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Introduction

Goal: Detect malicious Android apps that leak sensitive data.

• E.g., leak contacts list to marketing company.

• Android allows users to grant/deny permissions, 

but flows of information may not be apparent to users.

Apps can collude to leak data.

• Evades detection if only analyzed individually.

Previous work that we build on:

• FlowDroid (TU Darmstadt, …): Analyzes source-to-sink flows in 

each component of an app individually.

• DidFail (SEI): Builds on FlowDroid to analyze flows that involve 

multiple apps.

Contribution of this paper:

• Make DidFail more precise (reduces number of false positives).
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Outline of this talk

1. First half: Review of how DidFail works.

2. Second half: Contribution of this paper 

(improvement to DidFail algorithms).
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Introduction: Android

Android apps have four types of components:

• Activities

• Services

• Content providers

• Broadcast receivers

Intents are messages to components.

• Explicit or implicit designation of recipient

Components declare intent filters to receive implicit intents.

Matched based on properties of intents, e.g.:

• Action string (e.g., “android.intent.action.VIEW”)

• Data MIME type (e.g., “image/png”)
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Introduction

Taint Analysis tracks the flow of sensitive data.

• Can be static analysis or dynamic analysis.

• DidFail’s analysis is static.

DidFail builds upon existing Android static analyses:

• FlowDroid [1]: finds intra-component information flow

• Epicc [2]: identifies intent specifications

6

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive 
and Lifecycle-aware Taint Analysis for Android Apps”. PLDI, 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in 
Android with Epicc: An essential step towards holistic security analysis”. 
USENIX Security, 2013.
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DidFail

We developed a static analyzer called “DidFail” 

(“Droid Intent Data Flow Analysis for Information Leakage”).

• Finds flows of sensitive data across app boundaries.

• Source code and binaries available at:

http://www.cert.org/secure-coding/tools/didfail.cfm

Two-phase analysis:

1. Analyze each app in isolation.

2. Use the result of Phase-1 analysis to determine inter-app flows.

7
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Terminology

Definition. A source is an external resource (external to the 

component/app, not necessarily external to the phone) from 

which data is read. 

Definition. A sink is an external resource to which data is 

written. 

For example,

• Sources: Device ID, contacts, photos, location (GPS), intents, etc.

• Sinks: Internet, outbound text messages, file system, intents, etc.

Definition. A taint flow is data flow from a source to a sink.

Definition. A full taint flow is a taint flow where neither the source nor 

the sink are intents.

8
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Motivating Example

App SendSMS.apk sends an intent (a message) to Echoer.apk, 

which sends a result back.

 SendSMS.apk tries to launder the taint through Echoer.apk.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

(Sink)
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Analysis Design

Phase 1: Each app analyzed once, in isolation.

• FlowDroid: Finds tainted dataflow from sources to sinks.

• Received intents are considered sources.

• Sent intent are considered sinks.

• Epicc: Determines properties of intents.

• Each intent-sending call site is labelled with a unique intent ID.

Phase 2: Analyze a set of apps: 

 For each intent sent by a 

component, determine which 

components can receive the intent.

 Generate & solve taint flow 

equations.
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Running Example
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Three components: C1, C2, C3. 

C1 = SendSMS

C2 = Echoer

C3 is similar to C1

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

• sink1 is tainted with only src1. 

• sink3 is tainted with only src3.
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Running Example
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Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Notation:



[DISTRIBUTION STATEMENT A] This 

material has been approved for public 

release and unlimited distribution.

Running Example
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Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3
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Running Example
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C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Final Sink Taints:

• T(sink1) = {src1}

• T(sink3) = {src3}

Notation:
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C1

C3

src1

src3

sink1

sink3

Phase-1 Flow Equations

C2
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Analyze each component separately.

Notation

• An asterisk (“*”) indicates an unknown component.

Phase 1 Flow Equations: 



[DISTRIBUTION STATEMENT A] This 

material has been approved for public 

release and unlimited distribution.

16

Phase 1 Flow Equations: Phase 2 Flow Equations:

Phase-2 Flow Equations

Notation

Instantiate Phase-1 equations for all 
possible sender/receiver pairs.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Manifest and Epicc info 
(not shown) are used to 
match intent senders 
and recipients.
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Notation

Phase-2 Taint Equations
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Phase 2 Flow Equations: Phase 2 Taint Equations:

For each flow equation   src → sink,

generate taint equation  T(src) ⊆ T(sink).

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

If s is a non-intent source, 
then T(s) = {s}.

Then, solve.
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Use of Two-Phase Approach in App Stores

 We envision that the two-phase analysis can be used as follows:

 An app store runs the phase-1 analysis for each app it has.

 When the user wants to download a new app, the store runs the 
phase-2 analysis and indicates new flows.

 Fast response to user.

19
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DidFail vs IccTA

 IccTA was developed at roughly the same time as DidFail

 IccTA uses a one-phase analysis

 IccTA is more precise than DidFail’s two-phase analysis.

 More context-sensitive

 Less overestimation of taints reaching sinks

 Two-phase DidFail analysis allows fast 2nd-phase computation.

 Pre-computed Phase-1 analysis done ahead of time 

 User doesn’t need to wait long for Phase-2 analysis

 Typical time for simple apps:

 DidFail: 2 sec (2nd phase)

 IccTA: 30 sec

20
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Motivating example for this paper’s work

Let’s consider an app that scans QR codes.  Suppose it has two 

different behaviors, depending on action string of received intent:

• Action “FollowURL”: Uses camera to read QR code, interprets it as 

a URL, and opens the URL in a web browser.

