
1
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Code Reuse Attacks and How to
Find Them

Edward J. Schwartz

Software Engineering Institute/CERT

Carnegie Mellon University

2
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0948

3
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Traditional Control Flow Exploits

A control flow exploit executes code of the attacker's choosing in place of the

intended application code

Shellcode PointerPadding

Computation
What does the exploit do?

Control Flow Vulnerability
How to control IP?

Exploit

4
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Traditional Control Flow Exploits

~1995: OS defenses made the creation of an exploit difficult

- DEP: Data Execution Prevention

- Prevent attacker from simply injecting new attacker code into process

Shellcode PointerPadding

Exploit

5
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Data Execution Prevention

Executable code usually known at compile time

• Memory should (almost) never be writable and

executable at the same time

• Code regions are executable (but not writable)

• Stack and heap are writable (but not executable)

Prevents attacker from injecting new code into the

memory space

Widely available in many computing devices (even

phones and tablets!)

Library Code

Stack

Heap

Program Code

Memory

Low

High

Writable
Executable

6
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Data Execution Prevention

Shellcode PointerPadding

Exploit

Program crashes because
shellcode is not executable

7
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Traditional Control Flow Exploits

~1995: OS defenses made the creation of an exploit difficult

- DEP: Data Execution Prevention

- Prevent attacker from simply injecting new attacker code into process

~1997: Attackers figured out they can still create exploits by reusing code already

in the program

Shellcode PointerPadding

Exploit

8
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Code Reuse Attacks

Library Code

Stack

Heap

Program Code

Memory

Low

High

Writable
Executable

movl $42, 0x8048423

addr1:
pop %eax
ret

addr2:
pop %ebx
ret

addr3:
mov %ebx, (%eax)
ret

9
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

nextaddr
addr3
value
addr2

%eax
%ebx

stack
address

addr1:
pop %eax
ret

addr2:
pop %ebx
ret

addr3:
mov %ebx, (%eax)
ret

10
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Background: Code Reuse Attacks

Return Oriented Programming (ROP)

• ROP ⊂ Code Reuse

• Find gadgets, code sequences ending in ret, that perform useful actions

- Very similar to processor instructions

• ret allows gadgets to be chained together

• Used in virtually all practical exploits of memory safety vulnerabilities

• Turing-complete: can simulate arbitrary programs!

addr1:
pop %eax
ret

addr2:
pop %ebx
ret

addr3:
mov %ebx, (%eax)
ret

11
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Modern Code Reuse Attacks

Address Space Layout Randomization (ASLR)

• Pre-ASLR: Code is always at the same address

• Early ASLR: Library code is randomized

• Modern ASLR: Most code is randomized

Modern defenses

• Control Flow Integrity

• Many others

• Restrict control flow transitions to valid targets

- (Usually) determined statically

Library Code

Stack

Heap

Program Code

Memory

Low

High

Unrandomized Code
Randomized Code

Library Code

Program Code

Defenses Less Code Available for Reuse

12
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

In 80% of executables larger than /bin/true (20
KiB), we can create a code reuse attack that calls any

libc function with any argument.

How Much Code is Too Much Code?

Schwartz, et. al. Q: Exploit Hardening Made Easy, 2011 USENIX Security Symposium.

13
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Can I Do as a Developer?

• Compile code in a way that supports DEP and ASLR

- Linux: Compile programs as Position Independent Executables (PIEs) using -fPIE

- Windows: Compile programs with /NXCOMPAT and /DYNAMICBASE

- These are now enabled by default on modern compilers

14
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

How Can I Tell If My Program Uses DEP and ASLR?

• Linux: https://github.com/slimm609/checksec.sh

DEP ASLR

https://github.com/slimm609/checksec.sh

15
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

How Can I Tell If My Program Uses DEP and ASLR?

• Windows: https://github.com/NetSPI/PESecurity

DEP

ASLR

?

https://github.com/NetSPI/PESecurity

16
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Can I Do as a Developer?

• Compile code in a way that supports DEP and ASLR

- Linux: Compile programs as Position Independent Executables (PIEs) using -fPIE

- Windows: Compile programs with /NXCOMPAT and /DYNAMICBASE

- These are now enabled by default on modern compilers

• Ensure that 3rd party code supports DEP and ASLR

- One bad apple spoils the bunch!

17
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

How Can I Tell If My Program Uses DEP and ASLR?

• Windows: https://github.com/NetSPI/PESecurity

DEP

ASLR

Always remember to check libraries!

https://github.com/NetSPI/PESecurity

18
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Can I Do as a Developer?

• Compile code in a way that supports DEP and ASLR

- Linux: Compile programs as Position Independent Executables (PIEs) using -fPIE

- Windows: Compile programs with /NXCOMPAT and /DYNAMICBASE

- These are now enabled by default on modern compilers

• Ensure that 3rd party code supports DEP and ASLR

- One bad apple spoils the bunch!

• Compile your code with extra defenses

- Address Sanitizer (Linux): clang/gcc –fsanitize=address

- Control Flow Integrity (Linux): clang –fsanitize=cfi

- Stack Cookies (Windows): cl /gs

- Control Flow Integrity (Windows): cl /guard:cf

19
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Can I Do as a Developer?

CFI

Stack
Cookies

20
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What Can I Do as a Developer?

• I use a language that is:

- Compiled to byte-code (e.g., Java, python)

- Interpreted (e.g., shell script)

- JIT compiled to native instructions (e.g., Javascript)

* Attackers can use JIT compilers to JIT produce code for them to be reuse…

Code reuse attacks are not your
responsibility!*

21
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Take Aways

• Prior to Data Execution Prevention (DEP), attackers would specify their

computation by injecting shellcode (machine code)

• Since DEP, attackers now use code reuse attacks to specify the attacker's

computation using code already in the program

• 20 KiB of unprotected code is enough to be dangerous

- Ensure that your programs (and dependencies) are compiled for DEP & ASLR

• Bonus: Employ other runtime protections such as Control Flow Integrity (CFI)

22
CPOSC 2019
© 2019 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Questions?

Contact

Edward J. Schwartz

Research Scientist

CMU/SEI/CERT/Threat Analysis

eschwartz@cert.org

mailto:eschwartz@cert.org

