
[Distribution Statement A] Approved for public release and

unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Architecture of Cloud-based

Systems

2Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their
own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or
used in any other manner without requesting formal permission from the Software Engineering Institute at
permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S.
Government purposes, the SEI recommends attendance to ensure proper understanding.

DM18-0033

3Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Objectives for This Course

Explain how cloud computing is different from traditional data

center deployment

Identify how the controllability and observability of cloud-based

systems impacts test and evaluation approaches

Explain how cloud computing promotes and inhibits system quality

attributes (including cybersecurity), and how this impacts test and

evaluation approaches

Identify potential areas of risk in cloud-based systems

4Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Instructor Introductions

John Klein

Senior Member of the Technical Staff, CMU SEI

jklein@sei.cmu.edu

https://www.sei.cmu.edu/about/people/profile.cfm?id=klein_14435

Tim Morrow

Security Solutions Engineer, CMU SEI

tbm@cert.org

https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow_16360

https://www.sei.cmu.edu/about/people/profile.cfm?id=klein_14435
https://www.sei.cmu.edu/about/people/profile.cfm?id=morrow_16360

5Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Agenda – Day 1

Definitions and fundamental concepts
• essential characteristics of cloud computing,

cloud delivery service models, deployment
approaches (private, community, hybrid),
government-specific cloud offerings

Enabling technologies
• virtualization, containerization, infrastructure

as code
Cloud native services

• out-of-the-box services from cloud providers
for storage and databases, application
integration, monitoring, scaling and load
balancing, identity and access management,
analytics

6Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Agenda – Day 2

Introduction to cybersecurity vulnerabilities in
cloud-based systems
Introduction to leading practices for
cybersecurity for cloud-based systems
Quality attributes in the cloud

• how cloud computing promotes or inhibits
qualities such as availability, performance,
scalability, testability, modifiability/ extensibility,
and cybersecurity

Distributed systems concepts
• communication/coordination limits in distributed

systems, consistency/availability/partition
tolerance tradeoffs for distributed state/data,
time synchronization

Using the cloud to support test and evaluation
• how to leverage the elasticity and scalability of

the cloud to test and evaluate systems

7Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Perspective and Course Scope

The reality is that US government is a small portion of the global cloud
market

• And DoD is a part of US government…and US Army is a part of DoD…

Most of the available knowledge is focused on the commercial
marketplace

• Trade press and blogosphere coverage

• Documentation

• Books, tutorials, training, etc.

We are going to present a broad view of cloud computing

• Some topics may not be directly applicable for you today (but may
become important tomorrow)

• In order to define a boundary, you need to understand what is on both
sides of the line

We will try to identify when technologies or concepts are more relevant to
commercial organizations than to DoD

• If you have questions, please ask us!

8Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Rules of Engagement

We will be very busy over the next two
days. To complete everything and get

the most from the course, we will need
to follow some rules of engagement:

• Your participation is essential.
• Feel free to ask questions at any time.
• Discussion is good, but we might need to cut some discussions

short in the interest of time.
• Please try to limit side discussions during the lectures.
• Please turn off your cell phone ringers and computers.
• Let's try to start on time.

9Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Any Questions So Far?

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Definitions and Fundamental
Concepts

Architecture of Cloud-based Systems

11Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Definitions and Fundamental Concepts

In this module, we will discuss

• What makes cloud computing different from a typical data center

• Cloud service models

• Cloud delivery models

• Cloud options available for DoD systems

• Security controls

• Service level agreements

12Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Data Center Deployment

13Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Computing

“A model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction.”

Source: National Institute of Standards and Technology (NIST), 2011

14Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Computing Models and Essential
Characteristics

Source: National Institute of Standards and Technology (NIST), 2011

Software as a Service
(SaaS)

Platform as a Service
(PaaS)

Infrastructure as a
Service (IaaS)

Public Private Hybrid Community

On-Demand Self Service Broad Network Access Rapid Elasticity

Measured Service Resource Pooling

Service
Models

Deployment
Models

Essential
Characteristics

15Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

NIST Cloud Model’s Five Essential
Characteristics
On-demand self-service – a consumer can unilaterally provision
computing capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service provider.

Broad network access – capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, tablets, laptops, and
workstations)

Resource pooling – the service provider’s computing resources are pooled
to serve multiple consumers using a multi-tenant model, with different physical
and virtual resources dynamically assigned and reassigned according to
consumer demand.

16Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

NIST Cloud Model’s Five Essential
Characteristics
Rapid elasticity – capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward commensurate
with demand.

Measured service – cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts).

17Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Deployment Models

Public
• Offered as a service, usually over an Internet connection
• Typically charge a pay-per-use fee
• Users can scale on-demand and do not need to purchase hardware
• Cloud providers manage the infrastructure and pool resources into capacity

required by consumers

Private
• Deployed inside the firewall and managed by the user organization
• User organization owns the software and hardware running in the cloud
• User organization manages the cloud and provides cloud resources
• Resources typically not shared outside the organization and full control is retained

by the organization

Hybrid
• Combination of public and private cloud and/or community

Community
• Cloud that contains functionality tailored for the industry that it serves

18Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Service Delivery Models

Infrastructure as a Service (IaaS)
• CPUs
• Disk drives
• Networks
• Data centers

Platform as a Service (PaaS)
• Development and runtime tools and environment

Software as a Service (SaaS)
• Enterprise apps
• Desktop apps
• Mobile apps

19Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Shared Responsibilities Model

20Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Drivers for Cloud Computing Adoption

Availability 24x7 access to data and applications from anywhere

Big Data Public clouds have significantly reduced the cost of entry into big data,
machine learning, and artificial intelligence systems

Elasticity and
Scalability

Organizations can request, use, and release as many resources as needed
based on changing needs and user demand

Lower
Infrastructure
Costs

The pay-per-use model allows an organization to only pay for the resources
they need with basically no investment in the physical resources available in
the cloud — there are no infrastructure maintenance or upgrade costs

Reduced
Development
Times

• Available tools and platforms, in addition to DevOps procedures, can
reduce amount of code to write and deployment times

• Multi-organizational projects can work simultaneously on common data
and information

Reliability In order to support SLAs (service-level agreements), cloud providers have
reliability mechanisms that are much more robust than those that could be
cost-effectively provided by a single organization

Risk Reduction Organizations can use the cloud to test ideas and concepts before making
major investments in technology

21Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Challenges for Cloud Computing Adoption

Interoperability A universal set of standards and/or interfaces has not yet been defined,
resulting in a significant risk of vendor lock-in

Latency All access to the cloud is done via the internet, introducing latency into every
communication between the user and the environment

Legal Issues There are concerns in the cloud computing community over jurisdiction, data
protection, data location, fair information practices, international data
transfer, and legal access to data

Platform or
Language
Constraints

Some cloud environments provide support for specific platforms and
languages only

Security The key concern is data privacy: organizations typically do not have control of
or know where their data is being stored

Skills/Knowledge Different skills are needed to make use of clouds at the different services
than a traditional IT center

Compliance Satisfying NIST Special Publication 800-53 security controls and assessment
procedures for the program’s appropriate security control level

Portability Cloud service providers provide similar functionality but implement their
services differently

22Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

FedRAMP

Government-wide program for unclassified cloud computing that
standardizes:

• Security assessment
• Authorization
• Continuous monitoring for cloud products and services
• https://www.fedramp.gov/about-us/about/

There are three main players in the FedRAMP process:
• Agencies
• Cloud service providers (CSPs)
• Third party assessment organizations (3PAOs)

FedRamp Authorization Playbook is the starting point
• https://www.fedramp.gov/introducing-the-new-agency-

authorization-playbook/

23Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Relevant Security Documentation for FedRAMP

FIPS Publication 199 Standards for Security Categorization of

Federal Information and Information Systems

FIPS Publication 200 Minimum Security Requirements for Federal

Information and Information Systems

NIST 800-53 Security Controls Catalog, revision 4

24Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

FIPS Publication 199

Defines three levels of potential impact on organizations or individuals should
there be a breach of security (i.e. a loss of confidentiality, integrity, or availability).

LOW impact if the loss of confidentiality, integrity, or availability could be expected
to have a limited adverse effect on organizational operations, organizational
assets, or individuals.
MODERATE impact if the loss of confidentiality, integrity, or availability could be
expected to have a serious adverse effect on organizational operations,
organizational assets, or individuals.
HIGH impact if the loss of confidentiality, integrity, or availability could be expected
to have a severe or catastrophic adverse effect on organizational operations,
organizational assets, or individuals.

Security Categorization:
SC(system)={(confidentiality, impact), (integrity, impact), (availability, impact)}

25Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

FIPS Publication 200

1. access control
2. awareness and training
3. audit and accountability
4. certification, accreditation, and

security assessments
5. configuration management
6. contingency planning
7. identification and authentication
8. incident response
9. maintenance
10. media protection

11. physical and environmental
protection

12. planning
13. personnel security
14. risk assessment
15. systems and services

acquisition
16. system and communications

protection
17. system and information integrity

Identifies seventeen security-related areas with regard to protecting the
confidentiality, integrity, and availability of federal information systems and
the information processed, stored, and transmitted by those systems.

26Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

NIST 800-53 Security Controls Catalog, rev 4

Covered in more detail later.

