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The Department of Defense hoped to solve the “Programming Language Problem” once
and for all with Ada. While Ada has experienced its fair share of success, it did not become the
“one language to rule them all.” This is in part due to the realization that language selection is
a nuanced decision with many dimensions, including cost, schedule, staff experience, hardware,
and—the focus of this paper—security. We propose a high-level approach for evaluating pro-
gramming language security based on an international standard (ISO/IEC 24772:2013). Our
discussion is focused specifically on flight software for space vehicles. We present experiences
with a real flight software system, discussing how a better-defined process around language
selection might have precluded certain threats to cyber-resilience.

I. Introduction

On April 29th, 1997, Assistant Secretary of Defense Emmet Paige Jr. issued a memorandum stating:∗
After carefully reviewing and considering the Board’s final report, I have directed my staff to undertake the necessary
actions to revise the policy contained in DoD Directive 3405.1, “Computer Programming Language Policy,” to eliminate the
mandatory requirement for use of the Ada programming language in favor of an engineering approach to selection of the
language to be used.

Ten years prior, in 1987, the Department of Defense indeed had issued a directive that mandated the use of Ada—a
programming language painstakingly designed and implemented at the DoD’s behest—for new software projects [1].
Magnus Kempe, editor of the website Ada Home, explained in a 1997 article that the mandate failed not because Ada
was a poor language—over those ten years Ada had been used in many important computer systems; rather, it failed
in part because contractors viewed the mandate as being a hindrance to sound software engineering practice [2]. In
particular: instead of having a programming language enforced, an engineering organization should have the agency to
choose a language best-suited for a given task, based on sound technical evidence.

Later in his memo, Assistant Secretary Paige offered a rough outline of the factors that ought to be involved in the
programming language decision process, including: performance, interoperability, reliability, safety, maintainability,
available tooling, cost, schedule, staffing, and security. While each of these elements are worthy of discussion, there is a
particular factor which is both critically important and historically underappreciated: security. Modern systems are
often deployed in hostile environments—the Internet, for example—where adversaries will attempt to compromise them.
Often, such adversaries will manipulate the system in ways the designers did not expect, leveraging vulnerabilities such
as buffer overflows to threaten the confidentiality, integrity, and availability of the software. There are many strategies
for improving the cyber-resilience of software systems; for example, the OWASP Software Assurance Maturity Model,
illustrated in Figure 1, provides a variety of cyber-resilience best practices that can be applied across the software
development lifecycle [3].

This paper explores the intersection between software assurance and programming language selection. To a first
order of approximation, one could claim: insecure programs can be written in any programming language! While this is
true, we believe that there is value in refining this concept, and understanding more precisely the security risk level
associated with a given programming language choice. Additionally, language security risks are rarely absolute, and
can be reduced or eliminated by applying external tools or practices. Therefore, a complete security assessment of a
language should include an enumeration of risks along with the available strategies for mitigating those risks.
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Fig. 1 An overview of the OWASP Software Assurance Maturity Model (SAMM).

Our discussion is further constrained by the domain of space vehicle flight software. Space vehicles, while
physically quite remote, are not immune from cyber-threats [4]. Moreover, this is a domain where cyber-resilience is
critical—compromises of these systems could seriously impact the DoD’s mission. Finally, this constraint is useful in
that it inherently reduces the set of languages to consider, given the (usual) real-time nature of these systems.

To summarize, we propose: when choosing a flight software programming language, one must be aware of the
associated security risks, and of mitigations available to manage those risks. In particular, for a given flight software
system, one must establish language risk level requirements—and in areas where the chosen language fails to satisfies
those requirements, one must demonstrate that appropriate mitigations are in place. These requirements can vary from
project to project, but for a space vehicle we expect these requirements will generally be very strict.

In this paper, we will present a notional language security assessment framework based on the international standard
ISO/IEC 24772 (titled: “Guidance to avoiding vulnerabilities in programming languages through language selection
and use”). We will briefly discuss how risk mitigations interact with this assessment framework, though the bulk of this
subject is left as future work. We will not discuss a general approach for determining programming language security
requirements—however, we will present a brief case study featuring a flight software system in Ada.

