
[DISTRIBUTION STATEMENT Please copy and paste the appropriate distribution statement into
this space.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Managing Technical Debt in
Agile Environments

Robert Nord
In collaboration with Stephany Bellomo, Ipek Ozkaya
Software Solutions Division
August 2018

2Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM18-0922

3Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Abstract

Technical debt can be defined as a design or construction approach that is expedient in
the short term but that creates a technical context in which the same work will cost more
to do later than it would cost to do now. If managed well, some debt can accelerate design
exploration. Left unrecognized and unmanaged, accumulated technical debt results in
increased development and sustainment costs.
To meet the challenge of uncovering, communicating, and managing technical debt, the
Software Engineering Institute has developed a systematic approach. It includes
techniques for making technical debt visible, determining what type of debt the project
has, and integrating debt into project planning.

4Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

A Technical Debt Story

sprint

product
backlog

cost

value

Features Architectural
features

Defects Technical
Debt

Key

5Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Your technical debt toolbox
• Become aware
• Assess the information
• Build a registry
• Decide what to fix
• Take action

Managing Technical Debt

6Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Become aware

7Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Toolbox: Become Aware

Ensure all the people involved have a common understanding of what technical is and
how it affects any project.

• Provide a clear, simple definition of technical debt in the context of your project.
• Educate the team, people in the project environment, external contractors.
• Create a technical debt category in your issue tracking system.

8Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What is Technical Debt?

Technical debt* is a collection of design or implementation
choices that are expedient in the short term, but that can
make future changes more costly or impossible.

Technical debt represents current and future liability whose
impact is both on the quality of the system as well as overall
project resources.

* Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System.
OOPSLA '92 Experience Report. http://c2.com/doc/oopsla92.html.

9Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Is this an actionable description of technical debt?

A training system, meeting the customers high-level requirements
but not meeting the expected functionality of the end users of the
system.

• Cause - poor requirements gathering
• Staff shortage, lack of software engineering experience,

customer reps lack of understanding and outdated methods of
getting from requirements to a design (text documents,
no UML or similar model)

• Impact has been a huge re-design, many areas of functionality
being altered in the way they work

10Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

An Actionable Description

One of two modules was upgraded.
• Unfortunately, the second module required months of unplanned work,

due to close-coupling between the modules
• Developers disregarded the scoping rules, due to schedule / budget,

which led to module coupling
• Impact: 12 KSLOC unplanned work

Technical debt is a software design issue that:
Exists in an executable system artifact, such as code, data model,

build scripts, automated test suites;
Is traced to several locations in the system, implying issues are not

isolated but propagate throughout the system artifacts;
Has a quantifiable and increasing effect on system attributes

(e.g., increasing defects, negative change in code quality).

11Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Common Consequences of Technical Debt

• Teams spend almost all of their time fixing defects, and new capability
development is continuously slipping.

• Integration of products built by different teams reveals that
incompatibilities cause many failure conditions and lead to significant
out-of-cycle rework.

• Progress toward milestones is unsatisfactory because unexpected
rework causes cost overruns and project-completion delays.

• Recurring user complaints about features that appear to be fixed.
• Out-dated technology and platforms require lengthy convoluted

solutions and added complexity in maintaining or extending the
systems.

12Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Principle: All systems have technical debt

13Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Assess the information

14Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Toolbox: Assess the Information

Understand the state of the project, what debt you are facing, what causes it, and what
are the consequences.

• Understand the business context to guide the use of analysis tools
• Create coding, architecture, and production infrastructure standards
• Organize small brainstorming sessions around the question:

what design decision did we make that it is costing us so much?

15Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Take Advantage of Tool Support

Tools can help assess aspects of software
complexity and structural quality.

This is only a starting point!

Information from these tools needs to be
coupled with an understanding of:
• Number of defects and their locations
• Areas where systems change a lot
• Areas developers avoid
• Architecture decisions
• Risk liability
• ….

16Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software Architecture and Design Trade-offs Matter

Results from over 1800 developers
from two large industry and one
government software development
organization.
“Measure it? Manage it? Ignore it? Software Practitioners and Technical Debt” N.
Ernst, S. Bellomo, I. Ozkaya, R. Nord, I. Gorton, Int. Symp on Foundations of
Software Engineering 2015.

17Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Principle: Architecture debt has the highest cost of ownership

18Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Build a registry

19Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Toolbox: Build a Registry

Build some form of inventory of technical debt.
• Refine the technical debt category into a technical debt description
• Prioritize technical debt as part of your backlog
• Record decisions to intentionally incur debt

20Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Record technical debt similar to user stories,
defects, vulnerabilities, and the like.
Start with a simple issue type labeled technical
debt. This practice pretty quickly helps recognize
specific aspects of your technical debt.
Scout for project management and technical review
practices that can be revised to include discussing
and recording technical debt, augmenting technical
debt issues with its consequences if not resolved.

Incorporate Tracking into Existing Practices

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, Mary Popeck: Got technical debt?: surfacing elusive
technical debt in issue trackers. MSR 2016: 327-338

21Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Name Connect #Gateway-1631:
Remove empty Java packages

Summary The re-architecture of the source code to support
multiple adaptor specifications has introduced a
new Java packaging scheme. Numerous empty
Java package folders across multiple projects.

Consequences No impact to functionality; however, may lead to
confusion for users implementing enhancements
or modifications to the source code.

Remediation
approach

New and existing classes have been moved into
these new package folders; however, the
previous package folders have been left in place
with no class files.

Reporter /
assignee

Gateway developers

.

Describe Technical Debt Items

Next sprint
stories

New story

Break-down epic

Delete obsolete items

Epic (tbd in the future)

To
p

pr
io

rit
y

ite
m

s
=

fin
er

 g
ra

nu
la

rit
y

TD item

22Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Principle: Technical debt must trace to the system

23Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Decide what to fix

24Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Toolbox: Decide What to Fix

Look over the registry as you plan the release for items you will actually tackle and reduce
your technical debt.

• Estimate the cost to pay and the cost not to pay
• Budget for incremental debt reduction with most code-level refactoring
• Plan for more significant system-wide refactoring that spreads across iterations with

major structural debt reduction

25Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Understand the Cost of Accepting Technical Debt

For each instance of technical debt
• Understand range of consequences
• Measure what you can
• Qualitatively assess what you can’t
• Reconcile data with assessments

Make informed trade-off decisions about
remediation.

Expected CoC

Actual CoC

Time

Co
st

 o
f C

ha
ng

e
(C

oC
)

Accumulating
technical debt

26Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Do nothing
• There is benefit in carrying the debt and deferring payment
• The cost of reducing the debt far exceeds the benefit
• Business decides to abandon the system to optimize value

Repay
• Break the build; stop the release train
• Focused refactoring release
• Replace when the cost of reducing the debt far exceeds the benefit

Commit to invest
• Incremental refactoring over multiple releases
• Balance new feature development with refactoring effort to continue to generate value
• Differentiate strategic technical debt from debt that emerges from low code quality

Develop a Payback Strategy Balancing Value for Cost

27Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Include Technical Debt Management in Release Planning

Poort, E. Selling the Business Case for Architectural Debt Reduction, Ninth
International Workshop on Managing Technical Debt – XP 2017

28Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Principle: Technical debt is not synonymous with bad quality

29Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Take action

30Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Toolbox: Take Action

Include technical debt identification and management in all software development and
business governance practices.

• Aim to reduce debt at each development cycle
• Factor technical debt into business decisions about the opportunity cost of delaying

features and reducing risk liability
• Gather key measures of effort or cost to assist in future decision making

31Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Recognize the Technical Debt Timeline

Debt is incurred
intentionally or not

Debt is recognized,
but not fixed

A plan is made to
re-architect

Debt is
paid off

Management practices, technical contexts, and business contexts all affect the timeline
• Who is responsible at each point
• Amount of time that passes between points
• Available options

“[Contractor] developed our software tool and delivered the code to the government for
maintenance. The code was poorly designed and documented therefore there was a very
long learning curve to make quality changes. We continue to band aide over 1 million lines of
code under the maintenance contract. As time goes by, the tool becomes more bloated and
harder to repair.”

32Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Include language on how technical debt will be managed in contracts
• Percentage of resources to be withheld until high priority technical debt is resolved
• Data to be shared throughout the development life cycle
• Ongoing analysis to be conducted and its results shared
• Incentives to share technical debt the contractor takes on

Include technical debt discussions as part of assessments;
request use of appropriate software quality tools and architecture reviews.

Continuously assess where you are on the technical debt timeline
• Request evidence from contractors
• Helpful data includes commit histories, defect logs, testing results, architecture

conformance measures, and software quality analyses

Manage Technical Debt within Acquisition Lifecycle

33Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Return on
Investment

Business
Goals

What criteria
is used among

options?
How is it

measured?
What design
options are

there?

Value/cost
Design attributes

of each option

Technical Debt Management as a Catalyzer

Project Management BusinessProduct Development

Getting started
• Get smarter about technical debt
• Assess technical debt on a project
• Establish metrics for tracking
• Plan for resolving selected technical debt
• Establish or revise practices that fit with

your software development life cycle

34Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Robert Nord
Architecture Practices Initiative
Email: rn@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/architecture
www.sei.cmu.edu/research-capabilities/all-
work/display.cfm?customel_datapageid_4050=6520
www.techdebtconf.org

Customer Relations
Email: info@sei.cmu.edu
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

35Managing Technical Debt in Agile Environments
© 2018 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Further Reading

Avgeriou, P., Kruchten, P., Nord, R.L., Ozkaya, I., and Seaman, C.B. "Reducing Friction in Software Development." IEEE Software 33,
1 (Jan./Feb. 2016): 66-73.

Bachmann, F., Nord, R.L., Ozkaya, I. 2012. Architectural Tactics to Support Rapid and Agile Stability. CrossTalk: The Journal of
Defense Software Engineering, Special Issue on Rapid and Agile Stability, May/June 2012.

Bellomo, S., Kruchten, P., Nord, R.L., Ozkaya, I. How to Agilely Architect an Agile Architecture. Cutter IT Journal, 27(2), February
2014.

Brown, N., Kruchten, P., Lim, E., Nord, R., Ozkaya, I. June 2017. Hard Choices Game Explained. Downloadable from
http://www.sei.cmu.edu/architecture/tools/hardchoices/

Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., and Gorton, I. "Measure It? Manage It? Ignore It? Software Practitioners and Technical
Debt." Conference on the Foundations of Software Engineering, Aug. 30-Sep. 4, 2015, ACM.

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec
2012.

Kruchten, P., Nord, R.L., Ozkaya, I., Falessi, D. Technical Debt: Towards a Crisper Definition. Report on the 4th International
Workshop on Managing Technical Debt, ACM Sigsoft Software Engineering Notes, Sept 2013.

Ozkaya, I., Gagliardi. M., and Nord, R.L. 2013. Architecting for Large Scale Agile Software Development: A Risk-Driven Approach,
Crosstalk 26, 3 (May/June 2013): 17-22.

	Managing Technical Debt in Agile Environments
	Document Markings
	Abstract
	A Technical Debt Story
	Managing Technical Debt
	Slide Number 6
	Toolbox: Become Aware
	What is Technical Debt?
	Is this an actionable description of technical debt?
	An Actionable Description
	Common Consequences of Technical Debt
	Principle: All systems have technical debt
	Slide Number 13
	Toolbox: Assess the Information
	Take Advantage of Tool Support
	Software Architecture and Design Trade-offs Matter
	Principle: Architecture debt has the highest cost of ownership
	Slide Number 18
	Toolbox: Build a Registry
	Incorporate Tracking into Existing Practices�
	Describe Technical Debt Items
	Principle: Technical debt must trace to the system
	Slide Number 23
	Toolbox: Decide What to Fix
	Understand the Cost of Accepting Technical Debt
	Develop a Payback Strategy Balancing Value for Cost
	Include Technical Debt Management in Release Planning
	Principle: Technical debt is not synonymous with bad quality
	Slide Number 29
	Toolbox: Take Action
	Recognize the Technical Debt Timeline
	Manage Technical Debt within Acquisition Lifecycle�
	Technical Debt Management as a Catalyzer
	Contact Information
	Further Reading