NIST SP 800-53 rev4 Controls zFedRAMP Control
Selection

DoD Cloud SRG
Control Selection

Control Baselines

Family Control
(Major)

Control
(Sub-parts) Title Description

Priority

Low

M
oderate

High

Low

M
oderate

High

M
inim

um

Level 4

Level 5

ACCESS CONTROL AC-1 AC-1 ACCESS CONTROL
POLICY AND
PROCEDURES

The organization:

P1 X X X X X X X

27Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Examples of FedRAMP Cloud Service
Providers (CSPs)
Provider Service Model

Supported
Impact Level Authorizations

AWS US East/West IaaS Moderate 83
AWS GovCloud IaaS Moderate 39
AWS GovCloud High IaaS, PaaS High 8
Google G Suite PaaS, SaaS Moderate 10
Google Services (Google Cloud
Platform Products)

IaaS, PaaS, SaaS Moderate 0

Microsoft Commercial Cloud IaaS, PaaS Moderate 56

Microsoft Azure Government IaaS, PaaS High 15

Microsoft 365 Multi-Tenant &
Supporting Services

SaaS Moderate 33

28Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

IC IT Enterprise (IC ITE) & MILCLOUD –
Government Clouds for Classified Computing
Commercial Cloud Services (C2S) – provided by AWS

• Managed by CIA
• Utility and compute cloud providing IaaS
• Two versions (Secret, TS/SCI)

IC GovCloud (government-provided cloud)
• Managed by NSA
• Warehouse for big data storage and analytics
• One version (TS/SCI)

IC applications mall
• There are roughly 100 applications in the marketplace, with another 70 in the

pipeline.

MilCloud
• Managed by DISA
• Infrastructure as a Service (IaaS) solution that leverages a combination of

mature Commercial off the Shelf (COTS) and government developed
technology to deliver cloud services tailored to needs of the DOD.

29Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Service-Level Agreements

A service level agreement (SLA) is a formal negotiated agreement
(contract) between service consumers and providers.

Minimal SLA outline

• Parties in the agreement

• Services provided that are covered by the SLA

• Service performance metrics

• Incident handling — procedures, response times, consequences
when response times are not met

• Records/logs to keep

• Performance review and problem management

• Termination arrangements

Each CSP has their own SLA.

30Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Example: Amazon Compute SLA

https://aws.amazon.com/ec2/sla/

31Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Definitions and Fundamental Concepts

In this module, we discussed

• What makes cloud computing different from a typical data center

• Cloud service models

• Cloud delivery models

• Cloud options available for DoD systems

• Security controls

• Service level agreements

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Enabling Technologies

Architecture of Cloud-based Systems

33Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Enabling Technologies

In this module, we will discuss

• What is virtualization and how it enables cloud computing
• How virtual servers are different from physical servers
• What are containers and how they support cloud computing

• How virtual machines are managed using scripts

34Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Focusing our discussion

For much of the rest of this course, we are going to focus on

Amazon’s IaaS technology – Amazon Web Services or AWS

Why IaaS?

• Our experience is that IaaS is the starting point for many system

migrations to the cloud

• Understanding IaaS provides the necessary foundation to

understand other cloud services - PaaS and SaaS are built on

top of IaaS

• Amazon’s IaaS is starting to bleed into PaaS and SaaS

Why Amazon?

• Market leader in commercial and government sectors

• Broad offering, covers diverse capabilities

• Other vendors map their offerings to Amazon’s

35Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

How do they do it?

How does a cloud service provider deliver Infrastructure as a

Service?

How do they achieve elasticity and on-demand capacity?

How much do you need to care about it?

36Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Virtualization

NIST definition (800-125)
• Virtualization is the simulation of the software and/or hardware

upon which other software runs.
Types of virtualization:

• Application – e.g., Java Virtual Machine
• Operating system – e.g., containers like Docker
• Full – One or more operating systems (and their applications)

running on top of virtual hardware

We’ll talk about Full Virtualization first, and then come back to
Containers

37Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Types of Full Virtualization

Type 1 Type 2
(mostly used on Desktop)

Source: NIST 800-125

38Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Virtualization Influences Deployment
Partitioning

With physical servers:

• Deploy multiple applications on a physical server – introduces
dependency management concerns

• Efficiency → Fill the server’s capacity (while maintaining some
reserve headroom)

• Physical failure may be a concern, i.e. don’t deploy the primary
and backup to the same physical server

With virtualized servers:

• Simplify dependencies – deploy one application per VM instance

• Efficiency of physical hardware utilization is the cloud provider’s
concern

• Physical hardware failure is (mostly) handled by the cloud
service provider – we’ll talk later about deployment patterns to
improve availability

39Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Virtualization and the Cloud

Cloud Service Providers use Type 1 virtualization
AWS used the Xen hypervisor, now moving to KVM-based
implementation*
Physical reboots are a very rare event
Instance = executing guest OS + application (and middleware)
Multi-tenant – Instances on same physical server may belong to
different users

Instance 1 Instance 2

* https://www.theregister.co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/

40Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Images and Instances

An instance is a deployed and executing image.
• An image can be used to create multiple instances.

How are images created?
• Start with a base image – this is a minimal bootable guest OS

image
• Deploy and start the base image
• Install more software (middleware, application, etc.) on the

running instance
• Configure and tune the running instance (users, firewall,

application settings)
• Take a snapshot of the instance to create a new image

We’ll talk more this later – Infrastructure as Code

41Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

A VM instance is not like a traditional

physical server

Storage

• The disk on a physical server retains state from one boot to the next

boot

• VM instance always boots from its image – any data that must be

retained from boot to boot is stored in a cloud database like

DynamoDB or storage service like S3

- Cloud storage services are sometimes referred to as backing stores
• We don’t back up virtual servers – the image is the backup

Networking

• VM instances are assigned dynamic hostnames and IP addresses –

there are no static IP addresses in the cloud

• Architectures must use discovery instead of static configuration

We can pass configuration variables to an instance when we start it. E.g.,

role=master or role=slave

Your only access is via ssh - you get the instance’s key when you launch

it. Don’t Lose That Key!

42Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Instances and Physical Hardware

The cloud service provider manages allocation of instance to
physical nodes
Most cloud service providers offer several types of instance profiles

• CPU and memory capabilities
• Hypervisor tuning
• Network and storage

Each profile has a different pay-per-use cost
Profiles change over time as technology evolves

43Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Example – Survey of Instance Types* in
Amazon Elastic Compute Cloud (EC2)
General Purpose

• 4 subtypes, various sizes (23 total)
• Balance CPU, Memory, I/O

Compute Optimized
• 3 subtypes, 1 w/ SSD (16 total)
• High-end CPUs, variable memory sizes

Memory Optimized
• 4 subtypes, 3 w/ SSD (19 total)
• Up to 3,905GiB memory

Accelerated Computing
• 4 subtypes (11 total)
• GPU and FPGA

Storage Optimized
• 3 subtypes, HDD and SSD (15 total)
• High instance storage for replicated databases

*As of 1 Dec 2017

44Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Containers

A VM image contains a full guest operating system
• May take 30-45 seconds to start, possibly longer depending on the

time to copy the image from storage
What if my application doesn’t need all of the services that the OS
provides? E.g., Microservices or a Function-as-a-Service
An Application Container* is a construct designed to package and run an
application or its components running on a shared Operating System.
Containers are “lightweight” - <50 msec startup time, small enough to
cache locally

• Based on Linux kernel namespaces and cgroups
• Less robust isolation that VM provides, but enough for most use cases

Some similarities to VMs - boot from image, local storage is ephemeral
Some differences – Images can be composed, networking is bridged
through host’s IP address

*From NIST 800-180 Draft

45Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Container vs Full Virtualization

NIST SP 800-180 NIST Definition of Microservices, Application Containers
 and System Virtual Machines

 3

5 Definition of Application Containers 227

Application Containers: An Application Container is a construct designed to package and run 228
an application or its’ components running on a shared Operating System. 229

Application Containers are isolated from other Application Containers and share the resources of 230
the underlying Operating System, allowing for efficient restart, scale-up or scale-out of 231
applications across clouds. Application Containers typically contain Microservices. 232

6 Definition of System Virtual Machines (S-VM) 233

System Virtual Machines: A System Virtual Machine (S-VM) is a software implementation of a 234
complete system platform that supports the execution of a complete operating system and 235
corresponding applications in a cloud. 236

Each S-VM serves as an efficient, isolated duplicate of a real machine running on a cluster of 237
physical machines. 238

7 Similarities and Differences between S-VMs and Application Containers 239

S-VMs abstract the Operating System from the underlying hardware, allowing for multiple 240
Operating Systems and Application to share a single system’s physical compute resources. 241
Application Containers abstract the Application from the underlying Operating System, allowing 242
for multiple Applications to share a single system’s Operating System and underlying physical 243
compute resources 244

The following figure depicts the difference between System Virtual Machines and Application 245
Containers 246

 247

Figure 1 – Differences between S-VMs and Application Containers 248

And, of course, you
can run your
container daemon on
a guest OS in a VM

E.g., Docker

Source: NIST 800-180 Draft

46Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Container Technology

This technology space can be confusing, because containers are
being applied for both desktop and server use cases
Docker was emerging as the leading container engine (docker.org)
for both cases, although recent business decisions have created
some concerns
Desktop Use Case

• Don’t install applications or runtimes, instead run software in a
container

• Especially useful if you need multiple versions of a runtime
Server Use Case

• Small, fast deployable units
• Fine-grained scalability

47Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Containers on the Desktop
(This is not directly related to cloud computing)
$ sudo apt-get install docker.io

