
 
AFRL-RY-WP-TR-2019-0258 

 
 

 
 

ASSESSMENT OF RESIDUAL NONUNIFORMITY ON 
HYPERSPECTRAL TARGET DETECTION 
PERFORMANCE  
 
Joseph Meola 
EO Target Detection & Surveillance Branch 
Multispectral Sensing & Detection Division 
 
Carl Joseph Cusumano 
University of Dayton Research Institute 
 
NOVEMBER 2019 
Final Report 
 

 
Approved for public release; distribution is unlimited. 

 
See additional restrictions described on inside pages  

© 2019 University of Dayton Research Institute 
 
 

STINFO COPY 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it 
does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

November 2019 Thesis 24 September 2019 –24 September 2019
4. TITLE AND SUBTITLE

ASSESSMENT OF RESIDUAL NONUNIFORMITY ON
HYPERSPECTRAL TARGET DETECTION PERFORMANCE 

5a.  CONTRACT NUMBER 
FA8650-17-D-1801 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 
63203F 

6. AUTHOR(S)

Joseph Meola (AFRL/RYMT)
Carl Joseph Cusumano (University of Dayton Research Institute) 

5d.  PROJECT NUMBER 
665A 

5e.  TASK NUMBER 
N/A 

5f.  WORK UNIT NUMBER 
Y1H6 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Research Laboratory
Sensors Directorate (AFRL/RYMT) 
Wright-Patterson Air Force Base, OH  45433-7320 
Air Force Materiel Command 
United States Air Force 

University of Dayton 
Research  

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate 
Wright-Patterson Air Force Base, OH  45433-7320 
Air Force Materiel Command 
United States Air Force 

AFRL/RYMT
11. SPONSORING/MONITORING AGENCY

REPORT NUMBER(S)
AFRL-RY-WP-TR-2019-0258

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
PAO case number 88ABW-2019-4590, Clearance Date 24 September 2019. © 2019 University of Dayton Research Institute. Submitted in
partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the University of Dayton School of
Engineering. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or
disclose the work. Report contains color.

14. ABSTRACT
Hyperspectral imaging sensors suffer from pixel-to-pixel response non-uniformity that manifests as fixed pattern noise (FPN) in collected data.
FPN is typically removed by application of flat-field calibration procedures and non-uniformity correction algorithms. Despite application of these
techniques, some amount of residual fixed pattern noise (RFPN) may persist in the data, negatively impacting target detection performance. In this
work we examine the conditions under which RFPN can impact detection performance using data collected in the SWIR across a range of target
materials. We designed and conducted a unique tower-based experiment where we carefully selected target materials that have varying degrees of
separability from natural grass backgrounds. Furthermore, we designed specially-shaped targets for this experiment that introduce controlled levels
of mixing be- tween the target and background materials to support generation of high fidelity receiver operating characteristic (ROC) curves in our
detection analysis. We perform several studies using this collected data. First, we assess the detection performance after a conventional non-
uniformity correction. We then apply several scene-based non-uniformity correction (SB- NUC) algorithms from the literature and assess their
abilities to improve target detection performance as a function of material separability. Then, we introduced controlled RFPN and study its adverse
affects on target detection performance as well as the SBNUC techniques' ability to remove it. We demonstrate how residual fixed pattern noise
affects the detectability of each target class differently based upon its inherent separability from the background. A moderate inherently separable
material from the background is affected the most by the inclusion of SBNUC algorithms.

15. SUBJECT TERMS
hyperspectral, non-uniformity correction

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR 

18. NUMBER
OF PAGES

     62 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a. REPORT 
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Joseph Meola 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A
Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std. Z39-18 



ASSESSMENT OF RESIDUAL NONUNIFORMITY ON HYPERSPECTRAL TARGET

DETECTION PERFORMANCE

Thesis

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Science in Electrical Engineering

By

Carl Joseph Cusumano

UNIVERSITY OF DAYTON

Dayton, Ohio

August, 2019

1 
Approved for public release; distribution is unlimited



ASSESSMENT OF RESIDUAL NONUNIFORMITY ON HYPERSPECTRAL TARGET

DETECTION PERFORMANCE

Name: Cusumano, Carl Joseph

APPROVED BY:

Bradley M. Ratliff, Ph.D.
Advisory Committee Chairman
Associate Professor and Chair,
Electrical and Computer Engineering

Jason R. Kaufman, Ph.D.
Committee Member
Adjunct Professor, Electrical and
Computer Engineering

Eric J. Balster, Ph.D.
Committee Member
Dean of Electrical and Computer
Engineering, Electrical and
Computer Engineering

Robert J. Wilkens, Ph.D., P.E.
Associate Dean for Research and Innovation
Professor
School of Engineering

Eddy M. Rojas, Ph.D., M.A., P.E.
Dean, School of Engineering

ii

2 
Approved for public release; distribution is unlimited



c© Copyright by

Carl Joseph Cusumano

All rights reserved

2019

3 
Approved for public release; distribution is unlimited



ABSTRACT

ASSESSMENT OF RESIDUAL NONUNIFORMITY ON HYPERSPECTRAL TARGET

DETECTION PERFORMANCE

Name: Cusumano, Carl Joseph

University of Dayton

Advisor: Dr. Bradley M. Ratliff

Hyperspectral imaging sensors suffer from pixel-to-pixel response nonuniformity that

manifests as fixed pattern noise (FPN) in collected data. FPN is typically removed by ap-

plication of flat-field calibration procedures and nonuniformity correction algorithms. De-

spite application of these techniques, some amount of residual fixed pattern noise (RFPN)

may persist in the data, negatively impacting target detection performance. In this work

we examine the conditions under which RFPN can impact detection performance using

data collected in the SWIR across a range of target materials. We designed and conducted

a unique tower-based experiment where we carefully selected target materials that have

varying degrees of separability from natural grass backgrounds. Furthermore, we designed

specially-shaped targets for this experiment that introduce controlled levels of mixing be-

tween the target and background materials to support generation of high fidelity receiver

operating characteristic (ROC) curves in our detection analysis. We perform several studies

using this collected data. First, we assess the detection performance after a conventional

nonuniformity correction. We then apply several scene-based nonuniformity correction (SB-

