
Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Automating Static Analysis Alert
Handling with Machine Learning

Lori Flynn, PhD
Software Security Researcher
Software Engineering Institute of Carnegie Mellon University

2Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material was prepared for the exclusive use of Cyber Security Workshop (CNW18) and may not be used for any other purpose without
the written consent of permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0727

3Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

s
cs

Overview

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

66 effort days

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-laptop “Woman And Laptop”

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

Classification algorithm development using “pre-
audited” and manually-audited data, that

accurately classifies most of the
diagnostics as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Problem: too many alerts
Solution: automate handling

4Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Select
candidate code
bases for
evaluation

5Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Run SA Tool(s)
collecting code alerts
and metrics (e.g.
complexity)

6Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Convert alerts to
common format and
map to CERT Secure
Coding Rules/CWEs

7Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Humans evaluate the
violations, e.g.
marking them as
TRUE or FALSE

8Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Use the training data to
build machine learning
classifiers that predict
TRUE and FALSE
determinations for new
alerts

9Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

What do TRUE/FALSE
mean? Are there
other determinations
I can use?

10Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

One collaborator reported using the determination True to indicate
that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was
wrong with the diagnosed code, even if the specific issue reported
by the alert was a false positive!

What is truth?

11Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development!

12Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our
collaborators

• Includes a standard set of well-defined determinations for static
analysis alerts

• Includes a set of auditing rules to help auditors make
consistent decisions in commonly-encountered situations

Different auditors should make the same
determination for a given alert

Improve the quality and consistency of audit data for
the purpose of building machine learning classifiers

Help organizations make better-informed decisions
about bug-fixes, development, and future audits.

13Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Lexicon: Audit Determinations

Supplemental Determinations

Audit
Determinations

Choose ONE per alert! Choose ANY NUMBER per alert!

Dangerous
construct

Ignore

Inapplicable
environment

Dead

Basic Determinations

Unknown (default)

True False

Complex Dependent

14Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Audit Rules

Goals
• Clarify ambiguous or complex auditing scenarios
• Establish assumptions auditors can make
• Overall: help make audit determinations more consistent

We developed 12 rules
• Drew on our own experiences auditing code bases at CERT
• Trained 3 groups of engineers on the rules, and incorporated their feedback

15Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Machine Learning with Static Analysis Audit Archives

Combined use of:
1) multiple analyzers, 2) variety of features,
3) competing classification techniques

Problem: too many alerts
Solution: automate handling
Competing Classifiers to Test
Lasso Logistic Regression
CART (Classification and Regression
Trees)
Random Forest
Extreme Gradient Boosting (XGBoost)

Some of the features used (many more)
Analysis tools used
Significant LOC
Complexity
Coupling
Cohesion
SEI coding rule

16Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Data Used for Classifiers

Data used to create and validate classifiers:
• CERT-audited alerts:

- ~7,500 audited alerts
• 3 collaborators audit their own

codebases with our auditing research
prototype tool “enhanced SCALe”

We pooled data (CERT + collaborators) and
segmented it:

• Segment 1 (70% of data): train model
• Segment 2 (30% of data): testing

Added classifier variations on dataset:
• Per-rule
• Per-language
• With/without tools
• Others

17Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

CERT- Audited Archives Characterization

• 58 CERT coding rules with 20 or more audited
(labeled) alerts

• 25 rules all (or nearly all) determined one way (True
or False)

• Other 324 CERT rules have little or no labeled data
• Labeled data for 158 of 382 CERT rules
• 2,487 True and 4,980 False

18Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Archive sanitizer: enabled collaborator data use

Added data sanitizer to “enhanced SCALe”
• Anonymizes sensitive fields
• SHA-256 hash with salt
• Enables analysis of features correlated with alert confidence

Audit archive for project is in a database
• DB fields may contain sensitive information
• Sanitizing script anonymizes or discards fields

- Diagnostic message
- Path, including directories and filename
- Function name
- Class name
- Namespace/package
- Project filename

19Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Classifier Result Highlights: Data All Sources
Also, 15 one-way “classifiers”.

General results (not true for every test)
• Classifier accuracy rankings for all-pooled test data:

XGBoost ≈ RF > CART ≈ LR
• Classifier accuracy rankings for collaborator test data:

LR ≈ RF > XGBoost > CART
• Per-rule classifiers generally not useful (lack data), but 3

rules (INT31-C best) are exceptions.
• With-tools-as-feature classifiers better than without.
• Accuracy of single language vs. all-languages data:

C > all-combined > Java

All-rules (158) classifier accuracy:
- Lasso Logistic Regression:

88%
- Random Forest: 91%
- CART: 89%
- XGBoost: 91%

Classifiers made from all data, pooled:

* Small quantity of data, results suspect

Single-rule classifier accuracy:
Rule ID Lasso LR Random Forest CART XGBoost
INT31-C 98% 97% 98% 97%
EXP01-J 74% 74% 81% 74%
OBJ03-J 73% 86% 86% 83%
FIO04-J* 80% 80% 90% 80%
EXP33-C* 83% 87% 83% 83%
EXP34-C* 67% 72% 79% 72%
DCL36-C* 100% 100% 100% 100%
ERR08-J* 99% 100% 100% 100%
IDS00-J* 96% 96% 96% 96%
ERR01-J* 100% 100% 100% 100%
ERR09-J* 100% 88% 88% 88%

20Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Tool as Feature Helped

Using toolname as a
feature improved
classifier performance

Dots show performance
of tool alone

21Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Rapid Expansion of Alert
Classification

Problem 2
Too few manually audited alerts
to make classifiers (i.e., to
automate!)
Problems 1 & 2: Security-related
code flaws detected by static analysis
require too much manual effort to
triage, plus it takes too long to audit
enough alerts to develop classifiers to
automate the triage accurately for
many types of flaws.

Extension of our previous alert
classification work to address challenges:
1. Too few audited alerts for accurate

classifiers for many flaw types
2. Manually auditing alerts is expensive

Solution 2
Automate auditing alerts, using
test suites

Solution for 1 & 2: Rapid expansion
of number of conditions with labeled
alerts by using test suites, plus
collaborator audits of DoD code.

Approach
1. Automated analysis of test suite
programs to label data for many
conditions for classifiers

2. Collaboration with MITRE:
Systematically map CERT rules to
CWE IDs

3. Test classifiers on alerts from real-
world code: DoD data

Problem 1: too many alerts
Solution 1: automate handling

22Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Create alert classifiers trained on many conditions, then use DoD-audited data to validate
the classifiers.

Technical methods:
- Use test suites’ CWE flaw metadata, to quickly and automatically generate many “audited” alerts.

o Juliet (NSA CAS) 61,387 C/C++ tests
o IARPA’s STONESOUP: 4,582 C tests
o Refine test sets for rules: use mappings, metadata, static analyses

- Metrics analyses of test suite code, to get feature data
- Use DoD-collaborator SCALe audits of their own codebases, to validate classifiers. Real codebases

with more complex structure than most pre-audited code.

Overview: Method, Approach, Validity
Problem 2: too few manually audited alerts to make accurate classifiers for many flaw types
Solution 2: automate auditing alerts, using test suites

23Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Precise mappings: Defines what kind of non-null relationship, and if overlapping, how.
Enhanced-precision added to “imprecise” mappings.

If a condition of a program violates a CERT rule R and also
exhibits a CWE weakness W, that condition is in the overlap.

Mappings
Precise 248
Imprecise TODO 364
Total 612

Imprecise mappings
(“some relationship”)

Precise mappings
(set notation, often more)

Now: all CERT C rules
mappings to CWE precise

Make Mappings Precise
Problem 3: Test suites in different taxonomies (most use CWEs)
Solution 3: Precisely map between taxonomies, then partition tests using precise mappings

2 CWEs subset of CERT rule,
AND partial overlap

CWE YCWE Z

CWE N

CERT
Rule c

Problem 2: too few manually audited alerts to make classifiers
Solution 2: automate auditing alerts, using test suites

24Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Test Suite Cross-Taxonomy Use

Some types of CERT rule violations not tested, in
partitioned test suites (“0”s).
- Possible coverage in other suites

CWE test programs useful to test CERT rules
STONESOUP: 2,608 tests
Juliet: 80,158 tests

Partition sets of thousands of tests relatively quickly.
Examine together:
- Precise mapping
- Test suite metadata (structured filenames)
- Rarely examine small bit of code (variable type)

CERT rule CWE Count files that match
ARR38-C CWE-119 0
ARR38-C CWE-121 6,258
ARR38-C CWE-122 2,624
ARR38-C CWE-123 0
ARR38-C CWE-125 0
ARR38-C CWE-805 2,624
INT30-C CWE-190 1,548
INT30-C CWE-191 1,548
INT30-C CWE-680 984
INT32-C CWE-119 0
INT32-C CWE-125 0
INT32-C CWE-129 0
INT32-C CWE-131 0
INT32-C CWE-190 3,875
INT32-C CWE-191 3,875
INT32-C CWE-20 0
INT32-C CWE-606 0
INT32-C CWE-680 984

Problem 3: Test suites in different taxonomies
(most use CWEs)
Solution 3: Precisely map between taxonomies,
then partition tests with precise mappings

25Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Generate data for Juliet

Generate data for STONESOUP

Write classifier development and testing scripts

Build classifiers
• Directly for CWEs
• Using partitioned test suite data for CERT rules