The structure of this paper follows. Section II gives a brief overview of the present-day programming language
landscape for flight software. Section III presents a simple methodology for programming language risk assessment,
and demonstrates application of this methodology to a small set of relevant languages. Section IV presents the
aforementioned case study, regarding a flight software system in Ada. We provide concluding remarks in Section V.

II. Programming Language Survey
There are various resources that attempt to capture a snapshot of programming language popularity, for example

the TIOBE index†. A shortcoming of such resources is that they are typically domain-agnostic. For example, PHP,
Python, Javascript and SQL all are within the top 10 of the TIOBE ranking, as of August 2018—yet none of these
languages are likely to be seen in an embedded system such as a satellite, for example because they require heavy-weight
runtimes, or because they are optimized for other domains such as web applications. Of course, such languages would
likely be present in the broader system surrounding a satellite, e.g. the ground segment. However, for the purposes of
this discussion, we will narrow our focus to the flight software itself. In the following sections, we will evaluate the
relevance of a variety of modern languages in this context.

C and C++: The Mainstream Monarchs
The “Department of Defense Software Factbook”, published by the SEI in 2017, reports the following language

breakdown for DoD systems: 63% C/C++, 22% Ada, 13% Java, and 2% other [5]. Nearly 70% of the projects analyzed
as part of this effort (198 projects out of 287) were classified as real-time systems, which are typically embedded in
nature. This provides reasonably strong evidence that C and C++ are dominant languages in the domain of embedded
systems, for the DoD. It is not too much of a leap to extrapolate this result to flight software. Extrapolation aside, a 2009
NASA study on flight software identified C as the dominant language in this domain [6].

Michael Barr, in the first chapter of his book Programming Embedded Systems in C and C++, provides several
†https://www.tiobe.com/tiobe-index/
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reasons for the immense popularity of C/C++ in this domain, including: these languages give programmers a large
degree of direct hardware control, without being excessively low-level; many programmers have experience with one or
both languages; they can be used on a wide variety of platforms/processors; compilers can emit very efficient, compact
machine code; and so on [7].

Ada: Erstwhile Wonder Child
The introduction of this paper discussed a small episode in the history of Ada, namely, the inauguration and

subsequent retraction of the DoD Ada mandate. We reiterate that this episode does not indicate the failure of Ada as
a language. According to aforementioned SEI statistics, Ada is used by 22% of DoD software projects, a significant
chunk of the market [5]. The SEI recently audited a DoD space system written in Ada, the subject of a case study
later in this paper. Outside of the DoD, Ada has been used in many space vehicles. Dr. Michael B. Feldman, former
chair of the SIGAda Education Working Group, maintains a list of software that uses Ada, which includes some thirty
space vehicles from NASA, the European Space Agency, and other sources‡. While Ada is not as dominant as C/C++,
evidence suggests that Ada is a mainstream language in the flight software domain.

However, there are some elements of the Ada ecosystem which are more emerging than mainstream. A prominent
example of this is the SPARK variant of Ada. In the preface of their book, Building High Integrity Applications with
SPARK, Peter Chapin and John McCormick describe the titular language as “a formally defined programming language
and a set of verification tools to support the development of high integrity software [8].” In brief, SPARK allows one to
write programs using a subset of Ada syntax, and then prove properties of those programs using a supplemental toolkit.
There have been several academic research projects that have applied SPARK to the space domain, such as the Vermont
Lunar CubeSat and its successor the Lunar IceCube [9], and David Lesen’s Hi-Lite project [10]. In summary, there is
strong evidence that SPARK can be successful in this domain.

