
11

A Hands-On Introduction to the

GraphBLAS
http://graphblas.org

Tim Mattson
Intel Labs

Brought to you by the “GraphBLAS C Specification Gang” (of Five):

Aydın Buluç (LBNL), Tim Mattson (Intel), Scott McMillan (CMU/SEI)

Jose Moreira (IBM), Carl Yang (UC Davis)

… and a special thank you to Tim Davis (Texas A&M) for GraphBLAS support in

SuiteSparse

≡

Scott McMillan
CMU/SEI

This version includes
notes and updates
from our first run of
this tutorial at HPEC’18

Copyright 2018 Carnegie Mellon University and Intel Corporation. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under

Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should

not be construed as an official Government position, policy, or decision, unless designated by other

documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF

ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written

or electronic form without requesting formal permission. Permission is required for any other use.

Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

DM18-1037

2

HPEC tutorial

• We had 16 students by the end of the day.

• Two of them had Windows systems and were not able to fully

participate. They stayed through the whole tutorial (I guess

they did the exercises but didn’t compiler or run them).

• One person (not included in that count of 16) at the beginning

of the tutorial when he heard we do not support windows, left

to attend a different tutorial.

• We took about two hours to get up to the section on Breadth

first traversal which is pretty much exactly what we expected.

We did skip exercise 6 which was just fine.

• We made it to the end of the tutorial. Some students

actually finished the BFS levels exercise.

3

Outline

• Graphs and Linear Algebra

• The GraphBLAS C API and Adjacency Matrices

• GraphBLAS Operations

• Breadth-First Traversal

4

Understanding relationships between items

• Graph: A visual representation of a set of vertices and the connections

between them (edges).

5

• Graph: Two sets, one for the vertices (𝑣) and one for the edges (𝑒)

𝑣 ∈ [0, 1, 2, 3, 4, 5, 6]

𝑒 ∈ [0,1 , 0,3 , 1,4 , 1,6 , 2,5 , 3,0 , 3,2 , 4,5 , 5,2 , 6,2 , 6,3 , (6,4)]

5

3

2

10

4
6

A graph as a matrix

• Adjacency Matrix: A square matrix (usually sparse) where rows and

columns are labeled by vertices and non-empty values are edges from a

row vertex to a column vertex

6

- ★ - ★ - - -

- - - - ★ - ★

- - - - - ★ -

★ - ★ - - - -

- - - - - ★ -

- - ★ - - - -

- - ★ ★ ★ - -

A =

From
vertex
(rows)

To vertex
(columns)

By using a matrix, I can turn algorithms

working with graphs into linear algebra.

5

3

2

10

4
6

Graph Algorithms and Linear Algebra

7

• Most common graph algorithms

can be represented in terms of

linear algebra.

– This is a mature field … it even has a

book.

• Benefits of graphs as linear

algebra

– Well suited to memory hierarchies of

modern microprocessors

– Can utilize decades of experience in

distributed/parallel computing from

linear algebra in supercomputing.

– Easier to understand … for some

people.

How do linear algebra people write software?

• They do so in terms of the BLAS:

– The Basic Linear Algebra Subprograms: low-level building blocks from

which any linear algebra algorithm can be written

8

BLAS 1 Vector/vector Lawson, Hanson, Kincaid and Krogh,

1979

LINPACK

BLAS 2 Matrix/vector Dongarra, Du Croz, Hammarling and

Hanson, 1988
LINPACK on vector

machines

BLAS 3 Matrix/matrix Dongarra, Du Croz, Hammarling and

Hanson, 1990
LAPACK on cache

based machines

• The BLAS supports a separation of concerns:

– HW/SW optimization experts tuned the BLAS for specific platforms.

– Linear algebra experts built software on top of the BLAS ... high performance “for free”.

• It is difficult to over-state the impact of the BLAS … they revolutionized the

practice of computational linear algebra.

GraphBLAS: building blocks for graphs as linear algebra

• Basic objects

– Matrix, vector, algebraic structures, and ”control objects”

• Fundamental operations over these objects

9

x

x
.*

…plus reductions, transpose, and application of a function to each
element of a matrix or vector

Matrix
multiplication

Matrix-vector
multiplication
(vxm, mxv)

Element-wise
operations
(eWiseAdd,
eWiseMult)

Extract (and
Assign)
submatrices

GraphBLAS References

10

IEEE HPEC 2017

IEEE HPEC 2016

The official GraphBLAS C spec can be found at: www.graphblas.org

GraphBLAS Implementations
• Multiple implementation projects:

– SuiteSparse library, http://faculty.cse.tamu.edu/davis/suitesparse.html

– A C-wrapper around the GPU Gunrock library from UC Davis,

http://adsabs.harvard.edu/abs/2017arXiv170101170W

– The IBM GraphBLAS C implementation,

https://github.com/IBM/ibmgraphblas

– CMU/SEI C++ GraphBLAS Template Library https://github.com/cmu-

sei/gbtl (there is also a python wrapper called pyGB with UW/PNNL).

• We’ll use SuiteSparse:GraphBLAS in this tutorial

11

SuiteSparse:GraphBLAS: graph algorithms in the language of sparse linear algebra, T. A. Davis, Texas A&M U, submitted to TOMS

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://adsabs.harvard.edu/abs/2017arXiv170101170W
https://github.com/IBM/ibmgraphblas
https://github.com/cmu-sei/gbtl

Exercise 1: Build a GraphBLAS program

• Clone our git repository

• Includes the following components

– Exercises and solutions

– SuiteSparse library, binaries for Linux and OSX and source

• Load software onto your system, make sure you can build

and run our test program
$ git clone https://github.com/tgmattso/GraphBLAS.git

$ cd GraphBLAS/src

$ make BuildGraph.exe

$./BuildGraph.exe

• If all goes well, your output should look like this:

12

$./BuildGraph.exe

Matrix: GRAPH =

[-, -, -]

[-, -, 4]

[-, -, -]

https://github.com/tgmattso/GraphBLAS.git

Outline

• Graphs and Linear Algebra

• The GraphBLAS C API and Adjacency Matrices

• GraphBLAS Operations

• Breadth-First Traversal

13

GraphBLAS C API

• A binding of the GraphBLAS math to the C programming language.

• Requires C99 extended with function polymorphism based on static-types

and number-of-parameters.

– All modern C compilers in common use today support these extensions

• Basic include file with function prototypes, types, and constants

– #include <GraphBLAS.h>

• Includes a few types and opaque objects (e.g. matrices and vectors) to give

implementations maximum flexibility

14

GrB_Index An integer type used to set dimensions and index into arrays

GrB_Matrix A 2D sparse array, row indices, column indices and values

GrB_Vector A 1D sparse array

– … plus additional opaque objects we’ll describe later (descriptors,

semirings, binary operators, and unary operators)

GraphBLAS C API: Basic definitions

• Opaque object: An object manipulated strictly through the GraphBLAS API

whose implementation is not defined by the GraphBLAS specification.

• Transparent object: an object whose structure is fully exposed to the

programmer. E.g.: an array of tuples <i, j, value>

• Method: Any C function that manipulates a GraphBLAS opaque object.

