech-

anisms for achieving specific objectives in the context of the program.

Additional notes specific to the SA workbook

The SA workbook deals only with architecture mechanisms and is not a complete set of cybersecurity

activities and mechanisms for a system or program. The latter would include activities and mecha-

nisms in the supply chain, acquisition, risk assessment, security assessment maintenance, and other

categories of security considerations.

Once completed, the SA workbook needs to undergo a series of pilots to obtain and incorporate feed-

back. We encourage those interested in pilot participation to contact us. We also welcome feedback

on the concepts presented in this report.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[DISTRIBUTION A] Approved for public release: distribution unlimited

Appendix D. Initial Security Analysis

The initial security analysis focused on a posited quadcopter mission thread [Gagliardi 2013]. A mis-

sion thread is a sequence of end-to-end activities and events that takes place to accomplish the execu-

tion of one or more of a system’s (or system of system’s) capabilities. Mission threads are developed

by articulating a vignette that describes the thread, and decomposing that thread into its steps. The

team applied the STRIDE model [Microsoft 2005, Howard 2006] to each step in the quadcopter thread

to identify the quadcopter’s susceptibility to the six means of attack and obfuscation represented by

STRIDE:

 [S]poofing: Attacker posing as another entity (person or system) to gain unauthorized access

to a system or capability

 [T]ampering: Unauthorized modification of data, code, or firmware at rest or in transit

 [R]epudiation: Denial by the responsible attacker that they performed a particular action or

precipitated an attack

 [I]nformation Disclosure: Unauthorized exposure of information

 [D]enial of Service: Attack that denies or degrades authorized users’ access to capabilities or

resources

 [E]levation of privilege: Condition in which a valid user gains access to system capabilities or

resources for which they are not authorized

The table below illustrates the team’s use of STRIDE to analyze mission thread step 11 (S11) for the

quality attribute (QA) cybersecurity. For each plausible attack on the quadcopter mission, the team es-

tablished scenarios indicating the attack (stimulus), the context (environment), and how the system

should respond (response). This analysis should be understood as a best-effort first result from the

team rather than a final product.

QA
Mission

Step
Concern
(STRIDE)

Scenario
 Stim: Stimulus, Env: Environment, and Resp: Response

Cy-

ber-

secu-

rity

S11. Oper-

ator Down-

loads Pho-

tos from

Quadcop-

ter

General

comments

General notes common to scenarios in subsequent rows

(1) While all dimensions of STRIDE apply, the main purpose of at-

tacks during this mission step is to tamper with the photo data and

possibly disclose it to an unauthorized party.

(2) In the Response section of each scenario, we omit the “And the

system software logs information about the attack…” (or equiva-

lent), but it should be understood that logging is included.

Also, we omit the idea that to the extent the adversary or their

means of access can be identified, access to the quadcopter and

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[DISTRIBUTION A] Approved for public release: distribution unlimited

QA
Mission

Step
Concern
(STRIDE)

Scenario
 Stim: Stimulus, Env: Environment, and Resp: Response

ground system software may be reduced or denied, though again,

it should be understood that such a notion is to be included.

(3) The guiding assumption throughout the analysis of S11 is that

the quadcopter has returned safely to base. If the adversary is able

to physically gain access to the quadcopter or ground system soft-

ware, additional attacks are possible beyond those described here.

S: Adver-

sary logs in

as operator

and im-

pacts

download

of photos

1. Stim: Adversary attempts to log in as operator using stolen cre-
dentials, and thus is able to either download photos or impact the
successful download of photos for the operator

Env: Post-flight (after return to base)

Resp: Ground operator's system software prevents adversary from

using stolen credentials (e.g., by implementing multi-factor au-

thentication)

T: Adver-

sary at-

tempts to

modify

photos ex-

clusive of

their being

down-

loaded

2. Stim: The activated malicious code attempts, after the quadcop-

ter has returned to the ground, to modify any of the photos that

were taken during the mission (and/or their meta-data).

This type of attack includes attempting to erase storage of photo

data; and perhaps attempting to re-initialize the system while

photo data is in volatile memory.

This scenario is largely the same as Step 5, Scenario 3.

Env: Post-flight (after return to base) [Note that the environment

for Step 5, Scenario 3 includes “on the ground after landing” and

thus might cover the current scenario as well.]

Resp: Same as Step 5, Scenario 3.

T: Adver-

sary at-

tempts to

modify

photos dur-

ing down-

load

3. Stim: Adversary (or malicious software) attempts to change pho-

tos (and/or their meta-data) as they are moved from memory to

the operator as part of the download. (Variant: the photos are

downloaded but their asserted locations and number are changed;

perhaps to instead point to fake photos.)