Java: Making the Runtime Real-Time
While Java is certainly an enormously popular language (sitting at the top of the TIOBE index as of August 2018,

for example), it is far less popular in the embedded/real-time domain. Java has features like garbage collection and a
variety of implicit runtime checks that make it difficult to use in this domain. That said, there are various efforts to
specify and implement variants of Java that serve this problem space, for example Embedded Java§ and the Real-time
Specification for Java (see [11] for a high-level description; moreover a new version of this specification is currently
under development¶). A paper from Higuera-Toledano provides an overview of how these Java technologies can be
applied to cyber-physical systems [12]. Overall, in the domain of flight software, Java is firmly in the emerging camp.
Developers like Java, evidenced by its broad adoption in other industries, and as real-time/embedded support for the
language continues to mature we may see greater adoption.

Rust and Friends: Making a Better C/C++
There have been various attempts to create improved versions of C and C++. Many of these attempts begin with C

or C++, and add new features to shore up weaknesses in those languages, e.g. adding improved type systems or safer
memory management. Examples include Cyclone [13], Deputy [14], and Checked C [15]. Most of these efforts haven’t
found much traction outside of academia, but nonetheless have made an impact on the next generation of systems
languages.

Speaking of which: we have seen many new languages that aim to preserve the desirable features of C/C++ while
mitigating the less desirable ones. Examples include Rust (from Mozilla [16]‖), Swift (from Apple∗∗), Golang (from
Google††), and D (from Digital Mars‡‡).

While these languages have been successful, in no small part due their corporate sponsorship and support, there is
little evidence that the aerospace industry is seriously considering this new generation of languages. There are likely
many logistical issues with adoption, for example: the compilers for these languages may not have good support for the

‡https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
§https://www.oracle.com/technetwork/java/embedded/overview/index.html
¶https://www.aicas.com/cms/en/rtsj
‖https://www.rust-lang.org

∗∗https://developer.apple.com/swift/
††https://golang.org/
‡‡https://dlang.org/
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hardware we are currently shooting into space. Despite this, the industry should devote resources to investigating these
evolutions of C/C++.

Model-based Design
Model-based design (MBD) “emphasizes mathematical modeling to design, analyze, verify, and validate dynamic

systems [17].” Instead of writing code directly in a language like C, one builds a formal model of a system, at an
appropriate level of abstraction, and uses a toolkit to verify and validate this model. Depending on one’s perspective,
MDB represents either an evolution in software development, or a return to the mathematical roots of programming—the
Dijkstra school of programming—made possible by improved tools and processes. Amazon has applied MBD to their
cloud services, and have reported benefits such as: finding subtle bugs early; facilitating aggressive optimizations; and
improving their overall design process [18]. To clarify, MBD does not necessarily preclude writing code in a traditional
language. While some MBD methodologies involve automatically generating code from models, this is not universal.
For example, Amazon did not generate code from their models; they still wrote code by hand. Some applications of
MDB may involve a mix of generated code and human-written code.

The DoD has invested a significant amount of research into MBD, especially for cyber-physical systems, through
programs like DARPA HACMS. A report on HACMS from Fischer discusses some of the reasons why MDB is in vogue,
including: vast improvements in hardware resources; improvements in SAT solvers; a growing selection of mature
toolkits (including Coq, Isabell, TLA+, Frama-c, and others); and mounting difficulty applying traditional software
development practices to increasingly complex systems (especially high-integrity systems) [19].

Flight software in particular has been a popular target for MBD. The Orion Multi-Purpose Crew Vehicle, currently
under development by NASA, implements MBD with Matlab, Simulink, and StateFlow [20]. Kerianne Gross, from
AFRL, has released several publications over the past few years discussing the application of formal methods to attitude
determination and control systems [21, 22]. There remain important challenges to address in this domain. Dr. Rob Petit,
from the Aerospace Corporation, published a paper in 2013 discussing some of these challenges, including: ensuring
consistency between models and code; making MBD methods scale to very large systems; and teams having to integrate
multiple modeling languages together [23]. Regardless, there is broad agreement that MBD is a promising direction to
move towards for complex, mission-critical systems, and work is ongoing to incorporate this methodology into modern
software development lifecycles.

