
 

1 

Multi-Method Modeling and Analysis of the 
Cybersecurity Vulnerability Management Ecosystem 

 

Andrew P. Moore, apm@sei.cmu.edu  

Allen D. Householder, adh@sei.cmu.edu  

 

The CERT® Division of the Software Engineering Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 

412-268-5465  

 

Abstract 
This paper presents modeling and analysis of two critical foundational processes of the 

cybersecurity vulnerability management ecosystem using a combination of system 

dynamics and agent-based modeling techniques. The preliminary result from this analysis 

is that misapplication of either of these foundational processes could contribute to the 

fragility and risk associated with the many national infrastructures and organizational 

missions that rely on the Internet. We use data from the CERT Coordination Center that 

characterizes coordinated vulnerability disclosure for our previous and continuing 

calibration and validation efforts. Our to-date analysis has identified additional areas for 

future work: new questions to consider, alternate social cost measures to investigate, and 

new avenues for validation. While the results of our initial efforts should be viewed as 

preliminary due to limited calibration and validation, we believe that the approaches used 

and depth of the modeling and simulation are sufficient to begin to understand key 

implications of these processes and possible avenues for their improved application in the 

future.   

Keywords: cybersecurity, system dynamics, agent-based modeling, vulnerability 

management, coordinated vulnerability disclosure, multi-method modeling 

1  Introduction  
Vulnerability management (VM) is the common term used to describe tasks such as 

technical cybersecurity vulnerability1 scanning, patch testing, and deployment (NIST 2013, 

Caralli 2010). VM practices focus on the positive action of identifying specific systems 

affected by known (post-disclosure) vulnerabilities and reducing the risks they pose 

through the application of mitigations or remediation, such as patches or configuration 

changes (Householder 2017).  

                                                 
® CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon 

University. 

1 Henceforth, we refer to technical cybersecurity vulnerabilities simply as vulnerabilities. 

mailto:apm@sei.cmu.edu
mailto:adh@sei.cmu.edu


 

2 

VM practices nearly always deal with the output of a set of practices called Coordinated 

Vulnerability Disclosure (CVD). Because many modern products are, in fact, composed of 

software and hardware components from multiple vendors, any of which may contain 

vulnerabilities, the CVD process increasingly involves the cooperation of vendors with 

competing or misaligned priorities (Householder 2017, Thomson 2018). The CVD process 

involves a number of phases that are generally sequential in time, although they can 

sometimes occur out of order. The phases are based on the ISO/IEC 3011 Standard (ISO 

2013), as expanded in The CERT Guide to Coordinated Vulnerability Disclosure 

(Householder 2017), as summarized below: 

 A vulnerability is found – An individual or group finds a vulnerability in an existing system. 

The individual or group is referred to as the finder. Many finders want the vendor to fix the 

problem, so they report it to the vendor. Not all finders report though. 

 Vendor awareness – One or more vendors whose products are affected by the vulnerability 

may become aware of it, whether through their own testing, via reports from cooperative 

finders, or as a result of analyzing incidents or malware that exploits it.  

 Analysis and prioritization – The vendor confirms the report to ensure accuracy before 

action can be taken and prioritizes reports relative to other work, including other reports.   

 Remediation – A remediation plan (ideally a software patch, but it could also be other 

mechanisms) is developed and tested.   

 Public Awareness – The vulnerability and its remediation plan is disclosed to the public. 

Public awareness is often facilitated by the inclusion of information about the vulnerability in 

a vulnerability database such as the National Vulnerability Database operated by NIST  

(NIST Information Technology Laboratory, 2019) . Vulnerability databases use identifiers, 

such as the Common Vulnerabilities and Exposures (CVE®) ID, to disambiguate distinct 

vulnerabilities. Such cataloging can happen regardless of the availability of remediation 

advice.  

 Deployment – The remediation is applied to deployed systems.   

Figure 1 provides a high-level diagram of the CVD process. 

                                                 
® The CVE and the CVE logos are registered trademarks of The MITRE Corporation. 



 

3 

 

Figure 1: CVD Process (Householder 2017) 

 

This paper presents modeling and analysis of two critical foundational aspects of the 

cybersecurity vulnerability management ecosystem:  

1. the process of identifying and responding to vulnerabilities that most organizations 

rely on for their security defense (We refer to this as the vulnerability management 

[VM] process below.) 

2. the Multi-Party CVD (MPCVD) process for coordinating the development of 

software patches across a set of vendors whose products have an identified 

vulnerability 

While our efforts are a work in progress, our preliminary analysis shows that the 

misapplication of either of these foundational aspects could contribute to the fragility and 

risk associated with the many national infrastructures and organizational missions that rely 

on the Internet. 

Section 2 uses system dynamics modeling (and the VenSim toolset) to analyze core aspects 

of the vulnerability management process. Section 3 takes a deeper dive using agent-based 

modeling (and the Ventity toolset) to analyze the MPCVD process for vulnerability 

patching and disclosure.  The approaches used and the depth of the modeling and 

simulation are sufficient to understand the key implications of these processes and possible 

avenues for their improved application in the future.  Section 4 summarizes the 

contributions of this research and directions for the future. 

Legend

often same 

individual / 

organization

Finder

Reporter

Vendor Deployer

Coordinator

shares vul 

info with

reports 

vul to

reports 

vul to

provides vul info 

and/or patch to

provides 

vul info to

provides 

vul info to

relationship

optional 

relationship

Role



 

4 

2 System Dynamics Analysis of the Cybersecurity 
Vulnerability Management Process 

2.1 Model Description 

This section describes the system dynamics model as a series of incremental builds. Each 

build is displayed in a separate figure. Sometimes the figure builds on the previous figure. 

Other figures are components of the larger model, which is displayed in Appendix B for 

reference. Key parameters of the model, including their types and initial values, are 

described in Appendix C. 