• Domain: the set of available values used for the elements of matrices, the

elements of vectors, and when defining operators.
– Examples are GrB_UINT64, GrB_INT32, GrB_BOOL, GrB_FP32

• Operation: a method that corresponds to an operation defined in the

GraphBLAS math spec. http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

– Examples: matrix multiply, matrix-vector multiply, reduction, apply

15

http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

Execution modes
• A GraphBLAS program defines a DAG of operations.

• Objects are defined by the sequence of GraphBLAS method calls, but the

value of the object is not assured until a GraphBLAS method queries its

state.

• This gives an implementation flexibility to optimize the execution (fusing

methods, replacing method sequences by more efficient ones, etc.)

16

GrB_op1(A);

GrB_op2(B);

GrB_op3(C,A,B);

GrB_op1(A); GrB_op2(B);

GrB_op3(C,A,B);

• An execution of a GraphBLAS program defines a context for the library.

• The execution runs in one of two modes:

– Blocking mode … executes methods in program order with each method completing

before the next is called

– Non-Blocking mode … methods launched in order. Complete in any order consistent

with the DAG. Objects do not exit in fully defined state until queried.

• Most implementations only support blocking mode.

Predefined low-level types

• Predefined types used to define domains in GraphBLAS

17

#include <stdio.h>

#include <assert.h>

#include <GraphBLAS.h>

#include "tutorial_utils.h"

int main(int argc, char** argv) {

GrB_init(GrB_BLOCKING);

GrB_Index const NUM_NODES = 3;

GrB_Matrix graph;

GrB_Matrix_new(&graph, GrB_UINT64,

NUM_NODES, NUM_NODES);

GrB_Matrix_setElement(graph, 4, 1, 2);

pretty_print_matrix_UINT64(graph, "GRAPH");

GrB_Index nvals;

GrB_Matrix_nvals(&nvals, graph);

assert(nvals == 1);

// Cleanup

GrB_free(&graph);

GrB_finalize();

}

Code from our first example

18

GrB_Index used for matrix dimension

Create a matrix object of order
NUM_NODES and domain UINT64

Store the value 4 in element (1,2)

Our own “pretty print” routine
(not part of GraphBLAS)

Query the matrix for the number of
defined (stored) values and check for
correctness

Free memory used for our matrix

Initialize a context in BLOCKING mode

Close the context, release resources

Exercise 2: Adjacency matrix

• Draw a simple graph with 3 to 5 nodes.

• Write a program to create the adjacency matrix.

– Use BuildGraph.c as an example.

• Output the result and verify that your adjacency graph is correct.

• You will need the following types and methods from the GraphBLAS

– GrB_Index, GrB_Matrix

– GrB_init(); GrB_finalize();

– GrB_Matrix_new(&graph, GrB_domain, Nrows, Ncols);

– GrB_Matrix_setElement(graph, value, from_node, to_node);

– GrB_Matrix_nvals(&nvals, graph);

– GrB_free(&graph);

• Hint: Save time and minimize typing

– Copy BuildGraph.c into another file (e.g. exercise2.c) and modify it to build

your adjacency matrix program.

– Edit the makefile and add your new source file to the list in the definition of

SOURCES. Then you can just type “make” to build your program.
19

Exercise 2: Adjacency matrix

• Draw a simple graph with 3 to 5 nodes.

• Write a program to create the adjacency matrix.

– Use BuildGraph.c as an example.

• Output the result and verify that your adjacency graph is correct.

• You will need the following types and methods from the GraphBLAS

– GrB_Index, GrB_Matrix

– GrB_init(); GrB_finalize();

– GrB_Matrix_new(&graph, GrB_domain, Nrows, Ncols);

– GrB_Matrix_setElement(graph, value, from_node, to_node);

– GrB_Matrix_nvals(&nvals, graph);

– GrB_free(&graph);

• Hint: Save time and minimize typing

– Copy BuildGraph.c into another file (e.g. exercise1.c) and modify it to build

your adjacency matrix program.

– Edit the makefile and add your new source file to the list in the definition of

SOURCES. Then you can just type “make” to build your program.
20

A quick API note … Opaque
objects are passed around
through a handle (e.g. graph).

When the handle itself changes, we pass by
address (i.e. with a &).

When the object referenced by the handle is
manipulated but the handle doesn’t change,
we pass by value (i.e. without the &).

Solution to Exercise 2

21

...

GrB_init(GrB_BLOCKING);

GrB_Index const NUM_NODES = 3;

GrB_Matrix graph;

GrB_Matrix_new(&graph, GrB_UINT64,

NUM_NODES, NUM_NODES);

GrB_Matrix_setElement(graph, 4, 1, 2);

GrB_Matrix_setElement(graph, 4, 2, 1);

GrB_Matrix_setElement(graph, 2, 0, 1);

GrB_Matrix_setElement(graph, 2, 1, 0);

pretty_print_matrix_UINT64(graph, "Graph");

GrB_free(&graph);

GrB_finalize();

Matrix: Graph:

[-, 2, -]

[2, -, 4]

[-, 4, -]

4

1

2

2

0

4

2

Our three node graph
with edge weights:

Building matrices

• Building a matrix one edge at a time is awkward.

• It is often more convenient to do it from vectors defining the indices and

values for non-empty elements of the sparse matrix

22

GrB_Info GrB_Matrix_build(GrB_Matrix C,

const GrB_Index *row_indices,

const GrB_Index *col_indices,

const <type> *values,

GrB_Index n,

const GrB_BinaryOp dup);

• row_indices, col_indices, and values are transparent arrays.

• <type> is a C type consistent with the domain of the matrix

• n is the number of entries in the sparse matrix

• dup is an associative, commutative function to apply to the values should

duplicate locations be specified.

– Typically use one of the GraphBLAS predefined operators

Building matrices

• Building a matrix one edge at a time is awkward.

• It is often more convenient to do it from vectors defining the indices and

values for non-empty elements of the sparse matrix

23

GrB_Info GrB_Matrix_build(GrB_Matrix C,

const GrB_Index *row_indices,

const GrB_Index *col_indices,

const <type> *values,

GrB_Index n,

const GrB_BinaryOp dup);

Return values:
• GrB_SUCCESS if everything

worked
• Other values for problems with

input arguments, memory issues,
internal errors or other problems.

• row_indices, col_indices, and values are transparent arrays.

• <type> is a C type consistent with the domain of the matrix

• n is the number of entries in the sparse matrix

• dup is an associative, commutative function to apply to the values should

duplicate locations be specified.

– Typically use one of the GraphBLAS predefined operators

GraphBLAS predefined operators

• A subset of operators from Table 2.3 of the GraphBLAS specification

24

Identifier Domains Description

GrB_LOR bool x bool bool f(x,y) = x ∨ y Logical OR

GrB_LAND bool x bool bool f(x,y) = x ∧ y Logical AND

GrB_EQ_T T x T bool f(x,y) = (x==y) Equal

GrB_MIN_T T x T T f(x,y) =(x<y)?x:y minimum

GrB_MAX_T T x T T f(x,y) =(x>y)?x:y maximum

GrB_PLUS_T T x T T f(x,y) = x + y addition

GrB_TIMES_T T x T T f(x,y) = x * y multiplication

GrB_FIRST_T T x T T f(x,y) = x First argument

GrB_SECOND_T T x T T f(x,y) = y Second argument

Where T is a suffix indicating type and includes FP32, FP64, INT32, UINT32, BOOL

Note: GrB_FIRST and GrB_SECOND are not commutative operators

This is a subset of the defined types and operators. See table 2.3 for the full list.