$ docker pull python:2.7

$ docker pull python:3.3

$ docker pull python:3.4

$ docker run -i -t --rm python:2.7 python -m timeit "[i for i in range(1000)]"

10000 loops, best of 3: 82.2 usec per loop

$ docker run -i -t --rm python:3.3 python -m timeit "[i for i in range(1000)]"

10000 loops, best of 3: 83 usec per loop

$ docker run -i -t --rm python:3.4 python -m timeit "[i for i in range(1000)]"

10000 loops, best of 3: 87.7 usec per loop

Example from http://tiborsimko.org/docker-for-python-applications.html

Install Docker Engine

Cache base images*

Execute for each Python version

* Optimization – Docker will automatically pull on first use of an image if it is not
cached locally

48Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Server-side Containers

Driven by microservices (a small, cohesive, independently

deployable distributed service developed by a single team)

Applications have many (i.e. 10s) of microservices, with some

executing multiple instances

Concerns

• Packaging dependencies

• Deployment efficiency (100s of instances)

Enter containers and container orchestration technology

• Docker container engine

• Kubernetes (“K8s”*) container management

Containers enable the function as a service, AKA serverless
architecture style

* But only if you are a rock star full stack developer

49Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Creating VM Instances

Amazon Web Service (AWS) homepage has 10-minute Tutorial:
Launch a Linux Virtual Machine using Amazon EC2

• Uses the AWS Management Console
• Wizard-driven VM instance creation – step through a few

screens to configure and launch the instance
• Console shows the status of your running instances
• Great way to get started with AWS!

But this approach is not viable for more than a few instances
• Manual and error-prone
• Slow

Automate all the things – treat your infrastructure as code

50Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Automate all the Things –
Infrastructure as Code

Infrastructure as code is the process and technology to manage
and provision computers and networks (physical and/or virtual)
through scripts.
Scripts/code provide:

• Scale
• Automation
• Version control

51Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Technology support for infrastructure as
code

AWS Command Line Interface

• Wraps the AWS API – use your favorite scripting tools (shell
script, Python, Ruby, ...)

• Fine-grained and detailed control

• Can do more than just manage VM instances

• Manage images, manage storage and snapshots, ad hoc
operations on services like DynamoDB and Identity and
Access Management (IAM)

DevOps tools like Chef and Puppet use higher-level abstractions,
make things easier and more efficient

52Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Chef Script Examples
(Chef scripts use Ruby)
httpd_service 'an websites' do

instance_name 'bob'
servername 'www.computers.biz'
version '2.4'
mpm 'event'
threadlimit '4096'
listen_ports ['1234']
action :create
action :start

end

mysql_service 'foo' do
port '3306'
version '5.5'
initial_root_password 'change me'
action [:create, :start]

end

Examples from https://github.com/chef-cookbooks/httpd and https://github.com/chef-cookbooks/mysql

53Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Immutable/Versioned Infrastructure

Infrastructure as code promotes an IT operations approach called
immutable infrastructure

• Immutable – “write once”
• Don’t update, recreate (or replace)

Don’t patch a running system, instead
• Rework the infrastructure as code scripts that generated the image
• Create a new image
• Test instances of the new image
• Deploy the new image to production

Allows us to version our infrastructure
• Rollback – some large-scale systems can’t be tested outside of the

production environment – Infrastructure as Code and versioned
infrastructure provide a safety net for testing in these situations

• Parity – test and production environments are identical

54Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Infrastructure as Code - Takeaways

You need to be familiar with both approaches:
• Chef/Puppet/etc. – Fast, easy, default development tools
• AWS Command Line Interface – finer-grained control and visibility for

T&E activities
Contractors should deliver their infrastructure as code artifacts

• Treat these like any other software deliverable
• It is code – some up-front design is usually needed to define approach

and overall structure
• It is code – some documentation is needed to describe the artifacts

Key to agility
• Versioned infrastructure provides a safety net for rapid exploration and

experimentation
Repeatability reduces implementation diversity

55Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

One more thing – Network Virtualization and
Virtual Private Clouds

VMs provide isolation when sharing physical computer hardware

What about sharing the network?

A virtual private cloud or VPC uses private subnet addresses and
VLAN technology to isolate network traffic between VMs

• When a VM is launched, it is assigned to a VPC

• Some CSPs (e.g., AWS) allow you to also purchase physical
hardware isolation – VMs deployed to a VPC will not share

physical hardware with VMs outside that VPC

Amazon also allows you to pay to place a VPN endpoint in the
VPC

• Allows extending the enterprise network directly into the cloud

for hybrid service delivery

56Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Enabling Technologies

In this module, we discussed

• What is virtualization and how it enables cloud computing
• How virtual servers are different from physical servers
• What are containers and how they support cloud computing

• How virtual machines are managed using scripts

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Cloud Native Services

Architecture of Cloud-based Systems

58Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Cloud Native Services

In this module, we will discuss

• Cloud platforms include many out-of-the-box services

• Architectures can trade off cloud native vs. portable

implementations

• Impact on testing approach

59Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Lift and shift to the cloud?

<lift-and-shift>

1. Package each of your servers into a virtual machine image

2. Choose a cloud service provider

3. Select appropriate instance types

4. Deploy your VM images

</lift-and-shift>

Done? Not quite!

<remediation>

1. Persistent storage

2. Static IP addresses

3. …

</remediation>

60Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

The case for cloud native services

Scalable, secure, and highly-available distributed services are hard
• PostgreSQL has 270 configuration parameters
• Kafka message queue has 140 “top-level” configuration parameters
• How many impact security? performance? availability?

Managing distributed services is hard
• Patching and updating is harder in distributed system
• Monitoring
• Adding capacity to a running system
• …

Wouldn’t it be nice if this was somebody else’s problem?

Cloud Native Services to the rescue!

61Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services

62Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Native Services – Annotation Key

Replaces a traditional, portable component
(You could build this yourself in the cloud)

Only cloud service provider can feasibly
deliver this service

There are some judgement calls here.

Note that we don’t categorize every service offering.

63Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Compute

64Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Storage

65Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Storage – Seems like a lot of options!

Basics:

• EBS – Elastic Block Store – the virtual hard disks for your VM

- An EBS volume can be mounted by only one VM instance at a time

- Size limited to 16TB per volume

- Can be backed up/snapshot’ed in case of application crash

• EFS – Elastic File System – NFS in the cloud

- Distributed file system, can be mounted by many VMs at a time

- No size limits

- Managed by AWS

• S3 – Simple Storage Service – object (blob) storage

- Access via API or via http (can use to host static web content)

- Virtually unlimited scale (both objects and buckets/namespaces)

- Managed by AWS

66Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Storage

“Advanced”:

• Glacier – low cost cold storage

• Storage Gateway – hybrid cloud storage solution

• Snowball and Snowmobile – peta-/exa-scale transport and

storage (i.e. sneakernet)

67Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Database

68Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Networking

69Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Management

70Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Security

71Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Analytics

72Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

AWS Cloud Native Services – Integration

73Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Hey, what about the other CSPs?

Microsoft Azure:
http://aka.ms/awsazureguide maps from AWS services to Microsoft
Azure services

Google Compute Platform (GCP):
https://cloud.google.com/free/docs/map-aws-google-cloud-platform
maps from AWS services to GCP services

74Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

How do you choose whether to implement
your own or use a cloud native service?
Development cost

• Probably lower if you start design to use cloud native service
• Obviously higher if you have to rework to use cloud native service

Pay per use cost
• For a given scale, cloud native services are usually more expensive
• Most cloud native services offer autoscaling or easy manual scaling

Service management cost
• Cloud services need no tuning, patching, updating, …
• Harder to quantify – what does it cost to manage your own service?

Security posture
• Cloud native services may be more secure than a self-implemented

solution hosted in the cloud
• Cloud native services may already be accredited
• Again, hard to quantify

75Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Implications

1. Understand where cloud native services are being used
• You need to look at the architecture/design to see this

2. Research the weaknesses, common misuse patterns, and
limitations of each native service

• Netflix engineering blog is one source for AWS
• Lots of stories in the blogosphere

3. Test autoscaling, failover, access control configuration, …
• You are more likely to find problems with application’s use of

the service than the service implementation
• We’ll talk more later about testing

4. Test carefully to avoid unintended side-effects
• See the case studies that follow here

76Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

But first, a note on terminology

“Partition” has multiple meanings in the context of cloud computing
Verb, e.g., network partition

• Cause the network to split into two or more subnetworks that
cannot communicate with each other

• This is the P in CAP
Noun, e.g., database partition

• In a distributed database, the complete data set is divided and
each division may be copied. Each of these subsets is called a
partition.

• Partitions are assigned to physical nodes, where they are
stored.

77Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Case study* – accidentally triggering
performance throttling

System used AWS DynamoDB, a key-value distributed database
service

DynamoDB hashes the key to select a partition to store the value

• Hashing function balances data across storage partitions

Service pricing is based on peak I/O for a partition

• Service throttles all accesses when you hit your I/O limit in any
partition

Test script:
for value = 1 to 1000000

store(”key”, value)
end

What’s wrong with that?

