
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Practical Precise Taint-flow

Static Analysis for Android

App Sets

Will Klieber* (presenting),

Lori Flynn*,

Will Snavely*,

Michael Zheng*

*Software Engineering Institute (SEI)

Carnegie Mellon University

Pittsburgh, PA, USA

IWSMA 2018

2
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Copyright 2018 ACM. All Rights Reserved.

This material is based upon work funded and

supported by the Department of Defense under

Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the

Software Engineering Institute, a federally funded

research and development center.

References herein to any specific commercial

product, process, or service by trade name, trade

mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement,

recommendation, or favoring by Carnegie Mellon

University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON

UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN

"AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT

LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED

FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

This material may be reproduced in its entirety,

without modification, and freely distributed in

written or electronic form without requesting

formal permission. Permission is required for any

other use. Requests for permission should be

directed to the Software Engineering Institute at

permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in

the U.S. Patent and Trademark Office by

Carnegie Mellon University.

DM18-0979

3
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Introduction

Goal: Detect malicious Android apps that leak sensitive data.

• E.g., leak contacts list to marketing company.

• Android allows users to grant/deny permissions,

but flows of information may not be apparent to users.

Apps can collude to leak data.

• Evades detection if only analyzed individually.

Previous work that we build on:

• FlowDroid (TU Darmstadt, …): Analyzes source-to-sink flows in

each component of an app individually.

• DidFail (SEI): Builds on FlowDroid to analyze flows that involve

multiple apps.

Contribution of this paper:

• Make DidFail more precise (reduces number of false positives).

4
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Outline of this talk

1. First half: Review of how DidFail works.

2. Second half: Contribution of this paper

(improvement to DidFail algorithms).

5
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Introduction: Android

Android apps have four types of components:

• Activities

• Services

• Content providers

• Broadcast receivers

Intents are messages to components.

• Explicit or implicit designation of recipient

Components declare intent filters to receive implicit intents.

Matched based on properties of intents, e.g.:

• Action string (e.g., “android.intent.action.VIEW”)

• Data MIME type (e.g., “image/png”)

6
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Introduction

Taint Analysis tracks the flow of sensitive data.

• Can be static analysis or dynamic analysis.

• DidFail’s analysis is static.

DidFail builds upon existing Android static analyses:

• FlowDroid [1]: finds intra-component information flow

• Epicc [2]: identifies intent specifications

6

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps”. PLDI, 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis”.
USENIX Security, 2013.

7
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

DidFail

We developed a static analyzer called “DidFail”

(“Droid Intent Data Flow Analysis for Information Leakage”).

• Finds flows of sensitive data across app boundaries.

• Source code and binaries available at:

http://www.cert.org/secure-coding/tools/didfail.cfm

Two-phase analysis:

1. Analyze each app in isolation.

2. Use the result of Phase-1 analysis to determine inter-app flows.

7

8
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Terminology

Definition. A source is an external resource (external to the

component/app, not necessarily external to the phone) from

which data is read.

Definition. A sink is an external resource to which data is

written.

For example,

• Sources: Device ID, contacts, photos, location (GPS), intents, etc.

• Sinks: Internet, outbound text messages, file system, intents, etc.

Definition. A taint flow is data flow from a source to a sink.

Definition. A full taint flow is a taint flow where neither the source nor

the sink are intents.

8

9
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Motivating Example

App SendSMS.apk sends an intent (a message) to Echoer.apk,

which sends a result back.

 SendSMS.apk tries to launder the taint through Echoer.apk.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

(Sink)

10
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Analysis Design

Phase 1: Each app analyzed once, in isolation.

• FlowDroid: Finds tainted dataflow from sources to sinks.

• Received intents are considered sources.

• Sent intent are considered sinks.

• Epicc: Determines properties of intents.

• Each intent-sending call site is labelled with a unique intent ID.