III. Language Security Risk Assessment
The fundamental question posed by this paper is: how does one assess the security risk introduced by choosing a

given programming language? This section introduces a simple methodology for language security risk assessment, and
applies that methodology to a set of popular programming languages. In particular, we will consider C, C++, and Ada,
all of which are mainstream flight software languages. We additionally will consider SPARK and Java, two emerging
languages in this domain.

We will first describe an abstract assessment model. We will then define a notional language security metric, by
identifying a set of programming language vulnerabilities along with a simple means of scoring a language with respect
to those vulnerabilities. We will then apply our scoring mechanism to the aforementioned languages. Finally, we briefly
discuss how specific mitigations strategies might interact with this model, though this is largely left as an open problem.

A. Abstract Language Assessment Model
Figure 2 illustrates a high-level model for language security risk assessment. This model is built upon the notion of

a security metric, represented here as an abstract numerical value. A system defines a requirement with respect to the
security metric, for example a minimum acceptable value. Then, each programming language under consideration is
scored on this metric. The baseline score for a language can be adjusted upwards, for example by applying mitigations, or
downwards, for example by disabling runtime protections. The figure illustrates two scenarios: first, picking a language
that does not meet the established security requirement, and having to apply mitigations to bring its score to an acceptable
level; and second, picking a language that exceeds the security requirement, at the cost of high runtime overhead, and
having to disable protections in order to improve performance (while still satisfying the security requirement).
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Fig. 2 A high-level language assessment model.

B. Identifying Programming Language Vulnerabilities
In order to define a language security metric, we must identify dimensions along which we can measure candidate

languages. Generally speaking, we would like to enumerate the ways in which programming languages create security
risks, and then assess the degree to which each language is susceptible to those risks.

There are a few existing software security weakness taxonomies for us to consider. The Common Weakness
Enumeration (CWE), from the MITRE corporation§§, is a very popular general-purpose software weakness taxonomy.
The CWE has some nice properties for our context, for example the weaknesses in this taxonomy are generally
language-agnostic. We can imagine selecting a subset of CWEs, and evaluating the extent to which a given programming
language is susceptible to each.

Next, the SEI maintains secure coding rules for a variety of languages, including C, C++, Java, and Perl¶¶. Each
language has its own curated set of rules. This is a desirable property in some contexts, e.g. establishing concrete
coding guidelines for a program. For our purposes, having curated rules is less desirable, as we’d like to evaluate a wide
variety of languages under the same criteria.

Finally, ISO/IEC TR 24772 is a standard that specifically targets the identification of vulnerabilities that affect
programming languages. The standard identifies one of its applications as follows [24]:

Developers of applications that have clear safety, security or mission-criticality are expected to be aware of the risks associated
with their code and could use this Technical Report to ensure that their development practices address the issues presented by
the chosen programming languages, for example by subsetting or providing coding guidelines.

This standard is therefore very well-aligned with our purposes. It strikes the right balance between the generality of
the Common Weakness Enumeration and the programming-language focus of the SEI secure coding rules. ISO/IEC TR
24772 identifies 55 vulnerabilities that commonly affect programming languages, and moreover contains language-
specific annexes describing the extent to which specific languages are affected by these vulnerabilities. Potential
mitigations are also identified for each vulnerability. The 2013 edition of the standard has annexes for Ada, C, Python,
Ruby, SPARK, and PHP, and it is likely new languages will be added in the future.

§§https://cwe.mitre.org/
¶¶https://securecoding.cert.org
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For the purposes of illustration, we will focus on a subset of vulnerabilities from ISO/IEC TR 24772. It is likely a
given engineering effort would need to engage in a similar scoping exercise, identifying the vulnerabilities most relevant
to their context. The following listing describes the vulnerabilities we shall focus on from here forward. Each listed
vulnerability specifies a three-letter unique identifier assigned by ISO/IEC TR 24772 (e.g. HCB for “Buffer Boundary
Violation”). Note that these identifiers are not intended to be mnemonics, and were in fact arbitrary assigned by the
standard. For each vulnerability, we provide a rough sense of severity.