Test classifiers

Process

Problem 1: too many alerts
Solution 1: automate handling
Problem 2: too few manually audited alerts to
make classifiers accurate for some flaws
Solution 2: automate auditing alerts, using
test suites
Problem 3: Test suites in different
taxonomies (most use CWEs)
Solution 3: Precisely map between
taxonomies, then partition tests using precise
mappings

26Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

- We automated defect identification of Juliet flaws with location 2 ways

- Used 8 static analysis tools on Juliet programs
- Automated alert-to-defect matching
- Automated alert-to-alert matching (alerts fused: same line & CWE)

- These are initial metrics (more EC as use more tools, STONESOUP)

Analysis of Juliet Test Suite: Initial CWE Results

Number of “Bad” Functions 103,376
Number of “Good” Functions 231,476

- A Juliet program tells about only one type of CWE
- Exact line defect metadata, for TPs
- Function line spans, for FPs

Lots of new
data for creating
classifiers

Alert Type Equivalence Classes:
(EC counts a fused alert once)

TRUE 13,330
FALSE 24,523

27Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

- Big savings: manual audit of 37,853 alerts from non-test-suite programs would take:
oUnrealistic minimum: 1,230 hours (117 seconds per alert audit, Pugh and Ayewah)
oFirst 37,853 alert audits wouldn’t cover many conditions (and sub-conditions) in the

Juliet test suite!
oNeed true and false labels for classifiers
oMuch time and computation to run static analysis tools on many non-test-suite programs
oRealistically: enormous amount of manual auditing time, to develop that much data.

- These are initial metrics (we will have more data as we use more tools and test suites)

Analysis of Juliet Test Suite: Initial CWE Results
Lots of new
data for creating
classifiers

Alert Type Equivalence Classes:
(EC counts a fused alert once)

TRUE 13,330
FALSE 24,523

28Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Juliet Test Suite Classifiers: Initial Results (Hold-out Data)

Classifier Accuracy Precision Recall AUROC

rf 0.938 0.893 0.875 0.991

lightgbm 0.942 0.902 0.882 0.992

xgboost 0.932 0.941 0.798 0.987

lasso 0.925 0.886 0.831 0.985

29Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Summary and Future

• Goal: increase automation of static alert auditing, using machine learning
• Developed large archive of labeled alerts

- For CWEs and CERT rules
• Developed code infrastructure (extensible)
• Developed general method to use test suites across taxonomies
• In-progress:

- Classifier development and testing in process
- Major focus: Cross-project and adaptive heuristics
- Continue to gather data
- Modified SCALe audit tool for new collaborator testing

Publications:
• IEEE SecDev 2017 “Hands-on Tutorial:

Alert Auditing with Lexicon & Rules”
• Research papers (SQUADE’18), others in

progress
• New mappings (CWE/CERT rule):

CERT Secure Coding C Standard wiki
• SEI blogposts on classifier development

30Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

CERT: Applied Machine Learning in Cybersecurity
Automating Static Analysis Alert Handling
Neural Nets for finding coding bugs
Automated malware family classification
Cyberattack forecasting
Security Operations Center optimization
Protection against AI poisoning
Relation of kinetic and cyber actions
Technical debt estimation
Cognitive support for assurance using Watson
Email sentiment analysis
IoT-based search-and-rescue

31Automating Static Analysis Alert Handling with Machine Learning
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Presenter / Point(s) of Contact
Lori Flynn (Principal Investigator)
Software Security Researcher

Email: lflynn@cert.org

Telephone: +1 412.268.7886

Additional Contributors
SEI Staff
William Snavely Zach Kurtz
Ebonie McNeil
David Svoboda

SEI Student Interns
Lucas Bengtson (CMU)
Charisse Haruta (CMU)
Baptiste Vauthey (CMU)
Michael Spece (Pitt)
Christine Baek (CMU)

	Automating Static Analysis Alert Handling with Machine Learning
	Slide Number 2
	Overview
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	Background: Automatic Alert Classification
	What is truth?
	Background: Automatic Alert Classification
	Solution: Lexicon And Rules
	Lexicon: Audit Determinations
	Audit Rules
	Machine Learning with Static Analysis Audit Archives
	Data Used for Classifiers
	CERT- Audited Archives Characterization
	Archive sanitizer: enabled collaborator data use
	Classifier Result Highlights: Data All Sources
	Tool as Feature Helped
	Rapid Expansion of Alert �Classification
	Overview: Method, Approach, Validity	 	
	Slide Number 23
	Test Suite Cross-Taxonomy Use
	Process�
	Analysis of Juliet Test Suite: Initial CWE Results
	Analysis of Juliet Test Suite: Initial CWE Results
	Juliet Test Suite Classifiers: Initial Results (Hold-out Data)
	Summary and Future
	CERT: Applied Machine Learning in Cybersecurity
	Contact Information