C code fragment using GrB_Matrix_build

GrB_Index const NUM_NODES = 3;

GrB_Index const NUM_EDGES = 4;

GrB_Index row_indices[] = {0, 1, 1, 2};

GrB_Index col_indices[] = {1, 0, 2, 1};

bool values[] = {true, true, true, true};

GrB_Matrix graph;

GrB_Matrix_new(&graph, GrB_BOOL, NUM_NODES, NUM_NODES);

GrB_Matrix_build(graph,

row_indices, col_indices, (bool*)values,

NUM_EDGES, GrB_LOR);

25

Exercise 3: Adjacency matrix

• Write a program to create the

adjacency matrix for the

GraphBLAS “logo” graph using

row, column and value arrays.

26

• You will need the following types and methods from the GraphBLAS
– GrB_Index, GrB_Matrix

– GrB_init(); GrB_finalize();

– GrB_Matrix_new(&graph, GrB_domain, Nrows, Ncols);

– GrB_Matrix_build(graph, row_indices, col_indices, values,

NUM_EDGES, dup);

– GrB_Matrix_nvals(&nvals, graph);

– GrB_free(&graph);

5

3

2

10

4
6

Summary of solution to exercise 3

GrB_Index const NUM_NODES = 7;

GrB_Index const NUM_EDGES = 12;

GrB_Index row_indices[] = {0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 6};

GrB_Index col_indices[] = {1, 3, 4, 6, 5, 0, 2, 5, 2, 2, 3, 4};

bool values[] = {true, true, true, true, true, true,

true, true, true, true, true, true};

GrB_Matrix graph;

GrB_Matrix_new(&graph, GrB_BOOL, NUM_NODES, NUM_NODES);

GrB_Matrix_build(graph, row_indices, col_indices, (bool*)values,

NUM_EDGES, GrB_LOR);

pretty_print_matrix_UINT64(graph, "Graph");
27

Matrix: Graph =

[-, 1, -, 1, -, -, -]

[-, -, -, -, 1, -, 1]

[-, -, -, -, -, 1, -]

[1, -, 1, -, -, -, -]

[-, -, -, -, -, 1, -]

[-, -, 1, -, -, -, -]

[-, -, 1, 1, 1, -, -]
5

3

2

10

4
6

Outline

• Graphs and Linear Algebra

• The GraphBLAS C API and Adjacency Matrices

• GraphBLAS Operations

• Breadth-First Traversal

28

GraphBLAS Operations (from the Math Spec*)

29

We use ⊙, ⊕, and ⊗ since later on we’ll manipulate the algebraic structure to
generalize them to other operations.

* Mathematical foundations of the GraphBLAS, Kepner et. al. HPEC’2016

GrB_mxv()

30

Multiply a matrix times a vector to produce a vector

𝑤 𝑖 = 𝑤 𝑖 ⨀

𝑘=0

𝑁

𝐴(𝑖, 𝑘)⨂𝑢(𝑘)

𝑤 ∈ 𝑆𝑀 𝑢 ∈ 𝑆𝑁 𝐴 ∈ 𝑆𝑀×𝑁

Definitions:
• S is the domain of the objects w, u, and A
• ⊙ is an optional accumulation operator (a binary operator)
• ⊗ and ⊕ are multiplication and addition (or generalizations thereof)
• ∑ uses the ⊕ operator

w ⨀= A⊕.⊗u

GrB_mxv()

31

Multiply a matrix times a vector to produce a vector

𝑤 𝑖 = 𝑤 𝑖 ⨀

𝒌∈𝒊𝒏𝒅 𝑨 𝒊,: ∩𝒊𝒏𝒅(𝒖)

𝐴(𝑖, 𝑘)⨂𝑢(𝑘)

Definitions:
• S is the domain of the objects w, u, and A
• ⊙ is an optional accumulation operator (a binary operator)
• ⊗ and ⊕ are multiplication and addition (or generalizations thereof)
• ∑ uses the ⊕ operator

• ind(u) returns the indices of the stored values of u

w ⨀= A⊕.⊗u

The summation is over the intersection of the existing elements in the ith row of A
with u … which avoids exposing how empty elements (i.e. “zeros”) are represented.
This becomes important when we change the semiring between operations

𝑤 ∈ 𝑆𝑀 𝑢 ∈ 𝑆𝑁 𝐴 ∈ 𝑆𝑀×𝑁

GrB_mxv()

• Compute the product of a GraphBLAS sparse matrix with a

GraphBLAS vector.

• Returns error codes of type GrB_info. See the spec for details.

32

GrB_Info GrB_mxv(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Vector u,

const GrB_Descriptor desc);

w ⨀= A⊕.⊗u

w ⨀= A⊕.⊗u

GrB_Info GrB_mxv(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Vector u,

const GrB_Descriptor desc);

GrB_mxv()

• Compute the product of a GraphBLAS sparse matrix with a

GraphBLAS vector.

• Returns error codes of type GrB_info. See the spec for details.

33

GrB_NULL

GrB_NULL

GrB_NULL

Let’s ignore mask, accum and desc for now and use default
values (indicated by GrB_NULL)

GrB_Info GrB_mxv(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Vector u,

const GrB_Descriptor desc);

GrB_NULL

GrB_NULL

GrB_NULL

GrB_mxv()

• Compute the product of a GraphBLAS sparse matrix with a

GraphBLAS vector.

• Returns error codes of type GrB_info. See the spec for details.

34

Op defines the algebraic structure, a semiring in this case. This gives us ⊗ and
⊕ and the identity for ⊕. We’ll say much more about his later.

For our first exercises with bool objects, we’ll use a built-in SuiteSparse semiring
GxB_LOR_LAND_BOOL.

w ⨀= A⊕.⊗u

Exercise 4: Matrix Vector Multiplication

• Use the adjacency matrix from

exercise 3 and a vector with a

single value to select one of the

nodes in the graph.

• Find the product mxv, print the

result, and interpret its meaning.

• In addition to those from

Exercise 3, you’ll need the

functions:

35

5

3

2

1
0

4
6

– GrB_Vector result, vec;

– GrB_Index NODE;

– GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(vec, true, NODE);

– pretty_print_vector_UINT64(vec, ”Input node");

– GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, GrB_NULL);

Solution to exercise 4

pretty_print_matrix_UINT64(graph, "GRAPH");

// Build a vector with one node set.

GrB_Index const NODE = 2;

GrB_Vector vec, result;

GrB_Vector_new(&result, GrB_BOOL, NUM_NODES);

GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(vec, true, NODE);

pretty_print_vector_UINT64(vec, "Target node");

GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, GrB_NULL);

pretty_print_vector_UINT64(result, "sources");

36

Matrix: GRAPH =

[-, 1, -, 1, -, -, -]

[-, -, -, -, 1, -, 1]

[-, -, -, -, -, 1, -]

[1, -, 1, -, -, -, -]

[-, -, -, -, -, 1, -]

[-, -, 1, -, -, -, -]

[-, -, 1, 1, 1, -, -]

Vector: Target node =

[-, -, 1, -, -, -, -]

Vector: sources =

[-, -, -, 1, -, 1, 1]

The stored elements of the adjacency matrix, a(i,j)
indicate an edge from vertex i to vertex j

So the matrix vector product scans over a row (from)
to find when an edge lands at the destination

5

3

2

10

4
6

Finding neighbors
• A more common operation is to input a vector selecting a source and find

all the neighbors one hop away from that vertex.

