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Summary 

Communication is a critical element of human–autonomy teams because it provides 
insights into how information is gathered, exchanged, and utilized by the team. 
Team communication also provides crucial insight into the many aspects of team 
performance. However, since human–autonomy teaming (HAT) constructs and 
capabilities are still being developed, it is important to turn to the well-developed 
theories and models from human teams to help develop needed metrics for 
understanding and evaluating these developing human–autonomy teams (HATs). 
While these models and theories may not be representative of every factor needed 
to develop effective and appropriate HAT, this review provides insight into 
explaining team performance and developing effective team trust, team cohesion, 
and shared situation awareness (SA).  

Throughout this report we highlight the fundamental importance of communication 
in HATs and focus on the ways in which these constructs, paradigms, models, and 
theories can inform communication research. To create adaptive HATs that can 
succeed in dynamic adversarial environments, multidirectional, networked 
communication among humans and autonomy will be needed to coordinate 
effectively. The three most important research thrusts pertaining to communication 
in HATs include humans understanding autonomy, autonomy understanding 
humans, and joint human–autonomy teamwork. We then provide a theoretical 
framework for understanding those challenges by discussing models and theories 
of teamwork and communication that can be applied to HAT. Successful 
integration of humans and autonomy will demand application of those models and 
theories to more fully understand performance and coordination in these evolving 
teams. Therefore, we advance our review as a foundation for understanding these 
types of integrated teams. 

Following this theoretical underpinning of the current state, we review the current 
metrics and methods for measuring team communication, including qualitative 
coding, computational approaches, network analysis, and voice analysis. These 
methodologies provide insights into what information could be shared and how that 
information should be exchanged during HAT. These insights will be critical to 
developing effective teaming because communication is directly related to 
performance, coordination, team cohesion, and appropriately calibrated team trust. 
As future HATs are developed, we can use communication analysis tools to 
understand how the capabilities of humans and autonomy can be better integrated 
as well as how the autonomy can be designed to improve human understanding, 
trust, and SA. To this end, we also highlight some limitations of current 
communication analysis methods, paving the way for future analyses and 
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associated metrics. To synthesize our theories and frameworks of teamwork and 
communication, and to address the need for developing metrics and real-time 
communication assessment methods for HAT, we introduce a new tool for 
capturing team communication flow: the Realtime Event, Flow, and Coordination 
Tool (REFLECT). To maintain overmatch in changing adversarial environments 
and against emerging threats, future HATs must be characterized by dynamic, 
naturalistic interactions to perform, adapt, and succeed. REFLECT is aimed at 
capturing those interactions to reveal the unique coordination characteristics of 
those teams. Ultimately, if we are to build more effective HATs that exhibit 
appropriate trust, team cohesion, and SA, it is fundamentally important to 
understand their communication, and this report focuses on the importance of 
communication in many aspects of HAT. 
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1. Introduction 

Advances in autonomy-enabled systems are anticipated to shape the battlespace of 
the near and far future. The Army expects autonomy to serve as a force multiplier, 
extending the ability of warfighters to impact the battlespace, reducing the number 
of warfighters in harm’s way, and providing new ways of operating that should 
improve the flexibility and capabilities of teams (US Army 2017). Intelligent 
systems will reshape the way teams gather information, make decisions, identify 
threats, and engage with the environment. Much ongoing research is targeted at 
designing adaptive, intelligent systems with which operators can interact fluidly 
and naturalistically to achieve the mission (Barnes et al. 2017; DeCostanza et al. 
2018a; Marathe et al. 2018). At the core of all these research efforts is 
communication. To build more advanced systems and better human–autonomy 
teams (HATs), it is fundamental that we understand how team communication 
affects, and is affected by, autonomy. 

The motivation for evaluating team communication in human–autonomy teaming 
(HAT) is clear: communication is integral to most team processes and emergent 
states and, by extension, to performance (Marks et al. 2001; Mesmer-Magnus and 
Dechurch 2009; Salas et al. 2009; de Jong et al. 2015). An issue complicating the 
task of understanding communication in HAT is that human communication and 
human–autonomy communication have parallels, but they are not the same. Even 
for the most advanced intelligent agents, there is progress to be made in making 
their communication capabilities (whether verbal, text-based, gesture-based, etc.) 
more fluent and naturalistic. Ultimately, communication between humans and 
autonomy forms the basis for calibrating expectations and behavior within the team, 
and while good calibration can result in appropriate levels of trust, miscalibration 
can result in failures in teamwork. 