Figure 2 shows a very basic vulnerability discovery and patch process. People discover 

vulnerabilities (i.e., the vulnerabilities become “known”) and initially decide to create 

patches for some fraction of them. We refer to the vulnerabilities that are not initially 

targeted for patching as dormant. After taking some time to generate and publish 

vulnerability patches, they are made available to the general public.  

 

Figure 2: Vulnerability Discovery and Patching Process 

This model can run in one of two modes: one that uses an average patch-generation time 

as constant in the model¸ and one that uses a random vulnerability patch work multiplier 

of that average time. Based on previous analysis of the vulnerability work factor, we choose 

the multiplier from an exponential distribution as shown in Figure 3. The graph shows the 

multiplier along the x axis (i.e., the y values) and the number of times each multiplier is 

generated during the simulation along the y axis. 

Known Vuls
being

Considered
discovering

vuls

Public Vuls
with Patches
Availablepublishing vuls

with patches

random vul
patch work
multiplier

-

use random
work multiplier

vul discovery
rate

+

Public but
Dormant Vuls

publishing vuls
without patches

Known Vuls with
Patch being
Developedstarting vul

patch creation

fraction vuls
initially patched

+

-
vul com

time

-

-

nominal
patch

generation
time

patch
generation

time

+

+

-

Discovering Vuls and

Developing Patches



 

5 

 

Figure 3: Distribution of the Vulnerability Patch Work Multiplier 

Some dormant vulnerabilities remain dormant only until they are used in an attack, in 

which case there becomes an urgent need for a patch by susceptible organizations. As 

shown in Figure 4, patches are generated in the same way as before, but there is an 

acceleration factor due to the urgency that multiplies the speed of patching. This factor is 

a parameter of the model since we do not yet have firm data on the increased speed of 

patching for urgent vulnerabilities. Some fraction of vulnerabilities will never be patched; 

we refer to these as public forever-day vulnerabilities. Zero-day vulnerabilities, by 

definition, become public the day they are exploited and remain “dormant” only as long as 

the time it takes to generate the urgent patch. 

 

Figure 4: Dormant Vulnerability Possibly Becoming Urgent 

Switching gears a bit in Figure 5, we now turn to the lifecycle of vulnerabilities as they are 

processed in CVE.2 Vulnerabilities may be discovered after a patch has become available, 

                                                 
2  We use “CVE” here for convenience since CVE is the most well-known vulnerability identifier in use in the 

vulnerability management space. However, the model is intended to apply to any process by which vulnerabilities are 

selected for inclusion into a list or database and subsequent remediation. 

Time Histogram

400

300

200

100

0

0-1 18-19 36-37 54-55 72-73 90-91
Y values

d
m

n
l

Time Histogram : Current

Known_Vuls
being

Considered
discovering

vuls

Public_Vuls
with_Patches

Availablepublishing_vuls
with_patches

random_vul
patch_work
multiplier

-

use_random
work_multiplier

vul_discovery
rate

+

Public_but
Dormant_Vuls

publishing_vuls
without_patches

Known_Vuls_with
Patch_being
Developedstarting_vul

patch_creation

fraction_vuls
initially_patched

+

-
vul_com

time

-

-

nominal
patch

generation
time

patch
generation

time

+

+

-

Discovering Vuls and

Developing Patches

becoming_forever
day_vuls

Public_Forever
Day_Vuls

Urgent_Vuls
with_Patches

Available
publishing
urgent_vuls

with_patches
-

Urgent_Vuls_with
Patch_being
Developedstarting

urgent_vul
patch

fraction_dormant
patched

vul_dormancy-

+

-

-

acceleration
factor



 

6 

but CVE generally targets those vulnerabilities discovered before patching and only once 

those vulnerabilities become publicly known. A five-tier framework is used to decide 

whether to report a discovered vulnerability (Ragan, 2016).  Each tier is associated with a 

set of organizations―the vendors―whose product vulnerabilities are assigned to the tier. 

Each tier represents qualitatively whether vulnerabilities in that tier will be reported in 

CVE. The system dynamics model of this tier framework―specifically the array variable 

“fraction CVE vuls reported”―assigns probabilities associated with whether a 

vulnerability in the tier is processed as follows: 

 tier 1 (vulnerabilities must be reported) : p=1.0 

 tier 2 (vulnerabilities should be reported) : p=0.95 

 tier 3 (vulnerabilities may be reported) : p=0.60 

 tier 4 (vulnerabilities may not be reported) : p=0.3 

 tier 5 (vulnerabilities must not be reported) : p=0.0 

These probabilities are initial estimates only; they are based strictly on the qualitative 

wording. They can be updated as more information comes to light about how the CVE 

responders interpret the tiering requirements. Absent that, we can run Monte Carlo 

simulations in VenSim to determine the effect of probability variance on simulation 

behavior. Lastly, the simulation must determine what fraction of vulnerabilities discovered 

falls into each tier. This fraction, which may change over time, is represented in the array 

variable “tier fractions over time” as an effect function of model simulation time on the tier 

percentages. Based on these variables and the inflow of discovered vulnerabilities, each 

considered vulnerability is processed and eventually published with a unique CVE ID. 

 

Figure 5: CVE Vulnerability Processing Lifecycle 

CVE_Vuls
with

Published_IDs

CVE_Vuls_being
Classifiedidentifying_possible

CVE_vuls

considering
CVE_vuls

fraction_CVE
vuls_reported

CVE_Ignored
Vuls

ignoring
CVE_vuls

CVE_Vuls
being_Processed

publishing
CVE_IDs

-
+

Total
Considered

Vulsvul
consideration

+
tier_percentages

over_time

+ Identifying and
Processing CVE
Vulnerabilities

discovering
vuls publishing_vuls

with_patches

+

fraction_discovered
before_patching

+

+

<publishing_vuls
without_patches>

+



 

7 

Figure 6 deals directly with staffing to respond to vulnerabilities. CVE staff can handle the 

workload demand created by CVE vulnerability processing at a rate given by their per-

responder productivity and the number of responders. Ideally, CVE managers would hire 

more staff if the perceived adequacy of CVE reporting is not keeping up with the desired 

adequacy.  Perceived adequacy is measured as the ratio of the CVE vulnerabilities 

published and the total vulnerabilities considered in the CVE process, ranging from 0 to 1: 

Perceived adequacy of vul reporting  

= CVE Vuls with Published IDs / Total Considered Vuls 

This hiring process creates a balancing feedback loop that (optimally) drives staff hiring to 

a level of desired adequacy, but funding levels and available capability may not permit 

hiring to the needed level. 