*A. Roussel and R. Branson. The Million Dollar Engineering Problem [Online]. https://segment.com/blog/the-
million-dollar-eng-problem

78Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Case study – accidentally triggering
performance throttling
Note that the key never varies

• Every write operation is hashed to the same storage partition
• Tight loop in the script quickly saturates I/O for that partition and

triggers rate throttling for all partitions
All I/O is throttled and everything slows down

Lessons learned:
1. Design your test cases to be compatible with the service’s

architecture
2. If you can’t control the access pattern, then add protection

against misuse (in this case, they pre-filtered requests and
discarded requests where key=“key”|”ID”|”id”|”key_id”|…)

79Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Case study*–initializing database triggers

(nearly) endless partition re-balancing

MongoDB is a document database – each record is a JSON object

Database configuration defines maximum partition size

• When a partition hits that limit, it is split

• A new partition is created, half of the data is moved to the new

partition

• This does not interrupt database access

Scenario – loading a database prior to testing

• Empty database has one partition

• Write test data records until the partition size limit is hit, triggers

split and re-balance

• Writing continues during re-balance, quickly hits size limit for

one of the new partitions, triggers another rebalance before the

first one finished…

*J. Klein, I. Gorton, N`. Ernst, et al., “Application-Specific Evaluation of NoSQL Databases,” in Proc. IEEE Big Data
Congress, New York, NY, USA, 2015, pp. 526-534. doi: 10.1109/BigDataCongress.2015.83

80Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Case study – initializing database triggers
(nearly) endless partition re-balancing
Result:

• It took about 2 hours to write 10 million records
• It took the database about 24 hours to complete all the rounds of

re-balancing
Work-arounds:

• Turn off rebalancing during the loading, then turn it on and let it
run once

• Snapshot the storage image after the database was loaded
(need to be careful with this – data contains write timestamps
that may introduce new issues when reused later)

81Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Cloud Native Services

In this module, we discussed

• Cloud platforms include many out-of-the-box services

• Architectures can trade off cloud native vs. portable

implementations

• Impact on testing approach

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Cloud Vulnerabilities

Architecture of Cloud-based Systems

83Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Vulnerabilities

In this module, we will discuss

• Threat discussion and infection points

• Examples of different views using AWS

• Hybrid cloud examples

• Cloud unique and cloud/on-premise vulnerabilities/threats

84Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Setting the Context

85Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Threat Terminology

Threat source – a method by which a vulnerability is triggered or
exploited

Attack (initial infection vector) – method used to gain access to
system

Asset – the object of the attack

Threat actor – an entity that is partially or wholly responsible for an
incident that impacts or has the potential to impact an
organization's security.

Tool – e.g., phishing email, remote access Trojan (RAT), SQL
injection

Target – e.g., personally identifiable information (PII) data, trade
secrets, network configuration information

86Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Data Center Threats

The SEI developed a holistic approach when considering attacks
on computer systems which is based on the following two
questions.

• “How did they get in?”
• “What did they do after they were in?”

To answer the first question, five ways to get into a computer
system (infection points) were identified.

87Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Five Infection Points

88Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Cloud Incidents Examples Associated with
Infection Points
Social engineering – “How Apple and Amazon Security Flaws Led to my
Epic Hacking”, “In the space of one hour, my entire digital life was
destroyed.”, (http://www.wired.com/2012/08/apple-amazon-mat-honan-
hacking/)

Client exploit – AWS OpenSSL Security Advisory - May 2016; “AWS will
appropriately update OpenSSL to improve security for AWS customers who
are utilizing outdated web browsers that cannot negotiate the AWS preferred
and recommended AES-GCM TLS/SSL cipher suites when interacting with
the AWS Management Console.”, (https://aws.amazon.com/security/security-
bulletins/openssl-security-advisory-may-2016/)

Misconfiguration – Amazon ELB Service Event in the US-East Region on
December 24, 2012, portion of ELB state data was logically deleted which is
used and maintained by the ELB control plane to manage the configuration of
the ELB load balancers in the region.
(https://aws.amazon.com/message/680587/);

https://aws.amazon.com/message/680587/

89Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Incidents Examples Associated with
Infection Points
Server exploit – AWS CVE-2015-7547 Advisory - ”We have reviewed the
issues described in CVE-2015-7547 and have determined that AWS
Services are largely not affected. The only exception is customers using
Amazon EC2 who’ve modified their configurations to use non-AWS DNS
infrastructure should update their Linux environments immediately
following directions provided by their Linux distribution. EC2 customers
using the AWS DNS infrastructure are unaffected and don’t need to take
any action. A fix for CVE-2015-7547 has been pushed to the Amazon
Linux AMI repositories, with a severity rating of Critical. Instances
launched with the default Amazon Linux configuration on or after
2016/02/16 will automatically include the required fix for this CVE.”
(https://aws.amazon.com/security/security-bulletins/cve-2015-7547-
advisory/)

Physical access/theft – AWS service event in the Sydney region due to
loss of power on June 6, 2016. Unusually long voltage sag caused the
loss of both primary and secondary power.
(https://aws.amazon.com/message/4372T8/).

https://aws.amazon.com/message/4372T8/

90Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

So What Else Do We Need to Understand?

We now have a good grasp of the threat picture which can be
applied to data centers, a cell phone, refrigerator, and clouds.

But how do I apply it to do analysis, testing, risk identification, and
risk mitigation?

You will need architecture documentation to support these efforts.

Architecture documentation will need to be developed that provides
multiple views of the system to satisfy different stakeholders.

91Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Cloud Deployment View of a Web Application

Which Supports NIST Compliance

https://aws.amazon.com/quickstart/architecture/accelerator-nist/

92Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Identity and Access Management (IAM)
Service View for Modeling Threat Events

93Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Virtual Private Cloud (VPC) View for
Modeling Threat Events

94Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Hybrid Cloud

95Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

routerAdmin

Customer

US East

Route
53

CloudFront WA
F

Auto
scaling

Elastic
load
balancing

EC2

S3

Glacier

RDS

IAM

Config

CloudTrail CloudWatch
Alarms

CloudFormation

Trusted
Advisor

Customer’s Administrator’s View
AWS IaaS

SNS

us-east-1a
availability zone

us-east-1b
availability zone

Management VPC

Production VPC

Management VPC

Production VPC

Development VPCDevelopment VPC

Services

KMS

VPC

ElastiCache
Directory
Service

Direct
Connect

ISP

DNS

Email
filtering

96Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

routerAdmin

Agency
Office 365

Customer’s Administrator’s View
Microsoft SaaS

Office 365
Admin Center

Security and
Compliance

Tool

Exchange Admin
Center

SharePoint Admin
Center

ISP

DNS

Email
filtering

Azure AD
Admin
Center

97Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Microsoft Azure

US East

Customer’s Security Operations Center
(SOC) View

Services

On-Premise

Network information

Cyber Protection Systems

CDM sensors

Private cloud logs and alerts

Analysis tools

User logs

Analysis tools

Analysis tools
SNS - notifications

Glacier – Archived logs and data

S3 – Logs (services, configuration, alerts) and data

Tier 1 Alert Analyst

Tier 2 Incident Responder

Tier 3 SME Hunter

SOC Manager

SOC

Storage

Office 365 Admin
Center

Security and Compliance
Tool – Audit

Logs and Reports

User logs

98Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Customer’s On-Premise View

On-Premise

Data centers

Cyber Protection Systems

CDM sensors

Private cloud

Analysis toolsStorage

router

SOC

Auditor/compliance/governance

Admin

App user

Cryptographic key mgmt. system

Mobile user

Active Directory Federation Services

Developer NOC

Business analyst

Financial
analyst/PM/budget

Change Control

Architect

Data architect

99Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Vulnerabilities/Threats

Cloud Unique
1. Reduced Visibility & Control
2. Ability to Self Provision

Resources & Services
3. Management API

Compromise
4. Multi-Tenancy Security
5. Secure Data Deletion

Cloud & On-Premise
6. Stealing Credentials
7. Vendor Lock-in
8. Increased Complexity

Strains IT Staff
9. Insider Threat
10. Data Recovery
11. Supply Chain

100Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#1 Reduced Visibility & Control

When transitioning assets/operations to the cloud, agencies will lose some visibility and
control over the assets/operations because the CSP is now handling aspects via its
infrastructure and policies. Paradigm shift is needed by agencies to focus on attaining
monitoring and logging information about applications, services, data and users, rather than
the network focus of on-premise IT.

IaaS PaaS SaaS

Vulnerability
Probability

• As the CSP assumes more
responsibilities, an agency will need
to find different ways to attain the
information to successfully monitor
IT operations and satisfy security
and compliance requirements.

• Agency must work jointly (can’t
direct) with CSP via their service
level agreement (SLA).

IaaS PaaS SaaS

Vulnerability
Impact

101Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#2 Ability to Self Provision Resources &
Services
Self provisioning capabilities of cloud enable agency personnel to:

• Provision extra services not originally planned for with the agency’s CSP and that don’t
have IT consent.

• Individually use SaaS products (Dropbox, iCloud, OneDrive, …) independent of IT.

These services are unknown risks to an agency. (cloud scope creep)

IaaS PaaS SaaS

Vulnerability
probability

• Due to the lower costs
and ease of
implementing PaaS and
SaaS products, the
probability increases.

102Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#3 Management API Compromise

CSPs expose a set of application programming interfaces (APIs) that customers use to
manage and interact with cloud services. Agencies use these APIs via the internet to
provision, manage, orchestrate and monitor their assets and users. The vulnerability is that
these APIs have the same software vulnerabilities that an API for an operating system,
library, etc. could have.

IaaS PaaS SaaS

Threat
opportunity

• Threat actor is looking for
vulnerabilities in
management APIs.

• If vulnerability can be
turned into an attack, then
this could be used against
other customers of the CSP.

• Vulnerability focus more on
configuration/provisioning.

