
[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile in Government:
Executive Overview

October 2019

2Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON

AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other manner without

requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government purposes, the SEI

recommends attendance to ensure proper understanding.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0966

3Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agenda

Today’s landscape

Agile basics: meaning behind the vocabulary

Beyond the small team: Agile in the larger ecosystem

Scaled Agile Framework (SAFe)

How do we get there: enabling Agile culture

4Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

“Simply delivering what was initially

required on cost and schedule can lead to

failure in achieving our evolving national

security mission — the reason defense

acquisition exists in the first place.”

Honorable Frank Kendall

Under Secretary of Defense (AT&L)
2015 Performance of The Defense Acquisition System

Why does the
DoD/Govt care?

Deliver performance

at the speed of relevance

Streamline rapid, iterative

approaches from

development to fielding

National Defense Strategy Summary

Jan 2018

5Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Sample of Reported Results on DoD/Federal Programs

• Quantifiable cost savings
and 6-month early
delivery

• Significant cost avoidance

• Reduced rework &
unplanned releases

• Dramatically increased
productivity/capacity, with
reduced cost of delivery

• Improved insight into
contractor performance
and progress

• Early discovery &
resolution of Cat 1 defects
(one year prior to
integration test event)

• Early discovery &
resolution of interface
issues

• Improved flight test
efficiency

• Early insight for end users
into functionality of
delivered system

• Better responsiveness to
users with rapidly
fluctuating requirements

• Heightened awareness &
collaboration, improved
realization of tradeoffs

• Improved workflow
management

6Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

7Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Complex software costs pose a military threat (e.g., in Aviation Software)

1960 1970 1980 1990 2000 2010 2020

6

8

10

12

14

16

18

20

So
ft

w
ar

e-
B

as
ed

 C
ap

ab
ili

ty
Ln

(O
n

b
o

ar
d

 S
LO

C
)

F-16: 135K
F-16D: 236K

F-22: 1.7M

F-35 (2008): 6.8M

A300B: 4.6K

A300FF: 40K

A310: 400K

A320: 800K
A340: 2M

B757/767: 190K

B747: 370K
B737: 470K

B777: 4M

Calendar Year

F-35 (2012): 24M

SAVI: System Architecture Virtual Integration (incl. members Airbus, Boeing, Embraer, US FAA/NASA, Honeywell, Rockwell Collins, CMU and UTC)

SLOC: Source Lines of Code (a proxy measure of software complexity/functionality)

We are now in an era where

software costs limit military

capability

Software as percentage of total system cost : 1997: 45% 2010: 70% 2020: 80+%

Augustine’s Law #16

“In the year 2054, the entire defense budget will

purchase just one tactical aircraft. This aircraft will have

to be shared by the Air Force and Navy 3½ days each

per week except for leap year, when it will be made

available to the Marines for the extra day.“

Norman Ralph Augustine

SAVI projects a limit of affordability at

27.5MSLOC or $10B in software costs

8Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile Manifesto

Common myth:

The manifesto is
often misinterpreted
to mean:

no documentation,
no process, and
no plan!

Through this work we have come to value:

That is, while there is value in the items on the right,
we value the items on the left more.

http://www.agilemanifesto.org/

http://www.agilemanifesto.org/

9Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile Principles-1

1. Highest priority is satisfy the customer through early and continuous delivery of

software.

2. Welcome changing requirements, even late in development…

3. Deliver working software frequently, from a couple of weeks to a couple of months...

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Provide environment and support they

need…

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

10Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile Principles – 2

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development…a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Adapted from http://agilemanifesto.org/principles.html

11Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Working Definition of Agile

Agile (adj.): An iterative and incremental

(evolutionary) approach to software

development which is performed in a highly

collaborative manner by self-organizing teams

within an effective governance framework with

“just enough” ceremony that produces high

quality software in a cost effective and timely

manner which meets the changing needs of its

stakeholders. [Ambler 2013]

[Ambler 2013] Ambler, Scott. Disciplined Agile Software Development:

Definition.

http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

12Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Some Observable Characteristics of Agile Implementations

Iterative—elements are expected to move from skeletal to completely fleshed out over time, not all in one

step

Incremental—delivery doesn’t occur all at once

Collaborative—progress is expected to be made by stakeholders and the development team working

collaboratively throughout the development timeframe

Loosely-coupled Architecture—multiple self-organizing, cross-functional teams work concurrently on

multiple product elements (e.g., requirements, architecture, design, and the like) for multiple loosely coupled

product components

Dedicated—team members are allowed to focus on the tasks within an iteration/release as opposed to

multi-tasking across multiple projects

Time-boxed or Flow-based—relatively short-duration development cycles that permit changes in scope

rather than changes in delivery time frame

13Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Taking an Iterative Approach

Single batch – one process steps per iterations

Multiple batches, one process step per batch per

iteration

Multiple batches, complete all work on each batch

at the end of each iteration

Further decomposition into smaller packages, with

multiple start-to-finish cycles in each iteration.

