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Classification algorithm development using “pre-
audited” and manually-audited data, that

accurately classifies most of the 
diagnostics as: 

Expected True Positive (e-TP) or 
Expected False Positive (e-FP), 

and 
the rest as Indeterminate (I) 

Problem: too many alerts
Solution: automate handling
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Background: Automatic Alert Classification
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One collaborator reported using the determination True to indicate 
that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was 
wrong with the diagnosed code, even if the specific issue reported 
by the alert was a false positive!

What is truth?
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Background: Automatic Alert Classification
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Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our 
collaborators

• Includes a standard set of well-defined determinations for static 
analysis alerts

• Includes a set of auditing rules to help auditors make 
consistent decisions in commonly-encountered situations

Different auditors should make the same 
determination for a given alert

Improve the quality and consistency of audit data for 
the purpose of building machine learning classifiers

Help organizations make better-informed decisions 
about bug-fixes, development, and future audits.
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Lexicon: Audit Determinations
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Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make 
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback
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Machine Learning with Static Analysis Audit Archives

Combined use of:  
1) multiple analyzers, 2) variety of features, 
3) competing classification techniques

Problem: too many alerts
Solution: automate handling
Competing Classifiers to Test
Lasso Logistic Regression
CART (Classification and Regression 
Trees)
Random Forest
Extreme Gradient Boosting (XGBoost)

Some of the features used (many more)
Analysis tools used
Significant LOC
Complexity
Coupling
Cohesion
SEI coding rule
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Data Used for Classifiers

Data used to create and validate classifiers: 
• CERT-audited alerts: 

- ~7,500 audited alerts 
• 3 collaborators audit their own 

codebases with our auditing research 
prototype tool “enhanced SCALe”

We pooled data (CERT + collaborators) and 
segmented it: 

• Segment 1 (70% of data): train model
• Segment 2 (30% of data): testing

Added classifier variations on dataset:
• Per-rule
• Per-language
• With/without tools
• Others
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CERT- Audited Archives Characterization

• 58 CERT coding rules with 20 or more audited 
(labeled) alerts

• 25 rules all (or nearly all) determined one way (True 
or False)

• Other 324 CERT rules have little or no labeled data
• Labeled data for 158 of 382 CERT rules
• 2,487 True and 4,980 False
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Archive sanitizer: enabled collaborator data use

Added data sanitizer to “enhanced SCALe”
• Anonymizes sensitive fields
• SHA-256 hash with salt
• Enables analysis of features correlated with alert confidence

Audit archive for project is in a database
• DB fields may contain sensitive information
• Sanitizing script anonymizes or discards fields

- Diagnostic message
- Path, including directories and filename
- Function name
- Class name
- Namespace/package
- Project filename
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Classifier Result Highlights: Data All Sources
Also, 15 one-way “classifiers”.

General results (not true for every test)
• Classifier accuracy rankings for all-pooled test data:

XGBoost ≈ RF > CART ≈ LR
• Classifier accuracy rankings for collaborator test data:

LR ≈ RF > XGBoost > CART
• Per-rule classifiers generally not useful (lack data), but 3 

rules (INT31-C best) are exceptions.
• With-tools-as-feature classifiers better than without.
• Accuracy of single language vs. all-languages data: 

C > all-combined > Java

All-rules (158) classifier accuracy:
- Lasso Logistic Regression: 

88%
- Random Forest: 91%
- CART: 89%
- XGBoost: 91%

Classifiers made from all data, pooled:

* Small quantity of data, results suspect

Single-rule classifier accuracy:
Rule ID Lasso LR Random Forest CART XGBoost
INT31-C 98% 97% 98% 97%
EXP01-J 74% 74% 81% 74%
OBJ03-J 73% 86% 86% 83%
FIO04-J* 80% 80% 90% 80%
EXP33-C* 83% 87% 83% 83%
EXP34-C* 67% 72% 79% 72%
DCL36-C* 100% 100% 100% 100%
ERR08-J* 99% 100% 100% 100%
IDS00-J* 96% 96% 96% 96%
ERR01-J* 100% 100% 100% 100%
ERR09-J* 100% 88% 88% 88%
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Tool as Feature Helped

Using toolname as a 
feature improved 
classifier performance

Dots show performance 
of tool alone
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Rapid Expansion of Alert 
Classification

Problem 2
Too few manually audited alerts 
to make classifiers (i.e., to 
automate!)
Problems 1 & 2: Security-related 
code flaws detected by static analysis 
require too much manual effort to 
triage, plus it takes too long to audit 
enough alerts to develop classifiers to 
automate the triage accurately for 
many types of flaws. 

Extension of our previous alert 
classification work to address challenges:
1. Too few audited alerts for accurate 

classifiers for many flaw types
2. Manually auditing alerts is expensive

Solution 2
Automate auditing alerts, using 
test suites

Solution for 1 & 2: Rapid expansion 
of number of conditions with labeled 
alerts by using test suites, plus 
collaborator audits of DoD code.

Approach
1. Automated analysis of test suite 
programs to label data for many 
conditions for classifiers

2. Collaboration with MITRE: 
Systematically map CERT rules to 
CWE IDs

3. Test classifiers on alerts from real-
world code: DoD data  

Problem 1: too many alerts
Solution 1: automate handling
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Create alert classifiers trained on many conditions, then use DoD-audited data to validate 
the classifiers.

Technical methods:
- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts. 

o Juliet (NSA CAS) 61,387 C/C++ tests
o IARPA’s STONESOUP: 4,582 C tests
o Refine test sets for rules: use mappings, metadata, static analyses 

- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator SCALe audits of their own codebases, to validate classifiers. Real codebases 

with more complex structure than most pre-audited code. 