This type of attack includes attempting to erase the photos; and

perhaps including attempting to re-initialize the system while

photo data is being transferred.

Comment on Scenario: This differs from Scenario 2 as follows: Sce-

nario 2 deals with tampering prior to (and possibly) after the

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

[DISTRIBUTION A] Approved for public release: distribution unlimited

QA
Mission

Step
Concern
(STRIDE)

Scenario
 Stim: Stimulus, Env: Environment, and Resp: Response

download; and does not cover tampering that occurs as part of the

download operation.

Env: Post-flight (after return to base) [Note that the environment

for Step 5, Scenario 3 includes “on the ground after landing” and

thus might cover the current scenario as well.]

Resp: Quadcopter and/or Ground System software detects the

tampering action; prevent the loss of data (and its inadvertent dis-

closure), and with only nominal delay (and interruption of service)

completes the download successfully.

R: Adver-

sary at-

tempts to

conceal

tampering

or other at-

tack

4. Stim: Adversary attempts to conceal the tampering of photo

data and denies any knowledge of attack.

Env: Post-flight (after return to base)

Resp: Quadcopter and/or Ground System software detects the at-
tack; records data about the attack including time, origin of attack,
known effects of the attack, mitigations carried out; and secures
all identify information about the source of attack that it can. The
adversary is confronted and sufficient information is captured and
presented to convict the adversary.

I: Attempt

to send

photo data

to adver-

sary

5. Stim: Exfiltration of photos is attempted by piggy-backing on the

download of the photo data—either directly, or perhaps by trans-

ferring the data to another location, e.g., on the quadcopter or

ground station—for later transmittal to adversary.

Comment on Scenario: This scenario is largely the same as Step 5,

Scenario 5.

Env: Post-flight (after return to base)

Resp: The Quadcopter and/or Ground system software immedi-

ately detects that the photo data is being sent to an unauthorized

location or party and prevents the transfer from occurring (e.g., by

disabling the malware) while allowing the download to the author-

ized recipient to proceed.

D: Attempt

to disrupt

successful

download

6. Stim: Adversary (e.g., through ground system or quadcopter

malware) attempts to flood the quadcopter and/or ground station

assets (camera, storage, communication channels, PX4 Com-

mander software) with requests (e.g., re-initialization) that disrupt

the downloading of photos.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

[DISTRIBUTION A] Approved for public release: distribution unlimited

QA
Mission

Step
Concern
(STRIDE)

Scenario
 Stim: Stimulus, Env: Environment, and Resp: Response

of photo

data

Comment on Scenario: This scenario is largely the same as Step 5,

Scenario 6, but stated in more general terms.

Env: Post-flight (after return to base)

Resp: The Quadcopter and/or Ground station software immedi-

ately detects the attempt to flood the system with requests, disa-

bles malware, and resumes downloading of photo data with mini-

mal interruption

E: Adver-

sary ex-

ploits vul-

nerability

to improve

access to

photos

7. Stim: Adversary exploits a vulnerability in the ground system

and/or quadcopter malware to gain elevated privileges with which

to embark on further mischief, including one of the previous sce-

narios. (The attack may proceed by re-initializing the software and

gaining root control of the quadcopter.)

Env: Post-flight (after return to base)

Resp: The Quadcopter and/or Ground station software detects the

attempt at elevating privilege and denies the privileges from being

granted to the adversary, logs the attempt (including for further

remediation to remove the vulnerability), and denies the adver-

sary further access to the quadcopter or ground system software.

Following the analysis, the next step is to identify probability and mission impact of each successful

attack scenario and to propose security controls and corresponding architectural mechanisms to resist

and recover from the attacks. These would be captured in the SA workbook for further analysis and

rating.

A comprehensive trade-off analysis would involve more variables, including identifying alternatives

for the mechanisms, estimating cost and schedule to implement each, and determining effects on other

attributes such as reliability and maintainability, and on factors such as performance and capability.

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

[DISTRIBUTION A] Approved for public release: distribution unlimited

Appendix E. Quadcopter architecture as revealed by code

Figure G-1. Quadcopter Software Architecture Reverse Engineered from Code

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

[DISTRIBUTION A] Approved for public release: distribution unlimited

References

URLs are valid as of the publication date of this document.

[Boehm 2000]

Boehm, B; Abts, C; Brown, A; Chulani, S; Clark, B; Horowitz, E; Madachy, R; Reifer, D; & Steece,

B. Software Cost Estimation with COCOMO II. Englewood Cliffs, NJ: Prentice-Hall, 2000. ISBN 0-

13-026692-2.