Problems with team communication have been linked to team failures in critical 
situations in aviation, military operations, and more. For example, Macrae (2009) 
found that about 40% of situational factors in naval groundings were accounted for 
by poor communication. Sexton and Helmreich (2000) posited that 70%–80% of 
all aviation accidents in the 20 years preceding their work could be attributed to 
communication errors. In a prominent example of communication error, two US 
Army Black Hawk helicopters were shot down in a friendly fire incident during 
Operation Provide Comfort in 1994; misunderstandings and miscommunications 
were cited as important factors in the accident (Snook 2000). Conversely, team 
communication that is clear, complete, and on time can improve a team’s ability to 
manage the situation, allowing teams to perform more effectively under duress, 
such as in crisis situations (Mckinney et al. 2005). 
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Three important areas of active research in developing effective HATs are humans 
understanding autonomy, autonomy understanding humans, and joint human–
autonomy teamwork. Focusing on communication within each of these areas 
provides a clear means to describe current research and needed areas of future 
research to support coordination between humans and autonomy, resulting in better 
performance of HATs. Achieving a thorough understanding of how team 
characteristics affect those three areas is paramount. However, we define the 
terminology in this report before addressing these larger issues. 

1.1 Definitions 

It is important that readers of this report have a common understanding of the terms 
we are using. Therefore, we begin by defining and briefly describing several of the 
relevant constructs for teamwork, communication, and the various agent 
technologies.  

1.1.1 Teamwork 

In human teams, teamwork has been defined as “the means by which individual 
task expertise is translated, magnified, and synergistically combined to yield 
superior performance outcomes, the wisdom of the collectives” (Salas et al. 2009, 
p. 43). Salas et al. (2007) further describe teamwork as the “dynamic, simultaneous, 
and recursive enactment of process mechanisms which inhibit or contribute to team 
performance and performance outcomes” (p. 190). Morgan et al. (1993) emphasize 
that teamwork focuses on shared behaviors, cognitions, and attitudes. 

Teamwork is different from taskwork, which involves “the performance of specific 
tasks that team members need to complete in order to achieve team goals” (Salas  
et al. 2015). Taskwork relates to “the work-related activities that individuals or 
teams engage in as an essential function of their organizational role” (Wildman  
et al. 2012; Salas et al. 2015). DeCostanza et al. (2018a) suggest that for HATs, the 
focus is on “team-level states and processes that influence performance and 
effectiveness […] rather than individual taskwork”. Thus, teamwork in the context 
of HAT can be defined as the mechanisms by which a group of people and/or agents 
moves toward goals, whereby agents can be computer-based aids, software agents, 
machines (e.g., robots), or a combination. 

1.1.2 Communication 

Communication is the vehicle through which team members can resolve 
disagreements, synchronize information from multiple sources, align toward goals, 
or distribute critical information to team members (Salas et al. 2005). Team 



 

3 

communication can be defined as the exchange of information between two or more 
team members using verbal or nonverbal channels (Adams 2007; Mesmer-Magnus 
and DeChurch 2009). For the purposes of this report, we extend this definition by 
understanding that the exchange of information can be between humans or between 
humans and autonomy. 

1.1.3 Agents and Robots 

Agents are intelligent systems and can exist either as software or as hardware with 
a physical form (Chen et al. 2018). According to Wooldridge and Jennings (1995), 
agents have some amount of control over their actions and internal state. Further, 
agents are reactive to their environments, proactive with goal-directed behavior, 
and interactive with other agents and possibly humans (Wooldridge and Jennings 
1995). Robots are physically embodied agents that can interact with the 
environment (Prendinger and Ishizuka 2004; Russell and Norvig 2016). In this 
report, “robot” always refers to an embodied agent. 

1.1.4 Autonomy and Automation 

Automation refers to the whole or partial replacement of human-controlled tasks 
with computerized or mechanical processes (Parasuraman et al. 2000), although 
automation still requires human supervision or control (McNeese et al. 2018). In 
comparison, autonomy refers to an agent’s ability to govern its own actions, goals, 
processes, or states. Systems with autonomous capabilities are, in a sense, more 
adaptable, capable, and independent than traditional automation and can arguably 
represent evolved forms of automation (Endsley 2015; Endsley 2017; Hancock 
2017). 

1.2 Characteristics that Affect Communication in Human–
Autonomy Teaming 

Communication involves the transmission of information both within and across 
teams (or other external individual or organization), and as such there are a 
multitude of factors that affect how well a team communicates. In HAT, the 
autonomy introduces unique capabilities and challenges into a team, and much of 
that challenge stems from how team communication is affected by autonomy. 
Human teams are naturally able to leverage communication to share information 
(Mesmer-Magnus et al. 2011), set goals (Marks et al. 2001), self-correct (Salas  
et al. 2008), and engage in teamwork. Many autonomous systems in task-oriented 
team environments cannot yet engage in naturalistic communication, but a critical 
focus of ongoing HAT research and development involves bidirectional 
communication. Bidirectional communication is an approach to developing 
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effective, human-like communication practices in HATs by facilitating mutual 
understanding between humans and autonomy (Marathe et al. 2018). In effective 
HATs, Chen and Barnes (2014) argue that “agents must be able ask questions as 
well as answer them” and suggest that such interactions do not necessarily have to 
be verbal since other communication modalities are a focus of ongoing research as 
well (see Sections 1.2.1.3 and 1.2.2.1). Therefore, the characteristics addressed in 
this section are organized into three current challenge areas in the development of 
bidirectional communication in HAT: humans understanding autonomy, autonomy 
understanding humans, and joint human–autonomy teamwork. 