NUC) algorithms from the literature and assess their abilities to improve target detection

performance as a function of material separability. Then, we introduced controlled RFPN

and study its adverse affects on target detection performance as well as the SBNUC tech-

niques’ ability to remove it. We demonstrate how residual fixed pattern noise affects the

iii
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detectability of each target class differently based upon its inherent separability from the

background. A moderate inherently separable material from the background is affected the

most by the inclusion of SBNUC algorithms.
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CHAPTER I

INTRODUCTION

Spatial nonuniformity, or fixed pattern noise (FPN), is a problem that affects nearly all

focal plane array (FPA) sensors and is largely caused by manufacturing variability within

each photodetector, resulting in each FPA pixel measuring the same incident radiation

differently [1]. FPN degrades acquired imagery by superimposing a fixed noise pattern in the

data over the imaged scene. In 2D staring camera imagery FPN gives the appearance that

the scene was imaged through a dirty camera lens, whereas FPN appears as vertical striping

artifacts in pushbroom sensor imagery. While FPN is known to particularly manifest in

infrared sensors [2], it can also impact visible to short-wave infrared (VIS-SWIR) sensors,

such as those commonly employed in hyperspectral imaging (HSI) systems.

FPN is usually compensated for through calibration procedures where a flat-field source

is imaged by the camera at a range of precisely-controlled input radiances [3]. Despite

careful calibration, residual nonuniformity is nearly always present in the calibrated data,

largely for two reasons. First, detector responsivities are typically a nonlinear function of

input radiance; however, pixels often are fabricated to have an approximately linear response

within the expected operating range of the sensor. As such, response curves are commonly

approximated by a linear model in order to account for the nonuniformity, which is clearly

inaccurate in nonlinear regions [4]. Second, the detector responsivities slowly change with

time due to a host of factors, such as the internal operating temperature of the camera

electronics and the external environmental conditions of the sensor, such as temperature,

air pressure, and humidity [1]. Fortunately, the drift is often slow enough that within a

reasonable range of frames the pixel responsivities may be considered constant.

1
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Common practice for removing FPN in HSI data cubes is to apply a linear two-point

calibration, i.e., a pixel-wise gain and offset correction, where such calibrated data is often

referred to as Level 1 (L1) calibrated data (along with any bad pixel correction). Often

times, the gain map is carefully generated under laboratory conditions and later used in

the field. The offset map is typically generated by imaging the camera shutter prior to each

image scan or at the beginning of the data collection. This results in the offset estimates

being recent while the gain map can be more subject to drift due to the time that has

elapsed since its creation. This drift in the gain map results in calibration error, or residual

fixed pattern noise (RFPN), and can have an adverse effect on the performance of detec-

tion, identification, and tracking tasks in HSI data. The only viable solution for estimating

and removing RFPN is to apply strategies that can estimate FPN through exploiting scene

properties inherent within the data. These strategies are known as scene-based nonuni-

formity correction (SBNUC) algorithms and attempt to estimate and remove any RFPN

present in the data.

SBNUC algorithms predominantly have been designed for staring array imagery. These

algorithms are primarily based upon statistical or frame-to-frame registration methods that

work to estimate and eliminate RFPN. Statistical methods are often based upon the as-

sumption that the spatial and temporal radiance distribution is identical across all pixels.

Various statistical algorithms have been proposed, such as the Kalman-filtering based ap-

proach by Torres and Hayat [5], the least mean squares (LMS) neural network approach by

Scribner et al. [6], the gated LMS approach by Hardie et al. [7], and the constant-statistics

(CS) approach by Harris et al. [8]. Registration-based methods utilize frame-to-frame mo-

tion to cancel the scene content via image registration, leaving only FPN terms that can be

estimated. The frame-to-frame shift can be whole pixel or subpixel. Various registration

2
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algorithms have been introduced, such as the family of subpixel algebraic SBNUC tech-

niques by Ratliff et al. [9, 10, 11], subpixel offset unification approach by Black and Tyo

[12], scene cancellation subpixel approach by Zuo [13], and two full pixel registration-based

approaches by Hardie et al. [14] and O’Neil [15].

We focus our attention in this work on the correction of FPN in HSI systems. HSI

systems rely on the same FPA sensors; however, the optical system contains a dispersive

element that converts one spatial dimension into a spectral dimension. The second spatial

dimension is then built up over time and these types of sensors are known as pushbroom

sensors. A number of SBNUC algorithms for pushbroom sensors are in the literature,

namely, the sorted mean spatial ratio (SMSR) technique by Ratliff and Kaufman [16], the

Naval Research Laboratory’s (NRL) mean spatial ratio method by Leathers et al. [17], the

low-dimensional destriping procedure by Adler-Golden et al. [18], total variation approach

by Yuan et al. [19], an energy minimization via regularization approach by Bouali [20], a

neural network approach by Meza [21], and a high dimensional subspace approach by Acito

et al. [22].

Within the HSI community, application of SBNUC algorithms has been met with mixed

opinions as to how beneficial they can be. In some cases, significant improvement to target

detection can be obtained, while in others little to no improvement (or even worsened per-

formance) is observed. The goal of this work is to first investigate the effect that RFPN has

upon target detection performance. Then, SBNUC algorithms will be applied to appropri-

ate data to better understand their performance. This has traditionally been a difficult task

to undertake due to limited data being available for such a study. To support such an inves-

tigation, we conducted a data collection experiment with a SWIR HSI sensor using material

target panels designed specifically for this study. The targets were created using materials

3

14 
Approved for public release; distribution is unlimited



that have different degrees of inherent separability from natural grass backgrounds. Fur-

thermore, the targets were created to produce different target-background mixture levels

in order to yield high fidelity receiver operating characteristic (ROC) curves. The reason

for creating such targets is to determine how target detection performance is affected as

a function of RFPN and inherent target-background separability. Moreover, our goal is

to study the performance of SBNUC algorithms commonly used in the HSI community.

Hence, in this thesis we apply several SBNUC algorithms and study their ability to remove

RFPN and furthermore the effect this has on target detection performance. The specific

algorithms we examine in this work are the CS [8], SMSR [16], and NRL [17] approaches.

This thesis is organized as follows. Our sensor model development and a description

of the SBNUC algorithms we apply are presented in Chapter II. Data collection planning

and target design are discussed in Chapter III. Chapter IV describes all data processing,

exploitation, and RFPN simulation. Target detection results and all relevant discussion are

presented in Chapter V. Finally, conclusions are stated in Chapter VI.

