USAARL Report No. 2019-11

# A Systematic Review of Cognitive Enhancement Interventions for Use in Military Operations

By Amanda Kelley<sup>1</sup>, Kathryn Feltman<sup>1</sup>, Emmanuel Nwala<sup>1</sup>, Kyle Bernhardt<sup>1,2</sup>, Amanda Hayes<sup>1,2</sup>, Jared Basso<sup>1,2</sup>, Colby Mathews<sup>1,2</sup>

<sup>1</sup>U.S. Army Aeromedical Research Laboratory <sup>2</sup>Oak Ridge Institute for Science and Education



## **United States Army Aeromedical Research Laboratory**

Warfighter Performance Group

August 2019

Approved for public release; Distribution unlimited.

#### Notice

#### **Qualified Requesters**

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Fort Belvoir, Virginia 22060. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

#### **Change of Address**

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

#### Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

#### Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | Form Approved<br>OMB No. 0704-0188                                                                     |                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.<br><b>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</b> |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 1. REPORT DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TE (DD-MM-YY                                                                                                                                      | YY) 2. REPO                                                                                                                                                             | ORT TYPE                                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                                                        | 3. DATES COVERED (From - To)                                                                                                                                                                                                                                                                                                                               |  |
| 12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -08-2019                                                                                                                                          |                                                                                                                                                                         | Final                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                        | Nov 16 to Mar 18                                                                                                                                                                                                                                                                                                                                           |  |
| 4. TITLE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUBTITLE                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | 5a. COI                                                                                                | NTRACT NUMBER                                                                                                                                                                                                                                                                                                                                              |  |
| A Systematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Review of Cog                                                                                                                                     | nitive Enhance                                                                                                                                                          | ement Interventions for                                                                                                                                                                                                                                | Use in                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| Military Opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ations                                                                                                                                            |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | 5b. GRA                                                                                                | ANT NUMBER                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | 5c. PRC                                                                                                | DGRAM ELEMENT NUMBER                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | da. Ealtman V                                                                                                                                     | other A Nir                                                                                                                                                             | ala Emmanyalı Damh                                                                                                                                                                                                                                     | andt Viela                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| Haves Amon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | da, reiuliali, K                                                                                                                                  | d: Mothews C                                                                                                                                                            | ala, Ellillalluel, Dellilla                                                                                                                                                                                                                            | alut, Kyle,                                                                                                                                               | 22900                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |  |
| nayes, Amano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | la, Dasso, Jare                                                                                                                                   | u, mathews, C                                                                                                                                                           | biby                                                                                                                                                                                                                                                   |                                                                                                                                                           | 5e. TASK NUMBER                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | E4 WO                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           | 51. WO                                                                                                 | RK UNIT NUMBER                                                                                                                                                                                                                                                                                                                                             |  |
| 7. PERFORMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G ORGANIZATI                                                                                                                                      | ON NAME(S) AI                                                                                                                                                           | ND ADDRESS(ES)                                                                                                                                                                                                                                         |                                                                                                                                                           | <u> </u>                                                                                               | 8. PERFORMING ORGANIZATION                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | romedical Des                                                                                                                                     | earch Laborate                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        | REPORT NUMBER                                                                                                                                                                                                                                                                                                                                              |  |
| $P \cap Box 620^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 577                                                                                                                                               |                                                                                                                                                                         | ny                                                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                        | USAARL 2019-11                                                                                                                                                                                                                                                                                                                                             |  |
| Fort Rucker, AL 36362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 9. SPONSORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | GAGENCY NAM                                                                                                                                                             | IF(S) AND ADDRESS(FS)                                                                                                                                                                                                                                  | 1                                                                                                                                                         |                                                                                                        | 10. SPONSOR/MONITOR'S ACRONYM(S)                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                                                                                                                                                                                                                                                                                                                  |  |
| 12. DISTRIBUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ION/AVAILABILI                                                                                                                                    | TY STATEMEN                                                                                                                                                             | Г                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 13. SUPPLEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NTARY NOTES                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 14. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| Future battlefi<br>and to interact<br>more efficient<br>mission succes<br>enhancement,<br>more appropri<br>interventions f<br>the identified of<br>duration of eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eld environment<br>with adaptive<br>processing of<br>ss and operation<br>including the u<br>ate for military<br>from randomiz<br>methods, further | nts will require<br>autonomous s<br>perceptual info<br>nal effectivene<br>use of stimulan<br>v settings. The<br>ed, placebo-co<br>er evaluations of<br>d prior to imple | Soldiers to process lar<br>ystems. Enhancing cog<br>yrmation, and quicker d<br>ess. The literature sugget<br>t agents, transcranial di<br>purpose of this review<br>introlled, experimental n<br>of not only the effective<br>ementation in military s | ge amounts of<br>nitive abilities<br>lecision-maki-<br>ests numerous<br>irect current s<br>was to summ-<br>research studi-<br>eness and safe<br>settings. | f mission<br>s such as<br>ng process<br>interven<br>timulatio<br>arize find<br>es. While<br>ety of the | n critical information within short periods<br>sustaining attention over longer periods,<br>sses in these environments will promote<br>ations for cognitive performance<br>on, as well as others, some of which may be<br>lings regarding the enhancement<br>e evidence supports the efficacy of some of<br>sse interventions but also the reliability and |  |
| 15. SUBJECT T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ERMS                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| cognition, atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ention, memory                                                                                                                                    | , enhancement                                                                                                                                                           |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| 16. SECURITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a, NAME OF RESPONSIBLE PERSON                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |
| a. REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b. ABSTRACT                                                                                                                                       | c. THIS PAGE                                                                                                                                                            | ABSTRACT                                                                                                                                                                                                                                               | OF                                                                                                                                                        | Loraine                                                                                                | e St. Onge, PhD                                                                                                                                                                                                                                                                                                                                            |  |
| UNCLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNCLAS                                                                                                                                            | UNCLAS                                                                                                                                                                  | SAR                                                                                                                                                                                                                                                    | 51                                                                                                                                                        | 19b. TEL                                                                                               | EPHONE NUMBER (Include area code)<br>334-255-6906                                                                                                                                                                                                                                                                                                          |  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                   | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                      | -                                                                                                                                                         | -                                                                                                      | Standard Form 298 (Rev. 8/98)                                                                                                                                                                                                                                                                                                                              |  |

1

This page is intentionally blank.

### Acknowledgements

The authors would like to thank Michelle Aguirre, the USAARL librarian, for her assistance in this project.

This page is intentionally blank.

| Table | of | Contents |
|-------|----|----------|
|-------|----|----------|

|                                     | Page |
|-------------------------------------|------|
| Introduction                        | 1    |
| Methods                             | 2    |
| Eligibility                         | 2    |
| Exclusion criteria                  | 3    |
| Procedure                           | 4    |
| Results                             | 4    |
| Pharmaceuticals/Drugs               | 4    |
| Herbal and Vitamin Supplements      | 8    |
| Training                            | 12   |
| Sleep                               | 14   |
| Transcranial Stimulation            | 16   |
| Miscellaneous                       | 22   |
| Miscellaneous Interventions         | 22   |
| Discussion                          | 25   |
| Pharmaceutical Interventions        | 25   |
| Herbal and Vitamin Supplements      | 26   |
| Training                            | 27   |
| Sleep                               | 27   |
| Transcranial Stimulation            | 27   |
| Miscellaneous                       | 28   |
| Recommendations for Future Research | 28   |
| Conclusions                         | 29   |
| References                          | 30   |

### List of Tables

| 1. Keywords Included in Literature Search                                                | 2   |
|------------------------------------------------------------------------------------------|-----|
| 2. Study Inclusion and Exclusion Criteria                                                | 3   |
| 3. Literature Search and Review Results                                                  | 4   |
| 4. Summary of Enhancement Effects with Pharmaceuticals/Drugs                             | 5   |
| 5. Summary of Enhancement Effects with Herbal and Vitamin Supplements                    | 8   |
| 6. Summary of Enhancement Effects with Training                                          | .12 |
| 7. Summary of Enhancement Effects with Sleep/Napping                                     | .14 |
| 8. Summary of Enhancement Effects with Transcranial Stimulation                          | .17 |
| 9. Summary of Enhancement Effects with Miscellaneous Cognitive Enhancement Interventions | s22 |
| · · ·                                                                                    |     |

This page is intentionally blank.

#### Introduction

Cognitive enhancement is broadly defined as the amplification of human cognitive functioning in the bid to improve information-processing system (Bostrom & Sandberg, 2009). In much research, the term "cognitive enhancement" is used in a therapeutic sense with diseased populations to describe interventions for remedying specific pathology or functional impairment. For our purposes, however, we are interested in an alternate definition of the term, specifically research describing interventions that augment cognitive abilities beyond normal, healthy function. Cognitive subsystems targeted for enhancement include but are not limited to: (1) information retention – memory; (2) information selection – attention; (3) information acquisition – perception; (4) information representation – understanding; and (5) information outputs – reasoning and decision-making (Bostrom & Sandberg, 2009).

Soldiers operating in future environments will face complex situations in which they must attend to increasingly larger volumes of information in a very short time, requiring speedy processing of mission relevant information, and the necessity to 'decide faster' – one of the four Army Science & Technology Priorities. In order to do so, and to achieve cognitive dominance, Soldiers will need to sustain attention and process information rapidly. Research is needed to determine the effectiveness and operational safety of stimulant agents as well as other cognitive enhancement interventions on military-specific task performance and in operational settings. Operational settings include, but are not limited to, training environments, field operations, and deployment to combat zones.

Cognitive enhancement, especially through pharmaceutical intervention, is not a new concept to the military. The history of military use of performance enhancement drugs dates back to the medieval period with the advent of some particularly fearless Scandinavian class of warriors known as "berserkers" who used amanita muscaria mushroom stimulant drugs known as "fly agaric" to improve their physical and mental abilities (Anonymous, 2004). As the use of enhancement drugs in the military evolved over the centuries, the first and second world wars saw significant growth in the use of unregulated performance enhancement drugs, especially amphetamine, cocaine, and opium, with the German, British, French and American militaries as prominent users (Kamienski, 2016). Notably, Hitler's famous use of methamphetamine to enhance Nazi soldiers' performance remains a historical precedence. Nazi pilots were reportedly consuming large amounts of methamphetamine to help sustain their fighting strengths against adversaries (Ohler, 2017). Pharmaceutical enhancement amongst American troops continued during the Vietnam War where psychoactive substances like Dexedrine (dextroamphetamine), codeine, and Darvon (opioid) helped heighten a sense of invulnerability, bravado and alertness among Soldiers (Kamienski, 2016).

However, many of the historical methods for enhancement were discontinued as new information surfaced regarding the safety of the pharmaceuticals being used, to include their potential for addiction. Therefore, the history of performance enhancement interventions in military operations informs current policy regarding their use with respect to ethical considerations and safety. Balancing enhancement with the health of the Soldier is a key priority in determining how best to implement these interventions. Many of the interventions under consideration for use in military operations (pharmaceutical and non-pharmaceutical) have been primarily studied in diseased populations or have not been fully evaluated with respect to safety. This has resulted in limited knowledge for how effective they are at enhancing above baseline

function as well as their appropriateness for military populations and settings. Thus, the purpose of this systematic review was to synthesize the existing literature on potential cognitive enhancement strategies for use by the military. The criteria for this review were structured such as to include studies using strong research designs (e.g., placebo-controlled, random assignment). The objectives were then to: 1) identify interventions that may be appropriate for use in operational settings, and 2) to identify gaps in the literature and areas for future research.

#### Methods

Literature searches were conducted in mainstream databases, including Defense Technical Information Center (DTIC), PubMed/Medline, clinicaltrials.gov, and PsychInfo. The literature search included "gray" (difficult to locate) literature, which required the assistance of a professional librarian on staff at the U.S. Army Aeromedical Research Laboratory. The keywords included in the search are displayed in Table 1.

| Categories          | Keywords                 |
|---------------------|--------------------------|
| Interventions       | Modafinil                |
|                     | Caffeine                 |
|                     | Pharmaceuticals          |
|                     | Dopamine agonists        |
|                     | Methylphenidate          |
|                     | Exercise                 |
|                     | Nutrition                |
|                     | Supplements              |
|                     | Vitamins                 |
|                     | Training                 |
|                     | Sleep                    |
|                     | Mental strategies        |
|                     | Transcranial stimulation |
| Cognitive Functions | Memory                   |
|                     | Attention                |
|                     | Decision Making          |
|                     | Judgments                |
|                     | Cognition                |
|                     | Enhancement              |
|                     | Spatial abilities        |
|                     | Visual perception        |
| Enhancement         | Performance              |
|                     | Enhancement              |

Table 1. Keywords Included in Literature Search

#### Eligibility

The inclusion criteria were set to be conservative in order to increase homogeneity and ensure a high level of study quality. To be included in the systematic review, a study must have the following characteristics: a) random assignment, b) control group (between-subjects designs) or placebo-controlled (within-subjects designs), c) healthy human subjects aged 18-50 years, d) assessments of cognition-enhancement using valid and reliable cognitive performance measures, e) published in the English language, and f) published between 2008 and 2018. Study exclusion and inclusion criteria are provided in Table 2.

| Criteria         | Included                            | Excluded                   |
|------------------|-------------------------------------|----------------------------|
| Date published   | 2008-2018                           | Any prior to 2008          |
| Study Designs    | Within-subjects placebo-controlled  | Non-random drug order      |
|                  | Between-subjects with control group | Non-random assignment      |
| Test Populations | Age: 18 to 50 years                 | Age: under 18 years and    |
|                  |                                     | over 50 years              |
|                  | Race: Any                           | Race: None                 |
|                  | Males and females                   | Gender: None               |
|                  | Healthy                             | Unhealthy or abnormal      |
|                  | Nationality: Any                    | Nationality: None          |
| Interventions    | Modafinil                           | None                       |
|                  | Caffeine                            |                            |
|                  | Pharmaceuticals                     |                            |
|                  | Dopamine agonists                   |                            |
|                  | Methylphenidate                     |                            |
|                  | Exercise                            |                            |
|                  | Nutrition                           |                            |
|                  | Supplements                         |                            |
|                  | Vitamins                            |                            |
|                  | Training                            |                            |
|                  | Mental strategies                   |                            |
|                  | Transcranial stimulation            |                            |
| Language         | English language                    | Non-English language       |
| Outcome Measures | Valid and reliable                  | Not validated              |
|                  | Neuropsychological tests of         | Not tested for reliability |
|                  | cognition                           |                            |
|                  | Measures of memory, attention,      | Measures of mood,          |
|                  | spatial reasoning, math reasoning,  | personality constructs,    |
|                  | decision making, and judgment       | imaging studies            |

Table 2. Study Inclusion and Exclusion Criteria

#### **Exclusion criteria**

The term cognition enhancement is used rather liberally in research. This review is focused on enhancement in specific areas of cognitive functioning. Therefore, studies that used only measures of mood, imagining, or other non-performance measures were excluded from the analysis given that the focus of the review is enhancement of *cognitive performance*. Also, studies using only measures of group performance (as opposed to individual performance) were excluded. All foreign language articles were excluded due to the lack of translation resources available to the investigators. Studies of unhealthy or abnormal populations, of humans under the age of 18 years or over the age of 50 years, or of animals were excluded. The use of healthy populations included populations who were not arbitrarily placed into abnormal circumstances, such as sleep deprivation protocols, in order to assess enhancement properties beyond their baseline function. Studies using measures of cognition that have not been validated or tested for reliability were excluded.