IaaS SaaS

Threat
impact

PaaS

103Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

#4 Multi-Tenancy Security

System and software vulnerabilities within a CSP’s infrastructure, platforms or applications
which supports multi-tenancy can lead to isolation failure where an attacker exploits the
vulnerability to access to another user’s or agency’s assets/data.

IaaS PaaS SaaS

Vulnerability
probability

• Different than vulnerability #3 because
this focuses on how the CSP
implements the agency’s desired
capabilities.

• Examples:
• IaaS – VMs, OS’s
• PaaS – app servers, Java VM
• SaaS – databases, business

logic, workflow, user interface

104Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#5 Secure Data Deletion

CSP’s ability to securely delete and verify when an agency deletes data. This is a concern
due to the data being spread over a number of different storage devices within the CSP’s
infrastructure in a multi-tenancy environment.

IaaS PaaS SaaS

Vulnerability
level

• Vulnerability increases
as an agency uses more
CSP services.

105Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#6 Stealing Credentials

If an attacker gains access to your cloud credentials, the additional vulnerability in the cloud
is that the attacker would have access to the CSP’s services to provision additional
resources, as well as target agency’s assets. The attackers could leverage cloud computing
resources to target users, organizations or other cloud providers.

IaaS PaaS SaaS

Vulnerabilty
impact for
Agency
admin user

• Admin roles vary between CSP
and agency.

• CSP admin would address more
than one customer and
probably handle all the CSP’s
services offered.

• Vetting processes for becoming
a CSP admin may be different
than the process used for an
agency’s admin. Need to be
aware of the differences and
assess their impact.

IaaS PaaS SaaS

Vulnerability
impact for
CSP admin

Vulnerability
probability

SaaSPaaSIaaS

IaaS PaaS SaaS

Vulnerability
impact for
Agency
normal user

106Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

#7 Vendor lock-in

This vulnerability could occur when an agency considers moving its assets/operations from

one CSP to another CSP. The agency finds out than the cost/effort/schedule time necessary

for the transition is much higher that initially considered due to non-standard data formats,

non-standard APIs, high cost charged to remove presence with original CSP, inability to

transfer large amounts of data out of a CSP in a timely manner, reliance on one CSP’s

proprietary tools, and CSP’s unique APIs.

IaaS PaaS SaaS

Vulnerability
probability

• Vulnerability increases
as the CSP takes more
responsibility. As more
features/services/APIs
are used, there is
increased exposure to
CSP’s unique
implementations.

• If selected CSP goes out
of business, it becomes
a major problem.

107Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#8 Increased Complexity Strains IT Staff

This vulnerability is concerned with an existing agency’s IT staff having the capacity and skill
level to manage, integrate and maintain the transition of assets and data to the cloud in
addition to their current responsibilities for on-premise IT. The services/techniques/tools
available to log and monitor them typically vary across CSPs, further increasing complexity.
Also, there may be emergent vulnerabilities/risks in hybrid cloud implementations due to
technology, policies, implementation methods add complexity.

IaaS PaaS SaaS

Vulnerability
probability

• Increased potential for
coverage gaps between the
layers.

• Probability increases if
agency pursuing hybrid
cloud implementation.

108Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

#9 Insider Threat

A malicious insider is defined as a current or former employee, contractor, or business

partner who meets the following criteria:

• has or had authorized access to an organization’s network, system, or data

• has intentionally exceeded or intentionally used that access in a manner that negatively

affected the confidentiality, integrity, or availability of the organization’s information or

information systems

This applies to staff and administrators for both agencies and CSPs.

IaaS PaaS SaaS

Agency’s
users
threat
impact

• Likely worse for IaaS because of the
ability to provision resources or
possibly perform nefarious activities
that will require forensics that may not
be available with cloud resources vis-a-
vis on-premise resources.

• CSPs’ users threat impact will depend
upon their organization’s employee
vetting process (background checks)
and controls implementation.

Agency
user’s threat
probability

IaaS PaaS SaaS

109Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

#10 Data Recovery

Data stored in the cloud can be lost for reasons other than malicious attacks. An accidental

deletion by the cloud service provider or worse, a physical catastrophe such as a fire or

earthquake, can lead to the permanent loss of customer data. The burden of avoiding data

loss does not fall solely on the provider’s shoulder. If a customer encrypts his or her data

before uploading it to the cloud but loses the encryption key, the data will be lost as well.

IaaS PaaS SaaS

Vulnerability
probability

• Vulnerability increases as an
agency uses more CSP services.

• Data recovery for a CSP is may
be better than that of an agency
due to SLA designating
availability/uptime percentages.

110Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#11 Supply Chain

This vulnerability is concerned with the supply chain that a CSP uses to support its services.
If the CSP outsources parts of its supply chain, then these third parties may not
satisfy/support the requirements that the CSP is contracted to support with an agency. An
agency would need to check to see if the CSP flows its own requirements down to their third
party and see how it enforces compliance. If the requirements are not being flowed down,
then there is an increased threat to the agency.

IaaS PaaS SaaS

Vulnerability
level

• Vulnerability increases as an
agency uses more CSP
services.

• This is very dependent on
individual CSPs and their
supply chain policies.

111Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Vulnerabilities

In this module, we discussed

• Threat discussion and infection points

• Examples of different views using AWS

• Hybrid cloud example and its associated different views

• Cloud unique and cloud/on-premise threats

• Cloud unique and cloud/on-premise threats/vulnerabilities

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Leading Practices for Cloud
Security

Architecture of Cloud-based Systems

113Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Leading Practices for Cloud Security

In this module, we will discuss

• Cloud vulnerability/threat examples
• Four key practices
• Recommendations mapped to security control categories

• Conclusions

114Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#1 Reduced Visibility & Control

When transitioning assets/operations to the cloud, agencies will lose some visibility and
control over the assets/operations because the CSP is now handling aspects via its
infrastructure and policies. Paradigm shift is needed by agencies to focus on attaining
monitoring and logging information about applications, services, data and users, rather than
the network focus of on-premise IT.

IaaS PaaS SaaS

Vulnerability
Probability

• As the CSP assumes more
responsibilities, an agency will need
to find different ways to attain the
information to successfully monitor
IT operations and satisfy security
and compliance requirements.

• Agency must work jointly (can’t
direct) with CSP via their service
level agreement (SLA).

IaaS PaaS SaaS

Vulnerability
Impact

115Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#2 Ability to Self Provision Resources &
Services
Self provisioning capabilities of cloud enable agency personnel to:

• Provision extra services not originally planned for with the agency’s CSP and that don’t
have IT consent.

• Individually use SaaS products (Dropbox, iCloud, OneDrive, …) independent of IT.

These services are unknown risks to an agency. (cloud scope creep)

IaaS PaaS SaaS

Vulnerability
probability

• Due to the lower costs
and ease of
implementing PaaS and
SaaS products, the
probability increases.

116Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#3 Management API Compromise

CSPs expose a set of application programming interfaces (APIs) that customers use to
manage and interact with cloud services. Agencies use these APIs via the internet to
provision, manage, orchestrate and monitor their assets and users. The vulnerability is that
these APIs have the same software vulnerabilities that an API for an operating system,
library, etc. could have.

IaaS PaaS SaaS

Threat
opportunity

• Threat actor is looking for
vulnerabilities in
management APIs.

• If vulnerability can be
turned into an attack, then
this could be used against
other customers of the CSP.

• Vulnerability focus more on
configuration/provisioning.

IaaS SaaS

Threat
impact

PaaS

117Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Access Management Shared
Responsibilities

118Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Monitoring Responsibilities

119Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

#5 Secure Data Deletion

CSP’s ability to securely delete and verify when an agency deletes data. This is a concern
due to the data being spread over a number of different storage devices within the CSP’s
infrastructure in a multi-tenancy environment.

IaaS PaaS SaaS

Vulnerability
level

• Vulnerability increases
as an agency uses more
CSP services.

120Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Auto-scalable Web Application

http://static1.creately.com/blog/wp-content/uploads/2012/07/AWS-3-Tier-Architecture.png

121Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Sensitive Data in a Typical Cloud Web
Application

122Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

#9 Insider Threat

A malicious insider is defined as a current or former employee, contractor, or business

partner who meets the following criteria:

• has or had authorized access to an organization’s network, system, or data

• has intentionally exceeded or intentionally used that access in a manner that negatively

affected the confidentiality, integrity, or availability of the organization’s information or

information systems

This applies to staff and administrators for both agencies and CSPs.

IaaS PaaS SaaS

Agency’s
users
threat
impact

• Likely worse for IaaS because of the
ability to provision resources or
possibly perform nefarious activities
that will require forensics that may not
be available with cloud resources vis-a-
vis on-premise resources.

• CSPs’ users threat impact will depend
upon their organization’s employee
vetting process (background checks)
and controls implementation.

Agency
user’s threat
probability

IaaS PaaS SaaS

123Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Deep dive example – Insider Threat
CSP mitigations

AWS

Can enforce MFA authentication for AWS service APIs to provide another layer of protection
(add MFA-authentication requirement to an IAM access policy which can be applied to IAM
users, IAM groups or resources that support Access Control Lists (ACLs)

Use of CloudWatch to monitor resource utilization, operational performance and demand
patterns.

Use of IAM to control which services users have permission to perform based on roles.

Implement controls to prevent unauthorized access to logs. (CloudTrail, IAM, S3 bucket
policies, MFA)

Implement controls to ensure access to log records is role-based. (CloudTrail & IAM)

Log of changes to system components (including creation and deletion of system-level
objects) (CloudTrail)

API call logging provides the data and context required to analyze user behavior and
understand certain events.