4
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CHAPTER II

SENSOR MODELING & SBNUC APPROACH

2.1 Sensor Model

In a pushbroom sensor, the FPA acquires spatial information along one dimension and

spectral information along the other due to the presence of dispersive optics in the imaging

system. A three-dimensional hyperspectral data cube can then be obtained by scanning

the sensor across the scene to build up the second spatial dimension. This results in a

hyperspectral image cube of dimensions S × B × L, where S is the number of cross-track

spatial samples, B represents the number of discrete band (or wavelength) images, and L

represents the number of along-track spatial lines that are collected across time. This can

be seen in Figure 2.1.

Figure 2.1: A hyperspectral sensor scanning over a target array and an example of its
corresponding hyperspectral image cube.

5
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As described above, the responsivity of each pixel in the FPA can be nonlinear and

furthermore slowly change with time. It is common practice to assume a linear detector

model since often detectors are fabricated to have an approximately linear response in the

expected operating range of the sensor [1, 3]. As such, we first assume a linear detector

model and second we assume that the drift in the detector responsivity is slow enough to

be negligible within the time it takes to collect an image cube. Our detector model is then

y(s, b, l) = g(s, b) · x(s, b, l) + o(s, b) + η(s, b, l), (2.1)

where x(s, b, l) is the input radiance at time l, g(s, b) and o(s, b) are the pixel’s gain and

offset, respectively, and y(s, b, l) is the pixel output in digital counts at time l. η(s, b, l)

is frame-to-frame temporal sensor noise and is assumed to be independently distributed

zero-mean Gaussian noise. Due to the averaging mechanisms present across the correction

algorithms we largely ignore the effects of temporal noise since it becomes negligible.

FPN results due to each pixel’s gain and offset being different, giving rise to the nonuni-

formity. One common method of removing FPN is to apply a linear two-point calibration.

This two-point calibration, otherwise known as a Level 1 (L1) calibration, is defined by

placing a calibrated flat-field source at a known radiance in front of the camera system,

exposing each pixel to the same radiance level. Two flat-field radiance levels, x1 and x2,

are used in this case. Once acquired, the data can be used to estimate the gain and offset

for each detector according to

ĝ(s, b) =
y2(s, b, l)− y1(s, b, l)

x2 − x1
, (2.2)

and

ô(s, b) = y1(s, b, l)− ĝ(s, b)x1. (2.3)

6
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These gain and offset estimates are then applied to correct for the nonuniformity in each

pixel (producing the L1 image) according to

x̂(s, b, l) =
y(s, b, l)− ô(s, b)

ĝ(s, b)
=
g(s, b) · x(s, b, l) + o(s, b)− ô(s, b)

ĝ(s, b)
. (2.4)

Typically, this calibration results in the data being converted from units of digital counts

to a desired radiometric unit. We assume that the calibration unit is radiance for the

remainder of this work.

It is worth noting that often times in practice the camera shutter is the only flat-field

source available at the time of collection. It is used to collect a “dark” frame (i.e., 0 input

radiance) while relying on an estimate of the gain map that was acquired previously in time.

Clearly then, this scenario is more prone to error in the gain estimates and contributes to

RFPN. Due to this common situation, here we assume that all RFPN may be attributed

to gain nonuniformity, i.e., we assume that o(s, b) = 0 ∀s, b ∈ Z+. Therefore, the sensor

model reduces to

x̂(s, b, l) =
g(s, b) · x(s, b, l)

ĝ(s, b)
= gr(s, b) · x(s, b, l), (2.5)

where gr(s, b) = g(s,b)
ĝ(s,b) represents the residual gain nonuniformity present after L1 calibration

(where each residual gain is assumed to be close to 1) and is the source of RFPN that we

study.

2.2 Algorithm Descriptions

We implement and apply three specific SBNUC algorithms from the literature in this

work. In particular, we investigate the CS [8], SMSR [16], and NRL [17] algorithms. The

CS algorithm attempts to remove RFPN by normalizing each pixel response to have the

same mean and standard deviation over time. These quantities are estimated for each pixel

7
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using data from the image cube along the line (temporal) dimension, i.e.,

µcs(s, b) =
1

L

L∑
k=1

x̂(s, b, l) (2.6)

and

σcs(s, b) =

√∑L
k=1(x(s, b, l)− µcs(s, b))2

L
. (2.7)

These estimates are then applied to correct each L1 image value according to

ˆ̂x(s, b, l) =
(x̂(s, b, l)− µcs(s, b))

σcs(s, b)
. (2.8)

In order for the CS algorithm to produce reliable estimates of the mean and standard

deviation that each pixel must observe the same distribution of scene radiance over time.

This rarely happens in practice and typically requires a large number of image frames to

satisfy the statistical assumptions (often > 10,000). When not enough samples are available

in the data cube severe ghosting artifacts can be present after correction.

The SMSR algorithm also takes a statistical approach, but incorporates inherent mech-

anisms to mitigate adverse artifacts in the corrected data. The algorithm first sorts the

image cube according to radiance value along the line (temporal) dimension. This helps to

ensure that neighboring pixels have similar scene values. Then, within each band image,

neighboring columns within this sorted image are ratioed. Ratioing begins at the central

column and emanates outward towards the edges of the image. The sorted and ratioed

image takesd the form,

γ(s, b, l) =


x̂(s+1,b,l̇)

x̂(s,b,l̇)
≈ gr(s+1,b)

gr(s,b)
, s > c

1, s = c
x̂(s−1,b,l̇)
x̂(s,b,l̇)

≈ gr(s−1,b)
gr(s,b)

, s < c

, (2.9)

where c indicates the starting column of a given band image (often chosen to be the central

pixel). The ratios are further sorted along the time dimension a second time, causing outlier

8
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values to move to the beginning and end of each column. A percentage of these outliers

are excluded and the resulting gain ratio estimates are averaged. At this stage, the ratio

estimates will only unify a given pixel to that of its adjacent neighbor. To convert it into

a more useful form that will unify the gains across the entire image to a common value, a

cumulative product is applied such that

Γ(s, b) =


∏c
q=s γ̂q,b, s < c

1, s = c∏s
q=c γ̂q,b, s > c

, (2.10)

where γ̂ corresponds to gain ratios estimates excluding outliers. Then, the final gain cor-

rection matrix is of the desired form:

Γ ≈


gr(c,1)
gr(1,1)

· · · gr(c,1)
gr(c−1,1) 1 gr(c,1)

gr(c+1,1) · · ·
gr(c,1)
gr(s,1)

gr(c,2)
gr(1,2)

· · · gr(c,2)
gr(c−1,2) 1 gr(c,2)

gr(c+1,2) · · ·
gr(c,2)
gr(s,2)

... · · ·
...