#### Procedure

The analysis was carried out according to the guidelines for systematic reviews and metaanalyses provided by Littell, Corcoran, and Pillai (2008) and Lipsy and Wilson (2001).

The research team first located potentially relevant studies using the search criteria specified above. The team then reviewed the titles and abstracts of the search results and requested full text versions of potentially relevant articles. All full text reports were reviewed for study eligibility. All eligible studies were independently read and reviewed by no less than two members of the research team. Minor discrepancies regarding eligibility were settled through discussion. The review process and results are provided in Table 3.

| Table 3. Literature Search and | Review | Resu | lts |
|--------------------------------|--------|------|-----|
|--------------------------------|--------|------|-----|

| Search Results (January 2018)                         | 3,807 |
|-------------------------------------------------------|-------|
| Duplicated citations                                  | 550   |
| Judged irrelevant or ineligible by title and abstract | 2,937 |
| Full text retrieved                                   | 320   |
| Included studies                                      | 136   |

#### Results

#### Pharmaceuticals/Drugs

Sixty-two<sup>\*</sup> articles were identified and reviewed, 37 of which did not meet the study criteria for inclusion. Nineteen articles were excluded because they were a review article (or meta-analysis), seven used animal models, seven were not experimental studies of cognitive enhancement, two were duplicates, one used an abnormal population, and two preceded the year 2008. Of the 25 included articles, majority of them studied modafinil (7 studies) or amphetamines (7 studies). Other drugs and drug classes studied includes selective serontin reuptake inhibitors (2 studies), methylphenidate (2 studies), cholinesterase inhibitors (2 studies), caffeine (2 studies), serotonin and norepinephrine reuptake inhibitors (2 studies), nootropics (1 study), selective inhibitor of cyclic guanosine monophosphate (1 study), nicotine (1 study), and antibiotics (1 study).<sup>†</sup> Table 4 provides a summary of enhancement effects.

<sup>\*</sup> One article describes a combination of a drug and transcranial stimulation and thus appears in both sections of the results. This article is only counted once in Table 3.

<sup>&</sup>lt;sup>†</sup> Note that the number of studies reported here exceeds the total number of articles included given that two articles studied more than one drug or drug class.

| 1 word 1: Summary of Emmandement Effects with I marmaceuteaus Drags | Table 4. Summa | ary of Enhancemer | nt Effects with | Pharmaceuticals/Drugs |
|---------------------------------------------------------------------|----------------|-------------------|-----------------|-----------------------|
|---------------------------------------------------------------------|----------------|-------------------|-----------------|-----------------------|

| Pharmaceuticals/Drugs                   |                      |                             |                                                                              |  |  |
|-----------------------------------------|----------------------|-----------------------------|------------------------------------------------------------------------------|--|--|
| 1. Main findings:                       |                      |                             |                                                                              |  |  |
| a. Baseline level of performance modera |                      |                             | ted enhancement such that enhancement                                        |  |  |
| (                                       | t in high performers |                             |                                                                              |  |  |
| b. Variability in tasks used            |                      |                             |                                                                              |  |  |
| c. ]                                    | Many effects         | are dose or time depende    | ent                                                                          |  |  |
| d. (                                    | Consistent fir       | ndings:                     |                                                                              |  |  |
|                                         | i. Enhan             | cement effects on attent    | ion tasks                                                                    |  |  |
|                                         | 11. No eff           | tects on working memory     | y tasks                                                                      |  |  |
| 2. Design,                              | individual di        | interences, and sample size | zes:                                                                         |  |  |
| a. I<br>b. I                            | Within subject       | ender were not reported     | range from 16-60 with significant effects                                    |  |  |
| c.                                      | Retween subi         | ects design – sample sizes  | es range from 26-70 with significant effects                                 |  |  |
| Drug                                    | Dose Dose            | Construct Measured          | Enhancement effect(s)                                                        |  |  |
| Modafinil                               | 100mg                | Abstract reasoning          | Enhancement (compared to placebo) in                                         |  |  |
| Wodamm                                  | Toomg                | Abstract reasoning          | low baseline performers (Esposito et al.,                                    |  |  |
|                                         |                      |                             | 2013)                                                                        |  |  |
|                                         |                      | Attention                   | Enhancement (compared to placebo)<br>(Cope et al., 2017)                     |  |  |
|                                         | 200mg                | Response inhibition         | Enhancement (compared to placebo)<br>(Mohamed et al., 2014)                  |  |  |
|                                         |                      | Implicit learning           | Enhancement (compared to placebo)<br>(Gilleen et al., 2014)                  |  |  |
|                                         |                      | Working memory              | No enhancement (Gilleen et al., 2014)                                        |  |  |
|                                         |                      | Attention                   | Enhancement (compared to placebo)<br>(Ikeda et al., 2017; Cope et al., 2017) |  |  |
|                                         |                      | Learning                    | No enhancement (Cope et al., 2017)                                           |  |  |
|                                         |                      | Alertness                   | No enhancement (Bellebaum et al., 2016)                                      |  |  |
|                                         |                      | Impulsivity                 | No enhancement (Bellebaum et al., 2016)                                      |  |  |
|                                         | 400mg                | Alertness                   | Higher levels of alertness than placebo<br>(Finke et al., 2010)              |  |  |
|                                         |                      | Visual Perception           | Enhancement (compared to placebo) seen                                       |  |  |
|                                         |                      | Processing Speed            | in low baseline performers (Finke et al.,                                    |  |  |
|                                         |                      |                             | 2010)                                                                        |  |  |
|                                         |                      | Visual Short Term           | Enhancement (compared to placebo) seen                                       |  |  |
|                                         |                      | wemory                      | 2010)                                                                        |  |  |
| Methylphenida                           | te 20mg              | Associative Learning        | Enhancement (compared to placebo) seen                                       |  |  |
|                                         |                      |                             | in high baseline performers (van der                                         |  |  |
|                                         |                      |                             | Schaaf, 2013)                                                                |  |  |
|                                         |                      |                             | performers (van der Schaaf, 2013)                                            |  |  |

|                                     | 30mg | Error Awareness                               | Enhancement compared to placebo<br>(reported effect size [Cohen's d' = 2.34])<br>(Hester, 2012)                            |
|-------------------------------------|------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                     | 40mg | Alertness                                     | Higher levels of alertness than placebo<br>(Finke et al., 2013)                                                            |
|                                     |      | Visual Perception<br>Processing Speed         | Enhancement (compared to placebo) seen<br>in low baseline performers (Finke et al.,<br>2013)                               |
|                                     |      | Visual Short Term<br>Memory                   | No enhancement (Finke et al., 2013)                                                                                        |
| Atomoxetine                         | 60mg | Error Awareness                               | No enhancement (Hester, 2012)                                                                                              |
| Amoxetine and<br>rTMS<br>(combined) | 60mg | Motor-sequence<br>learning                    | Enhancement (compared to control)<br>(Sczesny-Kaiser, 2014)                                                                |
| Citalopram                          | 30mg | Error Awareness                               | No enhancement (Hester, 2012)                                                                                              |
| Amphetamine                         | 10mg | Vigilance                                     | No enhancement (MacQueen, 2018)                                                                                            |
|                                     | 20mg | Speed of Processing                           | Performance deficits in high baseline<br>performers (Chou, 2013)                                                           |
|                                     |      | Attention/Vigilance                           | Enhancement in low baseline performers (Chou, 2013)                                                                        |
|                                     |      | Working Memory                                | Performance deficits in high baseline<br>performers (Chou. 2013)                                                           |
|                                     |      | Verbal Learning                               | Performance deficits in high baseline<br>performers (Chou, 2013)<br>Enhancement in low baseline performers<br>(Chou, 2013) |
|                                     |      | Reason and Problem                            | Enhancement in low baseline performers                                                                                     |
|                                     |      | Solving<br>Social Cognition                   | (Chou, 2013)<br>Performance deficits in high baseline<br>performers (Chou, 2013)                                           |
|                                     |      | Visual Learning                               | Performance deficits in high baseline<br>performers (Chou, 2013)                                                           |
|                                     |      | Vigilance                                     | Enhancement (compared to placebo) in<br>20mg dose group (MacQueen, 2018)                                                   |
| d-Amphetamine                       | 10mg | Verbal Memory                                 | Enhancement (compared to placebo) after<br>a week daily, no immediate effects<br>(Zeeuws 2010(a), Zeeuws, 2010(b)          |
| Mixed<br>amphetamine<br>salts       | 10mg | Verbal Convergent<br>Creative Thinking        | No enhancement (Farah, 2009)                                                                                               |
|                                     |      | Non-verbal<br>Convergent Creative<br>Thinking | Enhancement (compared to placebo)<br>(Farah, 2009)                                                                         |
|                                     |      | Verbal Divergent<br>Thinking                  | No enhancement (Farah, 2009)                                                                                               |

|                              |                              | Non-verbal Divergent<br>Thinking                     | No enhancement (Farah, 2009)                                                                                                                                                                                   |
|------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | 20mg                         | Episodic Memory                                      | Enhancement (compared to placebo) in<br>low baseline performers (Ilieva, 2015)                                                                                                                                 |
|                              |                              | Working Memory                                       | No enhancement (Ilieva, 2015)                                                                                                                                                                                  |
|                              |                              | Inhibitory Control                                   | No enhancement (Ilieva, 2015)                                                                                                                                                                                  |
|                              |                              | Non-verbal                                           | Enhancement (compared to placebo) in                                                                                                                                                                           |
|                              |                              | Convergent                                           | low baseline performers (Ilieva, 2015)                                                                                                                                                                         |
|                              |                              | Verbal convergent<br>creativity                      | No enhancement (Ilieva, 2015)                                                                                                                                                                                  |
|                              |                              | Non-verbal                                           | Enhancement (compared to placebo) in                                                                                                                                                                           |
|                              |                              | Intelligence                                         | low baseline performers (Ilieva, 2015)                                                                                                                                                                         |
|                              |                              | Verbal and                                           | No enhancement (Ilieva, 2015)                                                                                                                                                                                  |
| 0 1                          | 0                            | Mathematical Ability                                 |                                                                                                                                                                                                                |
| (nutraceutical<br>nootropic) | See<br>note*                 | Abstract Reasoning                                   | placebo group) (Stough, 2011)                                                                                                                                                                                  |
| Physostigmine                | 0.01<br>mg/kg<br>per<br>hour | Visual Attention                                     | Enhancement (compared to placebo<br>group) (Bauer, 2012)                                                                                                                                                       |
| Escitalopram                 | 10mg                         | Executive Attention                                  | Enhancement seen in acute (single dose<br>and sub-chronic (daily for 7 days) dosage<br>groups (compared to placebo) but effect<br>moderated by familiarity with task<br>(Drueke, 2009)                         |
| D-cycloserine                | 50mg                         | Visuospatial<br>Construction and<br>Nonverbal Memory | No enhancement (Otto et al., 2009)                                                                                                                                                                             |
|                              |                              | Logical Memory                                       | No enhancement (Otto et al., 2009)                                                                                                                                                                             |
|                              |                              | Secondary Verbal<br>Memory                           | No enhancement (Otto et al., 2009)                                                                                                                                                                             |
| Donepezil                    | 5mg                          | Visual Working<br>Memory                             | No enhancement (Reches, 2014)                                                                                                                                                                                  |
| Caffeine                     | 20mg                         | Attention                                            | No enhancement                                                                                                                                                                                                 |
|                              |                              | Short term memory<br>Long term memory                | Enhancement (as compared to placebo)<br>when collapsing across three tasks<br>(Davidson, et al., 2011)<br>Enhancement (as compared to placebo)<br>when collapsing across three tasks<br>(Davidson et al. 2011) |
|                              | 200mg                        | Motor Memory                                         | No enhancement (Hussain et al., 2015)                                                                                                                                                                          |
|                              | -                            | -                                                    | ,                                                                                                                                                                                                              |

\*huperzine A 150ug, Vinpocetine 15mg, Acetyl-l-carnitine 1500mg, r-alpha lipoic acid 400mg, rhodiola rosea 300mg, biotin 500ug

#### Herbal and Vitamin Supplements

The herbal and vital supplements studied included glucose, fish oil, fat, proteins, palm oil, and *Ginkgo biloba*. Thirty-one articles were retrieved and reviewed, 15 of which met eligibility criteria. Of those excluded, six did not include an experimental study of cognitive enhancement, six were reviews (or meta-analyses), two used animal models, and two used older adults. Table 5 presents a summary of the enhancement effects.