Iteration 1 Iteration 2 Iteration 3

14Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Traditional vs. Agile Approaches

Traditional approach

• Is consistent with the acquisition lifecycle

provided in typical acquisition guidance

• Works well for

- programs with stable requirements and

environment, with known solutions to the

requirements

- programs with a homogeneous set of

stakeholders who communicate well via

documents

- programs for which the technology base is

evolving slowly (technology is not expected to

be refreshed/replaced within the timeframe of

the initial development)

Nidiffer, K. Miller, S. & Carney, D. Potential Use of Agile Methods in Selected DoD Acquisitions: Requirements Development and

Management (CMU/SEI-2013-TN-0006), September 2013.

Agile approach works well for

• programs with volatile requirements and

environment

• programs where solutions are sufficiently

unknown that significant experimentation

is likely to be needed

• programs for which the technology base is

evolving rapidly

• programs with stakeholders who can engage

with developers in ongoing, close collaboration

15Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Important Points to Remember: Agile Basics

Agile is an iterative, incremental, highly collaborative approach that prioritizes

responsible responsiveness to changing conditions and as-built product over

projections

• There are many valid ways to implement the principles

• A wide variety of popular engineering methodologies fall under the umbrella of “Agile”

Agile approaches require collaboration across the enterprise to be successful

• Contracts, finance, test, end users…

Agile approaches support fast learning cycles and adaptation to changing

conditions/volatility

• Changes in technology, threats, priorities and diverse stakeholders, unknown solutions/experimentation

• Traditional highly sequential (“waterfall”) approaches are well-suited to homogeneous, stable environments with

slowly changing requirements

16Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Many Methods Generally Termed “Agile”

Scrum
XP (Extreme

Program-
ming)

Crystal Test-Driven
Development

Scaled
Agile

Frame-
work

Disciplined
Agile

Delivery
Kanban

focused on team

management practices

focused on team

technical practices

Encourages risk-based

selection of practices; different

patterns for different contexts

Technical and management

practices focused on writing

the test that proves

acceptance, then coding to

that

Pull-based

approach

particularly

favored for

services like

security,

systems

engineering

Originally derived

from Rational Unified

Process, designed to

scale

Merger of lean,

Kanban, and other

Agile methods to

support large scale

projects

Lean and Agile Basics

17Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile Principles were Designed & Focused on Small Teams

We operate on a massive scale – how does Agile work “in the large”?

Some considerations when scaling above a few small teams:

• Managing interfaces among the many products/system components that multiple

teams are working on…

• Synchronizing releases and events across multiple teams…

• Organizing inventory (backlog) of requirements productively to support the

development pace of multiple small teams….

• Dealing with specialty disciplines (UX, security, etc.) that have significant inputs to the

evolving product, but aren’t needed as full time team members….

• Mindfully specifying architecture (“just enough”) and other far-reaching concerns…

• Incorporating high assurance requirements (safety of flight, IA, nuclear surety…)

© Scaled Agile, Inc.

Foundations of the
Scaled Agile Framework® (SAFe®) 4.5

V4.5.0

We thought
we’d be
developing like
this.

Library of Congress

But sometimes it feels
like this.

Problems
discovered

too lateNo way to
improve

systematically

Hard to
manage

distributed
teams

Late

deliveryToo little
visibility Too early

commitment
to a design
that didn’t

work

Poor
morale

Massive
growth in

complexity

Phase gate
SDLC isn't

helping
reduce riskUnder-

estimated
dependencies

And our retrospectives
read like this:

Management’s challenge

It is not enough that management commit themselves

to quality and productivity. …

They must know what it is they must do.

Such a responsibility cannot be delegated.

—W. Edwards Deming

“… and if you can’t come, send no one.”

—Vignette from Out of the Crisis, Deming,1986

What it is they must do

• Embrace a Lean-Agile mindset

• Implement Lean-Agile practices

• Lead the implementation

• Get results

© Scaled Agile, Inc.

Embrace a Lean-Agile mindset

Embrace Lean-Agile values

House of Lean

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Agile Manifesto

LEADERSHIP

R
es

p
ec

t
fo

r
p

eo
p

le
 a

n
d

 c
u

lt
u

re

Fl
o

w

In
n

o
va

ti
o

n

R
el

e
n

tl
es

s
im

p
ro

ve
m

e
n

t

VALUE

Value in the shortest
sustainable lead time

That is, while there is value in the items on the
right, we value the items on the left more.