...
... · · ·

...
gr(c,b)
gr(1,b)

· · · gr(c,b)
gr(c−1,b) 1 gr(c,b)

gr(c+1,b) · · · gr(c,b)
gr(s,b)

 . (2.11)

When this gain correction matrix is multiplied with a given L1 band image, notice that it

will remove the respective gain and multiply it with the gain of the central pixel, effectively

synchronizing the RFPN. It was additionally shown in [16] that further improvement could

be obtained by applying this approach in the principal component (PC) domain. Thus, a

principal components transform (PCT) is first applied to the L1 image cube, the SMSR al-

gorithm is then applied as described above in PC space, and then finally inverse transformed

back into radiance space.

The NRL algorithm is based upon similar mechanisms as the SMSR technique, namely

that it computes the ratios of samples in adjacent columns. However, rather than performing

any sorting or averaging operations, the median value of the computed ratios within each

column is used. A cumulative product is similarly performed on these median ratio values to

obtain a similar form to the correction matrix of the SMSR algorithm. The NRL algorithm

is illustrated in Figure 2.2.
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Figure 2.2: Procedural drawing of the mean spatial ratio (NRL) algorithm.
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CHAPTER III

DATA COLLECTION PLANNING

Our overall objective in this study is to better understand the effect that RFPN has

upon HSI target detection performance for target materials which have different levels of

inherent separability from the background (or non-target materials). In particular, we want

to understand how the presence of RFPN affects targets that are difficult to detect (low

background separability), easy to detect (high background separability), and those that are

in between these two extremes (moderate background separability). The hypothesis is that

RFPN will not significantly affect target detection performance of low and high separable

materials as much as moderately separable materials. This concept is illustrated on the left

axes in Fig. 3.1 where simple Gaussian distributions are used to represent the target and

background distributions. When an SBNUC algorithm is applied to the data, the width

of the distributions are expected to decrease, as illustrated at right in Fig. 3.1. When

this occurs notice that materials that have low separability remain unseparable from the

background distribution. Materials which have high separability remain separable despite

the decrease in RFPN. Finally, moderately separable material’s detectability will be most

impacted as they will overlap less with the background distribution after SBNUC.

One goal was to demonstrate these trends using real HSI data; however, no real data was

available to support such an investigation. Thus, we designed and conducted an experiment

specifically for this study.We selected target materials with inherent levels of separation from

natural backgrounds to provide a range of difficulty in their detectability. Furthermore, we

constructed targets to precisely control the level of mixture between each target material

and the background to allow for high sampling of the resulting ROC detection curves. The

11

22 
Approved for public release; distribution is unlimited



Figure 3.1: Illustration of distributions for materials of different degrees of inherent back-
ground separability before and after RFPN reduction: low separability materials remain
difficult to detect even after RFPN removal, high separability materials are detectable in-
dependent of RFPN, and moderately separable materials become more detectable after
RFPN removal and thus see the most benefit in improved detectability.

details of material selection and target design, as well as the data collection scenarios are

discussed in the following subsections.
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3.1 Material Selection

A key component of this data collection was selecting appropriate target materials hav-

ing differing levels of inherent separability from anticipated natural backgrounds. A study

was conducted to identify such materials based on their relative reflectance spectra with the

added constraints that they be easily obtainable and conducive to target construction. The

material separability study was conducted using material libraries provided by the Air Force

Research Laboratory containing both man-made and natural materials (891 signatures in

total). Representative grass background signatures were extracted from calibrated data

previously collected with the same SWIR HSI sensor under similar atmospheric conditions

anticipated for the data collection. These signatures were used to generate appropriate back-

ground statistics for computing separability measures between the background distribution

and each material library signature. While several separability measures were considered,

Pearson’s Correlation Coefficient (PCC) was ultimately chosen for final material selections,

defined as

ρTB =
E[(T− E[T])(B− E[B])]

σTσB
, (3.1)

where T and B indicate the target and background signatures, respectively, E[·] is the

expected value operator, and σT and σB are the spectral standard deviations of the target

and background signatures, respectively.

We obtained PCC scores for each signature in the material library against the scene-

extracted background reflectance signature. We selected four target materials for use in the

study: a mixture of fine domestic American hardwood sawdust (low separability); Valspar

Signature Matte Tan Latex Paint (moderate separability); fine white craft sand (moderate
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separability); and red Plasti-Dip R© rubberized paint (high separability). These materials

spanned a wide range of inherent separabilities from our mean background signature. We

purchased these materials and applied them to small aluminum test panels. We then per-

formed laboratory spectrometer contact measurements to obtain reflectance signatures for

each target material. The PCC score was then computed between each test panel material

measurement and the average scene-extracted grass background signature and are shown

in Table 3.1. A photo of these commercially-available materials along with their associated

measured reflectance spectra are displayed in Fig. 3.2. As discussed in more detail in

Table 3.1: PCC score between each selected target material and scene-extracted grass
signature shown in Fig. 3.2.b.

Target Class PCC Score

Sawdust 0.9466

Sand 0.7858

Tan Latex 0.7917

Red Plasti-Dip R© 0.0191

the next subsection, the targets were created from circular aluminum panels. The mate-

rials were applied to these aluminum panels by first applying a Krylon Matte Deep Gray

Paint+Primer. Then, the Plasti-Dip R© and tan latex paint were applied directly to the gray

primered panels. The sawdust and sand were adhered to the gray primered panels by first

applying 3M Multipurpose Super 77 Spray Adhesive. This was performed three times to

ensure that the targets were well-covered by the fine particulate materials. Additionally, we

created a target panel and applied Krylon Matte Black Paint to be used as a 0% reflectance

calibration target.

14
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Figure 3.2: Selected materials used for target creation are shown at left with their cor-
responding spectral signatures plotted at right, sampled to the appropriate sensor wave-
lengths. Shown for reference is the average scene-extracted grass background signature
used in the target separability study.