# Table 5. Summary of Enhancement Effects with Herbal and Vitamin Supplements Herbal and Vitamin Supplements

#### 1. Main findings:

- a. Mixed effects for working memory tasks
- b. Many effects are does or time dependent
- c. Consistent effects seen with:
  - i. Word recall tasks
  - ii. Working memory tasks on general neuropsychological batteries
  - iii. Information processing speed/accuracy/efficiency on general neuropsychological batteries
- 2. Design, individual differences, and sample sizes:
  - a. Findings by gender are not reported
  - b. Within subjects design sample sizes range from 18-32 with significant effects
  - c. Between subjects design sample sizes range from 63-140 with significant effects

| Supplement        | Dose              | Construct(s)              | Enhancement effect(s)           |
|-------------------|-------------------|---------------------------|---------------------------------|
|                   |                   | Measured                  |                                 |
| Brain-directed    | Multi-vitamin     | <b>Executive Function</b> | No enhancement (Amen et al.,    |
| nutrients mixture | (≈1,448mg), fish  |                           | 2013)                           |
|                   | oil (2.8g), brain | Reasoning                 | Enhancement (compared to        |
|                   | enhancement       |                           | placebo) (Amen et al., 2013)    |
|                   | supplement        | Memory                    | Enhancement (compared to        |
|                   | (≈1,424mg)        |                           | placebo) (Amen et al., 2013)    |
|                   |                   | Information Processing    | Enhancement (compared to        |
|                   |                   | Efficiency                | placebo) (Amen et al., 2013)    |
| Palm leaf extract | 500mg             | Working memory            | Enhancement (compared to        |
| oil*              |                   |                           | placebo) (Mohamed et al.,       |
|                   |                   |                           | 2013)                           |
|                   |                   | Spatial learning          | Enhancement (compared to        |
|                   |                   |                           | placebo) following 2 months     |
|                   |                   |                           | (Mohamed et al., 2013)          |
|                   |                   | Processing speed          | Enhancement (compared to        |
|                   |                   |                           | placebo) following 2 months     |
|                   |                   |                           | (Mohamed et al., 2013)          |
| DHA-rich fish     | 1g (daily dose    | Episodic Memory           | No enhancement (Jackson et al., |
| oil               | for 12-week       |                           | 2012)                           |
|                   | regiment)         | Attention                 | Enhancement (compared to        |
|                   |                   |                           | placebo) (Jackson et al., 2012) |

|                   |                               | Working Memory           | No enhancement (Jackson et al., 2012)                             |
|-------------------|-------------------------------|--------------------------|-------------------------------------------------------------------|
| EPA-rich fish oil | 1g (daily dose<br>for 12-week | Episodic Memory          | No enhancement (Jackson et al., 2012)                             |
|                   | regiment)                     | Attention                | No enhancement (Jackson et al., 2012)                             |
|                   |                               | Working Memory           | No enhancement (Jackson et al., 2012)                             |
| Fat               | 16g vegetable                 | Attention                | Enhancement (compared to placebo) (Jones et al. 2012)             |
|                   | on                            | Working Memory           | No enhancement (Jones et al., 2012)<br>2012)                      |
| Protein           | 40g                           | Attention                | No enhancement (Jones et al., 2012)                               |
|                   |                               | Working Memory           | Enhancement (compared to placebo) (Jones et al., 2012)            |
| Glucose           | 17g                           | Verbal Attention         | Enhancement (compared to placeba) (An at al. 2015)                |
|                   |                               | Non-verbal Attention     | Enhancement (compared to<br>placebo) (An et al., 2015)            |
|                   | 25g                           | Episodic Memory          | Enhancement (compared to placebo) (Brown et al. 2013)             |
|                   |                               | Attention                | No enhancement (Brown et al., 2013)<br>2013)                      |
|                   |                               | Associative learning     | No enhancement (Stollery et al., 2014)                            |
|                   |                               | Implicit Memory          | No enhancement (Owen et al., 2010)                                |
|                   |                               | Delayed Memory           | No enhancement (Owen et al., 2010; Scholey et al., 2009)          |
|                   |                               | Immediate Memory         | No enhancement (Owen et al., 2010)                                |
|                   |                               | Spatial working          | Enhancement (compared to                                          |
|                   |                               | memory<br>Working memory | placebo) (Owen et al., 2013)<br>Enhancement (compared to          |
|                   |                               |                          | placebo) (Owen et al., 2013)                                      |
|                   | 40g                           | Attention                | Enhancement (compared to placebo) (Jones et al., 2012)            |
|                   |                               | Working Memory           | No enhancement (Jones et al., 2012)                               |
|                   | 60g                           | Implicit Memory          | Enhancement (compared to placebo) (Owen et al. 2010)              |
|                   |                               | Delayed Memory           | Enhancement (compared to<br>placebo) (Owen et al., 2010,<br>2012) |
|                   |                               | Immediate Memory         | No enhancement (Owen et al., 2010)                                |

|                                  |        | Spatial working<br>memory<br>Working memory | Enhancement (compared to<br>placebo) (Owen et al., 2013)<br>Enhancement (compared to<br>placebo) (Owen et al., 2013)<br>Enhancement (compared to<br>placebo) (Owen et al., 2013) |
|----------------------------------|--------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 75g    | Memory                                      | No enhancement (MacPherson et al., 2015)                                                                                                                                         |
|                                  |        | Spatial ability                             | No enhancement (MacPherson et al., 2015)                                                                                                                                         |
| Cytidine 5'-<br>disphosphocoline | 500mg  | Verbal Learning                             | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)<br>Performance deficits in high<br>baseline performers (Knott et<br>al., 2015)           |
|                                  |        | Psychomotor Speed                           | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)                                                                                          |
|                                  |        | Working Memory                              | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)<br>Performance deficits in high<br>baseline performers                                   |
|                                  |        | Executive Function                          | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)                                                                                          |
|                                  |        | Delayed Recall                              | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)<br>Performance deficits in high<br>baseline performers (Knott et<br>al., 2015)           |
|                                  |        | Attention                                   | No enhancement (Knott et al., 2015)                                                                                                                                              |
|                                  | 1000mg | Verbal Learning                             | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)<br>Performance deficits in high<br>baseline performers (Knott et<br>al., 2015)           |
|                                  |        | Psychomotor Speed                           | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)                                                                                          |
|                                  |        | Working Memory                              | Enhancement (compared to<br>placebo) in low baseline<br>performers (Knott et al., 2015)                                                                                          |

|             |          |                        | Performance deficits in high          |
|-------------|----------|------------------------|---------------------------------------|
|             |          |                        | baseline performers                   |
|             |          | Executive Function     | Enhancement (compared to              |
|             |          |                        | placebo) in low baseline              |
|             |          |                        | performers (Knott et al., 2015)       |
|             |          | Delayed Recall         | Enhancement (compared to              |
|             |          |                        | placebo) in low baseline              |
|             |          |                        | performers (Knott et al., 2015)       |
|             |          |                        | Performance deficits in high          |
|             |          |                        | baseline performers (Knott et         |
|             |          | Attention              | al., $2013$ )                         |
|             |          | Auention               | 2015)                                 |
| Васора      | 450mg    | Working Memory         | No enhancement (Sathyan-              |
| monniera    |          |                        | arayanan, et al., 2013)               |
| (Brahmi)    |          |                        |                                       |
|             |          | Information Processing |                                       |
|             |          | Speed                  | No enhancement (Sathyan-              |
|             |          | A                      | arayanan, et al., 2013                |
|             |          | Attention              | No onhangement (Sothyon               |
|             |          |                        | arovenen et al. 2012                  |
| Amaniaan    | 100mm ~  | Wantring Manager       | Enhancement (command to               |
| American    | Toomg    | working Memory         | Placebol (Scholay et al. 2010)        |
| ginseng     |          | Attention              | Enhancement (compared to              |
|             |          | Attention              | Placebol (Scholay et al. 2010)        |
|             |          | Information Processing | No enhancement (Scholey et al., 2010) |
|             |          | Spood                  | 2010)                                 |
|             | 200mg    | Working Momory         | Enhancement (compared to              |
|             | 20011ig  | working wiemory        | placebo) (Scholey et al. 2010)        |
|             |          | Attention              | Enhancement (compared to              |
|             |          | Attention              | placebo) (Scholev et al. 2010)        |
|             |          | Information Processing | No enhancement (Scholev et al.        |
|             |          | Sneed                  | 2010)                                 |
|             | 400mg    | Working Memory         | Enhancement (compared to              |
|             | TOOME    | working wontony        | placebo) (Scholev et al 2010)         |
|             |          | Attention              | Enhancement (compared to              |
|             |          |                        | placebo) (Scholev et al. 2010)        |
|             |          | Information Processing | No enhancement (Scholev et al.        |
|             |          | Speed                  | 2010)                                 |
| Alpha Brain | ≈2,545mg | Intelligence           | No enhancement (Solomon et            |
| 1           |          | C                      | al., 2016)                            |
|             |          | Logical Memory         | No enhancement (Solomon et            |
|             |          | - /                    | al., 2016)                            |
|             |          | Visual Memory          | No enhancement (Solomon et            |
|             |          | -                      | al., 2016)                            |
|             |          | Verbal Memory          | Enhancement (compared to              |
|             |          |                        | placebo) after 45 days of             |

|                           | consumption (Solomon et al.,    |
|---------------------------|---------------------------------|
|                           | 2016)                           |
| Attention                 | Higher levels of alertness than |
|                           | placebo (Solomon et al., 2016)  |
| <b>Executive Function</b> | Enhancement (compared to        |
|                           | placebo) seen in low baseline   |
|                           | performers (Solomon et al.,     |
|                           | 2016)                           |
| Visual Short Term         | Enhancement (compared to        |
| Memory                    | placebo) seen in low baseline   |
|                           | performers (Solomon et al.,     |
|                           | 2016)                           |

\*Study design details were not reported

#### Training

Forty-one<sup>\*</sup> articles were reviewed and 16 met the eligibility criteria. Exclusions were due to lack of an experimental study (13 reviews, 1 statistical simulation), lack of cognitive performance measurements (7 studies), limited to a specialized or abnormal population (3 studies), and lack of enhancement strategy (1 study). Two types of training were evaluated primarily: neurofeedback training and task-specific training. Table 6 presents a summary of the enhancement effects.

#### Table 6. Summary of Enhancement Effects with Training

|                     |                      | Training                    |                                  |
|---------------------|----------------------|-----------------------------|----------------------------------|
| 1. Main fin         | dings:               |                             |                                  |
| a. N                | leurofeedback traini | ng yielded mixed results    |                                  |
| b. T                | ask training consist | ently produced enhanceme    | nt effects                       |
| 2. Design, i        | ndividual difference | es, and sample sizes:       |                                  |
| a. F                | indings by gender a  | re not reported             |                                  |
| b. B                | etween subjects des  | sign – sample sizes range f | rom 13-82 per group with         |
| significant effects |                      |                             |                                  |
| с.                  |                      |                             |                                  |
| Training            | Characteristics      | Construct(s)                | Enhancement effect(s)            |
|                     |                      | Measured                    |                                  |
| Neurofeedback       | Single session       | Executive function          | No enhancement (Escolano et al., |
| training            | (25-30 minutes)      |                             | 2014)                            |
|                     |                      | Attention                   | No enhancement (Escolano et al., |
|                     |                      |                             | 2014)                            |
|                     |                      |                             | Enhancement (compared to         |
|                     |                      |                             | sham) (Escolano et al., 2014)    |
|                     |                      |                             |                                  |

<sup>\*</sup> One article describes a combination of training and exercise and thus appears in this section as well as the miscellaneous section of the results. This article is only counted once in Table 3.

|                                                                   |                                                                                                                                        | _                                         |                                                                                                               |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                                                                        | Working memory                            | Enhancement (compared to placebo) (Escolano et al., 2014)                                                     |
|                                                                   |                                                                                                                                        | Verbal learning                           | No enhancement                                                                                                |
|                                                                   | 3 sessions/week<br>for 4 weeks                                                                                                         | Working memory                            | Enhancement (compared to baseline) (Hsueh et al., 2016)                                                       |
|                                                                   | 3 sessions, 10<br>minutes each                                                                                                         | Motor learning                            | No enhancement (Rozengurt et al., 2016)                                                                       |
|                                                                   | 1 session/week<br>for 5 weeks                                                                                                          | Attention                                 | Enhancement (compared to<br>control) (Sutarto, Wahab, & Zin,<br>2013)                                         |
|                                                                   | 30 sessions (25<br>minutes/session,<br>5 sessions/week,<br>6 weeks)                                                                    | Working memory                            | Enhancement (compared to<br>control) (Sutarto, Wahab, & Zin,<br>2013)                                         |
|                                                                   | 30 sessions (25<br>minutes/session,<br>5 sessions/week,<br>6 weeks)                                                                    | Attention                                 | No enhancement (Doppelmeyer, 2011)                                                                            |
|                                                                   | ,                                                                                                                                      | Spatial ability                           | Enhancement (compared to<br>control) for sensorimotor rhythm<br>neurofeedback training<br>(Doppelmeyer, 2011) |
| Instrumental<br>sensorimotor<br>rhythm<br>conditional<br>training | 10 sessions/ 1<br>hour per session                                                                                                     | Declarative memory                        | Marginal enhancement<br>(compared to control)<br>(Hoedlmoser, 2008)                                           |
| Haptic<br>feedback                                                | Force control<br>task (maintain<br>stable pressure<br>on a wall with a<br>stylus) during<br>which stylus<br>provided<br>vibration cues | Focused attention                         | Enhancement (compared to<br>controls) (Wang, 2014)                                                            |
| Task training                                                     | Exposure to<br>familiar or novel<br>images followed<br>by a list of<br>familiar words.                                                 | Working memory                            | Enhancement (compared to<br>control) (Fenker, 2008; Moreau,<br>2015 [large effect sizes<br>reported])         |
|                                                                   | Memory training<br>using either<br>verbal cues or<br>imagery (90<br>minutes)                                                           | Working memory in spatial text processing | Enhancement in imagery group<br>(compared to verbal cue group)<br>(Gyselinck et al., 2009)                    |
|                                                                   | Mental rotation<br>training (45                                                                                                        | Spatial cognition                         | Enhancement in mental rotation group (compared to control)                                                    |

| min/session for 6<br>sessions in 2<br>weeks)                                                                 |                     | (Meneghetti et al., 2011)                                        |
|--------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|
| Semantic control<br>training (45<br>min/session for 6<br>sessions)                                           | Semantic processing | Enhancement (compared to<br>control) (Metuki & Lavidor,<br>2013) |
| Mobile training<br>application for<br>distributed<br>attention task (5<br>hours in 2<br>weeks)               | Spatial attention   | No enhancement (Rolle et al., 2017                               |
| Tracking task<br>training (both<br>experimental and<br>control group<br>completed task<br>twice before test) | Attention           | Enhancement (compared to<br>control) (Strong & Alvarez,<br>2017) |

### Sleep

Forty-one articles were reviewed, nineteen articles of which met the eligibility criteria. Exclusions were due to lack of an experimental study (6 reviews, 2 commentaries, 4 correlational designs), lack of cognitive performance measurements (2 studies), lack of a control condition or group (7 studies), and abnormal conditions (sleep deprivation) (1 study). Majority of the included articles tested the utility of a nap (duration ranging from 20 to 90 minutes). Table 7 presents a summary of the enhancement effects.