1) Buffer Boundary Violation (HCB): Occurs when an array is read or written outside of its legal bounds. For
example, if an array has 10 elements, and a read or write is issued at the eleventh element, an instance of this
vulnerability has occurred. Violations are potentially very serious, in the worst cast permitting arbitrary code
execution.

2) Null Pointer Dereference (XYH): Occurs when a pointer or reference with a NULL value is accessed as if it
contained a valid address location. Violations typically impact availability, e.g. by causing program crashes,
though in rare cases more serious consequences can arise.

3) Arithmetic Wrap-around Error (FIF): Occurs when a numeric value is incremented past its maximum value
or decremented past its minimum value. For example, if an unsigned integer is decremented below 0, an instance
of this vulnerability occurs. Violations can have minor or major consequences depending on how the wrapped
value is used in a given program.

4) Initialization of Variables (LAV): Occurs when a variable is read before an appropriate value has been assigned
to it. Violations can have minor or major consequences depending on how the uninitialized variable is used.

5) Dangling References to Stack Frames (DCM): Occurs when a variable allocated on a function stack frame is
accessed after that stack frame is reclaimed. For example, if the address of a local function variable is returned by
a function, and that address is subsequently read/written, an example of this vulnerability has occurred. Instances
of this violation can result in read/writes to otherwise inaccessible regions of memory, which can have serious
consequences, up to and including arbitrary code execution.

6) Ignored Errors/Exceptions (OYB): Occurs when an error or exception is possible in a given program, but
that error/exception is not handled appropriately. Ignoring error conditions can result in application failure or
misbehavior. This could be leveraged by an attacker to execute a denial-of-service attack, for example.

7) Type-breakingReinterpretation of Data (AMV):Occurs when a value stored at a given location is reinterpreted
in an invalid or unsafe manner. For example, if a program interprets an integer or floating point value as a
memory address, then this vulnerability has occurred. Consequences range from minor to major depending on
the manner in which the misinterpreted value is used.

8) Memory Leak (XYL): Occurs when software does not release allocated memory after finishing using it. If this
happens repeatedly, large amounts of memory can be consumed, potentially causing an application to experience
degraded performance or to crash. An attacker could leverage a memory leak as part of a denial-of-service attack.

C. Language Vulnerability Scoring
We illustrate a notional strategy for scoring a language with respect to the vulnerabilities identified above. For each

vulnerability, a language is assigned a numeric value from 1 to 9, where 1 indicates high susceptibility to a vulnerability,
and 9 represents little-to-no susceptibility. The rationale for a 9-point scale is so that values can be grouped into three
rough categories: a score of 1-3 indicates “High” susceptibility, a score of 4-6 “Medium” susceptibility, and a score of
7-9 “Low” susceptibility.

As previously suggested, the baseline score a language receives for a given vulnerability is not absolute: the
score may be adjustable upwards or downwards by various factors. For example, the application of mitigations for a
vulnerability may adjust the score upwards. The suppression of runtime validity checks (e.g. justified by performance
concerns) that prevent a given vulnerability may adjust the score downwards. In this scenario, if the score drops low
enough, it may be necessary to introduce mitigations to readjust back upwards.

Figure 3 demonstrates an application of this scoring mechanism to five languages (C, C++, Ada, Java, and SPARK),
using the eight ISO/IEC TR 24772 vulnerabilities identified above. Red cells indicate “High” susceptibility, yellow cells
“Medium” susceptibility, and green “Low” susceptibility. This example scoring is not meant to be definitive, rather it is
a rough approximation based on information in the ISO/IEC TR 24772 language annexes (when available) and author
experience. The average language score is shown in the final row of the table.

On one end of the scoring spectrum, we have C and C++. Unsurprisingly, these languages introduce many potential
security risks, virtually by design. For example, neither C nor C++ impose any requirements on compilers to check
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Fig. 3 Example language scoring against a subset of vulnerabilities.

whether array indices are inbounds. Moreover, programmers are responsible for managing their own memory (e.g.
via malloc/free, new/delete). C in particular has a very loose type system, meaning variables can be fairly easily
converted to other, potentially incompatible types. These factors and others create many possible opportunities for
vulnerabilities.