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

#1 - Take an economic view

#2 - Apply systems thinking

#3 - Assume variability; preserve options

#4 - Build incrementally with fast, integrated learning cycles

#5 - Base milestones on objective evaluation of working systems

#6 - Visualize and limit WIP, reduce batch sizes, and manage queue lengths

#7 - Apply cadence, synchronize with cross-domain planning

#8 - Unlock the intrinsic motivation of knowledge workers

#9 - Decentralize decision-making

SAFe Lean-Agile principles

Building incrementally accelerates value delivery

4 444 :

Documents Documents Unverified System System

And delivers better economics

Early delivery provides fast value with fast feedback

Time

V
al

u
e

D
el

iv
er

y

Fast feedback

© Scaled Agile, Inc.

Implement Lean-Agile practices

© 2017 Scaled Agile, Inc. All Rights Reserved. 1.30© 2017 Scaled Agile, Inc.

SAFe® is a freely revealed knowledge base

of integrated, proven patterns for enterprise Lean-

Agile development.

Knowledge for people building the world's most important systems

scaledagileframework.com

Essential SAFe provides the basis for success

Nothing beats an Agile Team

• Cross-functional, self-organizing entities that can define, build and
test a thing of value

• Applies basic scientific practice: Plan—Do—Check—Adjust

• Delivers value every two weeks

Team
1

Team
n

Do

CheckAdjust

Plan

PDCA

That integrates frequently

• Avoid physical branching
for software

• Frequently integrate hardware
branches

• Use development by intention in
for inter-team dependencies

Integration points control product development.
— Dantar Oosterwal, The Lean Machine

Agile Team 1

Agile Team 2

Mainline

Check in
each story

Check out most
functionality

Check newest
changes back in

Always current
mainline increases

program velocity

Full system
integration at least

once per iteration

Story

Story

System
demo

System Team

current

Applies test automation
Test automation supports rapid regression testing

Implemented in the same iteration

Maintained under version control

Passing vs. not-yet-passing and
broken automated tests are the real iteration
progress indicator

D
o

n
e

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5

…

 Test 1
Test 2

 Test 3
Test 4
Test 5

…

P
ro

gr
es

s

Test automation

Building functionality

Iteration

Except a team of Agile Teams

• Align 50-125 practitioners to a common mission

• Apply cadence and synchronization, Program Increments every 6-12 weeks

• Provide Vision, Roadmap, architectural guidance

D

CA

P

D

CA

PD

CA

P D

CA

P D

CA

P D

CA

P D

CA

P D

CA

P

With some Architectural Runway
Architectural Runway—existing code, hardware components, etc. that
technically enable near-term business features

 Enablers build up the runway

 Features consume it

 Architectural Runway must be continuously maintained

 Enablers extend the runway

Architectural Runway

… to support
future features

Implemented now …

Feature
Feature

Feature

Enabler

Bringing together the necessary people

Business Product
Mgmt

Hardware Software Testing

A G I L E R E L E A S E T R A I N

Program DeploymentArch/
Sys Eng.

Synchronizes with PI Planning

 All stakeholders face-to-face (but typically multiple locations)

 Management sets the mission, with minimum possible constraints

 Requirements and design emerge

 Important stakeholder decisions are accelerated

 Teams create—and take responsibility for—plans

Future product development tasks can’t be pre-determined. Distribute planning and control to those who can understand and

react to the end results. — Michael Kennedy, Product Development for the Lean Enterprise

For a short video PI planning example, see: https://youtu.be/ZZAtl7nAB1M

Demonstrates the full system every two weeks

• An integrated solution demo

• Objective milestone

• Demo from the staging environment, or
the nearest proxy

Full system

System
Team

Continuously delivers value to customers with DevOps

Inspects and Adapts every PI
Every PI, teams systematically address the larger

impediments that are limiting velocity.

Portfolio SAFe aligns strategy and execution

Large Solution SAFe coordinates ARTs with a Solution
Train

Full SAFe for large enterprises

© Scaled Agile, Inc.

Lead the implementation

Leadership foundation

People are already doing their best; the

problems are with the system. Only

management can change the system.

—W. Edwards Deming

R
es

p
ec

t
fo

r
p

eo
p

le
 a

n
d

 c
u

lt
u

re

Fl
o

w

In
n

o
va

ti
o

n

R
el

e
n

tl
es

s
im

p
ro

ve
m

e
n

t

VALUE

LEADERSHIP

Implementation Roadmap

© Scaled Agile, Inc.