#### Table 7. Summary of Enhancement Effects with Sleep/Napping

|                |                         | Sleep/Napping                |                                   |
|----------------|-------------------------|------------------------------|-----------------------------------|
| 1. Main f      | indings:                |                              |                                   |
| a.             | Inconsistent findings   | suggesting enhancement n     | nay be dependent on:              |
|                | i. REM, SWS, c          | or non-REM durations         |                                   |
|                | ii. Individual dif      | ferences in baseline ability |                                   |
| b.             | Enhancements seen w     | when the period between le   | arning and testing was a night of |
|                | sleep for motor seque   | ence learning                |                                   |
| 2. Design      | , individual difference | es, and sample sizes:        |                                   |
| a.             | Findings by gender an   | re not reported              |                                   |
| b.             | Between-subject desi    | gns were used in 16 of the   | included studies with sample      |
|                | sizes ranging from 9    | to 40 per group              |                                   |
| с.             | Within-subject design   | ns were used in 3 studies w  | vith sample sizes ranging from 15 |
|                | to 32                   |                              |                                   |
| Intervention   | <b>Duration</b> /       | Construct(s)                 | Enhancement effect(s)             |
|                | Characteristics         | Measured                     |                                   |
| Single session | 90-minute               | Spatial learning/spatial     | Enhancement (compared to          |
| nap            |                         | memory                       | control group) (Albouy, 2015;     |

|                                                    |                                                         |                                                      | Diekelmann, 2012)                                                                                                                                                                               |
|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                         | Motor-sequence<br>learning<br>Probabilistic learning | No enhancement (Albouy, 2015;<br>Backhaus, 2016)<br>Enhancement correlated with<br>REM sleep amount; interference<br>training following nap eliminated<br>enhancement effects (Barsky,<br>2015) |
|                                                    |                                                         | Working memory                                       | Enhancement (compared to controls) (Lau et al., 2015)                                                                                                                                           |
|                                                    | Delayed 90-<br>minute nap (4<br>hours post<br>learning) | Recognition memory                                   | Enhancement (compared to<br>controls and immediate nap<br>groups) (Alger, 2010)                                                                                                                 |
|                                                    | Short (10-20 minutes)                                   | Declarative memory                                   | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    |                                                         | Visuomotor adaptation learning                       | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    |                                                         | Motor-sequence<br>learning                           | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    | 40-minutes                                              | Spatial learning/spatial memory                      | No enhancement (Diekelmann, 2012)                                                                                                                                                               |
|                                                    | Long (50-80 minutes)                                    | Declarative memory                                   | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    |                                                         | Visuomotor adaptation learning                       | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    |                                                         | Motor-sequence<br>learning                           | No enhancement (Backhaus, 2016)                                                                                                                                                                 |
|                                                    | 2 hour (30<br>minutes of non-<br>REM sleep)             | Motor-sequence<br>learning                           | No enhancement (Landry, 2016)                                                                                                                                                                   |
|                                                    | REM sleep (60<br>or 90 minute<br>nap)                   | Perceptual learning                                  | Enhancement (compared to<br>controls and non-REM sleep<br>group) (Enhancement greatest for<br>high performers; McDevitt,<br>2014)                                                               |
|                                                    | Non-REM sleep<br>(60 or 90 minute<br>nap)               | Perceptual learning                                  | No enhancement (compared to controls) (McDevitt, 2014)                                                                                                                                          |
|                                                    | • /                                                     | Declarative memory                                   | Enhancement (compared to<br>controls) (Enhancement greatest<br>for high performers, Tucker,<br>2007)                                                                                            |
| Targeted<br>memory<br>reactivation<br>during slow- | Presented during<br>normal night of<br>rest (~8hrs)     | Explicit knowledge                                   | Enhancement (compared to control) (Cousins, 2014)                                                                                                                                               |

| wave sleep                                                                                              |                                           |                                                 |                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         | 90-minute nap                             | Emotional memory                                | Selective enhancement<br>dependent on emotional salience<br>(memory enhancement for highly<br>emotional cues; Cairney, 2014)                                                                                  |
| Overnight<br>sleep ("wake'<br>group trained<br>in morning<br>and tested in<br>evening,<br>"sleep" group | Testing delay of 12-hours                 | Motor-sequence<br>learning                      | Enhancement (compared to<br>control) (Debarnot, 2009; Brawn,<br>2010; Gregory, 2014; Malangre,<br>2016 [enhanced speed not<br>accuracy])<br>No enhancement (Kemeny, 2016;<br>Rickard, 2008)                   |
| trained in<br>evening and<br>tested in<br>morning                                                       |                                           | Emotional learning                              | Enhancement for "negative"<br>images compared to "neutral<br>(compared to control group)<br>(Cunningham, 2014)                                                                                                |
|                                                                                                         |                                           | Probabilistic learning                          | Enhancement (compared to<br>control), effect moderated by<br>performance level achieved<br>during training (enhancement<br>limited to low performers;<br>Djonlagic, 2009)<br>No enhancement (Kemeny,<br>2016) |
|                                                                                                         |                                           | Sequence learning<br>(grammar learning task)    | No enhancement (Kemeny, 2016)                                                                                                                                                                                 |
| Sleep<br>fragmentation                                                                                  | EEG micro-<br>arousals (rate of 30+/hour) | Spatial attention                               | No enhancement (Ferri, 2010)                                                                                                                                                                                  |
|                                                                                                         |                                           | Mental rotation                                 | Enhancement (inconsistent<br>across performance outcomes;<br>Ferri, 2010)                                                                                                                                     |
|                                                                                                         |                                           | Selective attention                             | No enhancement (Ferri, 2010)                                                                                                                                                                                  |
|                                                                                                         |                                           | Inhibition of return<br>(attentional orienting) | No enhancement (Ferri, 2010)                                                                                                                                                                                  |

#### **Transcranial Stimulation**

Ninety-two articles were reviewed, 47articles of which met the eligibility criteria. Exclusions were due to lack of an experimental study (1 review, 2 commentaries, 1 workshop overview), lack of cognitive performance measurements (26 studies), conditions not randomized (4 studies), lacked a control group (3 studies), older adult participants (2 studies), and published before 2008 (6 study). Majority of the included articles tested the utility of a transcranial direct current stimulation however, specific parameters varied between studies. Table 8 presents a summary of the enhancement effects.

# Table 8. Summary of Enhancement Effects with Transcranial Stimulation Transcranial Stimulation

- 1. Main findings:
  - a. Mixed effects for tasks requiring executive functioning
  - b. Mixed effects for creativity/object naming tasks
  - c. Mixed effects on attention, though some consistency in quicker response times
  - d. Mixed effects for decision making
  - e. Mixed effects for working memory
  - f. Consistent effects seen with:
    - i. Learning tasks, however, type of learning differed (e.g., motor vs. language) faster rate of learning found
    - ii. Perception based tasks, with increased accuracy and reduced thresholds found
    - iii. Visuospatial attention, increased accuracy
    - iv. Recall tasks
- 2. Sample size:
  - a. Findings by gender are not reported
  - b. Within subjects design sample sizes range from 9-120 with significant effects
  - c. Between subjects design sample sizes range from 24-48 with significant effects
- 3. Stimulation parameters are inconsistent across many studies

| Intervention                   | Type, intensity,<br>location,<br>duration | Construct(s)<br>Measured | Enhancement effect(s)                                |
|--------------------------------|-------------------------------------------|--------------------------|------------------------------------------------------|
| Transcranial<br>Direct Current | 1 mA applied for<br>10 minutes to the     | Working Memory           | Enhancement (compared to sham-control: Andrews 2011) |
| Stimulation                    | frontal region                            |                          | Enhancement (compared to                             |
| (tDCS)                         |                                           |                          | sham; Giglia, 2014)                                  |
|                                | I mA applied for                          | Executive Function       | Enhancement when applied to                          |
|                                | 20 minutes to                             |                          | each hemisphere (compared to                         |
|                                | frontal region                            |                          | sham-control: Gbadevan, 2016 <sup>*</sup> )          |
|                                |                                           | Learning                 | No enhancement for learning                          |
|                                |                                           |                          | new material, enhancement of                         |
|                                |                                           |                          | automaticity of already learned                      |
|                                |                                           |                          | material (compared to sham-                          |
|                                |                                           |                          | control and application to                           |
|                                |                                           |                          | Enhancement (compared to                             |
|                                |                                           |                          | sham-control: deVries 2009)                          |
|                                |                                           | Perception / Attention   | Enhancement (compared to 2                           |
|                                |                                           | 1                        | mA application and sham-                             |
|                                |                                           |                          | control; Hoy, 2013)                                  |
|                                |                                           |                          | No enhancement (compared to 2                        |
|                                |                                           |                          | mA and sham-control; Teo,                            |
|                                |                                           |                          | 2011)                                                |
|                                |                                           |                          | No enhancement (compared to                          |
|                                |                                           |                          | sham-control; deVries, 2009)                         |

| i ma applied                                                                                                                                                                                                                                     | Working memory                                                                                   | Enhancement with cathodal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| twice for 10                                                                                                                                                                                                                                     |                                                                                                  | applied with a 10 minute interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| minutes (total of                                                                                                                                                                                                                                |                                                                                                  | between sessions and with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 minutes of                                                                                                                                                                                                                                    |                                                                                                  | continuous anodal application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| stimulation) to                                                                                                                                                                                                                                  |                                                                                                  | (compared to sham-control, each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| frontal region                                                                                                                                                                                                                                   |                                                                                                  | anodal and cathodal, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                  |                                                                                                  | different timed intervals between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                  |                                                                                                  | stimulation applications;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                  |                                                                                                  | Carvahlo, 2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                  | Perception / Attention                                                                           | Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 7 1 1 1                                                                                                                                                                                                                                        |                                                                                                  | sham-control; Hsu, 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5 mA applied                                                                                                                                                                                                                                   | Executive Function                                                                               | Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| for 15 minutes to                                                                                                                                                                                                                                |                                                                                                  | sham-control, accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| frontal region                                                                                                                                                                                                                                   |                                                                                                  | improved as a function of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                  |                                                                                                  | predictability; Sela, 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                  | Working Memory                                                                                   | No enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                  |                                                                                                  | sham-control; Steenbergen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 7 1 1 1                                                                                                                                                                                                                                        | <u>a</u>                                                                                         | 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.5 mA applied                                                                                                                                                                                                                                   | Creativity / Cognitive                                                                           | Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| for 20 min to                                                                                                                                                                                                                                    | Flexibility                                                                                      | sham-control, increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| frontal region                                                                                                                                                                                                                                   |                                                                                                  | creativity as a function of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                  |                                                                                                  | priming; Colombo, 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                  | Perception / Attention                                                                           | No Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                  |                                                                                                  | application to parietal region and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 4 1: 1.0                                                                                                                                                                                                                                       | <u>a</u>                                                                                         | sham-control; Roy, 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 mA applied for                                                                                                                                                                                                                                 | Creativity / Cognitive                                                                           | Enhancement when applied for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                  |                                                                                                  | In manual to a looman and to allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 & 10 minutes to                                                                                                                                                                                                                                | riexidinty                                                                                       | 10 minutes (compared to snam-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8 & 10 minutes to<br>frontal region                                                                                                                                                                                                              |                                                                                                  | control; Fertonani, 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for                                                                                                                                                                                          | Learning                                                                                         | control; Fertonani, 2010)<br>Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to                                                                                                                                                                         | Learning                                                                                         | control; Fertonani, 2010)<br>Enhancement (compared to<br>temporal region and sham-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning                                                                                         | Control; Fertonani, 2010)<br>Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015 <sup>*</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning Memory                                                                                  | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory                                                                               | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to                                                                                                                                                                                                                                                                                                                                                                 |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)                                                                                                                                                                                                                                                                                                                                    |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)                                                                                                                                                                                                                                                                                                                                    |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to                                                                                                                                                                                                                                                                                                         |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,                                                                                                                                                                                                                  |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)                                                                                                                                                                                                                                                                 |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)                                                                                                                                                                                              |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | To finitutes (compared to shaft-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to 1<br>mA and sham-control; Hoy,                                                                                                                                                                                                    |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region                                                                                                                                                       | Learning<br>Memory<br>Working Memory                                                             | <ul> <li>To minutes (compared to sham-<br/>control; Fertonani, 2010)</li> <li>Enhancement (compared to<br/>temporal region and sham-<br/>control; Nikolin, 2015*)</li> <li>Enhancement (compared to<br/>sham-control; Matzen, 2015)</li> <li>No enhancement (compared to<br/>sham-control; Wang, 2016)</li> <li>No enhancement (compared to<br/>sham-control and tACS; Hoy,<br/>2015)</li> <li>No enhancement (compared to 1<br/>mA and sham-control; Hoy,<br/>2013)</li> </ul>                                                                                                               |
| 8 & 10 minutes to<br>frontal region<br>2 mA applied for<br>20 minutes to<br>frontal region<br>2 mA applied for                                                                                                                                   | Learning<br>Memory<br>Working Memory<br>Attention / Decision                                     | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to 1                                                                                                                                                                 |
| <ul> <li>8 &amp; 10 minutes to frontal region</li> <li>2 mA applied for</li> <li>20 minutes to frontal region</li> </ul>                                                                                                                         | Learning<br>Memory<br>Working Memory<br>Attention / Decision<br>Making                           | To finitutes (compared to shaft-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to 1<br>sham-control; Smittenaar, 2014)                                                                                                                           |
| <ul> <li>8 &amp; 10 minutes to frontal region</li> <li>2 mA applied for</li> <li>20 minutes to frontal region</li> </ul>                                                                                                                         | Learning Memory Working Memory Attention / Decision Making                                       | <ul> <li>To minutes (compared to sham-<br/>control; Fertonani, 2010)</li> <li>Enhancement (compared to<br/>temporal region and sham-<br/>control; Nikolin, 2015*)</li> <li>Enhancement (compared to<br/>sham-control; Matzen, 2015)</li> <li>No enhancement (compared to<br/>sham-control; Wang, 2016)</li> <li>No enhancement (compared to<br/>sham-control and tACS; Hoy,<br/>2015)</li> <li>No enhancement (compared to 1<br/>mA and sham-control; Hoy,<br/>2013)</li> <li>No enhancement (compared to<br/>sham-control; Smittenaar, 2014)</li> </ul>                                      |
| <ul> <li>8 &amp; 10 minutes to frontal region</li> <li>2 mA applied for</li> <li>20 minutes to frontal region</li> <li>2 mA applied for</li> <li>2 mA applied for</li> <li>25 minutes to the frontal region</li> <li>2 mA applied for</li> </ul> | Learning<br>Memory<br>Working Memory<br>Attention / Decision<br>Making<br>Perception / Attention | To minutes (compared to sham-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to 5<br>sham-control; Hoy,<br>2013)No enhancement (compared to<br>sham-control; Smittenaar, 2014) |
| <ul> <li>8 &amp; 10 minutes to frontal region</li> <li>2 mA applied for</li> <li>20 minutes to frontal region</li> <li>2 mA applied for</li> <li>25 minutes to the frontal region</li> <li>2 mA applied for</li> <li>30 minutes to</li> </ul>    | Learning Memory Working Memory Attention / Decision Making Perception / Attention                | To minutes (compared to snam-<br>control; Fertonani, 2010)Enhancement (compared to<br>temporal region and sham-<br>control; Nikolin, 2015*)Enhancement (compared to<br>sham-control; Matzen, 2015)No enhancement (compared to<br>sham-control; Wang, 2016)No enhancement (compared to<br>sham-control and tACS; Hoy,<br>2015)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to 1<br>mA and sham-control; Hoy,<br>2013)No enhancement (compared to<br>sham-control; Smittenaar, 2014)Enhancement (compared to<br>sham-control; Smittenaar, 2012)  |