1.2.1 Humans Understanding Autonomy 

The research into humans understanding autonomy seeks to identify any dissonance 
between the human’s expectations and the system’s actions and determine how to 
balance the expectations and actions. For the HAT to work effectively, the human 
must have a clear and accurate understanding of how the autonomy operates 
(Phillips et al. 2011). Any mismatch between expectations and behavior, whether 
founded or not, can lead to a miscalibration of trust in the team. Therefore, good 
communication (and associated metrics and techniques for measurement of 
communication) associated with actions, intentions, goals, and general reasoning 
of the autonomous systems are needed for effective teaming to take place. The 
system’s reliability, transparency, and user interface design all play a role in how 
well a human can interact with it, and in a team context, those system factors will 
be vital to the team’s ability to coordinate, cooperate, and communicate.  

1.2.1.1 System Reliability 

A system’s reliability plays a large role in a human’s decisions about whether to 
use and trust that system. Reliability generally refers to how well a system 
completes its tasks, as well as the level of accuracy or the amount of error inherent 
to the system (Baker et al. 2018). Humans tend to trust automation that performs 
reliably (Lee and See 2004; Hancock et al. 2011). More-reliable automation is more 
likely to lead to better human–autonomy performance, and unreliable automation 
can induce performance decrements on the team by increasing the amount of 
workload on the human (Yeh and Wickens 2000; Rovira et al. 2007). Increasing 
reliability is not a panacea for the types of problems that can occur in HAT. When 
reliability increases, operator situation awareness (SA) may decrease as a result, 
which can decrease an operator’s ability to quickly respond to alerts (Endsley 
2017). However, effective system design can help mitigate those decrements by 
communicating information to the operator about the state of the systems and the 
environment. For example, Dzindolet et al. (2003) found that participants who were 
provided explanations for errors made by an automated decision aid showed more 
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appropriate trust of the system, whereas participants who did not receive such 
explanations demonstrated poorer calibration, sometimes even distrusting a reliable 
aid. In a more general example, Wang et al. (2009) found that participants who 
were informed about the limitations of the system related to reliability level of an 
automated combat identification system were better able to calibrate appropriate 
use of the system at the appropriate time. Having transparent communication about 
the capabilities of the autonomy throughout the interaction is critical trust, because 
simply instructing a user that the system is reliable will not always directly translate 
into appropriate use of the system at the appropriate time even if the system is 
operating at optimal capacity (Schaefer and Straub 2016).  

1.2.1.2 Agent Transparency and Communication of Intent 

Transparency is the degree to which the inner processes and decision-making logic 
of an agent is known to a human (Seong and Bisantz 2008). It is an emergent 
property that results from the interaction of human and system (Ososky et al. 2014). 
Transparency is important to effective HAT because it allows humans to have a 
better understanding of the agent’s intentions, actions, and decisions. This better 
understanding promotes trust (Chen and Barnes 2014; Schaefer et al. 2015). 
Transparency can be unique between users, as each user can have a different level 
of knowledge of the system, making the same system transparent to one user and 
opaque to another (Karsenty and Botherel 2005). 

Predictability of the agent’s choices, actions, and capabilities is important to the 
human side of the team, such that as the human’s understanding of the autonomy’s 
purpose and abilities increases, so does the potential performance of the team (Chen 
et al. 2018). Transparency can impact the team’s communication by allowing a 
human operator to have a better understanding of the states and intentions of the 
system, increasing the quality of information possessed by the operator and 
allowing the user to better share relevant information with teammates. 
Transparency stems from the information provided to the user that increases their 
understanding of the system, its current state, and its underlying reasoning process 
for decision making. 

Humans do not always need to have complete transparency of the agent’s decisions 
or behaviors; the key is to find an appropriate balance between enabling 
transparency while avoiding information overload (Miller 2014). This balance will 
depend on the operational context of the team and the role of the agent. While 
intelligent agents can play different roles within a team (Sycara and Lewis 2004), 
Miller (2014) posited that human–autonomy interaction characterized by 
delegation of objectives to the agent can serve as a framework for improved 
comprehension of the agent, better communication of appropriate information from 



 

6 

the agent, and thus better transparency. The agent’s ability to communicate 
appropriate information about its states and intentions to the human is also 
important for bidirectional communication. Recent research has revealed some 
insights into how communication from autonomy can shape effective HAT. 

One way is through user display technology and communication of context-specific 
information to convey intent. Through a review of multiple research programs, 
Schaefer et al. (2017) suggest that appropriately designed displays can facilitate 
shared SA and better communication of intentions and reasoning during decision 
making, while limited communication can lead to increased discomfort or degraded 
trust. They note, however, that some of the larger technological challenges that 
must be solved in effective display design involve perception and intelligence on 
the part of the autonomy. In other words, to communicate appropriate information, 
the autonomy must understand its environment and tasks, but intelligent systems 
are still not able to perfectly make sense of the world, and it is therefore difficult to 
convey to the users of the autonomy. 

