Code Reuse Attacks and How to
Find Them

Edward J. Schwartz
Software Engineering Institute/ CERT
Carnegie Mellon University

Carn(‘,gi(‘, Mellon Univorsitv [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0948

(:il l'l](‘gi(‘ N](‘I l()n l V[] i\'(‘l'h'il}' Cr}’g)‘?g 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
) Carnegie

-) Mellon University 2
Software Engineering Institute

Background: Traditional Control Flow Exploits

A control flow exploit executes code of the attacker's choosing in place of the
intended application code

| Exploit ‘
Shellcode Padding Pointer

Computation Control Flow Vulnerability
What does the exploit do? How to control IP?
Carnegie Mellon University crose j?ijp S [Distribution Statement A] Approved for public release and unlimited distribution. 3

Software Engineering Institute

Background: Traditional Control Flow Exploits

p

Exploit

~1995: OS defenses made the creation of an exploit difficult ©
- DEP: Data Execution Prevention
- Prevent attacker from simply injecting new attacker code into process

Carnegie Mellon University CPOSC 2019 [Distribution Statement A]

© 2019 Carnegie Mellon University

Software Engineering Institute

Background: Data Execution Prevention - Memory A

High
Executable code usually known at compile time &

* Memory should (almost) never be writable and
executable at the same time

» Code regions are executable (but not writable)
» Stack and heap are writable (but not executable)

Prevents attacker from injecting new code into the
memory space

Widely available in many computing devices (even LOW
phones and tablets!) Writable

Executable

Carncgie M(‘HOH Univorsitv CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution. 5

. . . © 2019 Carnegie Mellon University
Software Engineering Institute

Background: Data Execution Prevention

P

Exploit

Padding Poir;ter

Program crashes because
shellcode is not executable

Carnegie Mellon University CPOSC 2019
- b . . . © 2019 Carnegie Mellon University
Software Engineering Institute

Background: Traditional Control Flow Exploits

Exploit

Padding Poir:1ter

~1995: OS defenses made the creation of an exploit difficult ©

- DEP: Data Execution Prevention
- Prevent attacker from simply injecting new attacker code into process

~1997: Attackers figured out they can still create exploits by reusing code already
in the program

Cﬂ[‘]l(‘,"'i(‘ Mellon l_vni\’(‘rsi[v CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
© . . . © 2019 Carnegie Mellon University
Software Engineering Institute

Background: Code Reuse Attacks

movl $42, 0x8048423

addrl:
pop %eax
ret

addr2:
pop %ebx
ret

addr3:
mov %ebx, (%eax)
ret

[Memory

 Program Code

Writable
Executable

Carnegie Mellon University
Software Engineering Institute

CCCCCCCCC
© 2019 Carnegie Mellon University

i lement A] Approved for public release and unlimited distribution

nextaddr
addr3
~ |%eax value
e M| | 5€DX addr2

stack

addrl: addr2: addr3:
pop %eax pop %ebx mov %ebx, (%eax)
ret ret ret

Carncgic Mcllon Univcrsity CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2019 Carnegie Mellon University
Software Engineering Institute

Background: Code Reuse Attacks

Return Oriented Programming (ROP)
* ROP c Code Reuse
» Find gadgets, code sequences ending in ret, that perform useful actions
- Very similar to processor instructions

addrl: addr2: addr3:
pop %eax pop %ebx mov %ebx, (%eax)
ret ret ret

- ret allows gadgets to be chained together
» Used in virtually all practical exploits of memory safety vulnerabilities
 Turing-complete: can simulate arbitrary programs!

Carncg‘ i(‘)](‘“0[] l 'n i\'(‘rsil \ ' CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
- b . . " © 2019 Carnegie Mellon University
Software Engineering Institute

Modern Code Reuse Attacks s Memory)
L High
Address Space Layout Randomization (ASLR)
* Pre-ASLR: Code is always at the same address

» Early ASLR: Library code is randomized
* Modern ASLR: Most code is randomized

Modern defenses
 Control Flow Integrity
* Many others
* Restrict control flow transitions to valid targets
- (Usually) determined statically Low &

i+

Unrandomized Code

Defenses =» Less Code Available for Reuse]
Randomized Code

Carn(‘,gi(‘, M(‘ll()l’l Univcrsitv CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2019 Carnegie Mellon University 1 1
Software Engineering Institute

P(Success)

How Much Code is Too Much Code?
Schwartz, et. al. Q: Exploit Hardening Made Easy, 2011 USENIX Security Symposium.

- e . e

— (Call/Store
= = (Call (libc)

0.3 05 0.7 09

T T I | T I T
1e+04 2e+04 5e+04 1e+05 2e+05 5e+05 1e+06

File Size (Bytes)
In 80% of executables larger than /bin/true (20
KiB), we can create a code reuse attack that calls any
libc function with any argument.

Carucg‘i(‘)I(‘ll()ﬂ l_vni\'(‘rsil \ ' CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
- b . . . © 2019 Carnegie Mellon University 12
Software Engineering Institute

What Can | Do as a Developer?

» Compile code in a way that supports DEP and ASLR
- Linux: Compile programs as Position Independent Executables (PIES) using -fPIE
- Windows: Compile programs with /NXCOMPAT and /DYNAMICBASE
- These are now enabled by default on modern compilers ©

Cal'l](‘,g‘i(‘ \](‘I l()n l V[] i\’(‘['si[\' CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
' ‘ y © 2019 Carnegie Mellon University

Software Engineering Institute

13

How Can | Tell If My Program Uses DEP and ASLR?