| frontal region                                                        | Working Memory         | Enhancement (for alerting<br>attention, compared to sham-<br>control; Coffman, 2012)<br>Enhancement (compared to<br>sham-control; Trumbo, 2016)<br>Enhancement when paired with<br>training (compared to no-<br>training sham-control and tDCS<br>only; Martin, 2013) |
|-----------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 mA applied for<br>20 minutes to<br>parietal region                  | Learning               | Enhancement (compared to<br>frontal application and sham-<br>control; Luculano, 2013)<br>Enhancement (compared to<br>sham-control; Meinzer, 2014)                                                                                                                     |
| 1.5 mA applied<br>for 20 minutes to<br>parietal region                | Perception / Attention | Enhancement when applied to<br>right side (compared to sham-<br>control, left side, and frontal<br>region; Roy, 2015 <sup>*</sup> )                                                                                                                                   |
| 1.5 mA applied<br>for 15 minutes to<br>parietal region                | Perception / Attention | No enhancement (Weiss, 2012)                                                                                                                                                                                                                                          |
| 2 mA applied for<br>20 minutes to<br>parietal region                  | Perception / Attention | Enhancement (compared to<br>sham-control, occurred when<br>placed on both hemispheres;<br>Fujimoto, 2017)                                                                                                                                                             |
| 2 mA applied for<br>30 minutes to<br>parietal region                  | Perception / Attention | Enhancement when applied to<br>right side (compared to sham-<br>control and left side placement;<br>Bolognini, 2010)                                                                                                                                                  |
| 1 mA applied for<br>20 minutes to<br>motor cortex                     | Learning               | Enhancement with task-specific<br>learning outcomes (Saucedo<br>Marquez, 2013)                                                                                                                                                                                        |
|                                                                       | Executive Function     | No enhancement (when<br>compared to frontal application<br>and sham-control; Gbadeyan,<br>2016 <sup>*</sup> )                                                                                                                                                         |
| 2 mA applied for<br>20 minutes to the<br>right cerebral<br>hemisphere | Working Memory         | No enhancement (Van Wessel, 2016)                                                                                                                                                                                                                                     |
| 2 mA applied for<br>13 minutes to<br>temporal region                  | Memory                 | Enhancement with anodal<br>placement on right hemisphere<br>(compared to sham-control and<br>left hemisphere placement; Chi,<br>2010)                                                                                                                                 |
| 2 mA applied for<br>20 minutes to                                     | Learning               | No enhancement (compared to sham-control and frontal region                                                                                                                                                                                                           |

|                                                                 | temporal region                                                                                                                                                                                                        |                                | placement; Nikolin, 2015*)                                                                                                                                                     |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 | 2 mA applied for<br>20 minutes to<br>cerebellum                                                                                                                                                                        | Learning                       | Enhancement (compared to sham-control; Ferruci, 2013)                                                                                                                          |
|                                                                 | 1 mA applied for<br>20 minutes to<br>primary<br>somatosensory<br>cortex                                                                                                                                                | Perception / Attention         | Enhanced when applied to both<br>hemispheres (compared to single<br>hemisphere application and<br>sham-control; Fujimoto, 2014)                                                |
|                                                                 | 1.5 mA applied<br>for 20 minutes to<br>occipital cortex                                                                                                                                                                | Memory                         | Enhanced when applied offline<br>(compared to online and sham-<br>control; Barbieri, 2016)                                                                                     |
|                                                                 | 0.7 mA applied<br>for 570s intervals<br>for 10 minutes to<br>the frontal region                                                                                                                                        | Attention / Decision<br>Making | Enhancement when applied to<br>left hemisphere (compared to<br>right hemisphere application and<br>sham-control; Filmer, 2017)                                                 |
| Oscillating<br>tDCS                                             | 0 to 0.6 mA<br>oscillating at 75<br>Hz for 25 minutes<br>applied to frontal<br>region during<br>sleep                                                                                                                  | Memory                         | Enhancement for motor recall<br>but not paired word associations<br>(compared to sham-stimulation;<br>Sahlem, 2015)                                                            |
| Intermittent<br>theta-burst<br>stimulation<br>(iTBS)            | 3 pulses of<br>stimulation at 50<br>Hz delivered<br>during a 2s train<br>repeated every<br>10s for total of<br>190s, this was<br>repeated every<br>200ms for a total<br>of 600 pulses;<br>applied to frontal<br>region | Working Memory                 | Enhancement (compared to<br>sham-control; Hoy, 2016)                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                        | Sustained attention            | Enhancement only when applied<br>to cortical dorsal attention<br>network (compared to sham-<br>control) greatest degree seen in<br>low-baseline performers<br>(Esterman, 2017) |
|                                                                 |                                                                                                                                                                                                                        | Transient attentional control  | Enhancement (compared to sham-control) (Esterman, 2017)                                                                                                                        |
| Transcranial<br>Alternating<br>Current<br>Stimulation<br>(tACS) | 1500 μA at<br>frequencies of 40,<br>60 or 80 Hz for<br>45 minutes or 15<br>minutes to the                                                                                                                              | Perception / Attention         | Enhancement with 60 Hz<br>application (compared to 40 Hz,<br>80 Hz, and sham-control; Laczo,<br>2012)                                                                          |

|                                                                 | visual cortex                                                                                              |                             |                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 | Between -750 µA<br>and 750 µA at<br>frequency of 40<br>Hz delivered for<br>20 minutes to<br>frontal region | Working Memory              | Enhancement as a function of<br>load (compared to tDCS and<br>sham-control; Hoy, 2015)                                                                                                                                                                      |
|                                                                 | Theta-tACS, 6Hz,<br>temporo-parietal<br>cortex, 20 min                                                     | Associative learning        | Enhancement (compared to sham group) (Antonenko, 2016)                                                                                                                                                                                                      |
|                                                                 | Gamma-tACS,<br>40Hz, dorso-<br>lateral pre-frontal<br>cortex, 20 min                                       | Working memory              | Enhancement (compared to sham<br>and tDCS groups) limited to<br>higher workload version of task<br>(Hoy, 2015)                                                                                                                                              |
|                                                                 | 6 Hz, left and<br>right frontal<br>cortex, 11 min                                                          | Reversal learning           | Enhancement (compared to sham<br>group) in faster learning but<br>deficit in rule-application<br>behavior (Wischnewski, 2016)                                                                                                                               |
| Repetitive<br>transcranial<br>magnetic<br>stimulation<br>(rTMS) | 1 Hz, primary<br>motor cortex, 10<br>min                                                                   | Visuomotor skill            | No enhancement (Borich, 2011)                                                                                                                                                                                                                               |
|                                                                 | 1 Hz, right and<br>left dorsolateral<br>prefrontal cortex,<br>6 min                                        | Contextual reasoning        | Enhancement (compared to sham) (Tulviste, 2016)                                                                                                                                                                                                             |
|                                                                 |                                                                                                            | Visuospatial working memory | No enhancement (Tulviste, 2016)                                                                                                                                                                                                                             |
|                                                                 | 10 Hz, lateral<br>occipital cortex,<br>1050 pulses                                                         | Visual selective attention  | Enhancement (compared to<br>sham) when applied in early<br>stages of task execution<br>(Estocinova, 2016)                                                                                                                                                   |
|                                                                 | 10 Hz, right and<br>left dorsolateral<br>prefrontal cortex,<br>6 min                                       | Contextual reasoning        | Enhancement left-side only<br>(compared to sham) (Tulviste,<br>2016)                                                                                                                                                                                        |
|                                                                 |                                                                                                            | Visuospatial working memory | No enhancement (Tulviste, 2016)                                                                                                                                                                                                                             |
|                                                                 | 5 HZ, lateral<br>occipital complex<br>or premotor<br>cortex, 7s prior to<br>task onset or<br>during task   | Working memory              | Enhancement (compared to<br>sham) when applied to lateral<br>occipital complex, deficit when<br>applied to premotor cortex<br><i>during</i> task; Enhancement<br>(compared to sham) when<br>applied to premotor cortex <i>prior</i><br>to task (Luber 2017) |

|                                 | 20 Hz, targeted<br>hippocampal<br>cortical networks,<br>20 min/day, 5<br>consecutive days | Relational memory          | Enhancement (compared to<br>sham) that persisted an average<br>of 15 days post-treatment (Wang,<br>2015) |
|---------------------------------|-------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|
| rTMS and<br>Amoxetine<br>(60mg) | 10 Hz, primary<br>motor cortex, 10<br>minutes                                             | Motor-sequence<br>learning | Enhancement (compared to<br>sham) (Sczesny-Kaiser, 2014)<br>No enhancement (Backhaus,<br>2016)           |

Note. \* studies compared stimulation at different brain regions and reported twice within the table.

#### Miscellaneous

Fifty articles were assessed and reviewed spanning 15 cognitive enhancement interventions including energy drinks, meditation, light therapy, psychosocial stress, oxygen, music, exercise, sensory deprivation, aroma therapy, haptic feedback, dreaming, suspense/anticipation, cuing, mental strategies, video games, and enhanced water. Fifteen of the articles met eligibility criteria. Reasons for exclusion included no cognitive measures (16 studies), review or commentary (6 articles), lack of control condition/group (5 studies), quasiexperimental or correlational design (4 studies), published before 2008 (2 studies), use of animal models (1 study), and use of a novel task (1 study). Summary of findings is presented in Table 9.

Miscellaneous Interventions

*Table 9.* Summary of Enhancement Effects with Miscellaneous Cognitive Enhancement Interventions

|                                              | 111                                                                                                                                 |                                                | , IIS                                                                                                                         |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 1. Main f                                    | indings:                                                                                                                            |                                                |                                                                                                                               |  |
| a.                                           | Positive enhancement effects seen with exercise interventions for executive                                                         |                                                |                                                                                                                               |  |
|                                              | function and spatial                                                                                                                | ability                                        |                                                                                                                               |  |
| b.                                           | . Inconsistent findings for studies of meditation                                                                                   |                                                |                                                                                                                               |  |
| 2. Design                                    | 2. Design, individual differences, and sample sizes:                                                                                |                                                |                                                                                                                               |  |
| a.                                           | Findings by gender a                                                                                                                | are not reported                               |                                                                                                                               |  |
| b.                                           | Between-subject des                                                                                                                 | igns were used in 7 of the                     | e included studies with sample sizes                                                                                          |  |
|                                              | ranging from 6 to 31                                                                                                                | per group                                      |                                                                                                                               |  |
| с.                                           | Within-subject desig                                                                                                                | ns were used in 7 studies                      | with sample sizes ranging from 15                                                                                             |  |
| to 52                                        |                                                                                                                                     |                                                |                                                                                                                               |  |
|                                              | 10 52                                                                                                                               |                                                |                                                                                                                               |  |
| Intervention                                 | Duration/                                                                                                                           | Construct(s)                                   | Enhancement effect(s)                                                                                                         |  |
| Intervention                                 | Duration/<br>Characteristics                                                                                                        | Construct(s)<br>Measured                       | Enhancement effect(s)                                                                                                         |  |
| Intervention<br>Video games                  | Duration/<br>Characteristics<br>Ten 1-hour                                                                                          | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s) Enhancement (compared to                                                                                |  |
| Intervention Video games                     | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing                                                                      | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)<br>Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,                                   |  |
| <b>Intervention</b><br>Video games           | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing<br>action game                                                       | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)<br>Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,<br>2016)                          |  |
| Intervention<br>Video games                  | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing<br>action game<br>(driving or first-                                 | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)<br>Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,<br>2016)                          |  |
| Intervention<br>Video games                  | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing<br>action game<br>(driving or first-<br>person-shooter)              | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)<br>Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,<br>2016)                          |  |
| Intervention<br>Video games                  | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing<br>action game<br>(driving or first-<br>person-shooter)              | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)<br>Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,<br>2016)                          |  |
| Intervention<br>Video games<br>Energy drinks | Duration/<br>Characteristics<br>Ten 1-hour<br>sessions playing<br>action game<br>(driving or first-<br>person-shooter)<br>Red Bull* | Construct(s)<br>Measured<br>Visuomotor control | Enhancement effect(s)Enhancement (compared to<br>control group) ( $\eta^2 = 0.41$ , Li,<br>2016)No enhancement (Wesnes, 2017) |  |

|                   |                                                                                                                      | Working memory<br>accuracy and speed   | Enhancement (compared to<br>controls and Sugar-free Red Bull,<br>medium effect size) (Wesnes,<br>2017)               |
|-------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                   | Sugar-free Red<br>Bull** (250ml)                                                                                     | Sustained attention accuracy and speed | No enhancement (Wesnes, 2017)                                                                                        |
|                   |                                                                                                                      | Working memory accuracy and speed      | No enhancement (Wesnes, 2017)                                                                                        |
| Enhanced<br>water | A menthane<br>carboxamide<br>based cooling<br>agent and citric<br>acid added to<br>water served at -<br>17 degrees C | Sustained attention                    | Enhancement (compared to controls) (Labbe, 2010)                                                                     |
| Exercise          | Aerobic (20-<br>minutes)                                                                                             | Attention                              | No enhancement (Lowe, 2016;<br>Popovich, 2015)                                                                       |
|                   | Aerobic (40-<br>minutes                                                                                              | Spatial ability                        | Enhancement (compared to<br>controls, limited to subset of<br>tasks) (Moreau, 2015 [large<br>effect sizes reported]) |
|                   |                                                                                                                      | Working memory                         | No enhancement (Moreau, 2015)                                                                                        |
|                   |                                                                                                                      | Executive function                     | Enhancement <i>during</i> low-<br>intensity exercise (Wohlwend,<br>2017)                                             |
|                   |                                                                                                                      |                                        | Enhancement <i>after</i> high-intensity exercise (Wohlwend, 2017)                                                    |
|                   | Designed sport<br>(freestyle<br>wrestling, 40-<br>minutes                                                            | Spatial ability                        | Enhancement (compared to<br>controls) (Moreau, 2015 [large<br>effect sizes reported])                                |
|                   |                                                                                                                      | Working memory                         | Enhancement (compared to<br>controls) (Moreau, 2015 [large<br>effect sizes reported])                                |
| Meditation        | Mindfulness-<br>Based Stress<br>Reduction (2.5-<br>hour                                                              | Sustained and selective attention      | No enhancement (MacCoon, 2014)                                                                                       |

|                     | session/week for<br>8 weeks)                                                   |                                    |                                                                              |
|---------------------|--------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|
|                     | Meditation<br>training program<br>(2 weeks, 20-<br>minutes<br>mediation daily) | Metacognitive ability -<br>memory  | Enhancement (compared to controls) (Baird, 2014)                             |
|                     |                                                                                | Metacognitive ability - perception | No enhancement (Baird, 2014)                                                 |
|                     |                                                                                | Working memory                     | Enhancement (compared to controls) (Mrazek, 2013)                            |
|                     | Progressive<br>Muscle<br>Relaxation (11-<br>minute session)                    | Derived relations                  | Enhancement (compared to control, $\eta 2 = .33$ ) (Tyndall, 2016)           |
| Music               | Background<br>music in<br>synchrony with<br>presentation of<br>visual stimuli  | Visual processing                  | Enhancement (compared to<br>control, $\eta 2 = 0.198$ ) (Escoffier,<br>2010) |
|                     | Background<br>music during<br>learning                                         | Verbal learning                    | No enhancement (Jancke, 2010)                                                |
| Psychosocial stress | Trier Social<br>Stress Task<br>(includes                                       | Priming non-declarative memory     | Enhancement (compared to controls) (Hidalgo, 2012)                           |
| del<br>spe          | preparing and<br>delivering a<br>speech, math)                                 | Priming declarative memory         | No enhancement (Hidalgo, 2012)                                               |
| Oxygen              | 100% pure<br>oxygen in a                                                       | Spatial working memory             | Enhancement (compared to controls) (Yu, 2015)                                |
|                     | 2.0 absolute                                                                   | Immediate memory                   | No enhancement (Yu, 2015)                                                    |
|                     | pressure (80-<br>minutes/day for                                               | Digital working memory             | No enhancement (Yu, 2015)                                                    |
|                     | 5 days)                                                                        | Attention                          | No enhancement (Yu, 2015)                                                    |
|                     |                                                                                | Long term memory                   | No enhancement (Yu, 2015)                                                    |