Overview: Method, Approach, Validity
Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types 
Solution 2: automate auditing alerts, using test suites
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Precise mappings: Defines what kind of non-null relationship, and if overlapping, how. 
Enhanced-precision added to “imprecise” mappings. 

If a condition of a program violates a CERT rule R and also 
exhibits a CWE weakness W, that condition is in the overlap. 

Mappings
Precise 248
Imprecise TODO 364
Total 612

Imprecise mappings
(“some relationship”)

Precise mappings
(set notation, often more)

Now: all CERT C rules 
mappings to CWE precise

Make Mappings Precise
Problem 3: Test suites in different taxonomies (most use CWEs)
Solution 3: Precisely map between taxonomies, then partition tests using  precise mappings

2 CWEs subset of CERT rule, 
AND partial overlap

CWE YCWE Z

CWE N

CERT 
Rule c

Problem 2: too few manually audited alerts to make classifiers
Solution 2: automate auditing alerts, using test suites
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Test Suite Cross-Taxonomy Use

Some types of CERT rule violations not tested, in 
partitioned test suites (“0”s).
- Possible coverage in other suites

CWE test programs useful to test CERT rules
STONESOUP: 2,608 tests  
Juliet: 80,158 tests

Partition sets of thousands of tests relatively quickly. 
Examine together:
- Precise mapping
- Test suite metadata (structured filenames)
- Rarely examine small bit of code (variable type)  

CERT rule CWE Count files that match
ARR38-C CWE-119 0
ARR38-C CWE-121 6,258
ARR38-C CWE-122 2,624
ARR38-C CWE-123 0
ARR38-C CWE-125 0
ARR38-C CWE-805 2,624
INT30-C CWE-190 1,548
INT30-C CWE-191 1,548
INT30-C CWE-680 984
INT32-C CWE-119 0
INT32-C CWE-125 0
INT32-C CWE-129 0
INT32-C CWE-131 0
INT32-C CWE-190 3,875
INT32-C CWE-191 3,875
INT32-C CWE-20 0
INT32-C CWE-606 0
INT32-C CWE-680 984

Problem 3: Test suites in different taxonomies 
(most use CWEs)
Solution 3: Precisely map between taxonomies, 
then partition tests with precise mappings
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Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers
• Directly for CWEs 
• Using partitioned test suite data for CERT rules

Test classifiers

Process

Problem 1: too many alerts
Solution 1: automate handling
Problem 2: too few manually audited alerts to 
make classifiers accurate for some flaws
Solution 2: automate auditing alerts, using 
test suites
Problem 3: Test suites in different 
taxonomies (most use CWEs)
Solution 3: Precisely map between 
taxonomies, then partition tests using  precise 
mappings
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- We automated defect identification of Juliet flaws with location 2 ways

- Used 8 static analysis tools on Juliet programs
- Automated alert-to-defect matching
- Automated alert-to-alert matching (alerts fused: same line & CWE)

- These are initial metrics (more EC as use more tools, STONESOUP)

Analysis of Juliet Test Suite: Initial CWE Results

Number of “Bad” Functions 103,376
Number of “Good” Functions 231,476

- A Juliet program tells about only one type of CWE
- Exact line defect metadata, for TPs
- Function line spans, for FPs

Lots of new 
data for creating 
classifiers

Alert Type Equivalence Classes: 
(EC counts a fused alert once)

TRUE 13,330
FALSE 24,523
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- Big savings: manual audit of 37,853 alerts from non-test-suite programs would take: 
oUnrealistic minimum: 1,230 hours (117 seconds per alert audit, Pugh and Ayewah)
oFirst 37,853 alert audits wouldn’t cover many conditions (and sub-conditions) in the 

Juliet test suite! 
oNeed true and false labels for classifiers
oMuch time and computation to run static analysis tools on many non-test-suite programs
oRealistically: enormous amount of manual auditing time, to develop that much data.

- These are initial metrics (we will have more data as we use more tools and test suites)

Analysis of Juliet Test Suite: Initial CWE Results
Lots of new 
data for creating 
classifiers

Alert Type Equivalence Classes: 
(EC counts a fused alert once)

TRUE 13,330
FALSE 24,523
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Juliet Test Suite Classifiers: Initial Results (Hold-out Data)

Classifier Accuracy Precision Recall AUROC

rf 0.938 0.893 0.875 0.991

lightgbm 0.942 0.902 0.882 0.992

xgboost 0.932 0.941 0.798 0.987

lasso 0.925 0.886 0.831 0.985



29Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 
distribution.

Summary and Future

• Goal: increase automation of static alert auditing, using machine learning
• Developed large archive of labeled alerts

- For CWEs and CERT rules
• Developed code infrastructure (extensible) 
• Developed general method to use test suites across taxonomies
• In-progress:

- Classifier development and testing in process
- Major focus: Cross-project and adaptive heuristics
- Continue to gather data
- Modified SCALe audit tool for new collaborator testing 

Publications:
• IEEE SecDev 2017 “Hands-on Tutorial: 

Alert Auditing with Lexicon & Rules” 
• Research papers (SQUADE’18), others in 

progress 
• New mappings (CWE/CERT rule): 

CERT Secure Coding C Standard wiki
• SEI blogposts on classifier development
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CERT: Applied Machine Learning in Cybersecurity
Automating Static Analysis Alert Handling
Neural Nets for finding coding bugs
Automated malware family classification
Cyberattack forecasting
Security Operations Center optimization
Protection against AI poisoning
Relation of kinetic and cyber actions
Technical debt estimation
Cognitive support for assurance using Watson
Email sentiment analysis
IoT-based search-and-rescue
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