• Using mxv(), how would you do this?

37

Finding neighbors
• A more common operation is to input a vector selecting a source and find

all the neighbors one hop away from that vertex.

• Using mxv(), how would you do this?

– The adjacency matrix elements indicate edges

– from a vertex (row index)

– to another vertex (columns index)

– Then the transpose of the adjacency matrix indicates edges

– To a vertex (row index)

– From other vertices (column index)

• Therefore, we can find the neighbors of a vertex (marked by the non-empty

elements of v)

38

Neighbors = AT⊕.⊗v

• The GraphBLAS defines a transpose operation, but given how often

you need to do a transpose, there must be a better way

Changing the behavior of a GraphBLAS operation

• Most GraphBLAS operations take an argument that is an

opaque object called a “descriptor”. You declare an

descriptor called ”desc” and create it as follows:

GrB_Descriptor desc;

GrB_Descriptor_new (&desc);

• The descriptor controls the behavior of the method and

how objects are handled inside the method.

• The descriptor controls:

– Do you transpose input matrices? (GrB_TRAN)

– Does the computation replace existing values in the output object or

combine with them? (GrB_REPLACE)

– Take the structural complement of the mask object (swap

empty/false filled/true values in a sparse object). (GrB_SCMP)

39

….To be discussed later

Using Descriptors

• A descriptor is an opaque object so you set its values with a

GraphBLAS method.

• A descriptor field selects the object it impacts:

– GrB_OUTP: The output GraphBLAS object

– GrB_INP0: The first input GraphBLAS object (matrix or vector)

– GrB_INP1: The second input GraphBLAS object (matrix or vector)

– GrB_MASK: The GraphBLAS mask object (described later).

• A descriptor value describes the action to be taken.

• For example, to transpose the first input matrix, you’d call the

operation and pass in the following descriptor
GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

40

Exercise 5: Matrix Vector Multiplication

• Modify your program from exercise 4 to multiply by the

transpose of the adjacency matrix.

• Verify that you can use that to find the one-hop neighbors of any vertex

– GrB_Vector result, vec;

– GrB_Index NODE;

– GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(vec, true, NODE);

– pretty_print_vector_UINT64(vec, ”Input node");

– GrB_Descriptor desc;

– GrB_Descriptor_new(&desc);

– GrB_Descriptor_set(desc, FIELD, VALUE)

– GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, desc);

41

FIELD: GrB_INP0, GrB_INP1, GrB_OUTP, GrB_MASK

VALUE: GrB_TRAN, GrB_REPLACE, GrB_SCMP

Solution to exercise 5

// Build a vector with one node set.

GrB_Index const SRC_NODE = 6;

GrB_Vector vec;

GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(vec, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

pretty_print_vector_UINT64(vec, "source node");

GrB_mxv(vec, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, desc);

pretty_print_vector_UINT64(vec, "neighbors");

42

Vector: source node =

[-, -, -, -, -, -, 1]

Vector: neighbors =

[-, -, 1, 1, 1, -, -]

GrB_mxv test passed.

The transposed matrix vector product scans over a columns
(to) to find edges that start at the source node.

5

3

2

10

4
6

GrB_mxv()

• Compute the product of a GraphBLAS Sparse Matrix with a

GraphBLAS vector.

• Returns error codes of type GrB_info. See the spec for details.

43

It’s time to explain semirings in GraphBLAS operation

GrB_Info GrB_mxv(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Vector u,

const GrB_Descriptor desc);

GrB_NULL

GrB_NULL

GrB_NULL

w ⨀= A⊕.⊗u

44

Algebraic Semirings
• Semiring: An Algebraic structure that generalizes real

arithmetic by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over Op1 from both left and right

– The Op1 identify is an Op2 annihilator.

45

(R, +, *, 0, 1)

Real Field

Standard operations in linear algebra

({0,1}, |, &, 0, 1)

Boolean Semiring

Graph traversal algorithms

(R U {∞},min, +, ∞, 0)
Tropical semiring

Shortest path algorithms

(R U {∞}, min, x, ∞, 1) Selecting a subgraph or contracting

nodes to form a quotient graph.

Notation: (R, +, *, 0, 1)

S
ca

la
r

ty
p
e

O
p
1

O
p
2

Id
e
n
ti
ty

 O
p
1

Id
e
n
ti
ty

 O
p
2

Algebraic Semirings
• Semiring: An Algebraic structure that generalizes real

arithmetic by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over Op1 from both left and right

– The Op1 identify is an Op2 annihilator.

46

(R, +, *, 0, 1)

Real Field

Standard operations in linear algebra

(R U {∞},min, +, ∞, 0)
Tropical semiring

Shortest path algorithms

({0,1}, |, &, 0, 1)

Boolean Semiring

Graph traversal algorithms

(R U {∞}, min, *, ∞, 1) Selecting a subgraph or contracting

nodes to form a quotient graph.

Algebraic Semirings
• Semiring: An Algebraic structure that generalizes real

arithmetic by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over Op1 from both left and right

– The Op1 identify is an Op2 annihilator.

Algebraic structures in the GraphBLAS:
Semirings and Monoids

• The GraphBLAS semiring

defines:

– A set of allowed values (the domain)

– Two commutative operators called

addition and multiplication

– An additive identity (called 0) that is

the annihilator over multiplication.

• A Monoid is used in defining a

semiring:

– Monoid: A domain, an associative

binary operator and an identity

corresponding to that operator

47

Hierarchy of algebraic object classes
showing relationships between the
various domains and the operators.

Building Semirings in the GraphBLAS
• First you build the monoid (M) for a particular domain, D, the “addition”

operator, and its identity:

48

• The domains must be consistent:

𝑀 =< 𝐷,⊕, 0 >

𝑆 = < 𝐷𝑜𝑢𝑡 , 𝐷𝑖𝑛1, 𝐷𝑖𝑛2, 𝑀,⨂ >

• Then define the semiring (S) in terms of the Monoid and the

multiplications operator:

⊗: 𝐷𝑖𝑛1 × 𝐷𝑖𝑛2 → 𝐷𝑜𝑢𝑡

0 ∈ 𝐷𝑜𝑢𝑡

⨁: 𝐷𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡 → 𝐷𝑜𝑢𝑡

Building Semirings in the GraphBLAS
• First you build the monoid (M) for the “addition” and its identity:

49

GrB_Monoid UInt64Plus ;

GrB_Monoid_new(&UInt64Plus, GrB_PLUS_UINT64, 0 ul);

GrB_Info GrB_Monoid_new(GrB_Monoid *monoid,

GrB_BinaryOp binary_op,

<type> identity);

• Where the type must be consistent with that of the binary operator which

is either a built-in operator (Spec. Table 2.3) or a user-defined operator

(not covered here)

• Example:

Building Semirings in the GraphBLAS
• Then you build the semiring pairing a monoid (“add”) with a binary

operator (“mul”) :

50

GrB_Semiring UInt64Arith;

GrB_Semiring_new(&UInt64Arith, UInt64Plus, GrB_TIMES_UINT64);

GrB_Info GrB_Semiring_new(GrB_Semiring *semiring,

GrB_Monoid add_op,

GrB_BinaryOp mul_op);

• The monoid’s identity should be the binary operator’s annihilator (not

enforced).