\* Red Bull (250ml) contains caffeine (80 mg), taurine (1000 mg), B-group vitamins (B3, B5, B6, B12), glucose (27 g), alpine spring water

\*\*Sugar-free Red Bull (250ml) contains caffeine (80 mg), taurine (1000 mg), B-group vitamins (B3, B5, B6, B12), aspartame and acesulfame k, and alpine spring water

#### Discussion

The goal of this systematic literature review was to identify and summarize evidence for and against cognitive enhancement interventions for potential use with Soldiers in operational settings. We reviewed literature on both pharmaceutical and non-pharmaceutical interventions in an effort to summarize the current state-of-the science (years 2008-2018) regarding utility and efficacy of these methods for enhancement purposes. Overall, working memory enhancement and selective attention (using the Stroop Test) were the most consistently studied cognitive functions among the included studies. Inconsistent findings across all studies may be a reflection of true differences in effects or may be driven by methodology such as different tasks used to measure the same constructs or individual differences. A key finding reported in many studies is the moderating effect of baseline performance on enhancement (enhancement was seen in low performers and deficits in high performers) which has important implications for use in military settings. Specifically, some interventions may not be appropriate or effective in highly skilled or highly trained operators such as aviators. Below, we discuss the results of each intervention category in the context of feasibility for use in military settings.

#### **Pharmaceutical Interventions**

A total of eleven drugs and drug classes were identified in this review for enhancement purposes. The most researched drug in this review was modafinil with studies of doses ranging from 100-400 mg. The most consistent finding is the moderating effect of baseline performance on enhancement such that enhancement properties were limited to low baseline performers. Considering the findings of this review alongside the findings of a 2015 systematic review specific to modafinil of studies published from 1990-2015, there appears to be consistent evidence in support of enhancement of low-level cognitive processes but not for higher-order processes or complex tasks (Battleday & Brem, 2015). There is some recent evidence in support of attention enhancement whereas past research findings have been mixed (Battleday & Brem, 2015; Repantis, Schlattmann, Laisney, & Heuser, 2010). The variability in tasks used to measure attention and its sub-component, alertness, may be a contributing factor to the mixed results that are also likely confounded by individual differences. The source of this inconsistency in findings is only speculated upon at this point and needs to be further examined prior to decisions regarding implementation in military settings. Importantly, the studies reviewed did not suggest any negative side effects or mood changes associated with modafinil, consistent with past findings (Battleday & Brem, 2015). Overall, modafinil may be useful for enhancement in military settings given that it is not habit-forming, does not appear to yield any negative secondary effects, and does have considerable support suggesting some enhancement properties, however, limited.

Similar findings to those for modafinil were seen for amphetamine and mixed amphetamine salts (e.g., Adderall). Specifically, enhancement was moderated by baseline performance with enhancement limited to low baseline performers. The cognitive constructs enhanced included non-verbal convergent creative thinking, reasoning, and episodic memory whereas mixed results were seen for vigilance and verbal learning. No enhancement was found for divergent thinking, verbal creative thinking, working memory, and inhibitory control. In fact, one study suggested decremented working memory, processing speed, visual learning, and verbal learning performance in high baseline performers. Again, similar to modafinil, other reviews have found that mixed amphetamine salts may be appropriate for enhancing simple tasks and sustained attention yet inappropriate for more complex tasks and selective attention given increases in impulsivity following administration (Advokat, 2010). With regard to side effects, mixed amphetamine salts are addictive and have potential for abuse making them less attractive for implementation.

Methylphenidate is another potential drug for cognitive enhancement with mixed results in the literature and concerning negative secondary effects (as well as addictive properties). The present review yielded evidence for enhancement of associative learning, error awareness, alertness, and visual perception processing speed with large effect sizes when reported. Doses ranged from 20-40 mg and some findings were moderated by baseline performance level with some enhancement limited to low performers and some limited to high performers. These findings are consistent with those from a published literature review of single-dose studies published between 1978 and 2013 showing evidence in support of working memory and processing speed enhancement (Linssen et al., 2014). Translation of any enhancement properties to complex tasks has not been established, however, and is needed prior to recommending consideration for military settings.

The enhancement results for the other drugs and drug classes included in this review (selective serontin reuptake inhibitors cholinesterase inhibitors, caffeine, serotonin and norepinephrine reuptake inhibitors, nootropics, selective inhibitor of cyclic guanosine monophosphate, nicotine, and antibiotics) were mixed. Specifically, the enhancement evidence for caffeine was mixed with positive findings limited to short- and long-term memory recall tasks. Enhancement from escitalopram appears to be confounded by task familiarity in the study. Ceretrophin and physostigmine showed enhancement for abstract reasoning and visual attention, respectively. These drugs may be potentially useful in military settings, however, additional replication studies are needed.

#### Herbal and Vitamin Supplements

Eleven herbal and vitamin supplements were identified in this review for enhancement purposes. The most researched of which was glucose with studies of doses ranging from 17-75 mg. Working memory was most consistently enhanced across the studies despite differences in methodology. This is consistent with published literature reviews suggesting memory enhancement in healthy adults in normal conditions (Smith, Riby, van Eekelen, & Foster, 2011). Note that this review found episodic memory to be most consistently enhanced. There did not appear to be a clear pattern with respect to dosage (e.g., effects were not seen with one dose level and not others) and inconsistent results likely are reflections of differences in methodology or individual differences. Interestingly, the enhancement effects of palm leaf extract oil were studied in the long-term (following two months of use) whereas majority of the other studies were more short-term or single-dose in nature. Enhancement was found for palm leaf extract oil but only one study was identified (Mohamed et al., 2013). Nearly all studies including fish oil yielded null effects. Our review did not find support for Bacopa, which is inconsistent with past reviews. Specifically, Neale, Camfield, Reay, Stough, & Scholey, 2012 conducted a metaanalysis comparing effect sizes for enhancement by nutraceuticals (bacopa and ginseng) and modafinil and found that the nutraceuticals were nearly as effective as modafinil at enhancing cognition. Our review did find support, however, for ginseng enhancing working memory and attention but not information processing. Use of nutraceuticals and vitamins is very attractive given the lack of habit-forming properties but the literature is mixed and further replication studies are needed.

#### Training

A total of four forms of training were included within the review. These included neurofeedback training (5 studies), instrumental sensorimotor rhythm conditional training (1 study), haptic feedback (1 study), and task training (6 studies). Results from neurofeedback training studies suggest that repeated sessions over time may be more beneficial than single sessions given that single sessions produced mixed results and multiple sessions more consistently produced enhancement effects. Additionally, enhancement of working memory and attention were most commonly seen within the literature, suggesting these constructs may be more likely to benefit from neurofeedback training. The task training studies consistently showed positive effects in attention, working memory, and spatial cognition tasks. However, due to the variability of tasks trained on and methods used, it is difficult to evaluate whether task training would provide benefit to the military. Needed are studies examining the transferability of tasks.

#### Sleep

Methods of targeted sleep interventions for cognitive enhancement that were reviewed included single session naps (9 studies), memory reactivation during slow-wave sleep (2 studies), overnight sleep (8 studies), and fragmented sleep (1 study). Enhancement following naps appears to be moderated by the duration of REM sleep acquired as well as the type of cognitive ability tested. Specifically, results seem to be strongest for perceptual learning and declarative memory. Training prior to a wake-day or sleep-night also appears to affect subsequent performance such that those who are tested following sleep show greater gains in performance than those tested before a night of sleep. These enhancements were seen for emotional, probabilistic, and motor-sequence learning.

#### **Transcranial Stimulation**

Five forms of transcranial stimulation were identified for enhancement purposes within this review. These included transcranial direct current stimulation (33 studies), oscillating direct current stimulation (1 study), intermittent theta-burst stimulation (2 studies), transcranial alternating current stimulation (4 studies), and repetitive transcranial magnetic stimulation (6 studies including1 combined with amoxetine). Amongst these five forms, the stimulation parameters used within studies varied greatly. However, in terms of outcomes, several consistent findings were seen. These were primarily enhancement of learning tasks, perception-based tasks, visuospatial attention, and recall tasks. The consistencies were found across the five forms of stimulation identified. These results partially align with past reviews of the literature on this topic. For example, enhancement of learning has been found for motor learning. Specifically, one review that examined the effects of tDCS including only studies where the placement of the anode was over M1, determined the effects of stimulation on learning may depend on the stage of learning when stimulation is applied, as well as the tasks assessed and stimulation parameters used (Hashemirad et al., 2016). The variability of studies finding enhancement or none has been supported in other reviews. For example, a recent meta-analysis of tDCS effects on working memory concluded that the enhancement of working memory by application of tDCS still remained uncertain, but that application of anodal stimulation to the left DLPFC *during* working memory training appeared to have the greatest potential (Mancuso, Ilieva, Hamilton, & Farah, 2016). Similarly, application of rTMS over the DLPFC was concluded to improve working memory in one review article, whereas application of tDCS only improved reaction time for working memory tasks (Brunoni & Vanderhasselt, 2014).

Given the variety of stimulation parameters used in the studies, as well as differences in cognitive assessments used, it is not possible to recommend any form of transcranial stimulation for military use at this time. This issue was confirmed in a review of tDCS applied to the DLPFC in both healthy and neuropsychiatric samples, where an examination of stimulation parameters used across studies suggested that task accuracy were predicted by stimulation current, density, and density charge (Dedoncker, Brunoni, Baeken, & Vanderhasselt, 2016). These would need to be remedied prior to recommending use of any form of transcranial stimulation. However, in terms of plausibility, tDCS and its variants (e.g., alternating current) are the most suitable candidates for further examination due to established safety, low costs, and ease of application.

#### Miscellaneous

Of the additional interventions identified in the review, exercise appears to have some potential for use such that aerobic exercise enhanced executive function and spatial ability but not working memory. Energy drinks did not produce enhancement effects whereas meditation did tend to show enhancement in higher-order processes.

#### Limitations

While the methodology used here complimented the study purpose, it is not exhaustive by any means and the results are thus limited to some degree. First, the methodology was not designed to identify novel or underrepresented interventions. Thus, we find that the interventions with the most support are also those with the most attention (stimulants and transcranial direct stimulations). Also, some interventions with potential for enhancement were not picked up using this approach. For example, macular pigment is a promising intervention approach shown to enhance visual performance but was not identified in our literature searches. Similarly, not all articles on a particular intervention were captured which is particularly a problem for underrepresented approaches since the conclusions are unfairly based on one or two studies. Considering these limitations is important when drawing conclusions about the utility of a particular intervention, and more so important when interpreting our findings with respect to an underrepresented topic.

#### **Recommendations for Future Research**

Additional research is needed prior to implementation of cognitive enhancement interventions in military settings. Missing from the literature overall are studies examining the

post-enhancement effects of these interventions. Specifically, whether dosing a Soldier with a stimulant or transcranial stimulation has lasting effects beyond the enhancement period that could negatively affect subsequent function such as negative impacts on sleep. Impaired sleep quality or duration could potentially compromise the next day's performance which, depending on mission needs, could be a substantially limiting factor. Also, secondary effects during the enhancement period were not consistently reported in studies. Some of the interventions summarized may have considerable negative side effects (e.g., increased risk-taking, increased impulsivity) that would override any benefit from enhancement. Systematic evaluation of side effects associated with enhancement interventions that include assessment of those that would be particularly detrimental in an operational setting, such as increased impulsivity, are required. Ideally such studies would be done in conjunction with evaluation of performance on military tasks using a military population, as similar examination within the general population may result different risk-taking decisions based on past experiences.

#### Conclusions

The findings of this review support a number of cognitive enhancement interventions. However, the strength of that support varies and is affected by moderating variables as well as inconsistent results across the literature. The interventions with the strongest support are pharmaceuticals and transcranial stimulation, which may be a reflection of the amount of attention given to these interventions and not purely strength of the interventions' effects. Much is unknown with respect secondary effects and post-enhancement effects for these interventions and further research is needed to understand the most advantageous implementation strategies. This page is intentionally blank.

#### References

- Advokat, C. (2010). What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). *Neuroscience & Biobehavioral Reviews*, *34*(8), 1256-1266.
- Albouy, G., Fogel, S., King, B., Laventure, S., Benali, H., Karni, A.,... Doyon, J. (2015). Maintaining vs. enhancing motor sequence memories: Respective roles of striatal hippocampal systems. *NeuroImage*, 108, 423-434.
- Alger, S., Lau, H., & Fishbein, W. (2010). Delayed onset of a daytime nap facilitates retention of declarative memory. *PlosOne*, *5*(8), e12131.
- Amen, D. G., Taylor, D.V., Ojala, K., Kaur, J., & Willeumier, K. (2013). Effects of the braindirected nutrients on cerebral blood flow and neuropsychological testing: A randomized, double-blind, placebo-controlled, crossover trial. *Advances*, 27(2), 24-33.
- An, Y., Jung, K., Kim, S., Lee, C., & Kim, D. (2015). Effects of blood glucose levels on restingstate EEG and attention in healthy volunteers. *Journal of Clinical Neurophysiology*, 32, 51-56.
- Anonymous, 2004
- Antonenko, D., Faxel, M., Grittner, U., Lavidor, M., & Floel, A. (2016). Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. *Neural Plasticity, 2016*, 1-13.
- Backhaus, W., Braab, H., Renne, T., Kruger, C., Gerloff, C., & Hummel, F. (2016). Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. *Neurobiology of Learning and Memory*, *131*, 147-154.
- Baird, B., Mrazek, M., Phillips, D., & Schooler, J. (2014). Domain-specific enhancement of metacognitive ability following meditation training. *Journal of Experimental Psychology: General*, 413(5), 1972-1979.
- Barbieri, M., Negrini, M., Nitsche, M. A., & Rivolta, D. (2016). Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects. *Neuropsychologia*, *81*, 238-244. doi:10.1016/j.neuropsychologia.2015.12.030
- Barsky, M., Tucker, M., & Stickgold, R. (2015). REM sleep enhancement of probabilistic classification learning is sensitive to subsequent interference. *Neurobiology of Learning and Memory*, *122*, 63-68.
- Battleday, R., & Brem, A. (2015). Modafinil for cognitive neuroenhancement in healthy nonsleep deprived subjects: A systematic review. *European Neuropsychopharmacology*, 25(11), 1865-1881.
- Bauer, M., Kluge, C., Bach, D., Bradbury, D., Heinze, H., Dolan, R., & Driver, J. (2012). Cholinergic enhancement of visual attention and neural oscillations in the human brain.

