
Page 1 of 17

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT

LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please

see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial use.

Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
DM18-0982

Page 2 of 17

Cyber Effects Simulation Interface v1.6.6

Note: This document is a work-in-progress and is being provided only to inform related

development efforts, and not as a candidate release. Additional changes will occur before

release. The current test example is attached here:
Testing API.postman_collection.json

The Cyber Effects Simulation Interface provides a way to stimulate message communication between a

kinetic based simulation and a cyber simulation.

Route: CKI/v1.6/DataTypes

Headers: No explicit headers needed

Parameters: No parameters used

Methods: GET, POST

Body: JSON (schema below)

GET: Returns an array of known data types.

Response Body:

{

 “dataTypes {
 “simulationID” : (Name)
 “supportedDataTypes” : [

{“Name”: (Data Type Name), “ID”: (Integer), “UUID”:

(UUID)}, ...(for each data type)]
 }

}

Field Description

simulationID Name of the simulation publishing the message.

supportedDataTypes An array of data type objects consisting of name/ID number/guid triples.

Return Value Description

200 OK Returned body includes valid list of data types

400 Bad Request Request was not understood

Page 3 of 17

POST: Notifies simulation of known data type for federate

Request Body:

{

 “dataTypePublication {
 “simulationID” : (Name)
 “dataTypeName” : (Data Type Name)

 “UUID” : (UUID)
 “attribute” : {
 “attributeName” : (Name)

 “attributeType” : (bool|int|double|complex type|etc)

 “confidence” : { “canonical sim”: (name), “value” :(0-

100) }
 }

 ….(for each attribute)

 }

}

Field Description

aimulationID Name of the simulation publishing the message.

dataTypeName The name of the data type being published.

attribute The attribute description object contains nested fields to define the kind of attribute

it is.

attributeName The name of the attribute.

attributeType This field defines the data type of the attribute. It can be a primitive data type

(boolean, integer, double, float, etc), or it can be a complex type. In the case of

complex types, the field will be represented by a nested object composed of multiple

attributes.

confidence This is the level of confidence the publishing simulation is reporting about it's ability

to simulate and set this attribute (or the sim it considers canonical).

Return Value Description

200 OK Notification received but not supported. (IE: Ignored. I don’t model this)

201 Created Notification received and supported (IE: I can model this)

400 Bad Request Request was not understood

500 Server Error Conflicting Data type exists (Same GUID but different Schema. Fatal error).

Page 4 of 17

Route: CKI/v1.6/DataTypes/N
(Where N is an integer)

Headers: No explicit headers needed

Parameters: No parameters used

Methods: GET

Body: JSON (schema below)

GET: Returns full details of the data type with ID = N.

Response Body:

{

 “dataTypePublication {
 “simulationID” : (Name)

 “dataTypeName” : (Data Type Name)
 “attributes” : [

 {

 “attributeName” : (Name)
 “attributeType” : (bool|int|double|complex type|etc)

 “confidence” : (0-100)
 },

 {
 “attributeName” : (Name)
 “attributeType” : (bool|int|double|complex type|etc)

 “confidence” : (0-100)
 }

 ….(for each attribute)]

 }

}

Field Description

simulationID Name of the simulation publishing the message.

dataTypeName The name of the data type being published.

attribute The attribute description object contains nested fields to define the kind of attribute.

attributeName The name of the attribute.

attributeType This field defines the data type of the attribute. It can be a primitive data type

(boolean, integer, double, float, etc), or a complex type. In the case of complex

types, the field will contain a nested object composed of multiple attributes.

confidence This is the level of confidence the publishing simulation is reporting about it's ability

to simulate and set this attribute.

Return Value Description

200 OK Body contains detailed information about this type of system.

400 Bad Request Request was not understood

404 Not Found Requested data type does not exist

Page 5 of 17

Page 6 of 17

Route: CKI/v1.6/DataTypes/N/Systems
(Where N is an integer)

Headers: No explicit headers needed

Parameters: No parameters used

NOTE: What search params

should we support?

Methods: GET, POST

Body: JSON (schema below)

GET: Returns a list of all systems of type N.

Response Body:

{

 “systemList {

 “systems” : [{“name” : (name), “ID” : (ID)}, ...]
 }

}

Field Description

systems Contains an array of objects consisting of system name/id pairs.

 * Note: We will want to allow for additional filtering, maybe a search param where attribute

values can be checked to allow filtering?

Return Value Description

200 OK Body contains list of systems matching the given type.

400 Bad Request Request was not understood

Page 7 of 17

POST: Notify of creation of new system within federate’s simulation.

Request Body:

{

 “systemCreated”: {
 “simulationID” : (Name, UUID)

 “timeStamp” : (Time)

 “Name”: (Human Readable Name)
 “systemID”: (UUID)

 “urn” : (URN if the device has a URN)

 “systemState” : {
 Body of specific system type (See System State Body)
 }

 }
}

Field Description

simulationID Name of the simulation publishing the response message.

timeStamp The time the message was published. a string representing the date and time in ISO

8601 format, YYYY-MM-DDTHH:MM:SS

systemID The Unique Identifier for the instance of the system being published.