 

 
 

Figure 6: Expanding CVE Vulnerability Response Capacity Based on Perceived Demand 

While the perceived adequacy of CVE reporting is calculated out of the Total Considered 

Vuls, the actual adequacy of vul reporting is calculated out of the Total Vuls Discovered, 

which includes the vulnerabilities ignored in CVE processing. Rather than treating ignored 

vulnerabilities as full weight, we allow them to have diminished influence as determined 

by the fraction criticality of ignored vulnerabilities: 

actual adequacy of vul reporting :  

= CVE Vuls with Published IDs 

       /  ((1-fraction ignored vuls)*Total Vuls Discovered  

            + (criticality of ignored vuls*fraction ignored vuls*Total Vuls Discovered)) 

 

The benefit associated with creating patches that address identified vulnerabilities comes 

as organizations apply relevant patches in defense of their systems and data. Figure 7 shows 

that although patches are made available to defenders, as those patches are published for 

many organizations, it is the publication of the CVE ID that is critical to whether they 

decide to actually apply the patch or not. Some fraction of available patches will be ignored, 

CVE_Vuls
with

Published_IDsCVE_Ignored
Vuls

CVE_Vuls
being_Processed

publishing
CVE_IDs

Total_Vuls
Discoveredvul

discovery

actual_adequacy
of_CVE_reporting

Total
Considered_Vulsvul

consideration

perceived_adequacy
of_CVE_reporting

CVE_Vul
Respondershiring

CVE_staff

CVE_vul_response
productivity

+

+

+

-desired_adequacy
of_vul_reporting difficulty_keeping_up

with_vul_reporting
+

+

Hiring Staff to

Keep Up

baseline
hiring_rate

+
effect_of_demand

on_hiring

+
fraction

ignored_vuls

+
+

nominal
productivity

per_responder
productivity

+

++

-

+

-
criticality_of
ignored_vuls

-



 

8 

which in subsequent refinements can create risk for the defender. The model is 

parameterized on the 

 number of infrastructure systems being defended (initially, 1000 systems) 

 average number of patches per vulnerability required per system (initially, 1 

patch/vul) 

 fraction of patches applied (initially, 0.9) 

 

Figure 7: Patching Systems Based on CVE Publishing 

Just as we had a measure for the perceived adequacy of vulnerability reporting described 

above, we have a measure of perceived adequacy of vulnerability management as shown 

in Figure 8. The measure is the ratio of the defender’s perception of the patches applied to 

the total patches needed, which ranges from 0 to 1. For convenience in the model, we 

actually define this value equivalently as 1 minus the ratio of the defender’s perception of 

patches not applied to the total patches needed. Both the numerator and denominator of 

the ratio could be multiplied by the term fraction patches applied, but this term cancels out 

to provide the following formulation: 

perceived adequacy of vul management  : 

= 1 – (perceived patches not applied  / total patches needed) 

 

CVE_Vuls_with
Published_IDs

CVE_Vuls_being
Processed

publishing
CVE_IDs

Unapplied
Patches

Available

making
patches

available

number_of
infrastructure

systems

+

Patches
Appliedapplying

patches

ignoring
patches

fraction_patches
applied

+-

Patches
Ignored

avg_patches
per_vul_per

system

patching_rate

+ + +

patching_rate
per_system

+

Patching
Infrastructure

Systems
Public_Vuls
with_Patches

Availablepublishing_vuls
with_patches

+

+

+

Known_Vuls
with_Patch_being

Developed

Urgent_Vuls
with_Patches

Available
publishing
urgent_vuls

with_patches

+

+

Urgent_Vuls_with
Patch_being
Developed

patching
multiplier+



 

9 

 

 

Figure 8: Adequacy of Vulnerability Management Perceived Operationally 

Both perceived patches not applied and total patches needed depend on patches currently 

made available to defenders as well as patches currently “in works,” that is patches that 

have yet to be developed. The primary difference between the two is that the perceived 

patches not applied includes only the unapplied patches available out of the total patches 

available, and only a fraction – fraction patches in works perceived (assumed to be 0.2 

initially) – of the patching possible for public vulnerabilities in works: 

perceived patches not applied  

= Unapplied Patches Available 

   + (patching possible for public vuls in works 

                     * fraction patches in works perceived) 

 

total patches needed  

= Total Patches Available 

         + patching possible for public vuls in works 

 

patching possible for public vuls in works 

= number of infrastructure systems 

        * avg patches per vul per system 

    * (Public but Dormant Vuls  

                      + Known Vuls with Patch being Developed  

                      + Urgent Vuls with Patch being Developed) 

 

The measure perceived adequacy of vul management described above admits that 

defenders probably understand that their vulnerability and patch management is not 

perfect, at least to the extent that their systems are susceptible to a vulnerability between 

the point of discovery and the point at which a patch to that vulnerability is made available. 

Beyond that, we can measure the actual adequacy of vulnerability management that also 

measures the risk created by erroneously ignoring patches by the defenders. The measure 

can be broken down into two components as seen below. 