Get results

Business results

30 – 75% faster

time-to-market

10 – 50% happier,

more motivated

employees

20 – 50% increase in

productivity
25 – 75%

defect reduction

See ScaledAgileFramework.com/case-studies

See ScaledAgileFramework.com/case-studies

Financial Services / Electronics / Software / Telecom / Retail & Distribution / Government / Healthcare / Insurance / Medical
Technology / Pharmaceutical / Media / Manufacturing / COTS Software / Customer Care & Billing / Outsourcing

© Scaled Agile, Inc.

Gain the KnowledgeGain the Knowledge

ScaledAgileFramework.com

Explore the SAFe knowledge base and find

free resources:

 Articles

 Guidance

 Presentations

 White papers

 Videos

 Case studies

 Leading SAFe

 SAFe for Teams

 SAFe Scrum Master

 SAFe PO/PM

CORE

ADVANCED

 SAFe Advanced Scrum Master

 Implementing SAFe

 SAFe Release Train Engineer

ScaledAgile.com

Find SAFe

training worldwide

© 2017 Scaled Agile, Inc. All Rights Reserved. 1.54© 2017 Scaled Agile, Inc.

SAFe® for Lean Enterprises

70% US Fortune 100 enterprises have
SAFe certified professionals

2 million
Annual visitors to SAFe
and Scaled Agile websites

150
Scaled Agile Partners
in 50 countries

180,000
SAFe certified
professionals
in 100+ countries

Fastest Growing Method

• 11th Annual State of Agile Report by VersionOne

• 2017 Scaling Agile Report by cPrime

SAFe cited as preferred solution for scaling Agile,

making SAFe the most popular scaling method above Scrum,

Scrum of Scrums, and all other frameworks

Configurable
SAFe is able to accommodate enterprises

of all sizes and industries

SAFe:

Freely available

knowledge base,

downloads, and

resources for

people building

the world’s most

important

software and

systems

Pledged 1%

Scaled Agile stock equity
& employee time to
Pledge 1% campaign

Freely Available

SAFe’s knowledge base is freely

available at scaledagileframework.com

#1 - Take an economic view

#2 - Apply systems thinking

#3 - Assume variability; preserve options

#4 - Build incrementally with fast, integrated learning cycles

#5 - Base milestones on objective evaluation of working systems

#6 - Visualize and limit WIP, reduce batch sizes, and manage queue lengths

#7 - Apply cadence, synchronize with cross-domain planning

#8 - Unlock the intrinsic motivation of knowledge workers

#9 - Decentralize decision-making

SAFe Lean-Agile principles

Used with permission.

56Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Utilization is the Wrong Goal

Mon Tue Wed Th Fri 100% Utilization:

• Magnifies the impact of variation

• Maximizes task-switching overhead

• Assures slower overall progress

Change is inevitable, plan to learn

Multi-tasking is a myth we don’t accurately

comprehend

57Agile in Government: Executive Overview
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Maximum Utilization is Counterproductive

© 2016 Software Engineering Institute

3.58© Scaled Agile, Inc.

Finding optimum batch size

Optimum batch size is an example of a U-curve optimization.

Total costs are the sum of

holding costs and

transaction costs

Higher transaction costs

shift optimum batch size

higher

Higher holding costs shift

batch size lower

Optimum

batch size
(lowest total

cost)

Items per batch

C
o

s
t

Principles of Product Development Flow, Don Reinertsen

3.59© Scaled Agile, Inc.

Reducing optimum batch size

Reducing transaction costs reduces total costs, and shifts optimum batch

size lower.
Reducing batch size:

- Increases predictability

- Accelerates feedback

- Reduces rework

- Lowers cost

Batch size reduction probably

saves twice what you think

Reducing transaction

costs example

https://youtu.be/RRy_73ivcms
2:09

Principles of Product Development Flow, Don Reinertsen

Optimum

batch size
(lowest total

cost)

Items per batch

C
o

s
t

https://youtu.be/RRy_73ivcms
https://youtu.be/RRy_73ivcms
https://youtu.be/RRy_73ivcms
https://youtu.be/RRy_73ivcms
https://youtu.be/RRy_73ivcms
https://youtu.be/RRy_73ivcms

60Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Story Splitting is an Enabler of Smaller Batch Size Too

vs

Splitting stories requires engineering judgment

61Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Besides Longer Cycle Time, Queues are Just Generally Bad

The Principle of Queueing Waste: Queues are the root cause of the

majority of economic waste in product development.

Queues create:

• Longer Cycle Time

• Increased Risk

• More Variability

• More Overhead

• Lower Quality

• Less Motivation
Principles of Product Development Flow,
Don Reinertsen

#1 - Take an economic view

#2 - Apply systems thinking

#3 - Assume variability; preserve options

#4 - Build incrementally with fast, integrated learning cycles

#5 - Base milestones on objective evaluation of working systems

#6 - Visualize and limit WIP, reduce batch sizes, and manage queue lengths

#7 - Apply cadence, synchronize with cross-domain planning

#8 - Unlock the intrinsic motivation of knowledge workers

#9 - Decentralize decision-making

SAFe Lean-Agile principles

Used with permission.

63Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Cadence Enhances Predictability

A Late Bus:

• Makes people scramble

to get aboard

• They don’t know when

the next one will get

here

Then the next bus

comes along empty

© 2016 Software Engineering Institute

64Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Late Releases Become “Feature Magnets”

As things start to slip

• Influential people

get ‘their priorities’

moved up, rather

than deferred

• Pressure increases

on early releases

• Functions slated for

final release can’t be

guaranteed…

Release 2

Release 1

Product
Launch
FOC

Full
Demo
IOC

Release 3

Release 4 & CleanupPlan A

R.2

Release 1

R.3

R1.Drop 2

R.4 & CleanupPlan B

65
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

How SAFe Might Translate into a DoD Acquisition
Environment

66
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

A More Detailed Look at a Possible Agile Implementation in DoD

67
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

How do we think & talk about requirements?

Typical hierarchy (from SAFe, in this case):

• Epic – could be analog to contract-level requirements

• Capability – could be analog to System Level requirements

• Feature– could be analog to software capability requirements

• Story – could be analog to software component level
requirements or below

One of the decisions to make is how different levels of
requirements will be treated

• One dependency is how the software part of the program
interacts with systems engineering/other stakeholders

• Another criterion is how requirements change will be
accommodated

- Level at which allocated baseline is established is crucial to
having appropriate flexibility for requirements evolution

SAFe Requirements
Hierarchy

68
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Addressing Requirements at Multiple Levels
(SAFe Terminology)

Portfolio
(Epic)

Large
Solution

(Capabilities)

Program
Increment
(Features)

Iteration/Sprint
(Stories)

Issues in Governing
Requirements

•Portfolio: Assuring that the value stream
is representative of operations

•Large Solution: assuring that acquisition
and users or their representatives are
engaged and relevant

•Release: Assuring that Product Managers
(or Chief Product Owners) are actively
engaged in refining and prioritizing stories
and features ahead of the development
teams

•Iteration: Assuring that Product Owners
appropriately represent user needs and
management goals when interacting with
development teams

Where should acquisition program offices be controlling and/or participating?

Issues in Expressing
Requirements

•Portfolio: Conops level, trying to establish
Business/Enabling Epics

•Program/Large Solution: moving from
“shall” statements to Capabilities

•Release: Decomposing Capabilities into
meaningful Features that are executable
in a few iterations; translating Features
into User & Enabling Stories that can be
allocated to iterations (sprints)

•Iteration: “slicing” Stories in such a way
that meaningful working software can be
produced in short (2-3 week) iterations

69
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

One of Top Questions SEI Hears about Agile

How do I accommodate Technical Reviews like PDR

(preliminary design review), CDR (critical design review),

etc.?

• Especially if contract was formulated as traditional and program

office or developer wants to use Agile after the fact

70
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

S3 Patterns in Agile Settings for PDR, CDR
Design/Execution

Pattern A

•PMO uses traditional PDR and CDR in each block as traditional
milestone events

Pattern B

•PMO team participates in each of multiple Preliminary and Critical
Design Working meetings (PPDW/PCDW)* – one per iteration

•PDR and CDR are still held at some level of technical discussion
and also include management elements

Pattern C

•PMO technical staff (engineers) participate in each PPDW/PCDW
(per iteration)

•PDR and CDR become management level reviews

•No technical detail is discussed in PDR and CDR other than a
summary for management

*PPDW=Partial Preliminary Design Walkthrough;
PCDW=Partial Critical Design Walkthrough

71
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Multiple Dimensions of DevOps

Culture
• Developer and Ops collaborate

(Ops includes security)

• Developers and Operations

support releases beyond

deployment

• Dev and Ops have access to

stakeholders who understand

business and mission goals

Automation/

Measurement
• Automate repetitive and error-

prone tasks (e.g., build, testing,

and deployment maintain

consistent environments)

• Static analysis automation

(architecture health)

• Performance dashboards

Process and Practices
• Pipeline streamlining

• Continuous-delivery practices

(e.g., continuous integration;

test automation; script-driven,

automated deployment;

virtualized, self-service

environments)

System and Architecture
• Architected to support test

automation and continuous-

integration goals

• Applications that support

changes without release (e.g.,

late binding)

• Scalable, secure, reliable, etc.

Culture

Process
and

Practices

System and
Architecture

Automation
and

Measurement

What About DevOps?