Phase 2: Analyze a set of apps:

 For each intent sent by a

component, determine which

components can receive the intent.

 Generate & solve taint flow

equations.

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Running Example

11

Three components: C1, C2, C3.

C1 = SendSMS

C2 = Echoer

C3 is similar to C1

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

• sink1 is tainted with only src1.

• sink3 is tainted with only src3.

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Running Example

12

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Notation:

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Running Example

13

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Running Example

14

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Final Sink Taints:

• T(sink1) = {src1}

• T(sink3) = {src3}

Notation:

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

C1

C3

src1

src3

sink1

sink3

Phase-1 Flow Equations

C2

15

Analyze each component separately.

Notation

• An asterisk (“*”) indicates an unknown component.

Phase 1 Flow Equations:

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

16

Phase 1 Flow Equations: Phase 2 Flow Equations:

Phase-2 Flow Equations

Notation

Instantiate Phase-1 equations for all
possible sender/receiver pairs.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Manifest and Epicc info
(not shown) are used to
match intent senders
and recipients.

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Notation

Phase-2 Taint Equations

17

Phase 2 Flow Equations: Phase 2 Taint Equations:

For each flow equation src → sink,

generate taint equation T(src) ⊆ T(sink).

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

If s is a non-intent source,
then T(s) = {s}.

Then, solve.

18
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Use of Two-Phase Approach in App Stores

 We envision that the two-phase analysis can be used as follows:

 An app store runs the phase-1 analysis for each app it has.

 When the user wants to download a new app, the store runs the
phase-2 analysis and indicates new flows.

 Fast response to user.

19

[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

DidFail vs IccTA

 IccTA was developed at roughly the same time as DidFail

 IccTA uses a one-phase analysis

 IccTA is more precise than DidFail’s two-phase analysis.

 More context-sensitive

 Less overestimation of taints reaching sinks

 Two-phase DidFail analysis allows fast 2nd-phase computation.

 Pre-computed Phase-1 analysis done ahead of time

 User doesn’t need to wait long for Phase-2 analysis

 Typical time for simple apps:

 DidFail: 2 sec (2nd phase)

 IccTA: 30 sec

20

21
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Motivating example for this paper’s work

Let’s consider an app that scans QR codes. Suppose it has two

different behaviors, depending on action string of received intent:

• Action “FollowURL”: Uses camera to read QR code, interprets it as

a URL, and opens the URL in a web browser.

• Flow: Camera → Internet

• Action “ScanOnly”: Uses camera to read QR code, and returns it

to the calling app.

• Flow: Camera → IntentResponse

Original DidFail includes both of the above flows, even for a set

of apps in which only ScanOnly is used. False positive!

For example, consider a Bitcoin wallet app that scans a QR

code representing a private key.

22
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Parameterized Component Summaries

Pseudocode for QR Scanner:
ir1 = getIntent();
if (ir1.action = “FollowURL”){
visitURL(scanQR());

} else {
sendIntentResult(scanQR());

}

Flow Equations

 Common situation in apps:
Branch on action string of received intent.

 Annotate each Phase-1 flow with a boolean formula.
The formula indicates the condition under which the
flow can happen.

 Atomic propositions: string equality between a
property of the received intent and a string constant.

Boolean
formulas

BF ::= AP

| BF ∧ BF

| BF ∨ BF

| ¬ BF

| true

| false

𝑐𝑎𝑚𝑒𝑟𝑎 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡, 𝑎𝑐𝑡 = "𝐹𝑜𝑙𝑙𝑜𝑤𝑈𝑅𝐿"

𝑐𝑎𝑚𝑒𝑟𝑎 → 𝑅(𝑖𝑟1), 𝑎𝑐𝑡 ≠ "𝐹𝑜𝑙𝑙𝑜𝑤𝑈𝑅𝐿"

23
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Modification to Phase 1

We use a simple path-sensitive intra-procedural flow analysis to

compute the condition formula for each phase-1 flow.