• Example using the monoid from the previous page:

Common Semirings

semiring Domain Add Add-identity multiply

Boolean GrB_BOOL GrB_LOR false GrB_LAND

Int32 arithmetic GrB_INT32 GrB_PLUS_INT32 0 GrB_TIMES_INT32

FP32 arithmetic GrB_FP32 GrB_PLUS_FP32 0.0f GrB_TIMES_FP32

Max_second GrB_FP32 GrB_MAX_FP32 0.0f GrB_SECOND_FP32

51

Exercise 6: Changing semirings

• Up to this point, we’ve used a built-in Boolean semiring that is included
with SuiteSparse (GxB_LOR_LAND_BOOL).

• Pick any of the past exercises and experiment with different semi-rings.
– GrB_Monoid UInt64Plus;

– GrB_Monoid_new(&UInt64Plus, GrB_PLUS_UINT64, 0ul);

– GrB_Semiring UInt64Arith;

– GrB_Semiring_new(&UInt64Arith, UInt64Plus, GrB_TIMES UINT64);

52

Outline

• Graphs and Linear Algebra

• The GraphBLAS C API and Adjacency Matrices

• GraphBLAS Operations

• Breadth-First Traversal

53

Breadth First Traversal

• The Breadth First Traversal:

– Start from one or more initial vertices

– Visit all accessible one hop neighbors,

– Visit all accessible unique two hop neighbors,

– Continue until no more unique vertices to visit

– Note: keep track of vertices visited so you don’t visit the same vertex

more than once

• Breadth first traversal is a common pattern used in a range

of graph algorithms

– Build a spanning tree that contains all vertices and minimal number

of edges

– Search for accessible vertices with certain properties.

– Find shortest paths between vertices.

– Other more advanced algorithms such as maxflow and betweenness

centrality

54

Our Breadth First Traversal plan

• We will build up this algorithm using the GraphBLAS

through a series of exercises:

– Wavefronts and how to move from one wavefront to the next.

– Iteration across wavefronts

– Track which vertices have been visited

– Avoid revisiting vertices

– Construct the Level Breadth first traversal algorithm

55

Wavefronts
• A subset of vertices accessed at one stage in a breadth

first search pattern … for example ….

– “You tell two friends and they tell two friends…”

56

5

3

2

10

4
6

5

3

2

10

4
6

w = {0} w = {1, 3} w = {0, 2, 4, 6}

Red=current wavefront and visited, Blue=next wavefront, Black=unvisited

Exercise 7: Traverse the graph

• Modify your code from Exercises 5 to iterate from one

wavefront to the next.

• Output each wavefront

• How long before you get a repeating pattern?
– GrB_Vector result, vec;

– GrB_Index NODE;

– GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(vec, true, NODE);

– pretty_print_vector_UINT64(vec, "Input node");

– GrB_Descriptor desc;

– GrB_Descriptor_new(&desc);

– GrB_Descriptor_set(desc, FIELD, VALUE)

– GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, desc);

57

Solution to exercise 7

// First wavefront has one node set.

GrB_Index const SRC_NODE = 0;

GrB_Vector w;

GrB_Vector_new(&w, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(w, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

pretty_print_vector_UINT64(w,"wavefront(src)");

for (int i = 0; i < NUM_NODES; ++i) {

GrB_mxv(w, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, w, desc);

pretty_print_vector_UINT64(w, "wavefront");

}

58

Vector: wavefront(src) =

[1, -, -, -, -, -, -]

Vector: wavefront =

[-, 1, -, 1, -, -, -]

Vector: wavefront =

[1, -, 1, -, 1, -, 1]

Vector: wavefront =

[-, 1, 1, 1, 1, 1, -]

Vector: wavefront =

[1, -, 1, -, 1, 1, 1]

Vector: wavefront =

[-, 1, 1, 1, 1, 1, -]

Vector: wavefront =

[1, -, 1, -, 1, 1, 1]

…

The same container can be used for both input and output
Starts repeating after only a few iterations. Why?

5

3

2

10

4
6

Solution to exercise 7: wavefronts

• “We tell a bunch, and they tell bunch…(rinse and repeat)”

59

5

3

2

10

4
6

5

3

2

10

4
6

w = {0, 2, 4, 5, 6} w = {1, 2, 3, 4, 5} w = {0, 2, 4, 5, 6}

Red=current wavefront and visited, Blue=next wavefront, Black=unvisited

Visited lists

• Breadth-first traversal requires that we visit each node

once.

• First step is to keep track of a visited list.

• You can do this by accumulating the wavefronts.

– Use element-wise logical-OR.

60

Element-wise Operations: Mult and Add

• ⊗ assumes unstored

values (-) are the binary

operator’s annihilator:

=⊗
-

- -

-

• ⊕ assumes unstored

values (-) are the binary

operator’s identity:

-

-

-

⊗

=⊕
-

- -

- -

-

-

⊕

Examples: (x,0), (and, false), (+, ∞) Examples: (+,0), (or, false), (min, ∞)

u ⊗ v u ⊕ v

The rules for element-wise addition also apply to the

accumulation operator, ⊙

w⊙= (u ⊗ v)GrB_eWiseMult()

• Compute the element-wise “multiplication” of two GraphBLAS vectors.

• Performs the specified operator (op) on the intersection of the sparse

entries in each input vector , u and v.

– op could be GrB_BinaryOp, GrB_Monoid, or GrB_Semiring

• Returns error codes of type GrB_info. See the spec for details.

62

GrB_Info GrB_eWiseMult(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_BinaryOp op,

const GrB_Vector u,

const GrB_Vector v,

const GrB_Descriptor desc);

GrB_NULL

GrB_NULL

GrB_NULL

Use default values for mask, accum and desc (indicated by
GrB_NULL)

w⊙= (u ⊕ v)GrB_eWiseAdd()

• Compute the element-wise “addition” of two GraphBLAS vectors.

• Performs the specified operator (op) on the union of the sparse

entries in each input vector , u and v.

– op could be GrB_BinaryOp, GrB_Monoid, or GrB_Semiring

• Returns error codes of type GrB_info. See the spec for details.

63

GrB_Info GrB_eWiseAdd(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_BinaryOp op,

const GrB_Vector u,

const GrB_Vector v,

const GrB_Descriptor desc);

GrB_NULL

GrB_NULL

GrB_NULL

Use default values for mask, accum and desc (indicated by
GrB_NULL)

Exercise 8: Keep track of ‘visited’ nodes

• Modify code from Exercise 7 to compute the visited set as

you iterate.
– GrB_Vector result, vec;

– GrB_Index NODE;

– GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(vec, true, NODE);

– pretty_print_vector_UINT64(vec, ”Input node");

– GrB_Descriptor desc;

– GrB_Descriptor_new(&desc);

– GrB_Descriptor_set(desc, ARG, OP)

– GrB_eWiseAdd(vec, GrB_NULL, GrB_NULL,
GrB_LOR, vec, wav, GrB_NULL);

– GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, desc);

64

Solution to exercise 8
// First wavefront has node 0 set.