72
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

The Agile, DevOps, Waterfall Continuum

Update frequency
100s/

day

1/

day

1/

month

1/

year

High Low

1/

quarter
1/

week

Agile

DevOps Waterfall

Forces such as

• System size

• Complexity

• Regulations

Forces such as

• User demand

• Competitiveness

• Automation

Need for

automation

What About DevOps?

73
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

The Classic Engineering “V Model”

Source: Palmquist, Steve, et al. Parallel Worlds:

Optimizing one part of the process:

• Doesn’t optimize the whole process

• Simply exposes roadblocks by other

parts of the process

“Agile at the bottom of the V”

loses benefits of agility:

• Too many decisions are made too early

• No learning opportunities

This isn’t enough

74
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Program Level vs. Team Level Measures

Release 1 Release 2 Release 3 Release 4

Geared to
External
Stakeholders

Intended to
Serve Needs
of the Team
Typically Not
Shared Out-
side the Team

75
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Typical Team Measures for Agile Development

Metrics used by and for the development team

• Kanban Board for Task Tracking

• Sprint Burn-Down Charts

• Release Burn-Up Charts

• Velocity Tracking

• Cumulative Flow Diagrams

76
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Program Level Measures

Because teams focus on delivering working code:

• The program can measure finished product (size, complexity, quality…)

–Rather than estimates of the finished product being carried (and revised) across the program timeline, we
can know actual values for incrementally completed work

• The program can focus on ‘concept-to-capability’ cycle

–Hidden tradeoffs can compromise design time, or squeeze testing schedules in a waterfall lifecycle –
because they are not necessarily visible until later.

–Cycle time measures in agile lifecycles can show the entire value stream within each incremental delivery.

• Overall capacity can be understood earlier

–Rather than measuring the productivity of individual disciplines, overall program capacity to achieve the
desired schedule can be estimated

77
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Category Description

Flow Flow measures come out of the lean engineering and management environment. They focus on understanding

the

“idea to realization” cycle time. Flow measures for senior oversight focus on the development organization’s

ability to consistently meet timelines for deployment of IT functions according to a roadmap. These are cycles

measured in weeks and months, rather than quarterly or annual cycles seen traditionally.

Engagement Engagement measures help oversight organizations understand the level of collaboration that has been

achieved. Timely involvement of stakeholders from the workflow supported by the IT system results in a deeper

understanding of intended usage. Evolution of the workflow to better utilize technology results from engagement

with the correct decision makers.

Quality Quality measures at senior oversight levels have less to do with software defect rates than they do with the

quality of the services supported by the IT systems. For example, improvements in wait times for key services, or

percentage of “made it through in one pass” attempts to use a service are potential quality measures. These

measures, in turn, drive the priorities for quality measures among software teams.

Risk Risk measures for senior oversight can focus on the development organizations’ performance in managing

threats to their success, more than those threats themselves. When using Agile methods, confidently asserting

the expected success of a program is no longer based on the comprehensive- ness of up-front specification

documents. Therefore, an oversight approach for Agile cannot rely on review and approval of such projective

documents as the primary mode of risk identification. The short and steady cadence of Agile promotes rapid

learning.

Categories of oversight metrics: Ask new questions

Source: SEI Congressional testimony July 14, 2016 to House Ways and Means Committee.

78
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

If this is so great, why isn’t everyone already doing it?

Strategy

Structure

Procedures

Skills

Time to adjust Magnitude of Technological
Change Sought

Culture

Years LargeSmallWeeksMonths

Level of Learning Required

79
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

SEI Observations on Agile Adoption Barriers

Which of these do
your programs face?

80
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

SEI Observations on Key Enablers to Agile Adoption

Which of these do
your programs exhibit?

81
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

“Traditional” Adoption Tools and Methods Work Well with Agile
Adoption

Understand the Change Cycle
and Your Adoption Population

Prepare for Both Communication and
Implementation Support Mechanisms
that are Needed

*Adapted from Daryl R. Conner and Robert W. Patterson,
“Building Commitment to Organizational Change,”
Training and Development Journal (April 1983): 18-30.