API calls and IT resource change logs can also be used to demonstrate that only authorized
users have performed certain tasks.

124Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Deep dive example – Insider Threat
CSP mitigations

Google

Google has the option of 2-factor authentication and token based authentication.

Google encrypts all data at rest and in transit.

Google allows for granular user permissions and authorizations.

All user access and actions are logged.

CSP employee access is limited, logged, and actively monitored.

Google implements the principle of least privilege and separation of duties for its employees.

• Some administrative actions require two party approval.

Google employees undergo security background checks and security training.

Google uses the same software and infrastructure for their production environment, in which

protecting of data is the main design criteria.

Google offers a security report that identifies suspicious data access and user behavior.

125Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Four Important Cloud Security Practices

1. Perform due diligence

2. Manage access

3. Protect data

4. Monitor and defend

126Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Cloud Security Practices

1) Perform due diligence
Encourages cloud consumers to fully understand their current

network and applications to better appreciate the functionality,

resilience, and security of cloud services before migrating to cloud-

deployed application and system.

2) Manage access
Describes the different categories of users in a cloud-based IT

environment and explains the responsibilities of both CSP and

cloud consumers in managing these user’s access to resources.

127Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud Security Practices

3) Protect data
Describes the two consumer challenges of preventing the
accidental disclosure of data that was supposedly deleted and
ensuring continued access to critical data in the event of errors,
failures, and compromise.

4) Monitor and defend
Describes the shared responsibility of the CSP and cloud
consumer in monitoring the cloud-based system and applications
to detect unauthorized access to data or unauthorized use of
resources.

128Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Access Control Use role based access control (RBAC) to control access to services. Review
the roles on a periodic basis.
Implement the principle of least privilege when granting authorizations to
services, applications, and users accessing the management API.
Employ access controls to implement principle of least privilege and
separation of duties.
Move root capabilities to a role and monitor/log/profile its use to support
behavioral analysis.
Use bastion hosts to enforce control and visibility.
Limit access to data backups through use of roles to know who has access
to the data.
Ensure different credentials are required to access the agency’s network
and the management APIs.

Awareness and
Training

Include time for training on CSP management tools and services in
implementation schedules.

129Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)
Security Control
Category

Recommendation

Audit and
Accountability

Log all user actions and actively monitor logs.

Log all data access and actively monitor logs.

Log application programming interface (API) calls and actively monitor the
logs.

Use security information and event management (SIEM) application to
monitor and manage the logs.

Make use of CSP’s security monitoring capabilities.

Set up logging and alerting with CSP for new service provisioning.

Use CSP’s alerting capability for user actions, data access and API calls.

Review available security reporting from cloud providers. Configure
advanced reporting features such as behavior profiling if available.

Analyze enterprise firewall logs and proxy logs to identify enterprise access
to/from CSPs.

Check the billing of services to identify what services are being used.

130Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Security Assessment
and Authorization

Ensure cloud provider performs regular penetration testing
and vulnerability analysis of processes, services, and APIs.
If using IaaS or PaaS service, determine methods used by CSP
to ensure hypervisor is regularly tested for vulnerabilities and
updated when vulnerabilities are found.

Configuration
Management

Treat the infrastructure as source code and configuration
manage it.
Configuration manage the access controls.
Review configuration management tools features and
documentation prior to selecting a CSP to ensure management
tools are sufficient for IT staff.

131Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Contingency Planning Review data deletion and recovery process of CSP to ensure it
meets agency needs. Ensure IT staff is familiar with the policy
once cloud services are deployed.
Consider recovery of data stored in the cloud when developing
Agency business continuity planning (BCP)/disaster recovery
planning (DRP).
Consider impacts of possible vendor lock in on agency business
continuity planning (BCP) and disaster recovery planning (DRP).
Review SLA documents for availability and recovery time
objective (RTO) numbers. Ensure they meet agency availability
and RTO needs.

Identification and
Authentication

Enable multi-factor authentication for cloud user accounts.
Use a federated IAM approach for cloud and on-premise to
minimize the attack surface.

132Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Media Protection Review CSP’s policies and SLAs on data deletion to ensure they
have a procedure that effectively deletes data.
Encrypt all stored data so that data remnants will be
unreadable. (crypto erasure)
Review CSP’s policies on how data is restored.
Review CSP’s policies on data replication.
Review CSP’s policies and procedures on sanitizing disks.
Use data loss prevention applications to provide technical and
policy controls to prevent the exfiltration of data.

Planning Make sure to understand your organization’s data architecture,
data implementation, data redundancy, data backup, and
resilience planning processes to know where your data is
located.

133Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Planning (continued) Data portability is of most concern in a SaaS because the
content data, schemas, and storage formats are under control
of the CSP.
When developing cloud native applications, need to consider
application lock-in due to making use of CSP’s APIs.
Agencies need to take into account that reconfiguring and
maintaining systems and applications require a considerable
amount of expertise.
Agencies should map existing security policies and procedures
to those available from the CSP.
Identify current assets, capabilities, licenses used and work
with cloud experts to assess what would be good fits to
transition to the cloud based on best practices.

134Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Planning (continued) Check CSP’s ability to interface with other CSPs and use standard
data formats prior to selecting a CSP.
Investigate CSP’s support for standard interfaces and open APIs.
Perform risk management on data migrating to the cloud.
Implement security controls based on this assessment.
Review how CSP’s services use and store your data to know
where the data will need to be deleted from.
Develop a checks and balances process which provides
protection that reflects and supports the agency’s IT staff size
and skill level.
The security policy should specify that data, as well as functions,
process flow, architecture, configuration, and controls that when
assembled represent application processes.

135Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Personnel Security Vetting processes for becoming a CSP administrator may be
different than the process used for an agency’s administrator.
Need to be aware of the differences and assess their impact.

Systems and Services
Acquisition

Ensure cloud provider agreement does not allow for users
outside of the designated IT representative to provision
service.
Review the security practices of the specific CSP in regards to
software development and vulnerability testing. Ensure that
CSP follows best practices including performing code reviews
and regular vulnerability testing.
Review CSP’s FedRamp Control Implementation Summary (CIS)
document for security controls related to the management
API.
Check CSP’s ability to interface with other CSPs.

136Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

Systems and Services
Acquisition
(continued)

Investigated CSP’s support for standard interfaces and open
APIs.

Vetting processes for becoming a CSP administrator may be
different than the process used for an agency’s administrator.
Need to be aware of the differences and assess their impact.

Review CSPs supply chain practices. Ensure that suppliers are
vetted and held to the same security practices as the CSP.

Work with CSPs to understand their SLAs, shared responsibility
model, pricing and support structure, etc.

CS&C develop a cloud adoption plan as a best practice and
consider providing the plan to the FedRAMP program.

137Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Recommendations Mapped to Security Control
Categories (NIST SP 800-53, Rev. 4)

Security Control
Category

Recommendation

System and
Communications
Protection

Block access or set up log alerts for access to cloud services
that can be individually provisioned.
Ensure services and applications are configured with user level
permissions.
Ask cloud providers how they prevent users from hopping
virtual local area networks (VLANs).
Employ secure key management processes.

System and
Information Integrity

Ensure data is encrypted at rest and in transit.

138Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Conclusions

1. While potential cloud consumers often worry about the security

risk of trusting a CSP to perform some security functions,

experience has shown that security incidents are more often

the result of consumer failing to use the security tools provided.

2. The need to cloud consumers to develop a deep understanding

of the services they are buying and to use the security tools

provided by the CSP.

3. Like any new technology or approach, using it effectively and

securely requires knowledge and practice. Use of well-

established, mature CSPs will help reduce risk associated with

transitioning application and data to the cloud.

139Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Leading Practices for Cloud Security

In this module, we discussed

• Cloud vulnerability/threat examples
• Four key practices
• Recommendations mapped to security control categories

• Conclusions

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Quality Attributes in the Cloud

Architecture of Cloud-based Systems

141Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Quality Attributes in the Cloud

In this module, we will discuss

• How cloud-based architectures promote and inhibit quality

attributes

• What are the test and evaluation considerations for several

quality attributes

142Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

What is a quality attribute?

• performance
• security
• modifiability
• reliability
• usability
• calibrateability

• availability
• throughput
• configurability
• subsetability
• reusability
• scalability

Quality attributes are properties of work products or goods by
which stakeholders judge their quality.

Some examples of quality attributes by which stakeholders judge
the quality of software systems are

143Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Quality attributes in cloud-based systems

In cloud-based systems, some

quality attributes are promoted,

some are inhibited, and some

are unaffected

We’ll assess the cloud’s impact

on several quality attributes

These are sweeping generalities

• With most architecture

decisions, the real answer is

“it depends”

Easier in the cloud

Unchanged

Harder in the cloud

144Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Quality Attributes for Discussion

Security – we’ll cover this separately in the next module

Scalability

Performance

Availability

Maintainability/Sustainability

145Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Scalability

What do we mean?

• Add capacity or deliver very high capacity

- Processing

- Storage

- Interactions

Storage scalability is easiest to achieve – essentially built-in

Processing and interaction scalability is relatively easy

• Cloud native autoscaling and load balancing services

• Does require some software architecture support to allow

workload to be partitioned

- Approaches include: Stateless, limited coordination or

synchronization, dynamic cluster membership and leader election

146Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Scalability – Test and Evaluation

Primary concern is processing/interactions

What are the scalability mechanisms used by the system?