A second insight into how communication from autonomy can shape effective HAT 
is the connection between communication and human mental models. In another 
example, Perelman et al. (2017) investigated how human spatial mental models 
changed after receiving assistance from algorithm-generated solutions. In this 
study, participants attempted to create optimized routes and then received 
assistance from a route-planning interface that used algorithms to display suggested 
routes. The authors found that the algorithm’s communication of a route did not 
necessarily lead a participant to change their mind about a route. Instead, they found 
that user trust of the algorithm predicted the likelihood that the participant would 
change their mind about a route. This implies that communication from autonomy 
is not enough to warrant utilization of the information, and that trust is partially 
responsible for one’s acceptance of communications from an intelligent system. 
Thus, by visualizing differences between human-generated and autonomy-
generated solutions to spatial problems, the system could allow operators to better 
understand and resolve those differences. 

Overall, these research avenues suggest that autonomy can support the autonomy-
to-human portion of bidirectional communication by conveying information 
relevant to its intentions and states to the human. Much work remains to be done to 
design systems that can make sense of the world, but that capability will allow 
systems to communicate with humans in a more naturalistic manner and improve 
the human’s understanding of the tasks and the environment. 
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1.2.1.3 Multimodal Communication and User Interface Design  

In the context of HAT, several modalities—visual, speech, auditory (i.e., 
nonverbal), gesture, and tactile or haptic—can be used to communicate between 
humans and autonomous intelligent systems (Hill 2017). Traditionally, human–
autonomy communication has used computer interfaces or remote controllers (e.g., 
TALON explosive ordnance disposal [EOD] robot’s operator control unit; Army 
Technology 2018), which rely primarily on visual modality to convey information. 
However, researchers have continued to investigate the utility of, and even 
implemented into working systems, the less-used dimensions of gesture and tactile 
or haptic interfaces (Barber et al. 2013, 2015; Hill 2017). Some speech and auditory 
interfaces have been developed, and research continues in using these modalities 
for human‒agent communication. Naturalistic human‒agent communication is one 
option that could support HAT research as a means to minimize human training 
requirements and increasing understandability by building interfaces based on how 
humans communicate with each other. However, we expect computer and handheld 
control interfaces will remain a popular modality for interfacing with intelligent 
agents for at least the near future given that more-naturalistic communication is still 
under considerable research and development (Bisk et al. 2016). 

Nonverbal communication through displays or controllers is another active area of 
communication research. For example, unmanned aerial vehicles (UAVs) under 
human supervision can be controlled with a computer interface from long-distance 
geographic separation, while EOD robots have been typically controlled with 
teleoperated physical controller units, using physical input devices such as joysticks 
along with some visual displays (Army Technology 2018). Using touch-based 
interfaces often occupies two of the senses (touch and vision), so team 
communication when using these interfaces may be cognitively burdensome when 
also attending to other tasks that may require those senses (Wickens 2002; Wickens 
2008). Some current research directions are investigating the effectiveness of using 
speech interfaces for load carrying robots (Taylor et al. 2017) and intelligence, 
surveillance, and reconnaissance tasks (Harris and Barber 2014; Kattoju et al. 
2016), which would reduce some of the cognitive burden on Soldiers by freeing up 
the hands and eyes. Choosing not only what to communicate, but also how to 
communicate using various modalities, is the subject of continuing research and 
development. 

In general, future HATs are expected to incorporate multimodal communication to 
improve the quality of teamwork and communication. To address that expectation, 
current research seeks to understand when and how to use more than one modality 
for communication (e.g., using speech, gesture, and touch; Schaefer et al. 2019). 
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Work in this domain will lay the groundwork for HATs that can transmit 
information most effectively using a mix of communication modalities. 

1.2.2 Autonomy Understanding Humans 

Just as humans must be able to understand the capabilities and intentions of their 
autonomous systems, there are instances where those systems will need to be able 
to either have direct communication from human team members or access to 
information about the human team members. The larger goal of this research area 
is to develop adaptive solutions that incorporate understanding and prediction of 
human behavior. If the intelligent system better understands the state of the human, 
the system can adapt to the changing state of its human teammate; this capability 
should improve performance as well as increase the flexibility of the team. For 
HAT-based communication research, this means a better understanding is needed 
of how intelligent systems can make sense of human inputs, whether those inputs 
involve speech, text, user interface inputs, or even physiological states. 