On the other end of the spectrum we have Java and SPARK. SPARK in particular fares very well against this
particular set of vulnerabilities, largely due to the fact that SPARK comes packaged with static analysis capabilities
that can detect and prevent many common vulnerabilities. Java similarly features a runtime that detects and prevents
common vulnerabilities.

Ada falls somewhere in the middle of the pack. Like Java, Ada has a runtime that prevents many flavors of
vulnerabilities. However, Ada supports various means of circumventing these runtime safety checks, e.g. in pursuit
of performance. For example, Ada features a set of “unchecked” operations—unchecked type conversion, unchecked
memory deallocation— that expose programs to vulnerabilities similar to what one might experience with a C program.

D. Should One Always Choose SPARK?
This sample assessment might lead one to believe that SPARK is always the right language choice. Recall though

that security is only one factor in the programming language selection process. While SPARK certainly has inherently
better security properties compared to C, this does not mean it will always be the appropriate choice for a given flight
software system. Factors like the target hardware and operating system might preclude the use of SPARK. Moreover, the
developers responsible for a system might not have adequate experience with SPARK. These and other reasons might
necessitate choosing a language like C or C++.

Additionally, choosing C or C++ does not necessarily spell doom and gloom for system security. These languages
are perfectly suitable for critical systems, as long as the development efforts appropriately address their very real security
risks. This cannot be taken lightly—for example, buffer overflow defects are extremely common in software (representing
the majority of defects counted over a 25 year period by one study [25]), perhaps in part due to programmers using
languages that are highly susceptible to buffer issues sans sufficient mitigations. A brief discussion of mitigations
strategies can be found in the next section.

E. Language Risk Mitigations
There are many mechanisms for mitigating the risks introduced by a given language choice. The aforementioned

OWASP Software Assurance Maturity Model [3] is one potential source of mitigation strategies, however the elements
of this model are fairly broad, and may be difficult to map to individual language issues. Alternatively, ISO/IEC 24772
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itself contains mitigation strategies for each identified vulnerability, both at the language-agnostic level and within the
language-specific annexes. Mitigations that have particular relevance to programming languages include:

1) Static analysis: Static analysis inspects software for potential vulnerabilities without running it. Some languages,
like SPARK, are very tightly coupled with static analysis by design. Other languages, like C, often rely on
commercial-of-the-shelf tools to implement static analysis. Formal verification is a form of static analysis that
involves mathematically verifying certain properties of software.

2) Dynamic analysis: Dynamic analysis involves searching for vulnerabilities while executing a given program.
This might involve instrumenting a program to insert checks for unsafe behavior, e.g. instrumenting a C program
to check for out-of-bounds array accesses, then running the program under various inputs to search for violations.
There are many other techniques in this domain that are beyond the scope of this paper to discuss.

3) Language subsetting: One can opt to use a limited subset of a language in order to preclude the possibility of
certain vulnerabilities. For example, one might forbid the use of dynamic memory allocation to avoid memory
leaks, or forbid recursion to avoid overly-deep call stacks. Prominent examples of language subsets include:
MISRA C [26] and the Ada Ravenscar profile [27].

There is a fundamental question of: for a given programming language choice, what mitigations should be applied
in order to adequately manage the associated security risks? This is a complex issue with many dimensions, such as cost
and schedule, and is an ongoing research subject. For example, in a 2017 SEI tech report, Alberts and Woody describe a
“prototype software assurance framework” that attempts to synthesize cyber mitigations in a coherent, actionable fashion
[28].

We certainly could approximate the impact of various mitigation strategies upon the vulnerability susceptibility
scores presented above. For example, we might estimate that applying COTS static analysis tools to a C program may
decrease its susceptibility to buffer overflows from “High” to “Medium”, or that formal methods may further adjust the
susceptibility to “Low”. However, given the scope and complexity of this task, we leave this as future work.