Unapplied
Patches

Considered

making
patches

available

ignoring
patches

fraction_patches
applied

-

Patches
Ignored

Total_Patches
Considered

patch
availability

rate

+

perceived_adequacy
of_vul_management

+
+

patching_rate

+

actual_adequacy_of
vul_management

+

+

Determining

Adequacy of

Vulnerability

Management

ignored_patch
risk_factor

total_patches
needed

perceived_patches
not_applied

-

+

-

fraction_patches_in
works_perceived

+

risk_created_by
ignoring_patches

+

-

+

patching_possible_for
public_vuls_in_works

+

+

-



 

10 

actual adequacy of vul management 

= (perceived adequacy of vul management - risk created by ignoring patches) 

           - ((perceived adequacy of vul management - risk created by ignoring patches) 

                        * (1 - actual adequacy of vul reporting) 

 

risk created by ignoring patches 

= ignored patch risk factor 

                   *(Patches Ignored  

                       + (1-fraction patches applied)*total vuls without patches applied) 

         / total patches needed) 

 

The first term subtracts the risk created by ignoring patches from the perceived adequacy 

of vulnerability management. This reflects that the actual adequacy is less than the 

perceived adequacy due to the potential for erroneously ignoring critical patches. But the 

situation is worse than that alone due to the fact that vulnerability reporting itself is not 

perfect. The second term of actual adequacy of vulnerability management subtracts from 

this amount, a fraction of the amount based on the inadequacy of vulnerability reporting. 

This adjustment is needed since the perceived adequacy of vulnerability management only 

accounts for those vulnerabilities reported to defenders through the CVE process, which 

itself only deals with a fraction of the total vulnerability population.  

2.2 Simulation Results 

We run the model described above with a rate of vulnerability discovery sufficient to 

generate the historical rate of assigning CVE IDs, which are reported publicly. We had data 

on CVE ID assignment from the beginning of 1999 to the middle of 2017, which 

establishes the time period of the simulation. In Figure 9,  the behavior-over-time graph on 

the left shows the historical figures regarding CVE IDs assigned (simulation run #2) 

compared to that generated by the model (run #1). The graph on the right shows the total 

number of vulnerabilities discovered that were required to generate these CVE ID 

assignment numbers given the initial model setup. 

 

Figure 9: Vulnerability Discovery Level and Calibration with Historical CVE Reporting Levels 

Compare Model Handled Vuls with CVE History

200,000

150,000

100,000

50,000

0
2 2 2 2 2

2
2

2
2

2
2

2
2

2

1 1 1 1 1 1 1
1

1
1

1

1

1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

v
u
ls

total VwIDs : Current 1 1 1 1 1 1 1 1 1 1 1 1

CVE IDs Assigned : Current 2 2 2 2 2 2 2 2 2 2

Total Vuls Discovered

300,000

225,000

150,000

75,000

0 1 1 1 1 1
1

1
1

1

1

1

1

1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

v
u

ls

Total Vuls Discovered : Current 1 1 1 1 1 1 1 1 1 1



 

11 

The graphs in Figure 10 demonstrate the partitioning of CVE vulnerabilities into the four 

tiers described previously. The graph on the left shows how the fraction of vulnerabilities 

in each tier changes over time in the model. While we did not have hard data on these 

fractions, we believe that the displayed trend over the 18-year period is plausible. The 

fraction of vulnerabilities in tier 1 goes down steadily over the period and is replaced with 

slightly increasing fractions in the other three tiers. The second graph simply verifies that 

the model accurately reflects the level of reporting of CVE vulnerabilities (assigned IDs), 

as described previously in qualitative guidance for reporting. The fraction of CVE 

vulnerabilities ignored in each tier is simply one minus the fraction seen in this graph (i.e., 

vulnerabilities are either reported or ignored; there is no other option). Figure 11 splits out 

the quantity and timing of reported and ignored vulnerabilities based on these fractions. 

 

Figure 10: Vulnerabilities by Tier 

 

Figure 11: Considered Versus Ignored CVE Vulnerabilities over Time 

Figure 12 shows the fraction of total vulnerabilities ignored in the CVE process as it relates 

to the level of cumulative system patching. The tiered approach described above combined 

with the general decline in tier 1 vulnerabilities and the increase in lower tier vulnerabilities 

gives rise to a steady increase in the fraction of ignored vulnerabilities. This increase results 

in the displayed decline in the fraction of system patches applied by defenders since many 

of the vulnerabilities ignored in the CVE process have critical patches available but are not 

on the radar screens of defenders since no CVE identifier was assigned. 

tier fractions over time

1

.75

.5

.25

0 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

d
m

n
l

tier fractions over time[tier1] : Current 1 1 1 1 1 1

tier fractions over time[tier2] : Current 2 2 2 2 2 2

tier fractions over time[tier3] : Current 3 3 3 3 3 3

tier fractions over time[tier4] : Current 4 4 4 4 4 4

fraction CVE vuls reported

1

.75

.5

.25

0

4

3

2
1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

d
m

n
l

fraction CVE vuls reported[tier1] : Current 1 1 1 1 1

fraction CVE vuls reported[tier2] : Current 2 2 2 2 2

fraction CVE vuls reported[tier3] : Current 3 3 3 3 3 3

fraction CVE vuls reported[tier4] : Current 4 4 4 4 4 4

Total Considered Vuls

200,000

150,000

100,000

50,000

0
4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3

3
3

2 2 2 2 2 2
2

2
2

2

2

1 1 1 1
1

1
1

1

1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

v
u

ls

Total Considered Vuls[tier1] : Current 1 1 1 1 1 1

Total Considered Vuls[tier2] : Current 2 2 2 2 2 2

Total Considered Vuls[tier3] : Current 3 3 3 3 3 3

Total Considered Vuls[tier4] : Current 4 4 4 4 4 4

CVE Ignored Vuls

30,000

22,500

15,000

7500

0
4 4 4 4 4

4
4

4

4

4

4

3 3 3 3
3

3
3

3

3

3

3

2 2 2 2 2 2 2 2 2 2
2

1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

v
u
ls

CVE Ignored Vuls[tier1] : Current 1 1 1 1 1 1

CVE Ignored Vuls[tier2] : Current 2 2 2 2 2 2 2

CVE Ignored Vuls[tier3] : Current 3 3 3 3 3 3 3

CVE Ignored Vuls[tier4] : Current 4 4 4 4 4 4 4



 