1.2.2.1 Human-to-Autonomy Communication 

The means by which humans can communicate information to intelligent systems 
depends on both the intended purpose of the systems as well as the user interface 
of the system. As discussed in Section 1.2.1.3, the interface can use a single 
modality or even multiple modalities for the user interface. Some ongoing work 
seeks to develop our understanding of how humans can use naturalistic language 
when communicating with robots. Bisk et al. (2016) studied the linguistic 
difficulties encountered when human participants tried to command a robotic 
teammate to move and reorganize blocks in a spatial task. The authors highlighted 
the importance of grounding to this coordination and introduced algorithms to help 
agents understand potentially ambiguous commands. A similar effort is underway 
by Army researchers to evaluate how human operators communicate with robotic 
teammates to develop new communication algorithms for human–robot dialogue 
(Marge et al. 2016, 2017; Bonial et al. 2017). One of the goals of this work is to 
produce a classification system that can allow the automated system to interpret 
and understand the operator’s intentions from their communication, which would 
eventually inform the development of more-naturalistic robotic communication 
algorithms and improve bidirectional communication between human and robot. 

Other ongoing work has evaluated the feasibility of using gestures to communicate 
information to autonomy. Generally, two types of technologies are used to capture 
gestures for communicating with autonomy: instrumented recognition systems 
(e.g., gloves with sensors) and camera-based recognition systems (i.e., systems that 
recognize using computer vision; Hill 2017). Barber et al. (2013) described an 
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instrumented recognition approach that utilized inertial measurement units 
embedded in gloves designed to detect changes in hand positions and shapes. Using 
these gloves, the authors used 21 different hand gestures to convey information to 
robotic platforms, which interpreted the gestures at accuracy levels greater than 
95%. Barber et al. (2015) described a prototype multimodal interface for 
communicating with a robot using speech and gestures. This robot used a camera-
based recognition system to detect gestures. Participants in the initial field 
assessment of the system reported that the gesture recognition needed to be 
improved, as did the training on how to interact with the robot using gestures. 
However, the authors noted positive impressions from participants regarding the 
flexibility of the communication with the robot. 

These approaches demonstrate some of the progress being made in allowing 
humans to communicate information to autonomy in various modalities. Further 
development of these research areas will eventually yield autonomy that can better 
understand the human’s states and intentions, enabling more-fluent bidirectional 
communication between humans and autonomy and increasing the operational 
flexibility of HATs. 

1.2.2.2 Wearable Technologies 

One critical challenge in developing advanced autonomy for HAT is the integration 
of the human element into that team. Therefore, HAT on a broad scope will benefit 
from accounting for the dynamic strengths and vulnerabilities of human team 
members. As such, future research will need to include 1) precise observations or 
inferences of individual and team states, processes, and performance over time,  
2) a clear understanding of dynamic events in the operational environment and 
within the hierarchical and lateral structure of the teams, and 3) the ability to 
seamlessly and synchronously allow for adaptation while maintaining effective 
collaboration, coordination, and dynamic control among humans and agents 
(DeConstanza et al. 2018a). Real-time physiological assessments of human team 
members (e.g., heart rate or electrodermal activity) may be able to provide insights 
useful to joint operations and trust within HATs (Schaefer et al. 2019a). Current 
research efforts are looking into how data from wearable technologies can be used 
to communicate information about human state (e.g., stress, trust, and workload; 
Drnec et al. 2016; Gamble et al. 2018) to other team members including autonomy.  

Given that humans’ current state can influence the information they need and can 
interpret, this research can be used to facilitate transparency and shared SA in 
accordance to each specific humans’ capabilities and informational needs. Further, 
this additional information about the human team members can influence team 
operations and joint decision-making behaviors. Another advantage of using 
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sensing to infer human states and intentions is that it reduces the burden of forcing 
the human to communicate with the autonomous agent (whether communication is 
written, verbal, or gesture-based). Instead the agent will be able to infer task-
relevant states without adding to humans’ cognitive loads. However, sensing of a 
human through wearable technologies is insufficient to meet the need for improving 
human-to-autonomy communication because only so much information can be 
gathered by wearable sensors. Machine learning and artificial intelligence will need 
to be integrated to compute real-time information regarding the wearer’s state over 
time, and this integration will support real-time management of HAT in the context 
of dynamically varying trust in autonomy (Metcalfe et al. 2017). For example, 
multisensor fusion architectures provide a method for estimating expected and 
actual performance of humans and autonomy team members during a joint task. By 
taking this approach it is possible to mitigate human bias and miscalibrated trust in 
autonomy through real-time visual feedback to a human team member (Nothwang 
et al. 2016; Marathe et al. 2018; Gremillion et al. 2018). These types of approaches 
make it possible to develop interventions to modify behavior of the appropriate 
team member at the appropriate time; to sense shifts in environmental or socio-
cultural influences and mission goals; to determine relevance to the team mission; 
and to develop technologies capable of balancing among different types of states 
and processes within the team (DeConstanza et al. 2018a). 