82
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Where Leadership, Vision, and Goals Fit into Organizational
Improvement

Vision Capable
Workforce

Capable
Processes

Organizational
Culture

Action
Plan

Resources Incentives
Change

Confusion

Misaligned
behavior

Barriers to
change

Reinventing
the wheel

Adapted by Buttles (2010) from: Delorise Ambrose, 1987

Anxiety &
frustration

Slow or little
progress

Capable
Workforce

Capable
Processes

Organizational
Culture

Action
Plan

Resources Incentives

Vision Capable
Workforce

Capable
Processes

Organizational
Culture

Action
Plan

Incentives

Vision Capable
Processes

Organizational
Culture

Action
Plan

Resources Incentives

Vision Capable
Workforce

Organizational
Culture

Action
Plan

Resources Incentives

Vision Capable
Workforce

Capable
Processes

Action
Plan

Resources Incentives

Vision Capable
Workforce

Capable
Processes

Organizational
Culture

Action
Plan

Resources

False starts
Vision Capable

Workforce
Capable
Processes

Organizational
Culture

Resources Incentives

Workshop

83
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Attributes of Agile Success in Government Organizations

Permission
to “fail fast”
(learn fast)

Enough up-
front system
and software
architecture

Top
Cover

Dedicated
staff

Willing and
open to

adopt new
modes of
operation

Training
in Agile

Use of
Agile
coach

Willing to
work

collaboratively
across

government/
contractor
boundary

84
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

What do leaders have to do to change the environment?

85
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile is an iterative approach to software delivery that builds and delivers software incrementally from the

start of the project, instead trying to deliver it all at once near the end.

• Early opportunity for course correction, especially when the environment changes after a program has begun

• Early risk reduction, especially in user-facing areas of the system

• Shorter “idea to realization” cycle resulting in fast user feedback for future increments of functionality

But it’s about more than software engineering to do it right: Needs business/acquisition process

support

Oversight: Responsibility for oversight and due diligence doesn’t change; approach to oversight in an Agile

setting does. Some examples:

Contracting: Benefits can’t be realized without contracting approaches that allow for fast learning & pivoting.

Some examples:

The FAR/DFARS encourage bold innovation – the culture has a long way to go

About Agile: Summary

Flow: Predictable delivery volume, deployment
speed

Engagement: stakeholder
involvement

Quality: Defect backlog Risk: Deferred complexity

Supply contracts Blanket contracts w/pre-qualified contractors/IDIQ pools

Service contracts Commercial item contracts for development services (FAR
13.5)

86
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Agile will not solve all the complex problems associated with software-dominant systems

acquisition and sustainment efforts
• But it has contributed significantly to successful efforts (both in IT and weapons systems)

Benefits from using Agile methods only manifest when the developer and acquisition efforts are

aligned

Government obligations in oversight must change when Agile is the focus of development
• SEI has observed negative consequences in organizations that do not address these changes.

Changing the oversight approach in Agile settings means asking different questions on a new

cadence
• Leads to different measurement and reporting approaches as well.

A focused government workforce development effort is required to enable the knowledge, skills,

and abilities needed for effective oversight and interaction in Agile settings.

1July 14, 2016, Link: http://waysandmeans.house.gov/event/hearing-modernizing-social-securitys-information-technology-infrastructure/

About Agile: Summary (contd.)
(adapted from SEI Testimony to House Ways and Means Social Security Subcommittee)

http://waysandmeans.house.gov/event/hearing-modernizing-social-securitys-information-technology-infrastructure/

87
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Contact Information

Will Hayes

Principal Engineer

Software Engineering Institute

Email: wh@sei.cmu.edu

Phone: +1 412 268-6398

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

Web www.sei.cmu.edu/go/agile

mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/go/agile

88
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] This material has been approved for public release and

unlimited distribution

BACKUP MATERIALS

89
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

A Word about Sample RFP Language

No “iconic” RFP language for encouraging Agile development practices exists

• Lots of factors go into what language would be appropriate

• DCMA is considering changes to their policies related to audit points, etc, which could point to

some new language—not expected for another year

• NDIA System Engineering Agile working group developed a Special Report on this topic:

RFP Patterns and Techniques for Successful Agile Contracting

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484056

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484056

90
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Useful Interpretation of Agile Principles
for Government Settings (1/3)

Agile Principle Useful Interpretations in Government Settings

The highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

In government, the “customer” is not always the end user. The customer
includes people who pay for; people who use; people who maintain; as well as
others. These stakeholders often have conflicting needs that must be
reconciled

Welcome changing requirements, even late in
development. Agile processes harness change for the
customer’s competitive advantage.

Rather than saying “competitive” advantage, we usually say “operational”
advantage. This principle causes culture clash with the “all requirements up
front” perspective of many large, traditional approaches.

Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference for the
shorter timescale.

What it means to “deliver” an increment of software may well depend on
context. With large embedded systems, we are sometimes looking at a
release into a testing lab. Also, for some systems, the operational users are
not able to accept all: “deliveries” on the development cadence – because
there are accompanying changes in the workflow supported by the software
that require updates.

Business people and developers must work together
daily throughout the project.

In government settings, we interpret “business” people to be end users and
operators, as well as the other types of stakeholders mentioned in Principle 1,
since in many government settings, the business people are interpreted as the
contracts and finance group.