12 

 

 

 

 

 

 

 

 

 

Figure 12: Correlation between Cumulative System Patching and Fraction Vulnerabilities Ignored 

The results of model execution, as seen in the measures of perceived and actual 

vulnerability management (shown in Figure 13), are striking. The behavior-over-time 

graph on the left shows that perceived adequacy of vulnerability management drops, 

hovering around 0.8 in the time frame of the simulation. However, actual adequacy of 

vulnerability management drops significantly more, to less than 0.4 in the time frame of 

the simulation. The graph on the right shows that even if the perception of the adequacy of 

vulnerability management on the part of the defenders was near perfect (i.e., if the defender 

were able to immediately patch any vulnerabilities they were aware of or could become 

aware of), the actual adequacy of vulnerability management still hovers below 0.5. In this 

case, the actual adequacy of vulnerability management approaches the actual adequacy of 

CVE reporting. 

 

Figure 13: Adequacy of Vulnerability Management over Time 

adequacy of vul management

1

.75

.5

.25

0

3 3

3

3

3

3
3 3 3 3 3 3 3 3

3

2 2

2

2

2

2

2 2 2 2 2 2 2 2
2

1 1 1
1

1
1

1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
o

n

perceived adequacy of vul management : Current 1 1 1 1 1 1

actual adequacy of vul management : Current 2 2 2 2 2 2 2

actual adequacy of CVE reporting : Current 3 3 3 3 3 3 3

adequacy of vul management

1

.75

.5

.25

0

3 3

3

3

3

3
3 3 3 3 3 3 3 3

3

2 2

2

2

2

2

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
o

n

perceived adequacy of vul management : Current 1 1 1 1 1 1

actual adequacy of vul management : Current 2 2 2 2 2 2 2

actual adequacy of CVE reporting : Current 3 3 3 3 3 3 3

system patching

1

.75

.5

.25

0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1
1

1
1

1 1 1 1 1 1 1 1 1
1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
o
n

fraction system patches applied : Current 1 1 1 1 1 1 1 1

fraction ignored vuls : Current 2 2 2 2 2 2 2 2 2



 

13 

3 Agent-Based Analysis of Multi-Party Coordinated 
Vulnerability Disclosure 

The agent-based model used to analyze MPCVDs was constructed using Ventity, a tool 

developed by Ventana Systems, Inc., that supports the modular construction of socio-

technical models for scalable development by independent teams. Ventity enables the 

development of hybrid agent-based and system dynamics models. Three primary agent 

types are specified: Finders, Vendors, and Coordinators. Figure 14 elaborates the behavior 

drivers for each of these agent types: 

 Finders: Finders are motivated by making money, by establishing their reputation, or a 

combination of these two. Bug bounties may serve as the financial incentive, while 

vulnerability publication may serve as the reputational incentive. 

 Vendors: Vendors are motivated ultimately by revenue generation, and secondarily by 

generating and maintaining their customer base. Keeping quiet about vendor product 

vulnerabilities serves the vendor well before the patch is available; but after the patch is 

available, it may wish to report the availability of patches as soon as possible. 

 Coordinators: The coordinator is, of course, the manager of the coordinated vulnerability 

disclosure, with the purpose of minimizing deployer exposure.  The general rule of good 

behavior and purpose for MPCVDs is to maintain secrecy during the term of the MPCVD, 

called the embargo period. 

 

Figure 14: Agent Goal Alignment 

The Ventity simulation runs many MPCVDs over two years to assess management 

strategies and policies for the coordinator to try out. Adjustable model parameters include 

Vendor 
Performance

Generate and 
Maintain

Customer Base

Generate 
Revenue

Keep Vendor 
Costs Low

Maintain Vendor  
Reputation

Finder/Reporter
Performance

Establish 
Reputation 

Make 
Money

Avoid 
being Sued

Limit Vendor 
Security 

Exposure

Discover 
Vulnerability

Publish Vulnerability 
during Embargo

Offer Bug 
Bounty

Report Vul
to Vendor

Fix Known 
Vuls

Vendor 
Finding Vuls

helps achieving

Key:

hinders achieving

Coordinator
Performance

Coordinate 
Vulnerability 

Disclosure

Minimize Deployer
Exposure

Keeping Quiet 
about Vuls

during Embargo 
before Patching

Keeping Quiet 
about Vuls

during Embargo 
after Patching

Clears Comms
& Respectful 

Treatment



 

14 

the number of finders and vendors, size distribution of the MPCVDs and vendors, embargo 

duration, and the likelihood of accidental and purposeful disclosure. The measure of social 

cost for deployers due to technical vulnerabilities is elaborated in Appendix E and includes 

the likelihood of vulnerability exploitation, the maximum amount of damage, hacker 

vulnerability discovery time, attack rate per deployer, the amplification of the attack rate 

after disclosure, and user workaround costs over time.3 

3.1 Calibration 

The model was calibrated based on operational data collected by the CERT Coordination 

Center (CERT/CC) at Carnegie Mellon University’s Software Engineering Institute. 

During the entire period of study covering 24 years, 1,400 of 11,000 cases (12%) involved 

pre-disclosure coordination. In the 5-year period between 2013 and 2018, the CERT/CC 

coordinated approximately 1,000 vulnerability disclosure cases per year. Only a small 

fraction of these were large MPCVD cases (Householder 2018). Interviews with the 

CERT/CC’s vulnerability coordination team helped us arrive at the model estimates for 

embargo failures and vendor participation rates.  

The current model under development has been calibrated along four dimensions: 

1. the quantity of MPCVDs per year (60-80 per year) 

2. the distribution of the size of the MPCVDs (fat-tailed, exponential) 

3. the ratio of MPCVDs in which the embargo held (percentages in the 1990s) 

4. the greater participation in MPCVDs of larger vendors than smaller ones 

Figure 15 shows the Ventity simulation results, as behavior-over-time graphs spanning 10 

years (120 months). 