1.2.3 Joint Human–Autonomy Teamwork 

Effective HAT will require coordination of appropriate information between all 
team members at the appropriate time (Sycara and Sukthankar 2006). A focus of 
current research seeks to maximize the strengths and minimize the weaknesses in 
both humans and autonomous teammates to achieve effective teaming (Marathe  
et al. 2018). To do that requires careful consideration of the capabilities of humans 
and autonomy when they are joined in teamwork. The successful integration of 
humans and intelligent agents will support new team structures that can perform 
effectively in dynamic adversarial environments (US Army 2017). To achieve that 
level of performance, HATs will need to exhibit a shared understanding of their 
tasks, teamwork, and environment (Ososky et al. 2012). The design of effective 
HATs will also benefit from emphasizing principles coactive design that 
incorporate grounding and interdependence between humans and agents (Bradshaw 
et al. 2009; Johnson et al. 2014). 

As systems become more capable and as we gain a better understanding of how 
humans can function in HATs, our understanding of how team communication 
relates to other teaming characteristics will evolve as well. The factors highlighted 
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in this section address characteristics that affect joint communication between 
humans and their autonomous teammates.  

1.2.3.1 Shared Cognition 

Knowledge within a team shapes communication by affecting the way that the team 
thinks, coordinates, shares information, and engages with tasks (Cooke et al. 2004, 
2007; Sycara and Sukthankar 2006). Shared mental models (SMMs) comprise 
organized knowledge about teamwork and taskwork (Cooke et al. 2000; Mathieu 
et al. 2000), which allow team members to accurately understand tasks and expect 
team members’ behavior (Espinosa et al. 2002). SMMs are long-lasting and remain 
fairly stable over time (Cooke et al. 2000), and have been shown to enable effective 
coordination among team members by allowing them to understand their 
teammates’ needs and activities (Cannon-Bowers et al. 1993). This is because 
teams with good SMMs can better understand the context and implications of their 
communications (Evans et al. 2017). At the same time, SMMs have also been noted 
to support team coordination in situations where communication is hampered; it is 
thought that better SMMs help teams to communicate implicitly when explicit 
communication becomes challenging (Cannon-Bowers et al. 1993; Stout et al. 
1996; Cooke et al. 2000). Indeed, these lines of research have also suggested that 
task-related SMMs can make team communication more efficient by decreasing the 
amount of communication needed to achieve a given purpose (Langan-Fox et al. 
2004). 

The concept of transactive memory systems (TMSs) is closely related to, but 
distinct from, SMMs. Transactive memory is information that helps us understand 
“who knows what”, and a TMS involves the group’s engagement with managing, 
updating, and coordinating such information (Wegner 1987; Ren and Argote 2011). 
Thus a TMS is characterized by knowledge about which team members possess 
specific information and active coordination of that knowledge, whereas SMMs 
involve additional information about team strategies, goals, taskwork, and so on 
(Cooke et al. 2000; Lewis 2003; Wildman et al. 2014). Both TMSs and SMMs are 
important facets of team cognition that support effective teamwork. 

Team cognition, communication, and performance are innately linked such that 
teams communicate information while performing tasks. The literature has 
consistently identified team information sharing as a driver of team performance 
(Mesmer-Magnus and Dechurch 2009), although not all information sharing is 
equal. Teams can share information that is already commonly held among team 
members, or information that is uniquely held by one member (Stasser and Titus 
1985). Generally, teams share common information to bolster team cohesion, 
improving the social aspect of working as a team, though it may sometimes be 
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detrimental to performance if teams share too much common information; the 
tendency for teams to do so is known as the common knowledge effect (Gigone 
and Hastie 1993; Gruenfeld et al. 1996). In contrast to sharing common 
information, teams share unique information to increase the amount of knowledge 
available to the team, improving the team’s ability to solve problems and work on 
tasks (Mesmer-Magnus and Dechurch 2009). Generally, communication is 
important to the development of transactive memory during early team interactions 
(Ren and Argote 2011). For example, in a study of business consulting teams, 
Lewis (2004) found a relationship between communication frequency in the 
planning phase and the development of a TMS. 

In the HAT context, shared cognition encompasses a mutual understanding held 
between the human and autonomy team members regarding the individuals’ and 
team’s status and goals. As with human teams, HATs can have SMMs 
corresponding to teamwork and taskwork. However, the communication that 
shapes shared cognition in human teams is sometimes abstract, and given that 
current agents lack the ability to understand nuanced communication, this presents 
a barrier to measuring shared cognition in HATs (Evans et al. 2017). Regardless, 
research into this area is ongoing, and researchers continue to shed light on the links 
between automation transparency, human‒agent shared cognition, and team 
performance (Chen et al. 2018). As cognition is a term that encompasses more-
specific constructs (e.g., information sharing and decision making), research has 
also been conducted on those finer aspects of cognition, including shared SA. 

1.2.3.2 Shared Situation Awareness 

Shared SA reflects the extent to which the SA possessed by each team member 
overlaps (Endsley and Jones 2001). Shared SA is dynamic and relates to the 
environmental situation around the team (Cooke et al. 2000). This is in contrast 
with SMMs, which are considered to be more structured and stable over time and 
relate to understandings developed among the team (Wildman et al. 2014). For 
shared SA, Endsley (2015) argues that “team members do not need to share 
everything they know, which would constitute overload, but only those 
informational needs that they have in common, as a function of their overlapping 
goals” (p. 23). Because SA is a cognitive construct, shared SA can be considered a 
shared cognition. 