 Linux: https://github.com/slimm609/checksec.sh

DEP ASLR

Cﬂl‘llﬂ"’i(‘ NI(‘HO{] l_vniv(‘['sil \ ' CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
© . . . © 2019 Carnegie Mellon University 14
Software Engineering Institute

https://github.com/slimm609/checksec.sh

How Can | Tell If My Program Uses DEP and ASLR?

* Windows: https://github.com/NetSPI/PESecurity

PS C:\Program Files\TechSmith\Camtasia 9> Get-PESecurity .\CamtasiaStudio.exe

FileName : C:\Program EJj ith\Camtasia 9\CamtasiaStudio.exe
. AMD64
: True
: True
: True
: True
: False
: N/A
ControlFlowGuard : False
HighentropyVA : True

Carncg‘io \l(‘l]()n l 'n i\’(‘I'Sil\' CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
7 €) 7 © 2019 Carnegie Mellon University 15
Software Engineering Institute

https://github.com/NetSPI/PESecurity

What Can | Do as a Developer?

« Compile code in a way that supports DEP and ASLR
- Linux: Compile programs as Position Independent Executables (PIES) using -fPIE
- Windows: Compile programs with /NXCOMPAT and /DYNAMICBASE
- These are now enabled by default on modern compilers ©

 Ensure that 3 party code supports DEP and ASLR
- One bad apple spoils the bunch!

Carncgie M(‘HOH Univorsitv CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution.
. . . © 2019 Carnegie Mellon University
Software Engineering Institute

16

How Can | Tell If My Program Uses DEP and ASLR?

* Windows: https://github.com/NetSPI/PESecurity

PS C:\Program Files\TechSmith\Camtasia 9> Get-PESecurity .\glib-2.0.d11
: C:\Program Ed i Camtasia 9\glib-2.0.d11 ; Mse:c:ry ‘
: AMD64 e
: False leraWCode
: False . Libr N de
: True pa— "
: False ‘Program Code
: N/A " NE——

: False
: True

Always remember to check libraries!

Carnegie Mellon University C:SECC 2019) [Distribution Statement A] Approved for public release and unlimited distribution.
© 2019 Carnegie Mel

Software Engineering Institute

17

https://github.com/NetSPI/PESecurity

What Can | Do as a Developer?

» Compile your code with extra defenses
- Address Sanitizer (Linux): clang/gcc -fsanitize=address
- Control Flow Integrity (Linux): clang -fsanitize=cfi
- Stack Cookies (Windows): c1 /gs
- Control Flow Integrity (Windows): c1 /guard:cf

Carnegie Mellon University CPOSC 2019 [Distributio
- s) J © 2019 Carnegie Mellon University
Software Engineering Institute

n Statement A] Approved for public release and unlimited distribution.

18

What Can | Do as a Developer?

Carnegie Mellon Uniy

Software Engineerin

ConsoleApplication1 Property Pages

Configuration: ‘Active(Debug)

v | Platform: ‘ Active(Win32)

v

? X

' Configuration Manager... 1

4 Configuration Properties A

General

Debugging

VC++ Directories

4 C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Output Files
Browse Information
Advanced
All Options
Command Line
4 Linker

General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata <

o e

< >

Enable String Pooling
Enable Minimal Rebuild
Enable C++ Exceptions
Smaller Type Check

Basic Runtime Checks
Runtime Library

Struct Member Alignment
Security Check

Enable Function-Level Linking
Enable Parallel Code Generation
Enable Enhanced Instruction Set
Floating Point Model

Enable Floating Point Exceptions
Create Hotpatchable Image

Yes (/Gm)
Yes (/EHsc)
No

Both (/RTC1, equiv. to /RTCsu) (/RTC1)
Multi-threaded Debug DLL (/MDd)

Default

Enable Security Check (/GS)

Control Flow Guard Yes (/guard:cf)

Not Set

Precise (/fp:precise)

Stack
Cookies

[€]

CFI

Control Flow Guard
Guard security check helps detect attempts to dispatch to illegal block of code. (/guard:cf)

[ok]| cancel || Apply |

fistribution.

19

What Can | Do as a Developer?

* | use a language that is:
- Compiled to byte-code (e.g., Java, python)
- Interpreted (e.g., shell script)
- JIT compiled to native instructions (e.g., Javascript)

Code reuse attacks are not your
responsibility!*

* Attackers can use JIT compilers to JIT produce code for them to be reuse...

(]ill'll(‘\‘_"il‘ xl(‘"()n lvlli\(‘rsi['\' CF"O‘?C 2019 el . [Distribution Statement A] Approved for public release and unlimited distribution.
i} X 2019 Carnegie Mellon University
Software Engineering Institute

20

Take Aways

* Prior to Data Execution Prevention (DEP), attackers would specify their
computation by injecting shellcode (machine code)

« Since DEP, attackers now use code reuse attacks to specify the attacker's
computation using code already in the program

« 20 KiB of unprotected code is enough to be dangerous
- Ensure that your programs (and dependencies) are compiled for DEP & ASLR

* Bonus: Employ other runtime protections such as Control Flow Integrity (CFI)

Carnegie Mellon University CPOSC 2019 [Distribution Statement A] Approved for public release and unlimited distribution
y © 2019 Carnegie Mellon University

Software Engineering Institute 21

Questions?

Contact

Edward J. Schwartz

Research Scientist
CMU/SEI/CERT/Threat Analysis
eschwartz@cert.org

Carnegie Mellon University CPOSC 2019
g . . c © 2019 Carnegie Mellon University
Software Engineering Institute

[Distribution Statement A] Approved for public release and unlimited distribution.

22

mailto:eschwartz@cert.org