Conservative approximation: Given a sink API call site s, we

consider an associated flow from a source to s to be possible

exactly when s is reachable.

Example 1:

x = readFile(...);
if (action == “foo”) {

sendToInternet(x);
}

condition: action = “foo”

Example 2 (false positive):

x = null;
if (action == “foo”) {

x = readFile(...);
}
sendToInternet(x);

condition: True

24
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Modification to Phase 1

• Goal: For each sink API call site s, compute a condition formula reach(s)

that represents the condition under which s is reachable.

• We use a simple dataflow analysis to identify which uses of local variables

must refer to the received intent’s action string (i.e., the result of

getIntent().getAction() in an Activity context).

• We define cond(p,s) for all edges (p,s) in the control-flow graph as follows:

• If p has the form “if (e) goto sT else goto sF” where e is an equality

between a string constant c and the received intent’s action, we define:

• cond(p, sT) = “act = c”

• cond(p, sF) = “act ≠ c”

• If there is an unconditional edge from p to s, then cond(p,s) = true.

• Define reach(s) as the solution (least fixpoint) of:

where preds(s) is the set of predecessors of s in the control-flow graph.

25
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Simplification to Canonical Form

We simplify the formulas using the following identities:

After simplification, each formula has one of the following forms:

• the constant true,

• the constant false,

• a disjunction of equalities, or

• a conjunction of disequalities.

26
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Modification to Phase 2

Recall that in phase 2, all the phase-1 flows are instantiated for

all possible sender/receiver pairs.

We modify phase 2 by deleting any instantiated flow whose

condition formula is falsified by all possible action strings of the

associated intent:

• For a flow of the form 𝑠𝑟𝑐 →
𝐶
𝑠𝑖𝑛𝑘, 𝜑 , where src is not an intent,

we delete the flow if all possible intents receivable by C (including

intents sent by the OS) have an action string that falsifies 𝜑.

• For a flow of the form 𝐼(𝐶1, 𝐶2, 𝑖𝑑) →
𝐶2
𝑠𝑖𝑛𝑘, 𝜑 , we delete the flow if

𝜑 is falsified by all possible action strings of intents that are sent at

program location id.

27
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Performance

Unfortunately we don’t yet have a working implementation to get

experimental results.

Based on theoretical arguments, we expect phase 2 to still be

fast. There are two main possible slowdowns:

• The input to phase 2 may be larger (than in the original DidFail)

because a single phase-1 flow in original DidFail may correspond

to multiple flows (differing only in boolean formula).

• Given a flow from original DidFail, the number of additional

corresponding flows is bounded by the number of comparisons of the

received intent’s action string to distinct string constants.

• Detecting impossible phase-2 flows consumes time. The time to

process a flow 𝐼(𝐶1, 𝐶2, 𝑖𝑑) →
𝐶2
𝑠𝑖𝑛𝑘, 𝜑 is 𝑂 𝜑 ∗ 𝑃𝑜𝑠𝑠𝐴𝑐𝑡𝑠 𝑖𝑑

where PossActs(id) denotes the possible action strings for id.

28
[DISTRIBUTION STATEMENT A] This

material has been approved for public

release and unlimited distribution.

Conclusion

Problem: Colluding apps, or a combination of a malicious app and leaky

app, can use intents (messages sent to Android app components) to

extract sensitive or private information from an Android phone.

Goal: Precisely detect tainted flows across multiple Android components

from sensitive sources to restricted sinks.

Two-phase DidFail analysis:

• Phase 1: Each app analyzed once, in isolation

– Examine flow of tainted data from sources to sinks (including intents)

– Examines intent properties to match senders and receivers

• Phase 2: For a particular set of apps

– Instantiate and solve taint flow equations

– Fast (due to pre-computation in phase 1)

New contribution of this paper: Increase precision of phase-1

summaries, to reduce the number of false positives, without compromising

soundness.