Shared SA is critical to how well teams can coordinate actions, goals, and 
intentions, as long as the appropriate amount and quality of information is being 
shared among the correct team members. In HAT, shared SA is critical to goal 
alignment, function allocation, communication of decisions and intentions, and 
coordination of taskwork (Endsley 2015). Shared SA in HATs also involves 
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components of transparency, as illustrated by the Situation Awareness-based Agent 
Transparency (SAT) model (Chen et al. 2018). The SAT model defines the 
information that is needed to have SA of an agent. The model involves three levels 
of information: 1) current actions, plans, and status (Level 1), 2) general reasoning 
process and intentions (Level 2), and 3) projections and predictions about future 
outcomes (Level 3). Thus, the SAT model illustrates how information provided by 
autonomy can support human SA (Chen et al. 2018). This is critical to coordinating 
teamwork processes and should be considered essential to effective 
communication. Ultimately, communication helps to moderate what information is 
held by which members, and effective communication helps to ensure that the 
team’s shared SA is calibrated to the demands of the task. 

1.2.3.3 Implicit Communication 

When discussing communication, much work considers communication that is 
actively and explicitly performed, but implicit communication is also a useful 
means of transmitting information. Implicit communication can be characterized 
by nonverbal cues such as posture and facial cues, but some have noted that implicit 
communication can also involve verbal components such as sighs or grunts (Lackey 
et al. 2011). In human teams and HATs, implicit communication can allow teams 
to share more information without usually occupying more communication 
bandwidth (see Section 1.2.1.3 for more discussion about multimodal 
communication). This is illustrated in Barnlund’s (2008) transactional model of 
communication: The sending and receiving of messages happens simultaneously, 
such that while two people are speaking, verbal and nonverbal cues are being 
exchanged as well. Nonverbal cues can involve face and head movements, which 
are visible if two parties are co-located and communicating verbally, and they allow 
the parties to engage in social functions using this implicit channel while speaking 
in the explicit channel (Hecht et al. 1999).  

Some research has evaluated how robot design can facilitate nonverbal 
communication. In one study, Baraka et al. (2016) implemented lights to allow a 
robot to persistently display its state in relation to its environment and tasks, such 
as when it believed itself to be blocked by an obstacle. In another study, Kühnlenz 
et al. (2013) found that when a robotic head’s facial expressions were made to 
mirror participants’ emotional states, the participants demonstrated more prosocial 
behavior. In human teams, the multichannel interactions characteristic of nonverbal 
communication are complex, and nonverbal communication is not commonly 
evaluated in analyses of teamwork (Tiferes et al. 2016). Thus, more work must be 
done to understand implicit communication in human-only teams if we are to apply 
those principles to HATs. 
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2. Relevant Models and Theories for Human–Autonomy Team 
Communication 

To shape current and future HATs, and to address the challenges of humans 
understanding autonomy, autonomy understanding humans, and joint HAT, a clear 
theoretical foundation must be laid based on teamwork and communication. This 
section provides such a theoretical foundation by detailing several models and 
theories of teamwork and communication. While the models and theories described 
represent a broad a range of contexts, they should not be considered exhaustive. 
They were selected based on their explanatory power and applicability to different 
domains both within and outside of HAT. There are virtually unlimited numbers of 
possible configurations of teams involving humans and autonomy-enabled systems, 
and autonomous capabilities will continue to evolve, so an approach that seeks to 
generalize across a range of contexts is most useful for this review.  

2.1 Teamwork Models and Theories 

A large variety of teamwork models have been designed to account for different 
aspects of teamwork, but many are context-specific and are thus less generalizable. 
The models and theories presented in this section describe the general aspects of 
teamwork processes and emergent states and are thought to be applicable to a 
variety of scenarios and team compositions. 

2.1.1 Inputs, Processes, and Outputs (IPO) Model 

One of the early teamwork models to gain widespread acceptance conceptualized 
teamwork with three stages: inputs, processes, and outputs (IPO Model, Fig. 1; 
Steiner 1972; McGrath 1984; Hackman 1987). The IPO Model is important because 
it provides researchers with a framework for understanding how team inputs (e.g., 
knowledge, skills, and attitudes) lead to processes (e.g., backup behaviors or 
nonverbal communication), which then lead to outcomes (e.g., performance or 
accuracy). The introduction of the IPO Model was a step forward in modeling 
teamwork, as prior research on group interactions was primarily focused only on 
how inputs resulted in outputs, with very little research into processes (Hackman 
1987). 