[CNSS 2013]

Committee on National Security Systems. CNSSI 1253: Space Platform Overlay. June 2013.

https://www.cnss.gov/CNSS/issuances/Instructions.cfm

[CNSS 2014]

Committee on National Security Systems. CNSSI 1253F Attachment 2: Space Overlay. March

2014. https://www.cnss.gov/CNSS/issuances/Instructions.cfm

[DJI 2016]

DJI. Flame Wheel ARF KIT. Flame wheel F450 frame. Retrieved December 2016.

https://www.dji.com/flame-wheel-arf

[Dronecode 2016]

Dronecode Project. PX4: The Professional Autopilot. Px4 open-source autopilot software. Retrieved

December 2016. http://px4.io/

[Gagliardi 2013]

Gagliardi, M,; Wood, B.; & Morrow, T. Introduction to the Mission Thread Workshop. CMU/SEI-

2013-TR-003. Software Engineering Institute, Carnegie Mellon University. 2013. https://re-

sources.sei.cmu.edu/library/asset-view.cfm?assetid=63148

[Gagliardi 2016]

Gagliardi M. & Konrad, M. SEI SWATT FY16 LENS Toolkit Overview and Demonstration. Power-

Point presentation, 5/16/2016.

[Holland 2016]

Holland J. Engineered Resilient Systems. NDIA Systems Engineering Conference, PowerPoint brief-

ing, October 2015.

[Howard 2006]
Howard, Michael & Lipner, Steve. The Security Development Life Cycle. Microsoft Press, 2006.

[Meier 2016]

Meier, Lorenz. What is Pixhawk, Pixhawk flight management unit. Retrieved December 2016.

https://pixhawk.org/.

https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=63148
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=63148

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

[DISTRIBUTION A] Approved for public release: distribution unlimited

[Microsoft 2005]

Microsoft Corporation. The STRIDE Threat Model. 2005

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

[NIST 2014a]
National Institute for Standards and Technology. Framework for Improving Critical Infrastruc-

ture Cybersecurity, Version 1.0. February 2014.

https://www.nist.gov/document-3766

[NIST 2014b]
National Institute for Standards and Technology. Security and Privacy Controls for Information

Systems and Organizations. SP 800-53 Rev. 4. February 2014.
https://csrc.nist.gov/publications/detail/white-paper/2014/02/19/summary-of-nist-sp-800-53-rev-4-se-

curity--privacy-controls/final

[NIST 2017a]
National Institute for Standards and Technology. Framework for Improving Critical Infrastruc-

ture Cybersecurity, Version 1.1. Draft 2, December 2017.

https://www.nist.gov/cybersecurity-framework/cybersecurity-framework-draft-version-11

[NIST 2017b]

National Institute for Standards and Technology. Security and Privacy Controls for Information

Systems and Organizations. SP 800-53 Rev. 5 (draft). August 2017.
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/draft

[Sheard 2015]

Sheard, S; Shull, F; Bachmann, F; & Creel, R. Software Attributes Trade-off Tool (SWATT). FY2016

LENS proposal, 7/20/2015.

[Sheard 2016]

Sheard, S. & Shull, F. Software Attributes Trade-off Tool (SWATT). FY2017 Line proposal, 3/4/2016.

[Shull 2015]

Shull, F. & Sheard, S. FY2016 LENS Projects Software Attributes Trade-off Tool (SWATT). Power-

Point presentation, 8/27/2015.

[USC 2000]

University of Southern California. COCOMO II Model Definition Manual, version 2.1. USC Center

for Software Engineering, 2000.

http://sunset.usc.edu/cse/pub/research/COCOMOII/cocomo_main.html

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.nist.gov/document-3766
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/draft
http://sunset.usc.edu/cse/pub/research/COCOMOII/cocomo_main.html

CMU/SEI-2018-SR-029 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2018

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Modeling the Effects of Software-Related Decisions on Early System Cost Estimates:

Experience Report from the Software Attributes Trade-off Tool (SWATT) Project

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Sarah Sheard, Rita Creel, Patrick Donohoe, Michael J. Gagliardi, Michael D. Konrad, Gabriel A. Moreno

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2018-SR-029

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

cybersecurity, software architecture, software development, software cost, software maintenance, software performance

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes the results obtained and the experiences gained on a two-year (FY2016-2017) SEI project named the Software

Attributes Trade-off Tool (SWATT) project that investigated the relationship of software design decisions to key system-level perfor-

mance parameters and costs. The FY2016 project created a tool that takes the results of a software openness checklist and converts it

into an estimate of software development and maintenance costs. The FY2017 project evaluated how to address the security issues that

mission sequences create, when the scenarios to be used depend on architectural features. With significant analyst assistance, this tool

can be used first to determine what security concerns a given software architecture may have and then to estimate development and

maintenance costs for a number of architectural options that improve security countermeasures.

14. SUBJECT TERMS

15. NUMBER OF PAGES

73

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