• What are the triggers to scale up? Scale down?

• Test that scaling works correctly when it should, and doesn’t

happen when it shouldn’t (see earlier case study)

What are the scalability limits imposed by cloud service provider?

• AWS has hard limits – see
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

• E.g., default is 20 VM reserved instances, 1-20 VM spot instances

• How close is the system to the limits? How does the system handle

hitting a limit? Can separate parts of the system combine to hit a limit?

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

147Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Performance

(Separate from Scalability)

What do we mean?

• Throughput – ability to process a quantity incoming events

(requests, messages, targets, …)

• Latency – time needed to respond to an event

Easy to deliver and manage very large systems

• Infrastructure as code to create and deploy VM instances

• Very capable instance types available (see

https://aws.amazon.com/ec2/instance-types/)

• Cloud native services for coordination and integration of

instances

• Cloud native services for high performance architecture models

(e.g., MapReduce)

148Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Performance – Test and Evaluation

We’ll cover testing at scale in more detail later.

Challenges:

• Usual performance testing concerns – e.g., defining the

workload, defining the background

• Executing the workload at scale

• Generating test data sets at scale (and getting that data into the

cloud)

• Observing, collecting results, and verifying results at scale

(Continuous) verification of QoS of cloud provider services

• E.g., benchmark found twin-peak distribution on AWS VM

performance – traced to physical hardware was some AMD,

some Intel processors*

* D. Bermbach, “Quality of Cloud Services: Expect the Unexpected,” IEEE Internet Computing, vol. 21, no.

1, pp. 68-72, Jan 2017, doi: 10.1109/MIC.2017.1

149Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Case Study* - Capacity Planning
What does “moderate” really mean?

AWS measured
network I/O (Gbps)

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

150Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Case Study* - Capacity Planning
What does “high” really mean?

AWS measured
network I/O (Gbps)

* Andreas Wittig, https://cloudonaut.io/ec2-network-performance-demystified-m3-m4/

151Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Availability

What do we mean?
• System can detect, isolate, and mask or recover from faults, so

that service delivery is uninterrupted

We are calling this “unchanged” for cloud-based systems, with a
couple of caveats

• Not considering that Security, e.g., DOS attack, is linked to
availability and performance (this concern is better in the cloud)

• Limiting ourselves to provider offerings from FedRAMP High
Impact Level, which are generally single cloud regions

152Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

What is a cloud region?

Terminology and definition varies somewhat across cloud service

providers, but most have this construct

E.g., “An AWS Region is a geographical location with a collection

of availability zones mapped to physical data centers in that region.

Every Region is physically isolated from and independent of every

other Region in terms of location, power, water supply, etc…An

Availability Zone is a logical data center in a Region available for

use by any AWS customer. Each zone in a Region has redundant

and separate power, networking and connectivity to reduce the

likelihood of two zones failing simultaneously. A common
misconception is that a single zone equals a single data center. In
fact, each zone is backed by one or more physical data centers,
with the largest backed by five.”*

* https://blog.rackspace.com/aws-101-regions-availability-zones

https://blog.rackspace.com/aws-101-regions-availability-zones)

153Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Regions and Availability Zones

AWS GovCloud is (currently) a single region
You must choose a region when launching a VM instance and most
cloud native services

• Choosing an availability zone is usually optional
Elastic Load Balancer – Distribute requests across availability
zones within a region

Route 53 DNS – use to balance across regions
Building cross-region systems is hard, see e.g., R. Meshenberg, N.
Gopalani, and L. Kosewski. Active-Active for Multi-Regional
Resiliency [Online]. http://techblog.netflix.com/2013/12/active-
active-for-multi-regional.html

154Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Availability is about Faults –
Faults in the Cloud
Root causes of unplanned outages*:

• infrastructure or software failures
• planning mistakes
• human error
• external attacks

Cloud infrastructure does fail, e.g.,
• After AWS physical reboot, Netflix had 22 out of 218 servers fail

to restart (D. Harris. Netflix lost 218 database servers during AWS reboot and stayed online
[Online]. https://gigaom.com/2014/10/03/netflix-lost-218-database-servers-during-aws-reboot-and-
stayed-online/)

• Christmas Eve 2012 (https://medium.com/netflix-techblog/a-closer-look-at-the-christmas-
eve-outage-d7b409a529ee)

* P. T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol. 50, no. 11,
pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.

155Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Mitigation Approaches*

Monitoring

• In the cloud, verification is never finished

Geo-distributed Storage and Redundancy

• Can achieve some geo-distribution within a region

• Requires careful design and configuration (opening the door to

human error)

Disaster Recovery

• Cross-region failover – not (currently) an option for government

cloud deployments

* P. T. Endo, G. L. Santos, D. Rosendo, et al., “Minimizing and Managing Cloud Failures,” Computer, vol. 50, no. 11,
pp. 86-90, November 2017, doi: 10.1109/MC.2017.4041358.

156Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Availability – Test and Evaluation

Certain types of faults cannot be directly induced

• E.g., you can’t pull out a network cable – need to use intrusive

tools like netem
(https://wiki.linuxfoundation.org/networking/netem) to simulate

network failures

• Generally, cloud testing relies more on simulated faults – need

to assess the quality of the simulation → quality of the evidence

Need for practices and procedures that bridge between cloud

provider’s QoS guarantees and evidence that you collect directly

* Intrusive Tools = Install on target system or change configuration

https://wiki.linuxfoundation.org/networking/netem)

157Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Maintainability/Sustainability

What does it mean?
• Required changes can be made to the software to keep the

system secure and operating
We’re calling this worse in the cloud (for the DoD context)

• From a purely technical perspective, some things are better,
some worse

• No real experience with long-lived static systems deployed to
the cloud

• Test and Evaluation is never finished – this is a big change
in mindset, policy, funding, …

158Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Maintainability/Sustainability

Easier:
• Infrastructure as code

practices improve the
repeatability of deployment

• Virtualization allows
development environment to
be identical to production
environment

• Cloud should impose higher
degree of uniformity of
deployment configurations
(IaaS)

• No infrastructure patching or
management concerns at all
(PaaS and SaaS)

Harder:
• Cloud provider can change

the infrastructure in ways that
impact your system but still
satisfy QoS guarantees

• Cloud provider offerings
evolve over time – issue for
cloud native services, PaaS,
and SaaS

• Tempo difference between
DoD and cloud providers –
there is no experience with
long-lived static systems
deployed to the cloud

159Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Case Study* – Newer may not be better

* Andreas Wittig, https://cloudonaut.io/evolution-of-the-ec2-network-performance-m3-m4-m5/

160Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Maintainability/Sustainability –
Test and Evaluation
In the cloud, Test and Evaluation is never finished

• Continuous assessment that QoS guarantees are being met
- Monitoring and trending
- Within a system and across systems

• Continuous assessment that the delivered infrastructure remains
compatible with your systems
- E.g., Netflix’s Chaos Engineering (more about this later)

• Working with cloud service providers to understand their
roadmaps and assess impact on systems in production AND in
development

161Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Take-aways

The cloud makes some things better, some things worse.

Some of these impacts are intrinsic to any cloud computing (i.e.

performance)

Other impacts are more specific to government and DoD context

(i.e. availability, maintainability)

162Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Quality Attributes in the Cloud

In this module, we discussed

• How cloud-based architectures promote and inhibit quality

attributes

• What are the test and evaluation considerations for several

quality attributes

[Distribution Statement A] Approved for public release and

unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Distributed Systems Concepts

Architecture of Cloud-based Systems

164Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Distributed Systems Concepts

In this module, we will discuss
• Clouds are distributed software systems
• The “laws of physics” that limit the visibility and capabilities of

distributed software systems
• Impact on testing approach

165Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Deutsch’s Fallacies of Distributed
Computing
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

166Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Deutsch’s Fallacies of Distributed
Computing
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

See https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

In this section

In other sections

167Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Communication and Coordination

The “FLP” result
• Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.

Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, 1985.
doi:10.1145/3149.214121.

Conclusions (in an asynchronous environment – no timeouts)
• You can’t distinguish a crashed process from a broken network

link
• You can’t distinguish a broken link from a really slow link

168Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Communication and Coordination –
Practical Implications
Guaranteed message delivery is impossible

• Does the system impose timeouts? In one layer? Multiple
layers? How long is the timeout?

• Does the system design assume that messages are never lost?
• Does the system design assume that messages will arrive in-

order?
Exactly-once delivery is tricky but possible

• What happens if a message is repeated?
Atomic broadcast (think “guaranteed one-to-many”) is impossible
without application-level cooperation

• If a system design claims this feature, it warrants some testing

169Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Replicated State

If we have more than one copy of a data element in our system, we

have to be concerned about whether they are consistent.

• Simple state – Who is the current master? What mode are we
in?