Urn If the system being published has been assigned a URN, this attribute will be

published. Otherwise, this field is left out.

systemState This field represents the embedded SystemState object that contains state

information relevant to the system being published.

Return Value Description

200 OK Confirmed creation but will not model locally. (No error, but ignored)

201 Created Body contains ID of matching system created in this sim.

400 Bad Request Request was not understood

404 Not Found That type of system doesn’t exist here!

Page 8 of 17

Route: CKI/v1.6/DataTypes/N/Systems/M
(Where N and M are integers)

Headers: No explicit headers needed

Parameters: No parameters used

Methods: GET, PUT, POST, DELETE

Body: JSON (schema below)

GET: Returns all current simulation values for system M of the type N

Response Body:

{

 “SystemStateUpdate”: {

 “SimulationID” : (Name, UUID)

 “TimeStamp” : (Time)

 “SystemID”: (Name, UUID,)

 “URN” : (URN if the device has a URN)

 “SystemState” : {

 Body of specific system type (See System State Body)

 }

 }

}

Field Description

simulationID Name of the simulation publishing the response message.

timeStamp The time the message was published. a string representing the date and time in ISO

8601 format, YYYY-MM-DDTHH:MM:SS

systemID The Unique Identifier for the instance of the system being published.

urn If the system being published has been assigned a URN, this attribute will be

published. Otherwise, this field is left out.

systemState This field represents the embedded SystemState object that contains state

information relevant to the system being published. Note, in the System Update

message, the Confidence field is omitted.

Return Value Description

200 OK Body contains system information.

400 Bad Request Request was not understood

Page 9 of 17

PATCH: Set given value for system M of type N.

Body:

{

 “SystemStateUpdate”: {

 “SimulationID” :

 “TimeStamp” : (Time)

 “SystemID”: (Name, UUID, etc)

 “URN” : (URN if the device has a URN)

 “SystemState” : {

 Body of specific system type (See System State Body)

 }

 }

}

Field Description

simulationID Name of the simulation publishing the response message.

timeStamp The time the message was published. a string representing the date and time in ISO

8601 format, YYYY-MM-DDTHH:MM:SS

systemID The Unique Identifier for the instance of the system being published.

urn If the system being published has been assigned a URN, this attribute will be

published. Otherwise, this field is left out.

systemState This field represents the embedded SystemState object that contains state

information relevant to the system being published. Note, in the System Update

message, the Confidence field is omitted.

Return Value Description

200 OK Body contains system information.

400 Bad Request Request was not understood

403 Forbidden Attempting to modify attribute this system does not know you as canonical for.

404 Not Found Provided System ID does not exist.

Page 10 of 17

POST: Send message to system M of type N.

Body:

{
 “MessageInteraction”: {
 “SimulationID” : (Name)

 “Sender” : (System ID)
 “TimeStamp” : (Time)
 “MessageType”: (Binary|Tactical|Metadata)
 “MessageBody” : {

 (Message Payload)
 }
 }

}

Field Description

simulationID The name of the simulation from which this interaction originated.

sender The instance ID of the system that is sending the tactical message.

recipients An array of instance IDs of one or more systems that are the recipient of this tactical

message.

timeStamp The time the message was published. a string representing the date and time in ISO

8601 format, YYYY-MM-DDTHH:MM:SS

messageType The message type. This field identifies which message type is found in the Message

Body

messageBody A complex object that represents the contents of the actual message.

This object will be base 64 encoded for a Binary message type, a JSON object for

Metadata data type, and for a Tactical message type will include a pair of the

message type and the message data.

Return Value Description

200 OK Body contains system information.

400 Bad Request Request was not understood

Page 11 of 17

DELETE: Notify of deletion of system M of type N.

Body:

{

 “SystemRemoved”: {
 “SimulationID” : (Name)

 “TimeStamp” : (Time)
 “SystemID”: (Name, UUID, etc)
 “URN” : (URN if the device has a URN)
 }

}

Field Description

simulationID Name of the simulation publishing the response message.

timeStamp The time the message was published. a string representing the date and time in ISO

8601 format, YYYY-MM-DDTHH:MM:SS

systemID The Unique Identifier for the instance of the system being published.

urn If the system being published has been assigned a URN, this attribute will be

published. Otherwise, this field is left out.