                                                 
3 adapted from (Cavusoglu, 2007), equations 3 and 4 on page 175 



 

15 

 

Figure 15: Calibration Dimensions of the MPCVD Model 

 

3.2 Simulation Results 

One question we started our analysis with was how to improve the cooperation of vendors 

in terms of not divulging the existence of vulnerabilities within an MPCVD until the end 

of the embargo period. An embargo period of 45 days (or about 6.5 weeks in the simulation) 

is current common practice and was used for model calibration in the previous section.4 

While faster patching is generally more expensive for all vendors (in terms of pulling 

developers off planned development work), a small number of vendors choose to quickly 

develop patches and leak them to their users prior to the end of the embargo period.  In the 

simulation, this resulted in the under 10% of MPCVDs that did not hold shown in Figure 

15c. 

                                                 
4 The CERT/CC’s default embargo period is 45 days, with exceptions for active exploitation (shorter) or situations 

where extensive work by multiple parties is needed (longer) 

https://vuls.cert.org/confluence/pages/viewpage.action?pageId=30638083 



 

16 

In Figure 16, the simulation also shows that shortening the embargo period (from 6.5 weeks 

to 4 weeks) does, in fact, decrease MPCVD reneging rates; increasing the embargo period 

(from 6.5 weeks to 8 weeks) increases reneging rates. This is expected, since vendors will 

not be tempted to renege on MPCVD until after they’ve developed a patch. In addition, the 

longer an embargo endures after patch development, the greater the chance of reneging. 

 

Figure 16: Percentage of MPCVD Embargos that Hold by Length of Embargo Period 

While the short embargo ensures more MPCVDs hold through the embargo period, they 

are the most costly to users, as seen in Figure 17. The current embargo period is a good 

middle ground to reduce cost to users. The sooner patches are distributed, the lower the 

social cost to deployers, whether the patch is distributed (and vulnerability disclosed) 

before or after the embargo. Shortening the embargo time leads to lower rates of reneging, 

but high rates of not having a patch available to deployers after the embargo period. This 

is the worst situation for the deployer and results in the highest social costs. We therefore 

conclude that adjusting the embargo period to increase the likelihood that patches can be 

developed just in time appears to be a good strategy for reducing cost. 

 

 



 

17 

 

Figure 17:  Average Social Cost to Users by Length of Embargo Period 

4 Summary and Conclusions 
This paper presents multi-method modeling and analysis of two critical foundational 

processes of the cybersecurity vulnerability management ecosystem: 

1. the vulnerability management process for discovering, cataloging, and remediating 

vulnerabilities 

2. the MPCVD process for coordinating the patching and disclosing vulnerabilities 

among multiple vendors 

Our work applied system dynamics analysis, using VenSim, to the vulnerability 

management process and agent-based model analysis using Ventity. Both tools are from 

Ventana Corporation. 

Some may argue that you can conduct agent-based modeling and analysis directly in 

VenSim.  To some extent, this is true, but as agents become more and more heterogeneous 

in their behavior, VenSim models (and system dynamics models generally) become more 

awkward to specify, implement, and analyze. Ventity overcomes this problem by allowing 

the modeling and execution of fully heterogeneous agents, while also improving the ability 

of the modeler to build modular models constructed by disparate teams. Ultimately, it is 

desirable to have one unified, coherent, and comprehensive tool to enable full-capability 

modeling of agent-based and system dynamic aspects of a problem, as appropriate, without 



 

18 

switching tools. Ventity may be headed in this direction, but currently the system dynamics 

modeling and analysis in VenSim is more capable than it is in Ventity. 

Preliminary results from our multi-method analyses show that the cybersecurity 

infrastructure can become more vulnerable over time simply as a result of the vendor-based 

tiering of vulnerabilities used in the CVE process. In addition, the goal of simply 

maintaining the secrecy of MPCVDs is not necessarily the right criteria, in and of itself. If 

that were the criteria, you might decide to increase the length of the embargo period in 

order for organizations to develop the patches. It appears that adjusting the embargo period 

to increase the likelihood that patches can be developed by most vendors just in time is a 

good strategy for reducing cost. The larger conclusion from our multi-method analysis is 

that the misapplication of either of these foundational aspects could contribute to the 

fragility and risk associated with the many national infrastructures and organizational 

missions that rely on the Internet.  

We describe our analysis effort as a work in progress and our conclusions as preliminary 

due to the limited calibration and validation of our models. We are using data from the 

CERT Coordination Center’s CVD function, as described, for our continuing calibration 

and validation efforts. In addition, our to-date analysis has identified additional areas to 

consider: 

 Additional questions to investigate include the following: Are there policies that 

can improve the cooperation of vendors in MPCVDs AND reduce social costs? OR 

is the best policy to shun non-cooperators?  If so, when can you optimally bring 

them in? 

 Consider other measures of social cost due to cybersecurity vulnerabilities over that 

used in Efficiency of Vulnerability Disclosure Mechanisms to Disseminate 

Vulnerability Knowledge (Cavusoglu 2007). This area of study has been relatively 

active and one we need to continue to review. 

 Continue to tune the model parameters to what we know or can easily find out. 

Where concrete data is not available, either direct future data collection efforts in 

this direction or, in the near term, focus on plausibility, based on subject matter 

expert opinion. 

 Consider additional review and refinement of model structure and logic: 

a. logic for the (purposeful) decision to disclose early based on the extent 

patch developed 

b. logic for accidental vs. purposeful disclosure in whether early disclosure 

occurs 

c. the impact that the size of the vendor has on its behavior (accidental vs. 

purposeful disclosure) 



 

19 

d. the impact of whether a vendor discloses early or not has on other vendors 

in the party, or the community at large 

The last of these considerations has the potential to incorporate richer feedback dynamics 

that may be a central driver in the cybersecurity of national infrastructures. While the 

results of our initial efforts, described in this paper, should be viewed as preliminary, we 

believe that the approaches used and the depth of the modeling and simulation are sufficient 

to begin to understand key implications of these processes and possible avenues for their 

improved application in the future.   