3.2 Target Mixture Simulation & Fabrication

A secondary goal of target design was to create targets that introduce controlled levels of

mixing between the selected target materials and the natural background (we chose target-

background mixture ratios of 100%, 80%, 60%, 40%, and 20%). In order to construct a well-

defined ROC curve, numerous samples are needed at each mixture level, where the number

of pixels should be greater than 10 divided by the false alarm probability [23]. Therefore,

for the most stringent case of an 20% target-background mixture ratio, a minimum of 50

pixels are needed.

The targets were created from 0.080” thick circular aluminum panels that are 30” in

diameter. For each of the four target materials, sets of five targets were created (for a total

of 20), one at each of the five target-background mixture ratios (100%, 80%, 60%, 40%, and

20%). The mixture levels were created by punching holes (using a hydraulic CNC turret
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press) of various shapes and sizes in the central 24”× 24” region of each aluminum panel.

A simulation was developed in order to determine the optimal hole shape, size, and spacing

to achieve a given mixture ratio at a specified camera ground sample distance (GSD). The

idea was to create hole patterns that are unresolvable at the given GSD of 1.5 inches so that

uniform mixing is achieved in the final measured images. Each mixture level thus required

a different hole pattern be created and we were constrained to a discrete set of circular and

square hole punches of various sizes available at the fabrication facility.

Figure 3.3 shows square target regions with inset circular and square hole patterns

that are used to develop the mathematical relationships used to compute a given target-

background mixture level, as displayed in Table 3.2. Here, f represents the target fill factor,

Lt is the length of the side of the square target area, Lh is the length of the side of the

square hole punch, and Dh is the diameter of the circular hole punch. The simulation was

created in MATLAB where the target and hole mixture patterns were created as a high

resolution binary image (target pixels were set to 1 and background pixels set to 0). Each

binary image was then convolved with a point spread function matching the sensor and

then decimated according to the desired GSD expected in the experiment. The values of

the mixed pixels in these output images then gives the approximate mixture level expected

for the given hole pattern configuration. Table 3.3 shows the hole pattern shapes, sizes, and

spacing that were used to create the actual targets. The simulated high resolution binary

images corresponding to these parameters are displayed in Fig. 3.4.a and the simulated

sensor-sampled images are shown in Fig. 3.4.b for an example sensor GSD of 1.5 inches.
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Figure 3.3: Square and circular hole-punch guides created for the target mixture simulation.

Table 3.2: Mathematical relationships used to compute target fill factor corresponding to
Figure 3.3.

Square Punch Circular Punch

f = (Lh
Lt

)2 f = π(Dh
2Lt

)2

Lt = Lh√
f

Lt = Dh
2

√
π
f

Lh = Lt
√
f Dh = 2Lt

√
f
π

Table 3.3: Hole pattern configurations for the four target-background mixture ratios.

Target-Background
Mixture Level

Hole Shape Hole Size Hole Spacing
Alternating
Row Offset

80% Circular 0.25”D 0.5” 0.25”

60% Circular 0.344”D 0.5” 0.25”

40% Circular 0.437”D 0.5” 0.25”

20% Square 0.75” 0.85” 0.425”

17

28 
Approved for public release; distribution is unlimited



(a)

(b)

Figure 3.4: Mixture target simulated images using the hole pattern configurations from
Table 3.3. a) shows the high resolution binary target images (from left to right) at target-
background mixture levels of 100%, 80%, 60%, 40%, and 20%. b) shows the corresponding
sampled images after passing through a simple optics model and sampled at a GSD of 1.5
inches. The central region estimated mixture ratios are (from left to right) 100%, 79.97%,
62.62%, 37.91%, and 18.18%.
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3.3 Collection Scenario and Conditions

The data collection was performed in Dayton, OH during November, 2018. Light cloud

cover and low/parallel sun angles to the target surface included variable illumination con-

ditions throughout the collection. To address these illumination conditions, three target

scenarios were created by orienting the targets at three different angles (out of plane) rel-

ative to the sensor. The sensor was positioned in a tower with an angle of depression of

20◦. In the first target scenario, the targets were positioned at nadir to the sensor at an

angle of elevation of 70◦ from the ground. In the second scenario the targets were reposi-

tioned to an angle of elevation of 45◦ relative to the ground, and finally at a 10◦ angle of

elevation relative to the ground in the third scenario. Figure 3.5 shows an illustration of

target placement in the scene for each scenario. Visible-band ground truth images of each

target scenario taken from the tower vantage point are shown in Figure 3.6. Standoff rela-

tive reflectance signatures were measured at the beginning of each scenario using Malvern

Panalytical’s ASD FieldSpec R© spectrometer for all material and calibration targets, as well

as for numerous regions of the grass background. Figure 3.7 displays various ground truth

images from the data collection experiment of the target array taken from the ground and

collection tower.

A single band image can be seen from each scenario in Figure 3.8. The collection sensor

and acquisition computer both experienced a number of issues during the data collection

that resulted in intermittent temporal artifacts, interlacing issues, and dropped frames.

Furthermore, the sun angle for Scenarios 1 and 2 resulted in sub-optimal illumination con-

ditions for the target array .The target panel shadows in the ground truth images reveal

that the sun angle is oriented orthogonal to the target array and resulted in some of the

target panels not being well-illuminated (simply a consequence of the time of year). This
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Figure 3.5: Target array layout for each scenario.

is unfortunate since the targets were designed to have the indicated mixture ratios when

viewed at nadir. In Scenario 3, however, the target panels are all well-illuminated and all

clouds had dissipated by this time. For this reason we focus on data sets from Scenario 3

for the remainder of this study.
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Figure 3.6: Imagery collected from the data collection. The top image depicts Scenario 1
of the target array where each target is orientated with angles of elevation relative to the
ground of 70◦. The middle image depicts Scenario 2 where each target is orientated with
angles of elevation relative to the ground of 45◦, and the bottom image depicts Scenario 3
where each target is orientated with angles of elevation relative to the ground of 10◦.
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Figure 3.7: Imagery collected from the data collection. The top image depicts Scenario 1
of the target array. The middle image shows the viewpoint behind the target array looking
up towards the tower. The bottom image shows the sensor as well as the target array.
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Figure 3.8: Band 25 image from the data cube in Scenario 1 is shown on top, Scenario
2 is shown in the middle, and Scenario 3 is shown on the bottom (The calibration and
processing of the data is discussed in Chapter IV).
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CHAPTER IV

DATA PROCESSING & EXPLOITATION

The HSI sensor used in this experiment has a 320 × 256 SWIR-based FPA sensor. In

each data set, the sensor was slewed across the scene and collected 450 lines. This resulted

in HSI image cubes of size 320 samples × 450 lines × 256 bands over a wavelength region of

900 to 1600 microns. Prior to each collection scenario, flat-field imagery was collected using

the camera shutter (for offset correction) and a flat-field Labsphere R© integrating sphere was

imaged at mid- and high-luminance levels for calibration purposes. Bad pixel correction

was enabled in the sensor acquisition software and thus is inherent to the collected data.