Current Biology, 22, 397-402.

- Bellebaum, C., Kuchinke, L., & Roser, P. (2016). Modafinil alters decision making based on feedback history- A randomized placebo-controlled double blind study in humans. *Journal of Psychopharmacology*, 1-7.
- Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. *Brain Research*, 1349, 76-89. doi:10.1016/j.brainres.2010.06.053
- Borich, M., Furlong, M., Holsman, D., & Kimberley, T. (2011). Goal-directed visuomotor skill learning: Off-line enhancement and the importance of the primary motor cortex. *Rehabilitation Medicine*, *29*(2), 105-113.
- Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. *Science and Engineering Ethics*, 15, 311-341.
- Brawn, T., Fenn, K., Nusbaum, H., & Mragoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. *The Journal of Neuroscience*, *30*(42), 13977-13982.
- Brown, L., & Riby, L. (2013). Glucose enhancement of event-related potentials associated with episodic memory and attention. *Food & Functioning*, *4*, 770.
- Brunoni, A. R., & Vanderhasselt, M. A. (2014). Working memory improvement with noninvasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. *Brain and Cognition*, *86*, 1-9.
- Cairney, S., Durrant, S., Hulleman, J., & Lewis, P. (2014). Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. *Sleep*, *34*(4), 701-707.
- Carvahlo, S., Boggio, P., Goncalves, O., Vigario, A., Faria, M., Silva, S., ... Leite, J. (2014). Transcranial direct current stimulation based metaplasticity protocols in working memory. *Brain Stimulation*, 1-6.
- Chi, R. P., Fregni, F., & Snyder, A. W. (2010). Visual memory improved by non-invasive brain stimulation. *Brain Research*, 1353, 168-175. doi:10.1016/j.brainres.2010.07.062
- Chou, H., Talledo, J., Lamb, S., Thompson, W., Swerdlow, N. (2013). Amphetamine effects on MATRICS Concensus Cognitive Battery performance in healthy adults. *Psyhchopharmacology*, 227, 165-176.
- Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. *BMC Neuroscience*, *13*(1), 108. doi:10.1186/1471-2202-13-108
- Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. *Frontiers in Human Neuroscience*, 9.

doi:10.3389/fnhum.2015.00403

- Cope, Z., Minassian, A., Kreitner, D., MacQueen, D., Milienne-Petiot, M., Geyer, M., ... Young, J. (2017). Modafinil improves attentional performance in healthy, non-sleep deprived humans at doses not inducing hyperarousal across species. *Neuropsychopharmacology*, 125, 254-262.
- Cousins, J., El-Deredy, W., Parkes, L., Hennies, N., Lewis, P. (2014). Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. *The Journal of Neuroscience*, *34*(8), 15870-15876.
- Cunningham, T., Crowell, C., Alger, S., Kessinger, E., Villano, M., Mattingly, S., & Payne, J. (2014). Psychophysiological arousal at encoding leads to reduced reactivity but enhanced emotional memory following sleep. *Neurobiology of Learning and Memory*, 114, 155-164.
- Debarnot, U., Creveaux, T., Collet, C., Doyon, J., & Guillot, A. (2009). Sleep contribution to motor memory consolidation: A motor imagery study. *Sleep*, *32*(12), 1559-1565.
- Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M. A. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. *Brain Stimulation 9*, 501-517.
- De vries, M., Barth, A., Maiworm, S., Knecht, S., Switserlood, P., & Floel, A. (2009). Electrical stimulation of the Broca's Area enhances implicit learning of an artificial grammar. *Journal of Cognitive Neuroscience*, 22(11), 2427-2436.
- Diekelmann, S., Biggel, S., Rasch, B., & Born, J. (2012). Offline consolidation of memory varies with time in slow wave sleep and can be accelerated by cuing memory reactivations. *Neurobiology of Learning and Memory*, *98*, 103-111.
- Djonlagic, I., Rosenfield, A., Shohamy, D., Myers, C., Gluck, M., & Stickgold, R. (2009). Sleep enhances category learning. *Learning & Memory*, 16(12), 751-755.
- Dopplemeyer, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. *Journal of Neurotheraphy*, 15(2), 115-129.
- Drueke, B., Baetz, J., Boecker, M., Moeller, O., Heimke, C., Grunder, G., & Gauggel, S. (2009). Differential effects of escitalopram on attention: A placebo-controlled, double-blind cross-over study. *Psychopharmacology*, 207, 213-223.
- Escoffier, N., Sheng, D., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. *Acta Psychologica*, 135, 12-16.
- Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., & Minguez, J. (2014). The effects of a single session of upper alpha neurofeedback for cognitive enhancement: A Shamcontrolled study. *Applied Psychophysiology and Biofeedback*, 39(3-4), 227-236. doi:10.1007/s10484-014-9262-9

- Esposito, R et al. (2013). Acute effects of Modafinil on brain resting state networks in young healthy subjects. *PlosOne*, 8(7), e69224.
- Esterman, M, Thai, M., Okabe, H., DeGutis, J., Saad, E., Laganiere, S., & Halko, M. (2017). Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. *NeuroImage*, 190-198.
- Estocinova, J., Gerfo, E., Libera, C., Chelazzi, L., & Santandrea, E. (2016). Augmenting distractor filtering via transcranial magnetic stimulation of the lateral occipital cortex. *Cortex, 84*, 63-79.
- Falcone, B., Coffman, B. A., Clark, V. P., & Parasuraman, R. (2012). Transcranial Direct Current Stimulation Augments Perceptual Sensitivity and 24-Hour Retention in a Complex Threat Detection Task. *PLoS ONE*, 7(4). doi:10.1371/journal.pone.0034993
- Farah, M., Haimm, C., Sankoorikal, G., & Chatterjee, A. (2009). When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. *Psychopharmacology*, 202, 541-547.
- Fenker, D. B., Frey, J. U., Schuetze, H., Heipertz, D., Heinze, H., & Duzel, E. (2008). Novel scenes improve recollection and recall of words. *Journal of Cognitive Neuroscience*, 20(7), 1250-1265. doi:10.1162/jocn.2008.20086
- Ferri, R., Drago, V., Arico, D., Bruni, O., Remington, R., Stamatakis, K., & Punjabi, M. (2010). The effects of experimental sleep fragmentation on cognitive processing. *Sleep Medicine*, 11, 378-385.
- Ferrucci, R., Brunoni, A. R., Parazzini, M., Vergari, M., Rossi, E., Fumagalli, M., ... Priori, A. (2013). Modulating Human Procedural Learning by Cerebellar Transcranial Direct Current Stimulation. *The Cerebellum*, *12*(4), 485-492. doi:10.1007/s12311-012-0436-9
- Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. *Behavioural Brain Research*, 208(2), 311-318. doi:10.1016/j.bbr.2009.10.030
- Filmer, H. L., Varghese, E., Hawkins, G. E., Mattingley, J. B., & Dux, P. E. (2017). Improvements in Attention and Decision-Making Following Combined Behavioral Training and Brain Stimulation. *Cerebral Cortex*, 27, 3675-3682. doi:10.1093/cercor/bhw189
- Finke, K., Dodds, M. C., Bublak, P., Regenthal, R., Baumann, F., Manly, T., Muller, U. (2010). Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. *Psychopharmacology*, 210, 317-329.
- Fujimoto, S., Tanaka, S., Laakso, I., Yamaguchi, T., Kon, N., Nakayama, T., ... Kitada, R. (2017). The effect of dual-hemisphere transcranial direct current stimulation over the parietal operculum on tactile orientation discrimination. *Frontiers in Behavioral Neuroscience*, 11(173).

- Fujimoto, S., Yamaguchi, T., Otaka, Y., Kondo, K., & Tanaka, S. (2014). Dual-hemisphere transcranial direct current stimulation improves performance in a tactile spatial discrimination task. *Clinical Neurophysiology*, *125*(8), 1669-1674. doi:10.1016/j.clinph.2013.12.100Gbadeyan, O., Mcmahon, K., Steinhauser, M., & Meinzer, M. (2016). Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control: A High-Definition Transcranial Direct Current Stimulation Study. *The Journal of Neuroscience*, *36*(50), 12530-12536. doi:10.1523/jneurosci.2450-16.2016
- Giglia, G., Brighina, F., Rizzo, S., Puma, A. Indovino, S., Maccora, S., Baschi, R., Cosentino, G., & Fierro, B. (2014). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory-guided responses in a visuospatial working memory task. *Functional Neurology*, 29(3), 189-193.
- Gill, J., Shah-Basak, P., Hamilton, R. (2015). It's the thought that counts: Examining the taskdependent effects of transcranial direct current stimulation on executive function. *Brain Stimulation*, *8*, 253-259.
- Gilleen, J., Michalopoulou, P., Reichenberg, A., Drake, R., Wykes, T., Lewis, S., & Kapur, S. (2014). Modafinil combined with cognitive training is associated with improved learning in healthy volunteers- A randomized controlled trial. European *Neuropsychopharmacology*, 24, 529-539.
- Gregory, M., Agam, Y., Selvadurai, C., Nagy, A., Vangel, M., Tucker, ... Manoach, D. (2014). Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. *NeuroImage*, *102*, 666-673.
- Gyselinck, V., Meneghetti, C., Beni, R. D., & Pazzaglia, F. (2009). The role of working memory in spatial text processing: What benefit of imagery strategy and visuospatial abilities? *Learning and Individual Differences, 19*(1), 12-20. doi:10.1016/j.lindif.2008.08.002
- Hester, R. Nandam, L., O'Connell, R., Wagner, J., Strudwick, M., Nathan, P., ... Bellgrove, M. (2012). Neurochemical enhancement of conscious error awareness. *The Journal of Neuroscience*, 32(8), 2619-2627.
- Hidalgo, V., Villada, C., Almela, M., Espin, L., Gomez-Amor, Jesus, & Salvador, A. (2012). Enhancing effects of acute psychosocial stress on priming of non-declarative memory in healthy young adults. *Stress*, 15(3), 329-338.
- Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12-15 Hz) and its impact on sleep as well as declarative learning. *Sleep*, *31*(10), 1401-1408.
- Hussain, S., & Cole, K. (2015). No enhancement of 24-hour visumotor skill retention by postpractice caffeine administration. *PlosOne*, *10*(6), e0129543.
- Hsueh, J., Chen, T., Chen, J., & Shaw, F. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. *Human Brain Mapping*, *37*(7), 2662-2675. doi:10.1002/hbm.23201

- Hoy, K. E., Emonson, M. R., Arnold, S. L., Thomson, R. H., Daskalakis, Z. J., & Fitzgerald, P. B. (2013). Testing the limits: Investigating the effect of tDCS dose on working memory enhancement in healthy controls. *Neuropsychologia*, 51(9), 1777-1784. doi:10.1016/j.neuropsychologia.2013.05.018
- Hoy, K. E., Bailey, N., Arnold, S., Windsor, K., John, J., Daskalakis, Z. J., & Fitzgerald, P. B. (2015). The effect of γ-tACS on working memory performance in healthy controls. *Brain* and Cognition, 101, 51-56. doi:10.1016/j.bandc.2015.11.002
- Hoy, K., Bailey, N., Michael, M., Fitzgibbon, B., Rogasch, N., Saeki, T., & Fitzgerald, P. (2016). Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. *Cerebral Cortex, 26*, 4563-4573.
- Hsu, W. Y., Zanto, T. P., Anguera, J. A., Lin, Y. Y., & Gazzaley, A. (2015). Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex. *Cortex*, *69*, 175-185.
- Ikeda, Y., Funayama, T., Tateno, A., Fukayama, H., Okubo, Y., Suzuki, H. (2017). Modafinil enhances alerting-related brain activity in attention networks. *Psychoparmacology*, 234, 2077-2089
- Ilieva, I., Hook, C., & Farah, M. (2013). Prescription simulants' effects on healthy inhibitory control, working memory, and episodic memory: A meta-analysis. *Journal of Cognitive Neuroscience*, 27(6), 1069-1089.
- Jackson, P. A., Deary, M. E., Reay, J. L., Scholey, A. B., & Kennedy, D. O. (2012). No effect of 12 weeks supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years. *British Journal of Nutrition*, 107(08), 1232-1243. doi:10.1017/s000711451100403x
- Jancke, L., & Sandmann, P. (2010). Music listening while you learn: No influence of background music on verbal learning. *Behavioral and Brain Functions*, 6(3), 1-14.
- Jones, E. K., Sünram-Lea, S. I., & Wesnes, K. A. (2012). Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. *Biological Psychology*, *89*(2), 477-486. doi:10.1016/j.biopsycho.2011.12.017
- Kamienski, L. (2016). *Shooting Up: A short history of drugs and war*. New York: Oxford University Press.
- Kemeny, F., & Lukacs, A. (2016). Sleep-independent off-line enhancement and time of day effects in three forms of skill learning. *Cognitive Processing*, 17, 163-174.
- Knott, V., Salle, S. D., Choueiry, J., Impey, D., Smith, D., Smith, M., ... Labelle, A. (2015). Neurocognitive effects of acute choline supplementation in low, medium and high performer healthy volunteers. *Pharmacology Biochemistry and Behavior*, 131, 119-129. doi:10.1016/j.pbb.2015.02.004
- Labbe, D., Martin, N., Le Coutre, J., & Hudry, J. (2011). Impact of refreshing perception on

mood, cognitive performance and brain oscillations: An exploratory study. *Food Quality* and Preference, 22, 92-100