5 Acknowledgements 
The authors thank SEI/CERT colleagues Soumyo Moitra, William Casey, and Jeffrey 

Chrabaszcz for their insights and data analysis that helped ground this modeling effort. We 

also appreciate the capable review and technical edits by Sandy Shrum. 

 

Copyright 2019 Carnegie Mellon University. All Rights Reserved. 

This material is based upon work funded and supported by the Department of Defense 

under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation 

of the Software Engineering Institute, a federally funded research and development center. 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE 

ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. 

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, 

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT 

LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, 

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY 

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT. 

[DISTRIBUTION STATEMENT A] This material has been approved for public release 

and unlimited distribution.  Please see Copyright notice for non-US Government use and 

distribution. 

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon 

University. 

DM19-0192 

 



 

20 

References 
Caralli, R., Allen, J., & & White, D. (2010). CERT Resilience Management Model: A 

Maturity Model for Managing Operational Resilience. Addison-Wesley 

Professional . Retrieved from https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=514489 

Cavusoglu, H. &. (2007). Efficiency of Vulnerability Disclosure Mechanisms to 

Disseminate Vulnerability Knowlege. IEEE Transactions on Software 

Engineering, 171-185. Retrieved from 

https://ieeexplore.ieee.org/document/4084135/ 

Householder, A. (2018). Analyzing 24 Years of CVD. FIRST Vendor TC. Atlanta, GA. 

Retrieved from https://www.first.org/resources/papers/atlanta2018/20180227-

Analyzing-24-Years-of-CVD-Allen-Householder-FIRST-PSIRT-TC.pdf 

Householder, A., Wassermann, G., Manion, A., & & King, C. (2017). The CERT Guide 

to Coordinated Vulnerability Disclosure. Pittsburgh, PA: Carnegie Mellon 

University. Retrieved from https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=503330 

ISO/IEC Technical Committee JTC 1/SC 27 IT Security Techniques. (2013). Information 

Technology - Security Techniques - Vulnerability Handling Processes. Retrieved 

from https://www.iso.org/standard/53231.html 

NIST Information Technology Laboratory. (2019). National Vulnerability Database. 

Retrieved from https://nvd.nist.gov 

NIST. (n.d.). NIST Special Publication 800-40 Revision 3: Guide to Enterprise Patch 

Management Technologies. Retrieved from 

https://www.nist.gov/publications/guide-enterprise-patch-management-

technologies 

Ragan, S. (2016). Over 6,000 Vulnerabilities Went Unassigned by MITRE's CVE Project 

in 2015. CSO Online. Retrieved from 

https://www.csoonline.com/article/3122460/over-6000-vulnerabilities-went-

unassigned-by-mitres-cve-project-in-2015.html 

Thomson, I. (2018). Revialed: El Reg blew lid off Meltdown CPU bug before Intel told 

US govt - and how bitter tech rivals teamed up. The Register. Retrieved from 

https://www.theregister.co.uk/2018/08/09/meltdown_spectre_cert_timing/ 

 

 

  



 

21 

Appendix A: System Dynamics Modeling Overview 
 

System dynamics helps analysts model and analyze critical behavior as it evolves over time 

within complex socio-technical domains. Figure 18 summarizes the notation used in our 

system dynamics model. 

 

 

Figure 18: System Dynamics Notation 

The primary elements are variables of interest, stocks (which represent collections of 

resources, such as dissatisfied employees), and flows (which represent the transition of 

resources between stocks, such as satisfied employees becoming dissatisfied). Signed 

arrows represent causal relationships, where the sign indicates how the variable at the 

arrow’s source influences the variable at the arrow’s target. A positive (+) influence 

indicates that the values of the variables move in the same direction, and a negative () 

influence indicates that they move in opposite directions. 

A connected group of variables, stocks, and flows can create a path that is referred to as a 

feedback loop. At this stage in our modeling effort, we have not identified any significant 

feedback loops. 

Variable – anything of interest in the problem being 

modeled
Var1

Var1 Var2

Positive Influence – values of variables move in the 

same direction (e.g., source increases, target 

increases)

+

Var1 Var2

Negative Influence – values of variables move in 

the opposite direction (e.g., source increases, the 

target decreases)

-

Stock – special variable representing a pool of 

materials, money, people, or other resources

Flow – special variable representing a 

process that directly adds to or subtracts from 

a stock

Stock1

Stock1 Stock2

Flow1

<Var1> Ghost Variable – variable acting as a placeholder 

for a variable occurring somewhere else

Cloud – source or sink (represents a stock 

outside the model boundary)



 

22 

Appendix B: The Vulnerability Management Ecosystem System Dynamics Model 

 