IV. Case Study: Ada Flight Software
In mid-2017, the SEI assessed the cyber-resilience of a flight software system written in Ada. This system consisted

of approximately 70K significant lines of code (excluding whitespace and comments). Initial findings from this
assessment were discussed in a 2017 AIAA SPACE publication [4]. A key question we pursued with this assessment
was: is the software free of buffer overflows (reads or writes outside of array bounds)?

In the general case, out-of-bounds array accesses in Ada are prevented by runtime checks. These checks raise
exceptions upon failure. However, Ada permits developers to disable these runtime checks using compiler directives
called pragmas. For example, there is a pragma called Suppress_All, which instructs the compiler to omit a wide variety
of checks, including array bounds checks.

The flight software we assessed used the Suppress_All pragma in a number of locations, including modules which
performed array accesses. The exact reason for specifying these pragmas is not known, but we might surmise that
performance was one motivation. This raised the question: are any of the array accesses in the suppressed modules
unsafe? Figure 4 illustrates this concern in the context of the language assessment model presented above.

A. Flight Software Static Analysis
In pursuit of evidence that the flight software was free from buffer overflows, we analyzed the code using a

commercial static analysis tool for Ada. This tool returned over 4000 raw alerts, 1100 of which corresponded to
potential out-of-bounds array accesses. A deduplication process reduced these 1100 alerts to 426. We ultimately
inspected 44 of these 426 alerts, based on a simple prioritization scheme. 34 of these alerts appeared to be likely true
positives—however, it is worth noting that all 34 of these issues originated from the same core defect in the software.
Additionally, none of these potential out-of-bounds accesses occurred in a region with suppressed bounds checks.
Overall, this static analysis did not give us strong confidence that the software had no buffer overflows, even though it
did not identify any invalid array accesses in suppressed code modules. If out-of-bounds activity was overlooked in one
place, it seemed probable that it might occur elsewhere.

B. Manual Code Review
We additionally performed a manual code review of modules with suppressed runtime checks, in search of potential

buffer overflows. As a result, we identified one location where an out-of-bounds index appeared possible. The cause of
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Fig. 4 Ada buffer overflow assessment.

this issue was an apparent typo in an array index calculation, which created scenarios where said index could hold a
value larger than the length of the array.

C. Dynamic Testing
We have performed some initial testing with a simulator to try and recreate the candidate buffer overflows, discovered

via automated and manual analysis, in the actual running software. Our success in this domain has been limited, so far.
We were able to demonstrate that out-of-bounds accesses in suppressed regions indeed occur silently (no exception is
raised). However we have not yet generated such accesses on the simulator via normal flight software execution. This
does not mean it is impossible to produce this behavior: it might arise only under very specific circumstances which
may be difficult to create with the simulator. We are continuing to investigate dynamic testing to assist with this task.

D. Results
Overall, our assessment of the Ada flight software was inconclusive with respect to establishing the absence of

buffer overflows. Automated and manual static analysis identified a number of potential problems, though we faced
difficulties recreating these issues in the running software. We believe that the developers of this software could have
improved their process by explicitly recognizing and documenting the risk associated with suppressing runtime checks,
and additionally providing evidence that this risk had been appropriately managed via mitigations like static analysis
and manual code review.

V. Conclusion
The DoD did away with the “Ada mandate” in part because they realized the importance of making technically

sound decisions with respect to language selection. To wit, the programming language selection process for mission
critical systems must be aware of the security risks introduced by a given language choice, as well as the mitigations
necessary to sufficiently manage those risks. In the paper, we have proposed a simple language assessment strategy
based on ISO/IEC 24772, a standard identifying common programming language vulnerabilities. We don’t claim that
this specific evaluation strategy is ready for application to real systems, but hope that it serves to motivate structured
decision-making processes for programming languages. We considered how such a process would have benefited a real
flight software system inspected by the SEI, due to the presence of runtime check suppressions that potentially allowed
buffer overflows. Considerable work remains to develop processes in this domain, for example accurately modeling the
degree to which different mitigations (static analysis, dynamic analysis, code review) manage specific security risks.
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