GrB_Index const SRC_NODE = 0;

GrB_Vector w, v;

GrB_Vector_new(&w, GrB_BOOL, NUM_NODES);

GrB_Vector_new(&v, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(w, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

pretty_print_vector_UINT64(w, "wavefront(src)");

for (int i=0; i<NUM_NODES; ++i) {

GrB_eWiseAdd(v, GrB_NULL, GrB_NULL,

GrB_LOR, v, w, GrB_NULL);

pretty_print_vector_UINT64(v, "visited");

GrB_mxv(w, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, w, desc);

pretty_print_vector_UINT64(w, "wavefront");

} 65

Vector: wavefront(src) =

[1, -, -, -, -, -, -]

Vector: visited =

[1, -, -, -, -, -, -]

Vector: wavefront =

[-, 1, -, 1, -, -, -]

Vector: visited =

[1, 1, -, 1, -, -, -]

Vector: wavefront =

[1, -, 1, -, 1, -, 1]

Vector: visited =

[1, 1, 1, 1, 1, -, 1]

Vector: wavefront =

[-, 1, 1, 1, 1, 1, -]

Vector: visited =

[1, 1, 1, 1, 1, 1, 1]

Vector: wavefront =

[1, -, 1, -, 1, 1, 1]

Vector: visited =

[1, 1, 1, 1, 1, 1, 1]

…

5

3

2

10

4
6

Vector: wavefront(src) =

[1, -, -, -, -, -, -]

Vector: visited =

[1, -, -, -, -, -, -]

Vector: wavefront =

[-, 1, -, 1, -, -, -]

Vector: visited =

[1, 1, -, 1, -, -, -]

Vector: wavefront =

[1, -, 1, -, 1, -, 1]

Vector: visited =

[1, 1, 1, 1, 1, -, 1]

Vector: wavefront =

[-, 1, 1, 1, 1, 1, -]

Vector: visited =

[1, 1, 1, 1, 1, 1, 1]

Vector: wavefront =

[1, -, 1, -, 1, 1, 1]

Vector: visited =

[1, 1, 1, 1, 1, 1, 1]

…

Solution to exercise 8
// First wavefront has node 0 set.

GrB_Index const SRC_NODE = 0;

GrB_Vector w, v;

GrB_Vector_new(&w, GrB_BOOL, NUM_NODES);

GrB_Vector_new(&v, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(w, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

pretty_print_vector_UINT64(w, "wavefront(src)");

for (int i=0; i<NUM_NODES; ++i) {

GrB_eWiseAdd(v, GrB_NULL, GrB_NULL,

GrB_LOR, v, w, GrB_NULL);

pretty_print_vector_UINT64(v, "visited");

GrB_mxv(w, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, w, tran);

pretty_print_vector_UINT64(w, "wavefront");

} 66

What should the

exit condition be?

5

3

2

10

4
6

GrB_mxv()

• …say something

• Say something else....

67

It’s time to explain masking and REPLACE in GraphBLAS operations.

w¬m, z ⨀= (A⊕.⊗u)

GrB_Info GrB_mxv(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Vector u,

const GrB_Descriptor desc);

GrB_NULL

Masking

• Every GraphBLAS operation that computes an opaque

matrix or vector supports a “write mask”

• A mask, m, controls which elements of the output can be

written:

– Same size as output object (mask vectors or mask matrices)

– Any location in the mask that evaluates to ‘true’ can be written in the

output object

68

wm = (A⊕.⊗u)

-

--

-

-

-

-

-

-

-

-

w(out)mw(in) A*u

REPLACE vs. “MERGE”

• When a mask is used and the output container is not

empty when the operation is called…what do you do to the

“masked out” elements?

– REPLACE (z): all unwritten locations are cleared (zeroed out).

– MERGE: all unwritten locations are left alone.

• Behaviour defaults to MERGE; otherwise, use a descriptor:

– GrB_Descriptor_set(desc, GrB_OUTP, GrB_REPLACE)

69

wm, z = (A⊕.⊗u)

-

--

-

-

-

-
REPLACE (z)

-

-

-

MERGE

-

-

-

w(in) w(out) w(out)A*u m

Structural Complement (mask)

• Specified with a descriptor:

– GrB_Descriptor_set(desc, GrB_MASK, GrB_SCMP)

• Inverts the logic of mask (write enabled on false)

• A mask, m, is interpreted as a logical ‘stencil’ that controls

which elements of the output can be written:

– Any location in the mask that evaluates to ‘true’ can be written

70

w¬m, z = (A⊕.⊗u)

-

--

-

-

-

-
REPLACE, z

-

-

-

MERGE

-

-

w(in) w(out) w(out)A*u m

¬

Using Descriptors (summary)

• A descriptor field selects the object it impacts:

– GrB_INP0: The first input GraphBLAS object

– GrB_INP1: The second input GraphBLAS object

– GrB_MASK: The GraphBLAS mask object

– GrB_OUTP: The output GraphBLAS object

• Each field supports one value (currently):

– GrB_INP0: GrB_TRAN (transpose)

– GrB_INP1: GrB_TRAN (transpose)

– GrB_MASK: GrB_SCMP (structural complement)

– GrB_OUTP: GrB_REPLACE (clear the output before writing result)

71

Exercise 9: Avoid revisiting

• Use the visited list as a mask prevent revisiting previous nodes

• Exit the loop when there is no more ‘work’ to be done

• You will need the following types and methods from the GraphBLAS

– GrB_Vector_new(&vec, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(vec, true, NODE);

– GrB_eWiseAdd(vec, GrB_NULL, GrB_NULL,
GrB_LOR, vec, wav, GrB_NULL);

– GrB_mxv(result, GrB_NULL, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, vec, desc);

– GrB_Descriptor desc;

– GrB_Descriptor_new(&desc);

– GrB_Descriptor_set(desc, FIELD, VALUE)

72

FIELD: GrB_INP0, GrB_INP1, GrB_OUTP, GrB_MASK

VALUE: GrB_TRAN, GrB_REPLACE, GrB_SCMP

Solution to exercise 9
...

GrB_Vector_setElement(w, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRAN);

GrB_Descriptor_set(desc, GrB_MASK, GrB_SCMP);

GrB_Descriptor_set(desc, GrB_OUTP, GrB_REPLACE);

pretty_print_vector_UINT64(w, "wavefront(src)");

GrB_Index nvals = 0;

do {

GrB_eWiseAdd(v, GrB_NULL, GrB_NULL,

GrB_LOR, v, w, GrB_NULL);

pretty_print_vector_UINT64(v, "visited");

GrB_mxv(w, v, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, w, desc);

pretty_print_vector_UINT64(w, "wavefront");

GrB_Vector_nvals(&nvals, w);

} while (nvals > 0);
73

Vector: wavefront(src) =

[1, -, -, -, -, -, -

Vector: visited =

[1, -, -, -, -, -, -]

Vector: wavefront =

[-, 1, -, 1, -, -, -]

Vector: visited =

[1, 1, -, 1, -, -, -]

Vector: wavefront =

[-, -, 1, -, 1, -, 1]

Vector: visited =

[1, 1, 1, 1, 1, -, 1]

Vector: wavefront =

[-, -, -, -, -, 1, -]

Vector: visited =

[1, 1, 1, 1, 1, 1, 1]

Vector: wavefront =

[-, -, -, -, -, -, -]

5

3

2

10

4
6

Breadth-First Traversal

74

5

3

2

10

4
6

5

3

2

10

4
6

Red=current wavefront and visited, Blue=next wavefront, Gray=visited, Black=unvisited

5

3

2

10

4
6

5

3

2

10

4
6

Breadth-First Traversal

75

5

3

2

10

4
6

5

3

2

10

4
6

Red=current wavefront and visited, Blue=next wavefront, Gray=visited, Black=unvisited

5

3

2

10

4
6

5

3

2

10

4
6

How would we keep
track of when each

vertex is visited
(becomes red)?