Return Value Description

204 No Content System deleted from server’s simulation

304 Not Modified Deletion notification received, but system not removed from server’s simulation

400 Bad Request Request was not understood

Page 12 of 17

Route: CKI/v1.6/DataTypes/N/Systems/M/Subscriptions
(Where N and M are integers)

Headers: No explicit headers needed

Parameters: No parameters used

Methods: GET, POST

Body: JSON (schema below)

GET: Returns all current subscriptions for this system

Response Body:

{

 “Subscriptions”: {

 [{“ID” : (ID), “SystemID” : (Name, UUID), attibutes : { “AttributeName”: (attribute

name), … } , Target: (TargetURL)}]

 }

 }

}

Field Description

subscriptions Contains an array of subscription objects

systemID Identification of the a system being simulated.

subscriber Identification of the federate that needs to be informed of changes to the state of the

system being simulated.

attributes Array of all the attributes for which subscriber will be notified of updates.

target URL to which updates will be posted

Return Value Description

200 OK Body contains subscription information.

400 Bad Request Request was not understood

Page 13 of 17

POST: Creates a new subscription

Request Body:

{

 "SubscriptionRequest": {

 "SystemID" : (Name, UUID),

 "Attributes": {},

 "Target": (TargetURL)

 }

}

Field Description

systemID Identification of the a system being simulated.

subscriber Identification of the federate that needs to be informed of changes to the state of the

system being simulated.

attributeName Array of all the attributes for which subscriber will be notified of updates.

target URL to which updates will be posted

Return Value Description

201 Created New subscription created (Return Body will contain ID of new subscription)

400 Bad Request Request was not understood

404 Not Found Requested subscription for content this server is not canonical for / doesn’t simulate

NOTE: Once a subscription is created, the server will PATCH updates to the ‘targetURL’ path in the

format of:

 “SystemStateUpdate”: {

 “SimulationID” : (Name, UUID)

 “TimeStamp” : (Time)

 “SystemID”: (Name, UUID,)

 “URN” : (URN if the device has a URN)

 “SystemState” : {

 Body of specific system type (See System State Body)

 }

 }

Note that this is identical to the CKI/v1.6/DataTypes/N/Systems/M GET request response

structure. (And should remain so if updates are made to this document.

Page 14 of 17

Route: CKI/v1.6/DataTypes/N/Systems/M/Subscriptions/X
(Where N,M and X are integers)

Headers: No explicit headers needed

Parameters: No parameters used

Methods: GET, PUT, DELETE

Body: JSON (schema below)

GET: Returns a specific subscription

Response Body:

{

 “Subscription”: {

 {“SystemID” : (Name, UUID), Attributes: { “AttributeName”: (attribute name), … } ,

Target: (TargetURL) }

 }

 }

}

Field Description

systemID Identification of the a system being simulated.

subscriber Identification of the federate that needs to be informed of changes to the state of the

system being simulated.

attributeName Array of all the attributes for which subscriber will be notified of updates.

target URL to which updates will be posted

Return Value Description

200 OK Body contains subscription information.

400 Bad Request Request was not understood

404 Not Found Requested subscription does not exist (bad ID)

Page 15 of 17

PUT: Update a subscription (Note, replaces previous subscription)

Request Body:

{

 “SubscriptionRequest”: {

 [{“SystemID” : (Name, UUID), “Subscriber”: (Simulation ID), [“AttributeName”:

(attribute name), …] , Target: (TargetURL)}]

 }

 }

}

Field Description

systemID Identification of the a system being simulated.

subscriber Identification of the federate that needs to be informed of changes to the state of the

system being simulated.

attributeName Array of all the attributes for which subscriber will be notified of updates.

target URL to which updates will be posted

Return Value Description

201 Created New subscription created

400 Bad Request Request was not understood

404 Not Found Requested subscription for content this server is not canonical for / doesn’t simulate

or ID doesn’t exist.

Page 16 of 17

Delete: Removes a subscription

Request Body:

 (none)

Return Value Description

204 No Content Sucessfully deleted

400 Bad Request Request was not understood

404 Not Found Requested subscription doesn’t exist

Page 17 of 17

System State

The system state represents the state of each type of system. The types of attributes can vary between

system types. For example, a SCADA system may have different attributes than a GPS Receiver

system. The format of each body is agreed upon between simulations during the publication phase.

The System State Body is NOT a message in itself; it is included as part of the System Created

and System State Update interactions as part of the payload. Only attributes that are being

set will be populated. For example, at runtime, the confidence value will be absent because

simulation-attribute ownership was determined prior to scenario start.

System State Body Template:

{

 “SystemState” : {
 “Attribute” : [{

 “AttributeName”: (attribute name)

 “Value” : (attribute value)
 },
 “Attribute” : [{

 “AttributeName”: (attribute name)

 “Value” : (attribute value)
 }

 …(for each attribute)

]

 }

}

Field Description

dataTypeName Name of the data type that is represented by this JSON body.

attributeName The name of the attribute. This is a nested object that contains additional values

to make up the attribute.

value The value of the attribute being set. If the value is a complex type, this will be a

nested object of values.

confidence This is the level of confidence the publishing simulation is reporting about it's

ability to simulate and set this attribute.