Source: SEI Congressional testimony July 14, 2016 to House Ways and Means Committee.

91
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Useful Interpretation of Agile Principles
for Government Settings (2/3)

Agile Principle Useful Interpretations in Government Settings

Build projects around motivated individuals. Give
them environment and support they need, and trust
them to get the job done.

A frequent challenge in government is to provide a suitable technical and
management environment to foster the trust that is inherent in Agile
settings. Allowing teams to stay intact and focused on a single work stream is
another challenge.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

In today’s world, even in commercial settings, this is often interpreted as
“high bandwidth” rather than only face-to-face. Telepresence via video or
screen-sharing allows more distributed work groups than in the past.

Working software is the primary measure of
progress.

Our typical government system development approaches use surrogates for
software – documents that project the needed requirements and design –
rather than the software itself, as measures of progress. Going to small
batches in short increments allows this principle to be enacted, even in
government setting, although delivery may well to be a test environment or
some internal group other than users themselves.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

This principle is a caution against seeing agility just as “do it faster.” Note that
this principle includes stakeholders outside of the development team as part
of the pacing.

Source: SEI Congressional testimony July 14, 2016 to House Ways and Means Committee.

92
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Useful Interpretation of Agile Principles
for Government Settings (3/3)

Agile Principle Useful Interpretations in Government Settings

Continuous attention to technical excellence and
good design enhances agility

This is a principle that often is cited as already being compatible with
traditional government development.

Simplicity– the art of maximizing the amount of
work not done– is essential.

One issue with this principle in government setting is that our contracts are
often written to penalize the development organization if they don't produce a
product that reflects 100% of the requirements. This principle recognizes that
not all requirements we think are needed at the onset of a project will
necessarily turn out to be things that should be included in the product.

The best architectures, requirements, and designs
emerge from self-organizing teams.

Note that the principle does not suggest that the development team is
necessarily the correct team for requirements and architecture. It is however,
encouraging teams focused in these areas to be allows some autonomy to
organize their work. Another complication in many government settings is
that we are often re-architecting and re-designing existing systems.

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

This principle is an attempt to ensure that “lessons learned” are actually
learned and applied rather than just being “lessons written”

Source: SEI Congressional testimony July 14, 2016 to House Ways and Means Committee.

93
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Constructing a Cumulative Flow Diagram1

Here we have a Pie Chart
showing the status of
30 ‘work packages’

This is a snapshot
for a single point in time.

184

5
3

Waiting

Working

Testing

Done

94
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Constructing a Cumulative Flow Diagram2

Same data, but
presented in a
stacked column
chart

For a single
point in time.

3
5
4

18

0

5

10

15

20

25

30

Waiting

Working

Testing

Done

95
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Constructing a Cumulative Flow Diagram3

… adding the next 7 times

3 4 5
7

13 14 15 16

5 4
5

4

3

5 4

7

4 5
4

6

4

2

6

4

18 17 16
13

10 9

5
3

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Waiting

Working

Testing

Done

96
Agile in Government: Executive Overview
© 2018 Carnegie Mellon University

. [DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution

Constructing a Cumulative Flow Diagram4

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Waiting

Working

Testing

Done

… now we are looking at the flow from “Waiting” to “Done”…
This view starts to show patterns a little easier…

Waiting

Done

© 2017 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Little’s Law L = λ W
…the long-term average number L of
customers in a stationary system is
equal to the long-term average effective
arrival rate λ multiplied by the average
time W that a customer spends in the
system…

http://mitsloan.mit.edu/faculty-and-research/faculty-directory/detail/?id=41432

Little’s Law in Agile Metrics

Three Metrics Emphasized*:

1. Work In Progress (the number of items that
we are working on at any given time),

2. Cycle Time (how long it takes each of those
items to get through our process), and

3. Throughput (how many of those items
complete per unit of time).

* Excerpted from page 13 of the book depicted on the right.

Utility of Little’s Law

Waiting

In Process

Done

Cycle Time

Work In Process

Throughput

Exercise: What is Going on Here?

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

Exercise: What MIGHT BE
Happening1

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

At time 2, and then again at
time 4, the number of items “In
Process” goes to zero.
• Have we lost the resource(s)

performing the work due to rework
demands from elsewhere?

• Is this intentional scheduling of
work to occur only during time
periods 1, 3, and 5?

Exercise: What MIGHT BE Happening2

The number of items that are “In
Process” is growing over time.
• The rate at which things enter “In Process”

is greater than the rate at which things
leave “In Process.”

• Are people moving onto new items without
completing their work?

• Are new resources being added, who start
new work at each time period?

• Are things moving into the “Done” state
quickly enough?

0

2

4

6

8

10

1 2 3 4 5

Waiting

In Process

Done