- Laczo, B., Antal, A., Niebergall, R., Treue, S., & Paulus, W. (2012). Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. *Brain Stimulation*, *5*, 484-491.
- Landry, S., Anderson, C., & Conduit, R. (2016). The effects of sleep, wake activity and time-ontask on offline motor sequence learning. *Neurobiology of Learning and Memory*, 127, 56-63.
- Lau, E., Wong, M, Lau, K., Hui, F., & Tseng, C. (2015). Rapid-eye-movement-sleep (REM) associated enhancement of working memory performance after a daytime nap. *PlosOne*, 10(5), e0125752.
- Li, R., & Chen, J. (2016). Playing action video games improves visuomotor control. *Psychological Science*, *27*(8), 1092-1108.
- Linssen, A., Sambeth, A., Vuurman, E., & Riedel, W. (2014). Cognitive effects of methylphenidate in healthy volunteers: A review of single dose studies. *International Journal of Neuropsychopharmacology*, 17(6), 961-977.
- Lipsy, M. & Wilson, D. (2001). Practical Meta-Analysis. Thousand Oaks, CA: Sage.
- Littell, J. H., Corcoran, J., & Pillai, V. (2008). *Systematic reviews and meta-analysis*. New York: Oxford University Press.
- Lowe, C., Kolev, D., Hall, P. (2016). An exploration of exercise-induced cognitive enhancement and transfer effects to dietary self-control. *Brain and Cognition*, *110*, 102-111.
- Luber, B., Davis, S., & Lisanby, S. (2017). Working memory enhancement in young and older adults using rTMS. *Clinical Neurphysiology*, *128*, e1-e163.
- Luculano, T., & Kadosh, R. (2013). The mental cost of cognitive enhancement. *The Journal of Neuroscience*, *33*(10), 4482-4486.
- MacCoon, D., MacLean, K., Davidson, R., Saron, C., & Lutz, A. (2014). No sustained attention differences in a longitudinal randomized trial comparing mindfulness based stress reduction versus active control. *Plos One*, *9*(6), e97551.
- MacQueen, D., Minassian, A., Kenton, J., Geyer, M., Perry, W., Brigman, J., & Young, J. (2018). Amphetamine improves mouse and human attention in the 5-choice continuous performance test. *Neuropharmacology*, 138, 87-96.
- Macpherson, H., Robertson, B., Sunram-Lea, S., Stough, C., Kennedy, D., & Scholey, A. (2015). Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. *Psychopharmacology*, 232, 1135-1142.

- Malangre, A., & Blischke, K. (2016). Sleep-related offline improvements in gross motor task performance occur under free recall requirements. *Frontiers in Human Neuroscience, 10*, 134.
- Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory? A meta-analytic review. *Journal* of Cognitive Neuroscience, 28(8), 1063-1089.
- Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., & Loo, C. K. (2013). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. *The International Journal of Neuropsychopharmacology*, 16(09), 1927-1936. doi:10.1017/s1461145713000539
- Matzen, L. E., Trumbo, M. C., Leach, R. C., & Leshikar, E. D. (2015). Effects of non-invasive brain stimulation on associative memory. *Brain Research*, 1624, 286-296. doi:10.1016/j.brainres.2015.07.036
- McDevitt, E., Rowe, K., Brady, M., Duggan, K., & Mednick. (2014). The benefit of offline sleep and wake for novel object recognition. *Experimental Brain Research*, 232, 1487-1496
- Meinzer, M., Jähnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K., . . . Flöel, A. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. *Cortex, 50*, 137-147. doi:10.1016/j.cortex.2013.07.013
- Meneghetti, C., Beni, R. D., Gyselinck, V., & Pazzaglia, F. (2016??). Working memory involvement in spatial text processing: What advantages are gained from extended learning and visuo-spatial strategies? *British Journal of Psychology*, 102(3), 499-518. doi:10.1111/j.2044-8295.2010.02007.x
- Metuki, N., & Lavidor, M. (2013). Applying advancements in neurolinguistic research to enhance semantic processing via cognitive training. *Journal of Neurolinguistics*, 26(6), 662-690. doi:10.1016/j.jneuroling.2013.05.003
- Mohamed, S., Ming, T., & Jaffri, J. (2013). Cognitive enhancement and neuroprotection by catechin-rich oil palm leaf extract supplement. *The Journal of the Science of Food and Agriculture*, 93(4), 819-827.
- Moreau, D., Morrison, A., Conway, A. (2015). An ecological approach to cognitive enhancement: Cognitive motor training. *Acta Psychologica*, 157, 44-55.
- Mrazek, M., Franklin, M., Phillips, D., Baird, B., & Schooler, J. (2013). Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering. *Psychological Science*, 2(45), 776-781.
- Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2012). Cognitive effects of two nutraceuticals Ginseng and Bacopa benchmarked against modafinil: A review and comparison of effect sizes. *British Journal of Clinical Pharmacology*, 75(3), 728-737.

- Nikolin, S., Loo, C. K., Bai, S., Dokos, S., & Martin, D. M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. *NeuroImage*, 117, 11-19. doi:10.1016/j.neuroimage.2015.05.019
- Ohler, N. (2017). Blitzed: Drugs in the Third Reich. Boston, MA: Houghton Mifflin Harcourt.
- Otto, M., Basden, S., McHugh, R., Kantak, K., Deckersbach, T., Cather, C., ... Smits, J. (2009). Effects of D-Cycloserine administration on weekly nonemotional memory tasks in healthy participants. *Psychotherapy and psychosomatics*, 78, 49-54.
- Owen, L., Finnegan, Y., Hu, H., Scholey, A., & Sunram-Lea, S. (2010). Glucose effects on longterm memory performance: Duration and domain specificity. *Psychopharmacology*, 211, 131-140.
- Owen, L., Scholey, A., Finnegan, Y., & Sunram-Lea, S. (2013). Response variability to glucose facilitation of cognitive enhancement. *British Journal of Nutrition, 110*, 1873-1884.
- Popovich, C., & Staines, W. (2015). Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task. *Behaviour Brain Research*, 281, 268-275.
- Reches, A., Laufer, I., Ziv, K., Cukierman, G., McEvoy, K., Ettinger, M., ... Geva, A. (2014). Network dynamics predict improvement in working memory performance following donepezil administration in healthy young adults. *NeuroImage*, 88, 228-241.
- Repantis D, Schlattmann P, Laisney O, Heuser I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. *Pharmacological Research, 62*, 187-206.
- Rickard, A., Lauer, I., Ziv, K., Cukierman, G., McEvoy, K., Ettinger, M., ... Geva, A. (2008). Network dynamics predict improvement in working memory performance following donepezil administration in healthy young adults. *NeuroImage*, 88, 228-241.
- Rolle, C., Anguera, J., Skinner, S., Voytek, B., & Gazzaley, A. (2017). Enhancing spatial attention and working memory in younger and older adults. *Journal of Cognitive Neuroscience*, 29(9), 1483-1497.
- Rozengurt, R., Barnea, A., Uchida, S., & Levy, D. A. (2016). Theta EEG neurofeedback benefits early consolidation of motor sequence learning. *Psychophysiology*, 53(7), 965-973. doi:10.1111/psyp.12656
- Roy, L. B., Sparing, R., Fink, G. R., & Hesse, M. D. (2015). Modulation of attention functions by anodal tDCS on right PPC. *Neuropsychologia*, 74, 96-107. doi:10.1016/j.neuropsychologia.2015.02.028
- Sahlem, G. L., Badran, B. W., Halford, J. J., Williams, N. R., Korte, J. E., Leslie, K., . . . George, M. S. (2015). Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered during Slow Wave Sleep Does Not Improve Declarative Memory More Than

Sham: A Randomized Sham-Controlled Crossover Study. *Brain Stimulation*, *8*, 528-534. doi:10.1016/j.brs.2015.01.414

- Sathyan-arayanan, V., Thomas, T., Einöther, S. J., Dobriyal, R., Joshi, M. K., & Krishnamachari, S. (2013). Brahmi for the better? New findings challenging cognition and anti-anxiety effects of Brahmi (Bacopa monniera) in healthy adults. *Psychopharmacology*, 227(2), 299-306. doi:10.1007/s00213-013-2978-z
- Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-Specific Effect of Transcranial Direct Current Stimulation on Motor Learning. *Frontiers in Human Neuroscience*, 7. doi:10.3389/fnhum.2013.00333
- Scholey, A., Sunram-Lea, S., Greer, J., Elliot, J., Kennedy, D. (2009). Glucose administration prior to a divided attention task improves tracking performance but not work recognition: Evidence against differential memory enhancement?. *Psychopharmacology*, 202, 549-558.
- Scholey, A., Ossoukhova, A., Owen, L., Ibarra, A., Pipingas, A., He, K., ... Stough, C. (2010).
   Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study.
   Psychopharmacology, 212(3), 345-356. doi:10.1007/s00213-010-1964-y
- Sela, T., Ivry, R.B., & Lavidor, M. (2012). Prefrontal control during a semantic decision task that involves idiom comprehension: a transcranial direct current stimulation study. *Neuropsychologia*, 50, 2271–80.
- Smith, M. A., Riby, L. M., van Eekelen, J. A. M., & Foster, J. K. (2011). Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect. *Neuroscience & Biobehavioral Reviews*, 35(3), 770-783.
- Smittenaar, P., Prichard, G., Fitzgerald, T. H., Diedrichsen, J., & Dolan, R. J. (2014).
   Transcranial Direct Current Stimulation of Right Dorsolateral Prefrontal Cortex Does Not Affect Model-Based or Model-Free Reinforcement Learning in Humans. *PLoS ONE*, 9(1). doi:10.1371/journal.pone.0086850
- Solomon, T. M., Leech, J., Debros, G. B., Murphy, C. A., Budson, A. E., Vassey, E. A., & Solomon, P. R. (2016). A randomized, double-blind, placebo controlled, parallel group, efficacy study of alpha BRAIN® administered orally. *Human Psychopharmacology: Clinical and Experimental*, 31(2), 135-143. doi:10.1002/hup.2520
- Steenbergen, L., Sellaro, R., Hommel, B., Lindenberger, U., Kühn, S., & Colzato, L. S. (2016). "Unfocus" on foc.us: Commercial tDCS headset impairs working memory. *Experimental Brain Research*, 234(3), 637-643. doi:10.1007/s00221-015-4391-9
- Stollery, B., & Leonie, Christian. (2014). Glucose, relational memory, and the hippocampus. *Psychopharmacology*, 232(12), 2113-2125.
- Stough, C., Camfield, D., Kure, C., Tarasuik, J., Downey, L., Lloyd, J., ... Reynolds, J. (2011). Improving general intelligence with a nutrient-based pharmacological intervention.

Intelligence, 39, 100-107.

- Strong, R. W., & Alvarez, G. A. (2017). Training enhances attentional expertise, but not attentional capacity: Evidence from content-specific training benefits. *Journal of Vision*, 17(4), 4. doi:10.1167/17.4.4
- Sutarto, A. P., Wahab, M. N. A., & Zin, N. M. (2013). Effect of biofeedback training on operator's cognitive performance. *Work*, 44, 231-243.
- Szesny-Kaiser, M., Bauknecht, A., Hoffken, O., Tegenthoff, M., Dinse, H., Jancke, D., ... Schwenkreis, P. (2014). Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. *BMC Neuroscience*, 15, 46.
- Teo, F., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Investigating the Role of Current Strength in tDCS Modulation of Working Memory Performance in Healthy Controls. *Frontiers in Psychiatry*, 2. doi:10.3389/fpsyt.2011.00045
- Trumbo, M. C., Matzen, L. E., Coffman, B. A., Hunter, M. A., Jones, A. P., Robinson, C. S. H., & Clark, V. P. (2016). Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer. *Neuropsychologia*, 93, 85-96. doi:10.1016/j.neuropsychologia.2016.10.011
- Tucker, M., & Fishbein, W. (2007). Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. *Sleep*, *31*(2), 197-203.
- Tulviste, J., Goldberg, E., Podell, K., & Bachmann, T. (2016). Effects of repetitive transcranial magnetic stimulation on non-veridical decision making. *Acta Neurobiologiae Experimentalis*, 76, 182-191.
- Van der Schaaf, M., Fallon, S., Huurne, N., Buitelaar, J., & Cools, R. (2013). Working memory capacity predicts effects of methylphenidate on reversal learning. *Neuropsychopharmacology*, 38, 2011-2018.
- van Wessel, B. W., Verhage, M. C., Holland, P., Frens, M. A., & Geest, J. N. (2016). Cerebellar tDCS does not affect performance in the N-back task. *Journal of Clinical and Experimental Neuropsychology*, *38*(3), 319-326. doi:10.1080/13803395.2015.1109610
- Wang J, Wang Y, Hu Z, & Li X. (2014). Transcranial direct current stimulation of the dorsolateral prefrontal cortex increased pain empathy. *Neuroscience*, 281C, 202-207.
- Wang, J., & Voss, J. (2015). Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. *Hippocampus*, 25(8), 877-883.
- Wang, Q., Cui, H., Han, S., Black-Schaffer, R., Vols, M., Lee, Y., ... Fregni, F. (2016). Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. *Neuroscience Letters*, 569, 6-11.

- Weiss, M., & Lavidor, M. (2012). When Less Is More: Evidence for a Facilitative Cathodal tDCS Effect in Attentional Abilities. *Journal of Cognitive Neuroscience*, 24(9), 1826-1833. doi:10.1162/jocn a 00248
- Wesnes, K., Brooker, H., Watson, A., Bal, W., & Okello, E. (2017). Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers. *Journal of Psyhcopharmacology*, *31*(2), 211-221.
- Wischnewski, M., Zerr, P., & Schutter, D. (2016). Effects of theta transcranial alternating current stimulation over the frontal cortex on reversal learning. *Brain Stimulation*, *9*, 105-711.
- Wohlwend, M., Olsen, A., Haberg, A., & Palmer, H. (2017). Exercise intensity-dependent effects of cognitive control function during and after acute treadmill running in young healthy adults. *Frontiers in Psychology*, 8, 406.
- Yu, R., Wang, B., Li, S., Wang, J., Zhou, F., Shufang, C., ... Huang, R. (2015). Cognitive enhancement of healthy young adults with hyperbaric oxygen: A preliminary resting-state fMRI study. *Clinical Neurophysiology*, 126, 2058-2067.
- Zeeuws, I., Deroost, N., & Soetens, E. (2010a). Effect of an acute d-amphetamine administration on context information memory in healthy volunteers: Evidence from a source memory task. *Human Psychopharmacology*, *25*, 326-334.
- Zeeuws, I., Deroost, N., & Soetens, E. (2010b). Verbal memory improved by d-amphetamine: Influence of the testing effect. *Human Psychopharmacology*, 25, 377-387.





Department of the Army U.S. Army Aeromedical Research Laboratory Fort Rucker, Alabama 36362-0577 www.usaarl.army.mil



U.S. Army Medical Research and Materiel Command