• Complex state – a distributed database or file system

• Distributed caching to improve performance

The CAP Theorem

• E. A. Brewer, “Towards robust distributed systems,” in Proc. 19th
Ann. ACM Symp. on Principles of Distributed Computing (PODC
'00), 2000, pp. 7. doi: 10.1145/343477.343502

Tradeoff among Consistency, Availability, Partition-tolerance

170Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

CAP

Consistent - All requests will return the same value (note that this is
different from the “C” in SQL ACID transactions)

Available – All requests return some value

Partition-tolerant – System continues to operate when there is a
network partition between stateful nodes

Possibilities:

• CP – Sacrifice availability – e.g., most SQL implementations

• AP – Sacrifice consistency – e.g., many NoSQL data stores

• CA – Sacrifice partition-tolerance - e.g., single node or single
point of failure (SPOF) routing

171Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

CAP Implications

Recognize when this tradeoff is relevant – is there replicated state
in a distributed software system?
What does the design accommodate? Is that reasonable?
Testing to validate the edge cases is REALLY hard

• Kyle Kingsbury, aka Aphyr, has made a career of this
• http://jepsen.io (We’ll talk about this in more detail later)
• Worth studying his approaches and results

http://jepsen.io/

172Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Time in Distributed Systems

Operating system-level clock synchronization is not achievable for

cloud applications

Cloud Service Providers CAN provide atomic/GPS clock

synchronization for some nodes in their data centers

• E.g., Google’s Spanner distributed database relies on GPS

clocks

• Applications can leverage cloud services that depend on tight

time synchronization

Many distributed systems use software “clocks” (i.e. counters) to

order events – this is usually good enough

• Lamport clocks or timestamps

• Vector clocks

173Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Time Synchronization Implications

Be wary of systems that get time directly from the operating system

to order or synchronize events

• E.g., comparing file timestamps across nodes

Log correlation across nodes is difficult without message IDs or

similar tactics

A related issue: You can’t set the clock of a cloud server

• Testing cases like leap second handling gets tricky

• Designs that introduce a time abstraction layer to separate

application time from OS time are more testable

174Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Distributed Systems Concepts

In this module, we discussed
• Clouds are distributed software systems
• The “laws of physics” that limit the visibility and capabilities of

distributed software systems
• Impact on testing approach

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Testing at Scale in the Cloud

Architecture of Cloud-based Systems

176Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Testing at Scale in the Cloud

In this module, we will discuss

• Challenges of testing cloud-based software

• Examples of commercial leading practices for cloud testing

177Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

You have to test cloud software in the cloud

“… asking to boot a cloud on a dev machine is equivalent to
becoming multi-substrate, supporting more than one cloud

provider, but one of them is the worst you’ve ever seen”

- Fred Hébert*

* Quoted in https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16

178Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Definition of Testing

In this section, we take a broad view – testing is the collection of
evidence about the quality of a system
Encompasses both cyber assurance and operational effectiveness
activities
Test activities usually involve making compromises due to
constraints on controllability and observability.

179Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

How does the cloud affect testing practices?

Controllability:

+ Easy to exactly reproduce

environment (infrastructure as code)

+ Easy and affordable to scale up

workload (requests and data sets)

- Time-consuming to transfer big

test sets into the cloud – try to

generate in the cloud

- Hard/impossible to break some

things for testing (e.g., network,

power, …) – need to simulate these

+/- “Automate all the things” – can

add complexity

Observability:

+ Easy and affordable to save

everything

- Expensive and time-consuming to

get big result sets out of the cloud –

need to summarize/analyze in the

cloud

+ There are cloud-based tools to

help summarize and analyze

- Cloud native services are opaque

black-boxes – may need to test for

longer periods or multiple times to

adequately characterize

180Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

What have we said already about testing

Infrastructure as code, versioned environments

• For deploying the target system

• For deploying the test and data analysis environment

Cloud-based software is a distributed system

• All the principles of testing distributed systems still apply, even

though the control mechanisms may change

Consider unintended side effects during testing (e.g., triggering

autoscaling)

• Impacts fidelity

• May impact testing cost

Fault simulation instead of fault creation

• Usually intrusive – impacts fidelity

181Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Common Infrastructure →
Reuse Test and Assurance Evidence
Within a particular cloud provider environment (e.g., Amazon EC2),
you can reuse some test results and evidence related to cloud
native services

• E.g., everyone is using the same S3 Simple Storage Service, so
results about performance, availability, etc. should be reusable
across systems

Validate service configuration instead of runtime behavior

182Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Test Data Sets

It is time-consuming to get big test sets into the cloud, so if you
have to upload a data set, plan to do it only once

Avoid uploading:
• Generate and save the data set in the cloud
• Generate the data set on-the-fly (compute resources are cheap)

Strategies to save data sets
• In block storage (e.g., AWS S3), and read into VM instance

(slower, cheaper, scalable)
• As snapshot’d read-only volume attached to VM instance file

system (faster, more expensive, attach to single VM)

183Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Test clients/workload driver connectivity

Cloud Provider

System Under
Test

(Cloud Server)

Test
Driver/Client

WAN

Connect Within Cloud Connect through WAN

Cloud Provider

System Under
Test

(Cloud Server)

Test
Driver/Client

WANTest
Driver/Client

184Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Which client configuration should I use?

Connect Within Cloud
Use for when real client will be in

the same cloud as the system-

under-test (duh!)

Use to stress performance

• Scale up clients

• Optimal network capacity

Connect through WAN
Use when the real client will

access the system-under-test

over the WAN (duh!)

Use when it is not feasible to

host the test client in the cloud

(e.g., hardware-in-the-loop)

Can require careful configuration

if the client is in the same cloud

• CSPs try to optimize to keep

traffic off the WAN

• Consider putting test clients in

another cloud (e.g., test AWS

system using Azure clients)

185Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Example of Commercial Testing Practice
“Chaos Engineering”
Chaos Engineering is the discipline of experimenting on a
distributed system in order to build confidence in the system’s
capability to withstand turbulent conditions in production.

- http://principlesofchaos.org
Closed loop – develop, test, refactor…
Originated at Netflix – Chaos Monkey and the Simian Army

• Test in production
• Randomly select and crash servers
• Use robust observability framework to assess impact

186Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Chaos Engineering Principles*

Start by defining ‘steady state’ as some measurable output of a

system that indicates normal behavior.

• Note that this depends on having a well-instrumented system-

under-test

Hypothesize that this steady state will continue in both the control

group and the experimental group.

Introduce variables that reflect real world events like servers that

crash, hard drives that malfunction, network connections that are

severed, etc.

• In the cloud, we will have to simulate much of this

Try to disprove the hypothesis by looking for a difference in steady

state between the control group and the experimental group.

* http://principlesofchaos.org

187Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Example of Commercial Testing Practice
“Jepsen”
Jepsen is an effort to improve the safety of distributed databases,
queues, consensus systems, etc.

- https://jepsen.io
Focused on properties of distributed storage systems

• Durability, atomic writes, replica consistency
Applies knowledge of where the edge cases are and how you get
there

• E.g, faulty networks, unsynchronized clocks, and partial failure
Code at https://github.com/jepsen-io/jepsen

• Control node
• Clients that generate workload (write and read)
• “Nemesis” - inject (simulate) faults under control of Control node
• Checker

188Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Comments on Jepsen

Included as an example
• This is how experts are testing software in the cloud
• Use the cloud to test the cloud - cost-effective elastic capacity to

generate scalable workloads
• Open source
• Applies domain knowledge of both

- cloud (what are the possible faults?) and
- system-under-test (what are the edge cases?)

We don’t expect that you would ever use the tool directly

189Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

And one more time…

We’re never finished saying that testing cloud-based software is
never finished

• Cloud services evolve independently of your systems

• Cloud services can evolve silently

• Cloud infrastructure evolves – networks, ingress/egress,

performance

Assurance is not a one-time event

190Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Testing at Scale in the Cloud

In this module, we discussed

• Challenges of testing cloud-based software

• Examples of commercial leading practices for cloud testing

[Distribution Statement A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Wrap-Up

Architecture of Cloud-based Systems

192Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and

unlimited distribution.

Perspectives on Cloud-based Systems

There are useful perspectives that can provide insights when

considering cloud-based systems

• Cloud as COTS

• Cloud as Common Platform

• Cloud as System of Systems

Adapting existing practices, processes, and knowledge can help us

in the cloud

193Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud as COTS

Adopting cloud computing introduces many of the concerns that we
are familiar with from COTS

• Supply chain integrity
• Vendor lock-in
• Lack of transparency
• Mismatch between vendor’s evolution direction and system

evolution direction
• Mismatch between vendor’s evolution cadence and system

evolution cadence
• Need for vendor-specific skills for development and test

194Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud as Common Platform

DoD seems to view this as a benefit of cloud adoption

Common platform concerns:

• Cost/benefit of system-optimized platform vs. common platform

• Establishing and maintaining common baseline across programs

• Sharing knowledge and experience about the platform across
programs

• Migration from system-unique to common platform, short-term or
long-term use of hybrid deployment

195Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud as System of Systems

Partly inherent in any cloud-based system,
but also due to the type of data-intensive
systems that we deploy to the cloud (e.g.,
situational awareness, decision support,
business analytics)

Sources evolve
independently
User workloads
change over time

• New uses
• New mix of

operations
Cloud quality of
service varies

196Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Cloud as System of Systems

Concerns:
• Definition of system boundary for design and for T&E
• Ongoing monitoring of deployed system – is it operating within

its design envelope?
- Initial T&E of that monitoring
- Who is responsible for watching the deployed system?

• Coordination of evolution (similar to common platform concern)

197Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Final Take-aways

We covered:
• How cloud computing is different from traditional data center

system deployment
• Virtualization, cloud-native services

• Controllability and observability in the cloud impacts test and
evaluation

• Cloud computing improves some system qualities while
inhibiting others – this affects test and evaluation

• Cloud-based systems introduce some new cybersecurity risks

198Architecture of Cloud-based Systems
© 2018 Carnegie Mellon University

[Distribution Statement A] Approved for public release and
unlimited distribution.

Questions and Discussion