Each raw data cube was calibrated into an L1 data cube using a two-point calibration

procedure [3]. The shuttered and high luminance data were used in the calibration. The

shutter and Labsphere R© luminance levels were converted to spectral radiance at each sensor

wavelength and a separate gain and offset vector was computed and applied to each band

image. Atmospheric bands were then removed from the data so that only band correspond-

ing to wavelengths of 950-1108, 1137-1331, and 1423-1669 microns were used. Atmospheric

compensation was performed to convert the L1 data cube from radiance into reflectance

using a multi-point empirical line method (ELM) [24]. The pixels corresponding to each of

the four calibration panels (as shown in Figure 3.5) in the scene were extracted and a piece-

wise linear 4-point ELM was performed. The SBNUC algorithms mentioned above, namely

the SMSR [16], NRL [17], and CS [8] algorithms, were then applied to each L1 image cube

to further reduce RFPN. It is important to note that these algorithms are applied to the L1

data in radiance units and the ELM is further performed on each of these corrected cubes

to convert the data to relative reflectance before any detection assessment is performed.
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The top row of Fig. 4.1 displays the 25th band image from the L1 calibrated data cube,

the SMSR SBNUC-applied L1 cube, the CS SBNUC-applied L1 image cube, and the NRL

SBNUC-applied L1 image cube. The L1, SMSR, and NRL resulting band images look

similar whereas some artifacts can be observed in the CS result near the top and central

portions of the image. RX anomaly detection [25] results, or maps, are useful for visually

assessing RFPN present in HSI image cubes. Each value of the RX map is computed

according to

RX(x) = (x− µx)T · Γ−1 · (x− µx), (4.1)

where (x − µx)T is any mean-subtracted scene signature and Γ is the covariance matrix

computed from the entire scene. The RX detection map for each image cube is displayed

in the second column corresponding its respective data cube. In the L1 results, there is a

reasonable amount of RPFN that manifests as interlaced striping artifacts across the RX

map. These artifacts have largely been removed after application of the SMSR algorithm.

The NRL algorithm reduces the striping artifacts slightly, but they are still noticeable after

correction. Furthermore, it appears to introduce some dark banding artifacts that can be

observed near the top of the RX image. The CS algorithm shows extreme artifacts across

several regions of the scene. These artifacts are present because the CS algorithm assumes

that the temporal intensity distribution of each line in the scene is identical. In areas

where only grass is observed, not enough intensity diversity is present and thus yield severe

“burn-in” artifacts. Typically, thousands of samples are needed for this algorithm to obtain

reasonable results–we included it in this work due to its common use in practice. Truth

masks were created for both target and background grass pixels and are shown in Figure

4.2. The truth masks were categorized according to each target material class and further

sub-categorized according to each target mixture level. Each of the four calibration panels

in the scene were also labeled separately in the truth mask to support the ELM atmospheric
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correction. It is important to note that we limit the background signatures to those of grass

pixels since our initial material selections were based upon separability from scene-extracted

grass pixels.
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Figure 4.1: The left column shows the band 25 image from the data cube after L1 calibration,
SMSR, NRL, and CS SBNUC algorithms. The right column shows the resulting RX map
for the corresponding image cube at left.
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Figure 4.2: The created truth mask showing all target materials and mixture regions and
calibration target panels is shown at top. The background truth mask consisting of grass-
only pixels is shown at bottom.
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CHAPTER V

DETECTION PERFORMANCE

To evaluate the detection performance of each target material, we use the adaptive

cosine estimator (ACE) algorithm [26] to compute a detection score for each pixel loca-

tion using a given ELM-corrected data cube and the various target reflectance signatures

measured in-field with the ASD field spectrometer (we used spectra from the 100% target

material panel). The resulting ACE maps were then evaluated in conjunction with the truth

mask for a given target material class and the grass background pixels to produce a ROC

curve. Here, we study the effect RFPN has upon target-background separability. The ACE

algorithm computes the cosine of the angle between a given scene signature and specified

target signature in whitened space. The ACE score between two such signatures is thus

computed according to

ACE(x, s) =
x̃ · s̃T

|x̃| · |̃s|
, (5.1)

where x̃ = Γ−
1
2 (x − µX) is any whitened scene signature and s̃ = Γ−

1
2 (s − µX) is the

whitened target signature. µX and Γ are the mean and covariance matrix computed across

all scene-extracted grass spectra and |x̃| and |̃s| are the magnitudes of the whitened scene

and target signatures, respectively.

To provide additional assessments of separability, we compute the signal-to-noise ratio

(SNR) according to

SNR =
σACE(X,s)

σACE(X+N,s)
, (5.2)

where σACE(X,s) and σACE(X+N,s) are the standard deviations of the ACE scores before and

after introduced noise, respectively. If we included all background pixels (i.e., non-grass)
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for computing the spectral mean and covariance, we would expect detection performance

to decrease. We define the median signal-to-clutter ratio (SCR) as

SCR(T,B) =
median{ACE(T, s)− µB}

σACE(B,s)
, (5.3)

where T indicates all signatures for a given target class and B are all signatures from the

grass background class. µB is calculated similarly to that of Equation 2.6 using background

signatures.

We first evaluated detection performance of the target materials using the L1, SMSR,

NRL, and CS corrected data sets displayed in Fig. 4.1. We then introduced gain-based

RFPN into the data and study the effect that RFPN has upon detection performance.