GrB_assign() from constant

76

• Assign a constant to a subset of the output vector.

• Locations to be assigned selected by an output index vector, indices:

w(indices[j]) = c, ∀ j : 0 ≤ j < nindices,

w(indices[j]) = w(indices[j]) ⊙ c, ∀ j : 0 ≤ j < nindices.

GrB_Info GrB_assign(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Vector u,

const GrB_Index *indices,

const GrB_Index nindices,

const GrB_Descriptor desc);

𝐰 𝒊 ⊙= 𝑐

• Use a constant GrB_ALL in place of the indices argument to select

that all elements of w are to be assigned to (in order 0 to 1-nindices).

GrB_assign()

77

• There are several variants of assign

– Standard vector assignment

– Standard matrix assignment

– Assign a vector to the elements of column cj of a matrix

– Assign a vector to the elements of row ri of a matrix

– Assign a constant to a subset of a vector.

– Assign a constant to a subset of a matrix.

𝐰 𝒊 ⊙= 𝐮 𝐂 𝒊, 𝒋 ⊙= 𝐀

𝐰 𝒊 ⊙= 𝑐 𝐂 𝒊, 𝒋 ⊙= 𝑐

𝐂 𝑟𝑖, 𝒋 ⊙= 𝐮
T𝐂 𝒊, 𝑐𝑗 ⊙= 𝐮

A and C are GraphBLAS matrices. u and w are GraphBLAS vectors i and j are index vectors

GrB_assign() from vector

78

• Assign a vector to a subset of the output vector.

• Values to be assigned selected by an output index vector, i

w(indices[j]) = u(j), ∀ j : 0 ≤ j < nindices,

w(indices[j]) = w(indices[j]) ⊙ u(j), ∀ j : 0 ≤ j < nindices.

GrB_Info GrB_assign(GrB_Vector w,

const GrB_Vector mask,

const GrB_BinaryOp accum,

const GrB_Vector u,

const GrB_Index *indices,

const GrB_Index nindices,

const GrB_Descriptor desc);

𝐰 𝒊 ⊙= 𝐮

• Use a constant GrB_ALL in place of the indices argument to select

that all elements of u are to be assigned in order to w.

Exercise 10: level BFS

• Modify the code from Exercise 9 to compute the level at which

each node is encountered:

– SRC_NODE is level 1, Its neighbors are level 2, … and so forth

• Challenge: use assign in place of eWiseAdd

– GrB_Vector_new(&w, GrB_BOOL, NUM_NODES);

– GrB_Vector_setElement(w, true, SRC_NODE);

– GrB_Descriptor desc;

– GrB_Descriptor_new(&desc);

– GrB_Descriptor_set(desc, FIELD, VALUE);

– pretty_print_vector_UINT64(vec, "levels");

– GrB_assign(u, mask, accum, c, GrB_ALL, NUM_NODES, desc);

– GrB_mxv(w, mask, accum, GxB_LOR_LAND_BOOL, graph, w, desc);

– GrB_Vector_nvals(&nvals, w);

79

FIELD: GrB_INP0, GrB_INP1, GrB_OUTP, GrB_MASK

VALUE: GrB_TRAN, GrB_REPLACE, GrB_SCMP

Solution to exercise 10

80

5

3

2

10

4
6

GrB_Vector_new(&levels, GrB_UINT64, NUM_NODES);

GrB_Vector_new(&w, GrB_BOOL, NUM_NODES);

GrB_Vector_setElement(w, true, SRC_NODE);

GrB_Descriptor desc;

GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, ...);

pretty_print_vector_BOOL(w, "wavefront(src)");

GrB_Index nvals = 0, lvl = 0;

do {

++lvl;

GrB_assign(levels, w, GrB_NULL,

lvl, GrB_ALL, NUM_NODES, GrB_NULL);

pretty_print_vector_UINT64(levels, "levels");

GrB_mxv(w, levels, GrB_NULL,

GxB_LOR_LAND_BOOL, graph, w, desc);

pretty_print_vector_BOOL(w, "wavefront");

GrB_Vector_nvals(&nvals, w);

} while (nvals > 0);

Vector: wavefront(src) =

[1, -, -, -, -, -, -]

Vector: levels =

[1, -, -, -, -, -, -]

Vector: wavefront =

[-, 1, -, 1, -, -, -]

Vector: levels =

[1, 2, -, 2, -, -, -]

Vector: wavefront =

[-, -, 1, -, 1, -, 1]

Vector: levels =

[1, 2, 3, 2, 3, -, 3]

Vector: wavefront =

[-, -, -, -, -, 1, -]

Vector: levels =

[1, 2, 3, 2, 3, 4, 3]

Vector: wavefront =

[-, -, -, -, -, -, -]

The GraphBLAS Operations

81

We’ve
covered

only a small
fraction of

the
GraphBLAS
Operations

The same conventions are used across all operations so the operations we did not
cover are straightforward to pick up

Conclusion and next steps

• The GraphBLAS define a standard API for “Graph

Algorithms in the Language of Linear Algebra”.

• A wide range of algorithms are variations of the basic

breadth first traversal for a graph.

82

• To reach GraphBLAS mastery

– Attend the Graph Algorithms Building Blocks

workshop at IPDPS

– Explore the challenge problems included with this

tutorial

– Work through the algorithms in the Graph book

GraphBLAS at HPEC 2018

• GraphBLAS is a community effort. Join the community:

– Go to graphblas.org and join our mailing list

• Attend the HPEC GraphBLAS Birds of a Feather (BOF)

6 PM to 7 PM, Eden Vale C1/C2.

• Please send us feedback about the tutorial

timothy.g.mattson@intel.com

smcmillan@sei.cmu.edu

– Tell us what you really liked.

– Tell us what we should change

– Tell us what you wish we’d covered but didn’t

– Plus anything else that might help us improve

83

mailto:timothy.g.mattson@intel.com
mailto:smcmillan@sei.cmu.edu

Appendices

• MxM: the low-level details of the GraphBLAS operations

• Challenge Problems: Some key algorithms with the

GraphBLAS

• SuiteSparse: usage notes, extensions and future plans

• Reference material

84

GraphBLAS: details of operations

• When you read the GraphBLAS C API specification, the

operations are described in a manner that may seem

obtuse.

• The definitions, however, are presented in this way for

good reasons:

– to cover the full range of variations exposed by the various

arguments and to express the operation without ever specifying the

undefined elements (i.e. the “zeros” of the semiring).

– To avoid any reference to the non-stored elements of the sparse

matrix. In sparse arrays, the undefined elements are usually

assumed to be the ”zero of the semiring”. By defining the

operations without any reference to those “un-stored values”, we

can freely change the semirings between operations without having

to update the un-stored elements.