Figure 19: Vulnerability Management Ecosystem System Dynamics Model 

CVE_Vuls_with
Published_IDs

CVE_Vuls_being
Classifiedidentifying_possible

CVE_vuls

considering
CVE_vuls

fraction_CVE
vuls_reported

CVE_Ignored
Vuls

ignoring
CVE_vuls

CVE_Vuls_being
Processed

publishing
CVE_IDs

-
+

Total_Vuls
Discoveredvul

discovery

Unapplied
Patches

Considered

making
patches

available

number_of
infrastructure

systems

+

Patches
Appliedapplying

patches

ignoring
patches

fraction_patches
applied

+-

Patches
Ignored

actual_adequacy
of_CVE_reporting

Total_Patches
Considered

patch
availability

rate

+

perceived_adequacy
of_vul_management

+
+

Total
Considered_Vulsvul

consideration

perceived_adequacy
of_CVE_reporting

CVE_Vul
Respondershiring

CVE_staff

CVE_vul_response
productivity

+

+

+

+

-desired_adequacy
of_vul_reporting difficulty_keeping_up

with_vul_reporting
+

+

Hiring Staff to

Keep Up

avg_patches_per
vul_per_system

patching_rate

+ + +

patching_rate
per_system

+

actual_adequacy_of
vul_management

+

+

baseline
hiring_rate

+
effect_of_demand

on_hiring

+
fraction

ignored_vuls

+
+

nominal
productivity

per_responder
productivity

+

+

+

-

+

+

Identifying and
Processing CVE
Vulnerabilities

Patching
Infrastructure

Systems

Determining

Adequacy of

Vulnerability

Management

Known_Vuls
being

Considered
discovering

vuls

Public_Vuls
with_Patches

Availablepublishing_vuls
with_patches

+

+

random_vul
patch_work
multiplier

-

use_random
work_multiplier

ignored_patch
risk_factor

+

vul_discovery
rate

+

+

Public_but
Dormant_Vuls

publishing_vuls
without_patches

Known_Vuls
with_Patch

being_Developedstarting_vul
patch_creation

fraction_vuls
initially_patched

+

-

vul_com
time

-

-

fraction_discovered
before_patching

+

+

nominal_patch
generation

time

patch
generation

time

+

+

-

Discovering Vuls and

Developing Patches

<publishing_vuls
without_patches>

-
criticality_of
ignored_vuls

-

+

+

becoming_forever
day_vuls

Public_Forever
Day_Vuls

Urgent_Vuls
with_Patches

Available
publishing

urgent_vuls
with_patches

+
total_patches

needed

perceived_patches
not_applied

-

+

-

-

+

Urgent_Vuls_with
Patch_being
Developedstarting_urgent

vul_patch

fraction_dormant
patched

vul_dormancy-

+

-

-

acceleration
factor

public_vuls
in_works

+

+

+

fraction_patches_in
works_perceived

+

patching
multiplier

+

risk_created_by
ignoring_patches

+

-

+

<risk_created_by
ignoring_patches>

-

fraction_system
patches_applied

<Total_Patches
Considered>

patching_possible_for
public_vuls_in_works

+

+

+

tier_fractions
over_time



 

23 

 

Appendix C: System Dynamics (VenSim) Model Parameters 
 

Model  
Variables 

Value in 
Baseline 

Units 

acceleration factor 2.00 range 1 to 10 

avg patches per vul per system 1.00 patches/vul/system 

baseline hiring rate 0.10 people//month 

criticality of ignored vuls 0.10 range 0 to 1 

desired adequacy of vul reporting 0.90 range 0 to 1 

eval period 12.00 months 

fraction CVE vuls reported[tier1] 1.00 range 0 to 1 

fraction CVE vuls reported[tier2] 0.95 range 0 to 1 

fraction CVE vuls reported[tier3] 0.60 range 0 to 1 

fraction CVE vuls reported[tier4] 0.30 range 0 to 1 

fraction discovered before patching 0.60 range 0 to 1 

fraction dormant patched 0.50 range 0 to 1 

fraction dormant perceived 0.20 range 0 to 1 

fraction patches applied 0.90 range 0 to 1 

fraction vuls initially patched 0.50 range 0 to 1 

init vul responders 3.00 people 

initial tier percentages[tier1] 0.60 range 0 to 1 

initial tier percentages[tier2] 0.20 range 0 to 1 

initial tier percentages[tier3] 0.15 range 0 to 1 

initial tier percentages[tier4] 0.05 range 0 to 1 

initial unapplied patches available 0.02 range 0 to 1 

initial vuls being classified fraction 0.00 range 0 to 1 

initial vuls being processed fraction 0.00 range 0 to 1 

initial vuls processed 5000.00 vuls 

max vpf 45.00 positive real 

min vpf 0.00 positive real 

nominal patch generation time 0.50 months 

nominal productivity 30.00 vuls/people/month 

number of infrastructure systems 1000.00 systems 

patch pub delay 3.00 months 

patching delay 3.00 months 



 

24 

 

Model  
Variables 

Value in 
Baseline 

Units 

patching multiplier 10.00 positive real 

shift vpf 1.00 positive real 

stretch pwf 10.00 positive real 

use random work multiplier 0.00 toggle 0/1 

vul com time 1.00 months 

vul dormancy 3.00 months 

 

 

  



 

25 

 

Appendix D: The Ventity Interface 
 

 
Figure 20: Ventity Interface 

  



 

26 

 

Appendix E: Agent-Based Model (Ventity) Parameters of the 

Social Cost Measure 
 

The social cost measure from Efficiency of Vulnerability Disclosure Mechanisms to 

Disseminate Vulnerability Knowledge5 appears below. The cost due to patch 

development is not included, to represent only the social cost to users (deployers). 

 

Social cost to users before embargo period over (p) = αNδDap2/4 

Social cost to users after embargo period over (p) = γNδDka(p-t0-T)/2 + Ns(p-t0-T) 

Social cost to users (p) 

  = IF p<=t0+T THEN Social cost to users before embargo period over (p)   

      ELSE Social cost to users before embargo period over (t0+T)   

                + Social cost to users after embargo period over (p) 

 

Equation  
Variables 

Description Value in Baseline Units 

t0 time MPCVD starts varies weeks 

δ 
likelihood of vul 

exploitation 
0.01 dmnl 

T agreed disclosure time 
short (4 weeks), 

current (6.5 weeks), 
long (8 weeks) 

weeks 

p 
time period vendor 

releases patch 
varies weeks 

γ 
inefficiency measure for 
user workaround due to 

missing patch 

0.5 
 

dmnl 

α hacker vul discovery time 2 weeks 

a 
attack rate per deployer 

prior to disclosure 
0.1 attacks/deployer/week 

k 
amplification of attack 

rate after disclosure 
10 dmnl 

N 
number of deployers for 

the vendor 
big (~1M), medium 
(~1K), small (~100) 

deployers 

D 

maximum amount of 
damage to deployer due 

to missing patch 
$50K dollars/attack 

 

                                                 
5 See (Cavusoglu, 2007), equations 3 and 4 on page 175. 