5.1 Detection Performance on Collected Data

ROC curves for each target material class resulting from each corrected image cube

are displayed in Fig. 5.1. For each material, application of the SMSR algorithm shows

an improvement in detection performance over the L1 image cube. The NRL algorithm

results show a marginal improvement in detection performance for sawdust and sand while

a decrease in performance for tan latex and the rubberized paint. The results from applying

the CS algorithm show a substantial decrease in detection performance in all cases except

for the Plasti-Dip R© material. These results are consistent with the RX detection maps

from Fig. 4.1. These same ROC curves are plotted in Fig. 5.2 grouped according to each

corrected cube. In the L1 and SMSR cases, Plasti-Dip R© is the most detectable, followed by

tan latex paint, white sand, and finally sawdust. This is in line with the PCC separability

predicted in Table 3.1. The PCC scores were again computed between the mean grass

background pixel and each target material signature and are displayed in Table 5.1 for each

corrected cube. We observe that the PCC scores computed from the L1 image cube vary
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from those predicted by the initial material selection study. We attribute this in part to

the grass background signatures that were used in the initial study were collected during

a different time of year. In general, though, this indicates that the PCC scores generally

correlate with the ROC results.
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Figure 5.1: ROC Curves for each indicated target material class resulting from the L1,
SMSR, CS, and NRL corrected image cubes.
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Figure 5.2: ROC curves from Fig. 5.1 organized according to correction type.

To better understand target-background separability in conjunction with the ROC re-

sults, histograms were computed from each ACE detection map for the target and back-

ground classes. The sixteen histogram plots, corresponding to each ROC curve in Fig. 5.2,

are displayed in Fig. 5.3. The histograms illustrate how the high separable materials’ ACE

score distributions sit at a further distance away from the background, correlating with

improved ROC curve performance. When comparing the L1 and SMSR results, the im-

provement in separability, while not dramatic, is clearly observed. The NRL results show
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Table 5.1: PCC score between each target material spectrum and the mean scene-extracted
grass signature from the L1, SMSR, CS, and NRL image cube.

Target Class PCC Score

L1 SMSR NRL CS

Sawdust 0.9652 0.952 0.96638 0.46518

Sand 0.4331 0.41102 0.45383 0.10468

Tan Latex 0.7016 0.67482 0.71221 0.27346

Red Plasti-Dip R© 0.4436 0.41665 0.44925 0.19508

improved separability for sand and sawdust, while reduced separability in the latex and

rubberized paint histograms. The poor performance of the CS algorithms is also observed,

where target histograms for sawdust and sand have become fully inseparable from the back-

ground distribution.

Finally, SCR values were computed corresponding to each ROC curve result and are

displayed in Table 5.2. SCR scores provide a numerical assessment of the ROC curve where

a higher score reflects a steeper rise in the knee of a curve. SCR values were computed

using the median ACE score from each target class and the standard deviation of the ACE

scores for the grass background pixels. The SCR values largely follow the trends observed

in the ROC curves for each algorithm; however, it is important to note that these median

results do not reflect the performance at lower false alarm rates.

Table 5.2: Target Class SCR for each corrected image cube.

Material L1 SMSR NRL CS

Sawdust 3.2571 3.5148 3.9604 0.8731

Sand 3.7948 3.5519 4.4840 0.1446

Tan Latex 7.7100 7.9153 8.0725 2.5178

Red Plasti-Dip R© 4.8811 5.5756 4.9555 4.7885
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Figure 5.3: Histograms of the grass background (dark blue) and indicated target materials
(light orange) corresponding to each ROC curve in Fig. 5.2.

5.2 Target Detection Performance as a Function of RFPN

To better understand the effect of RFPN on target detection performance, an im-

age cube was corrupted with controlled levels of random noise and corresponding ROC

curves were computed for each target material class. Since it is common in practice to

obtain a recent offset map for calibration, we focused on introducing RFPN as random

perturbations about the gain. We created such RFPN in the gain map using a normal
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distribution with a mean of 1 and standard deviation σN . In the simulation, values of

σN = {0.025, 0.05, 0.075, 0.1, 0.125, 0.15} were used, which corresponds to SNR values of

{0.998, 0.997, 0.993, 0.986, 0.980, 0.971}, respectively. We chose the SMSR-corrected image

cube shown in Figure 4.1 as the baseline “clean” image cube to corrupt in this study. A

single band image from each cube after applying RFPN at each noise level is shown in

Figure 5.4 along with its corresponding RX map. For this study, a Monte Carlo simulation

was performed using 50 trials at each noise level. Within each trial, a random noise gain

map was generated and applied to the clean image cube. The SMSR algorithm was then

applied to the corrupted cube and an ELM atmospheric correction was applied. The ACE

detection map was then computed in each case and averaged across each trial’s results.

ROC curves were then generated from these averaged ACE maps.

The ROC curves corresponding to these noise-degraded image cubes for each target ma-

terial class are shown in Fig. 5.5 with corresponding target-background histograms shown in

Figures. 5.6 and 5.7. The SCR values of each target material class for each noise level were

computed and are displayed in Table 5.3. Figure 5.5 demonstrates that increasing levels

of gain RFPN have an overall adverse effect on target detection performance. The trend

can also be observed in the histogram plots of Figures 5.10 and 5.11, which is particularly

apparent for the tan latex target material. For the Plasti-Dip R© material, the addition of

random Gaussian noise is actually increasing detection performance. To better understand

this result, we examined the standard deviations of the ACE target and background his-

tograms, as well as the distance between their means, which we examine in more detail

below.

The results from correcting each corrupted image cube with the SMSR algorithm are

shown in Figure 5.8. Figure 5.9 presents the average ROC curves corresponding to each
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Figure 5.4: The first and third rows show the band 25 image from the clean SMSR cube
with varying standard deviation levels. The second and fourth rows show the resulting RX
map for the corresponding clean cube that is displayed above.
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Figure 5.5: ROC Curves for each indicated target material class after introduction of gain
RFPN at the indicated standard deviation level.

introduced noise level before and after application of the SMSR algorithm. Figures 5.10

and 5.11 display the histograms corresponding to the ROC curves in Figure 5.9. The ROC

curves show a decrease in detection performance as the standard deviation increases, which

matches with the SBNUC-corrected histograms.