• Flow: Camera → Internet

• Action “ScanOnly”: Uses camera to read QR code, and returns it 

to the calling app.  

• Flow: Camera → IntentResponse

Original DidFail includes both of the above flows, even for a set 

of apps in which only ScanOnly is used.  False positive!  

For example, consider a Bitcoin wallet app that scans a QR 

code representing a private key.
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Parameterized Component Summaries

Pseudocode for QR Scanner:
ir1 = getIntent();
if (ir1.action = “FollowURL”){
visitURL(scanQR()); 

} else {
sendIntentResult(scanQR());

}

Flow Equations

 Common situation in apps:
Branch on action string of received intent.

 Annotate each Phase-1 flow with a boolean formula.
The formula indicates the condition under which the 
flow can happen.

 Atomic propositions: string equality between a 
property of the received intent and a string constant. 

Boolean 
formulas

BF ::= AP

|  BF ∧ BF 

|  BF ∨ BF

|  ¬ BF 

| true

| false

𝑐𝑎𝑚𝑒𝑟𝑎 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡, 𝑎𝑐𝑡 = "𝐹𝑜𝑙𝑙𝑜𝑤𝑈𝑅𝐿"

𝑐𝑎𝑚𝑒𝑟𝑎 → 𝑅(𝑖𝑟1), 𝑎𝑐𝑡 ≠ "𝐹𝑜𝑙𝑙𝑜𝑤𝑈𝑅𝐿"



23
[DISTRIBUTION STATEMENT A] This 

material has been approved for public 

release and unlimited distribution.

Modification to Phase 1

We use a simple path-sensitive intra-procedural flow analysis to 

compute the condition formula for each phase-1 flow.

Conservative approximation: Given a sink API call site s, we 

consider an associated flow from a source to s to be possible 

exactly when s is reachable.

Example 1:

x = readFile(...);
if (action == “foo”) {

sendToInternet(x);
}

condition:  action = “foo”

Example 2 (false positive):

x = null;
if (action == “foo”) {

x = readFile(...);
}
sendToInternet(x);

condition:  True
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Modification to Phase 1

• Goal: For each sink API call site s, compute a condition formula reach(s)

that represents the condition under which s is reachable.

• We use a simple dataflow analysis to identify which uses of local variables 

must refer to the received intent’s action string (i.e., the result of 

getIntent().getAction() in an Activity context).

• We define cond(p,s) for all edges (p,s) in the control-flow graph as follows:

• If p has the form “if (e) goto sT else goto sF” where e is an equality 

between a string constant c and the received intent’s action, we define:

• cond(p, sT) = “act = c”

• cond(p, sF) = “act ≠ c”

• If there is an unconditional edge from p to s, then cond(p,s) = true.

• Define reach(s) as the solution (least fixpoint) of: 

where preds(s) is the set of predecessors of s in the control-flow graph.
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Simplification to Canonical Form

We simplify the formulas using the following identities:

After simplification, each formula has one of the following forms:

• the constant true,

• the constant false,

• a disjunction of equalities, or

• a conjunction of disequalities.
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Modification to Phase 2

Recall that in phase 2, all the phase-1 flows are instantiated for 

all possible sender/receiver pairs.

We modify phase 2 by deleting any instantiated flow whose 

condition formula is falsified by all possible action strings of the 

associated intent:

• For a flow of the form 𝑠𝑟𝑐 →
𝐶
𝑠𝑖𝑛𝑘, 𝜑 , where src is not an intent, 

we delete the flow if all possible intents receivable by C (including 

intents sent by the OS) have an action string that falsifies 𝜑.   

• For a flow of the form 𝐼(𝐶1, 𝐶2, 𝑖𝑑) →
𝐶2
𝑠𝑖𝑛𝑘, 𝜑 , we delete the flow if 

𝜑 is falsified by all possible action strings of intents that are sent at 

program location id.
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Performance

Unfortunately we don’t yet have a working implementation to get 

experimental results.

Based on theoretical arguments, we expect phase 2 to still be 

fast.  There are two main possible slowdowns:

• The input to phase 2 may be larger (than in the original DidFail) 

because a single phase-1 flow in original DidFail may correspond 

to multiple flows (differing only in boolean formula). 

• Given a flow from original DidFail, the number of additional 

corresponding flows is bounded by the number of comparisons of the 

received intent’s action string to distinct string constants.

• Detecting impossible phase-2 flows consumes time.  The time to 

process a flow 𝐼(𝐶1, 𝐶2, 𝑖𝑑) →
𝐶2
𝑠𝑖𝑛𝑘, 𝜑 is 𝑂 𝜑 ∗ 𝑃𝑜𝑠𝑠𝐴𝑐𝑡𝑠 𝑖𝑑

where PossActs(id) denotes the possible action strings for id.
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Conclusion

Problem: Colluding apps, or a combination of a malicious app and leaky 

app, can use intents (messages sent to Android app components) to 

extract sensitive or private information from an Android phone.

Goal: Precisely detect tainted flows across multiple Android components

from sensitive sources to restricted sinks. 

Two-phase DidFail analysis:

• Phase 1: Each app analyzed once, in isolation

– Examine flow of tainted data from sources to sinks (including intents)

– Examines intent properties to match senders and receivers 

• Phase 2: For a particular set of apps

– Instantiate and solve taint flow equations 

– Fast (due to pre-computation in phase 1)

New contribution of this paper: Increase precision of phase-1 

summaries, to reduce the number of false positives, without compromising 

soundness.