85

GrB_mxm()

86

Matrix Multiplication … the way we learned it in school

Matrix Multiplication … set notation to ignore un-stored elements

With set notation, it’s easier to define the operations over a matrix as
the semi-ring changes

GrB_mxm(): Function Signature

87

GrB_mxm(): Function Signature

88

GrB_Info return values:

GrB_SUCCESS Blocking mode: Operations completed successfully.

Nonblocking mode: consistency tests passed on

dimensions and domains for input arguments

GrB_PANIC Unknown Internal error

GrB_OUTOFMEM Not enough memory for the operation

GrB_DIMENSION_MISMATCH Matrix dimensions are incompatible.

GrB_DOMAIN_MISMATCH Domains of matrices are incompatible with the

domains of the accumulator, semiring, or mask.

Standard function behavior

89

• Consider the following code:
GrB_Descriptor_new(&desc);

GrB_Descriptor_set(desc, GrB_OUTP, GrB_REPLACE);

GrB_Descriptor_set(desc, GrB_INP0, GrB_TRANS);

GrB_mxm(&C, M, Int32Add, Int32AddMul, A, B, desc);

Form input operands and mask based on descriptor C, B, M, A AT

Test the domains and sizes for consistency. int32, dims match

Carry out the indicated operation T A *.+ B,

Z C + T

Apply the write-mask to select output values Z Z ∩ M

Replace mode: delete elements in output object and

replace with output values

C Z

Merge mode: Assign output value (i,j) to element (i,j) of

output object, but leave other elements of the output

object alone.

int32AddMul semiring
int32Add accumulation

MXM flowchart

TRAN? TRAN?

SCMP?

op

D1 D2

D3

.

A
D(A)

B
D(B)

M
D(M)

C
D(C)

D(A)

A
D(B)

B

C
D(C)

REPLACE?

~~

T
D3(op)

~
D(C)

C~

accum

Dy

Dz

Dx

N Y

ACCUM

M
GrB_BOOL

~ ⌐M M

 MASK and REPLACE

Dz(accum)

Z~

accum ==
GrB_NULL?

N Y

D(C)

0

90

GrB_Info GrB_mxm(

GrB_Matrix C,

const GrB_Matrix M,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B,

const GrB_Descriptor desc);

To understand what happens inside a
graphBLAS operation, consider matrix multiply.

All the operations follow this basic format

Exercise: Matrix Matrix Multiplication

• Multiply the adjacency matrix from our

“logo graph” by itself.

• Print resulting matrix and interpret the

result

• Hint: Do the multiply again and compare

results. Do you see the pattern?

91

5

3

2

10

4
6

Appendices

• MxM: the low-level details of the GraphBLAS operations

• Challenge Problems: Some key algorithms with the

GraphBLAS

• SuiteSparse: usage notes, extensions and future plans

• Reference material

92

Challenge problems

• Triangle counting

• PageRank

• Betweenness Centrality

• Maximal Independent Set

93

Work in Progress: We should
make a slide for each
problem defining the

algorithm in enough detail so
students can implement the
GraphBLAS implementation

on their own

• Given:

• Undirected graph G = {V, E}

• L: boolean, lower-triangular portion of adjacency matrix

• # triangles = ||L ⊗ (L ⊕.⊗ LT)||1
• Semiring can be Plus-AND or Plus-Times

• Element-wise multiplication is equivalent to a mask operation

Counting Triangles (once) with GraphBLAS

uint64_t triangle_count(GrB_Matrix L) // L: NxN, lower-triangular, boolean

{

GrB_Index N;

GrB_Matrix_nrows(&N, L);

GrB_matrix C;

GrB_Matrix_new(&C, GrB_UINT64, N, N);

GrB_mxm(C, L, GrB_NULL, GrB_UInt64AddMul, L, L, GrB_TB); // C<L> = L * LT

uint64_t count;

GrB_reduce(&count, GrB_NULL, GrB_UInt64Add, C, GrB_NULL);// 1-norm of C

return count;

}

Appendices

• MxM: the low-level details of the GraphBLAS operations

• Challenge Problems: Some key algorithms with the

GraphBLAS

• SuiteSparse: usage notes, extensions and future plans

• Reference material

95

SuiteSparse:GraphBLAS

• Full implementation of GraphBLAS Specification written by

Tim Davis, Texas A&M University

• Easy-to-read User Guide with lots of examples

• Already in Ubuntu, Debian, Mac HomeBrew, ...

• Most operations just as fast as MATLAB (like C=A*B)

• assign and setElement can be 1000x faster (or more!) than

MATLAB, by exploiting non-blocking mode

• V2.1: matrices by-row and by-column; by-row is often

faster than by-column when A(i,j) is the edge (i,j). Compile

with –DBYROW or use GxB_set(…)

• Graph algorithms in GraphBLAS typically faster than

novice-level graph algorithm without GraphBLAS, and

easier to write
• http://faculty.cse.tamu.edu/davis/GraphBLAS

96Content provided by Tim Davis

SuiteSparse:GraphBLAS extensions

–MATLAB-like colon notation for GrB_assign, extract

– unary operators ONE, ABS, LNOT_[type]

– ISEQ, ISNE, ISLT, ... return same type as inputs (e.g. PLUS

monoid cannot be combined with Boolean EQ, but PLUS-ISEQ

can, to count the number of equal pairs)

– query: size of type, type of matrix, ...

–GxB_select: like MATLAB L=tril(A,k), d=diag(A), ...

–GxB_get/set: to change matrix format (by row, by col, hypersparse)

– 44 built-in monoids

– 960 built-in semirings (like GxB_LOR_LAND_BOOL)

–GxB_resize: change size of matrix or vector

–GxB_subassign: variation of GrB_assign

–GxB_kron: Kronecker product

– Thread-safe if called by user application threads, in parallel

97Content provided by Tim Davis

SuiteSparse:GraphBLAS future
– Multicore parallelism via OpenMP

– Variable-sized types (imagine matrix of matrices, or a matrix of arbitrary-

sized integers with 10’s or 1000’s of digits)

– Solvers: Ax=b over a group (double, GF(2), ...)

– Better performance: e.g. many monoids could terminate quickly:

– OR (x1, x2, x3, ...) becomes true as soon as any xi = true

– also for AND, and reduction ops FIRST and SECOND

– Iterators for algorithms like depth-first-search

– Reduction to vector or scalar: could also return the index for some

operators (MAX, MIN, FIRST, SECOND): argmin, argmax

– Pretty-print methods

– Serialization to/from a binary string: for binary file I/O, or

sending/receiving a GrB_Matrix in an MPI message; with compression

– Priority queue: a GrB_Vector acting like a heap

– Concatenate: like C=[A;B] in MATLAB

– Interface to MATLAB, Julia, Python, ...

– Faster C=A*B for user-defined types and operators
98Content provided by Tim Davis

Appendices

• MxM: the low-level details of the GraphBLAS operations

• Challenge Problems: Some key algorithms with the

GraphBLAS

• SuiteSparse: usage notes, extensions and future plans

• Reference material

99

Full set of GraphBLAS opaque objects

10
0

Error codes returned by GraphBLAS methods

API Errors

10
1

Error codes returned by GraphBLAS methods

Execution Errors

10
2