Table 5.4 displays the standard deviation of the ACE histograms from each target and

background class at each noise level, while Table 5.5 displays the corresponding differences
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Table 5.3: SCR of Target Classes With/Without Introduced Noise

Sawdust Sand Tan Latex Red Plasti-Dip R©

Noise Added

σ = 0.025 7.0405 8.4988 12.447 10.677

σ = 0.050 6.9455 8.5597 11.144 10.907

σ = 0.075 7.0594 8.5286 10.56 11.278

σ = 0.10 6.8132 8.4454 9.9154 11.508

σ = 0.125 6.5633 8.1727 9.6142 10.895

σ = 0.150 6.2888 7.9959 9.3454 10.877

Noise Corrected

σ = 0.025 5.0745 5.588 7.1547 2.1216

σ = 0.050 3.7119 4.4763 5.3018 1.4067

σ = 0.075 3.2713 4.0107 4.2173 1.2213

σ = 0.10 2.8891 3.5852 3.6587 1.1631

σ = 0.125 2.854 3.3979 3.4388 1.1062

σ = 0.150 2.6182 3.249 3.3353 0.99362

between each target class and background. As the standard deviation of the noise is in-

creased, the distance between the target and background means decreases. This indicates

an average decrease in separability, while we observe an increase in background standard

deviation. Theoretically, the standard deviation of the ACE target distributions should

also increase, yet we observe an opposite trend in Table 5.4. This phenomena is illustrated

conceptually in Figure 5.12. The mean of the ACE background distribution shifts to the

right when noise is introduced in addition to an increase in standard deviation. Conversely,

the ACE target distributions shift leftward; however, we observe a decrease in the target

histogram’s standard deviation. As a result, the median SCR scores are skewed higher than

the 0-noise added case. At lower probability of the false alarm rates, there is not a gradual

increase in the ROC curve. Instead, the curve depicts a tighter, steeper knee at the median

due to the mean-shifted histogram and tails off afterwards. This can be directly observed

in the ROC curves of 5.9.
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Table 5.4: Standard Deviation of Target Distributions

Sawdust Sand Tan Latex Red Plasti-Dip R©

Noise Added

σ = 0.025 0.075998 0.068734 0.14595 0.16374

σ = 0.050 0.075202 0.070022 0.13791 0.16644

σ = 0.075 0.074726 0.072291 0.13397 0.16271

σ = 0.10 0.072587 0.072232 0.12977 0.15606

σ = 0.125 0.072649 0.069099 0.12766 0.15119

σ = 0.150 0.069597 0.069213 0.1244 0.14438

Noise Corrected

σ = 0.025 0.035736 0.041231 0.096524 0.01877

σ = 0.050 0.026024 0.035594 0.078659 0.01598

σ = 0.075 0.023868 0.033561 0.068499 0.013668

σ = 0.10 0.022506 0.033866 0.065089 0.013012

σ = 0.125 0.020903 0.031458 0.058976 0.0121

σ = 0.150 0.020574 0.033099 0.059126 0.012961

Table 5.5: Distance between the Means of Target and Background Histogram Distributions

Sawdust Sand Tan Latex Red Plasti-Dip R©

Noise Added

σ = 0.025 0.24603 0.28041 0.40347 0.43362

σ = 0.050 0.24912 0.29017 0.3624 0.43713

σ = 0.075 0.24971 0.29166 0.34682 0.42638

σ = 0.10 0.24546 0.2886 0.33273 0.41038

σ = 0.125 0.23993 0.28026 0.32186 0.38995

σ = 0.150 0.23227 0.27433 0.31232 0.37473

Noise Corrected

σ = 0.025 0.18315 0.21116 0.26362 0.079767

σ = 0.050 0.13563 0.16345 0.20399 0.057224

σ = 0.075 0.12724 0.15106 0.17602 0.052512

σ = 0.10 0.11847 0.14396 0.16355 0.054551

σ = 0.125 0.11583 0.13828 0.15569 0.049745

σ = 0.150 0.11052 0.13547 0.15208 0.04632

38

49 
Approved for public release; distribution is unlimited



(a)

(b)

Figure 5.6: Histograms of ACE scores between for background and target (Sawdust and
Sand) classes of the noise added image cubes.
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(a)

(b)

Figure 5.7: Histograms of ACE scores between for background and target (Tan Latex and
Red Plasti-Dip R©) classes of the noise added image cubes.
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Figure 5.8: The first and third rows show the band 25 image from the NUC applied cube
that had varying standard deviation levels applied. The second and fourth rows show the
resulting RX map for the corresponding clean cube that is displayed above.
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Figure 5.9: ROC Curves for each indicated target material class after introduction of gain
RFPN and correction via SMSR SBNUC algorithm at the indicated standard deviation
level.
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(a)

(b)

Figure 5.10: Histograms of ACE scores between for background and target (Sawdust and
Sand) classes of the noise corrected image cubes.
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(a)

(b)

Figure 5.11: Histograms of ACE scores between for background and target (Tan Latex and
Red Plasti-Dip R©) classes of the noise corrected image cubes.
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(a)

(b)

Figure 5.12: Target/Background ACE histograms before and after introduced noise correc-
tion.
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CHAPTER VI

CONCLUSION

In this work we investigate the effect that residual fixed pattern noise has upon target

detection performance in hyperspectral image data. A data collection experiment was care-

fully designed and conducted to support this study. As part of the experiment target panels

were designed which contained materials that have different inherent levels of separability

from natural background. Furthermore, we designed the target panels such that controlled

levels of mixing between the target material and background were achieved. Such targets

allowed for studying the effect of residual fixed pattern noise as a function of material sep-

arability in addition to allowing for high fidelity receiver operating characteristic detection

curves to be obtained. The sun illumination angle during the data collection was not op-

timal during that time of year; however, the collected data showed considerable utility for

this study. We were able to show that residual fixed pattern noise affects the detectability

of each target class differently based upon its inherent separability from the background.

A moderate inherently separable material from the background is affected the most by the

inclusion of SBNUC algorithms. Furthermore we demonstrated through adding simulated

noise to the data how target detection performance degrades as a function of material sep-

arability. Finally, we investigated the ability of a particular SBNUC algorithm to remove

the added RFPN.

In future work we hope to repeat this experiment under more favorable illumination and

atmospheric conditions, namely, a time where the sun is at the most optimal angle pointing

directly at the targets for each scenario. Moreover, we want to create a data set that can

be used across the hyperspectral community as a benchmark for analyzing the performance
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of newly designed SBNUC algorithms. Overall, many lessons were learned from this study

that will direct how we proceed in future data collections of this type.
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