 

Fig. 1 IPO Model 
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However, the IPO Model has several shortcomings. First, it only accounts for 
processes as a linkage between inputs and outputs, and thus it does not account for 
emergent states (Ilgen et al. 2005). Processes involve the nature of the team’s 
interaction and reflect things that team members do, such as closed-loop 
communication (Salas et al. 2015). Emergent states, in contrast, refer to the 
cognitive or affective states that emerge from a team’s experiences (including 
processes) (Marks et al. 2001). One example of an emergent state is trust (Ososky 
et al. 2014). Emergent states can serve as mediators between team inputs and 
outcomes. Thus, this limitation in the IPO model restricts its ability to account for 
the breadth of mediators that can link team inputs to team outputs. 

Second, the IPO Model does not account for the cyclical nature of teamwork (Ilgen 
et al. 2005). It models the way that inputs lead to outputs via processes, but it does 
not explain how outputs can affect subsequent inputs. For example, after-action 
reviews are used to review team performance following tasks to identify failures 
and improve subsequent performances. In this manner, team outputs (e.g., 
performance) ultimately will affect their inputs the next time they engage in those 
tasks. Within the constraints of the traditional IPO Model, this team development 
over time cannot be easily represented. 

Third, the IPO Model moves linearly through each step. Research has suggested 
that relationships between each set of influences (inputs, processes, emergent 
states, and outputs) can occur nonlinearly, conditionally, or in other manners (Ilgen 
et al. 2005) rather than in a linear procession from inputs to processes to outputs. 
This implies that a different model is needed to account for nonlinear transitions 
between the influences. 

2.1.2 Temporally Based Taxonomy of Teamwork 

To address some of the shortcomings in the IPO Model’s characterization of 
teamwork, Marks et al. (2001) argued that the IPO Model was better represented in 
brief “episodes and sub-episodes, rather than the entire life cycle of the team”  
(p. 360) and posited that the IPO Model could be repeated many times, with outputs 
from one “episode” feeding into inputs from another (Fig. 2).  

 

Fig. 2 Example breakdown for a single task over time (adapted with permission from 
Marks et al. [2001]) 
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While this is one potential solution, it fails to address the fact that the IPO Model 
does not account for emergent states, a shortcoming that was underscored by the 
authors. In their work, Marks et al. (2001) highlighted the importance of 
distinguishing between team processes and emergent states, but ultimately sought 
to produce a team process taxonomy rather than a broader teamwork taxonomy that 
accommodated both processes and emergent states. Thus, while the taxonomy 
advanced by Marks et al. served as a refinement of the initial IPO model, later 
authors proposed a model that accounted for a fuller picture of teamwork, which 
we discuss in the following section. 

2.1.3 Input-Mediator-Output-Input (IMOI) Model 

In response to the IPO Model and the taxonomy of teamwork discussed, Ilgen et al. 
(2005) proposed the IMOI of teamwork (Fig. 3). The IMOI Model represents 
teamwork in an improved manner relative to previous models through their use of 
a second input phase after output to reflect the cyclical nature of teamwork. Second, 
their replacement of processes (used in the IPO Model) with mediators is meant to 
capture a greater extent of variables and constructs that can link inputs to outputs. 
Finally, they argued that the IMOI Model accommodates potential interactions 
between its phases rather than serving as a solely linear flow from inputs to outputs, 
as in the IPO Model and the team process taxonomy (Marks et al. 2001). The IMOI 
Model has considerable explanatory power and has remained useful since its 
conception, providing utility in modern research including for HAT. For example, 
You and Robert (2018) proposed an IMOI framework of human–robot teamwork 
to describe the developmental process of human–robot teams. 

 

Fig. 3 Example IMOI model 

2.1.4 Big Five Model 

To build on the previously developed theoretical models of teamwork, Salas et al. 
(2005) produced the Big Five model of teamwork. This model unified previously 
disparate teamwork literature to identify five core components of teamwork: team 
leadership, mutual performance monitoring, backup behavior, adaptability, and 
team orientation. It also identified the importance of three coordinating 
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mechanisms to teamwork: shared mental models, closed-loop communication, and 
mutual trust. In this way, Salas et al. (2005) linked what a team does (five core 
components) with how it coordinates (three coordinating mechanisms). 

The primary contribution of the model is that it is easily translated to many contexts 
and scenarios. The model accounts for some of the major teamwork factors and 
links team processes and states to coordination and communication factors. 
However, there are a few limitations of the model. First, it should not be considered 
fully diagnostic. While it accounts for five core components and three coordinating 
mechanisms, there are a multitude of teamwork constructs that are not accounted 
for by the model, such as SA and team cohesion. Second, the relationships within 
the model are not necessarily complete. In the model, mutual trust is only linked to 
mutual performance monitoring, and closed-loop communication is not related to 
any other constructs. Additional research will help to better specify other 
relationships among the constructs in the model. While this model is not perfect, it 
represents a major attempt to produce a model that captures essential teamwork and 
coordination constructs in a manner that is both parsimonious and generalizable. 
The Big Five model of teamwork (Salas et al. 2005) remains a useful framework 
for considering important contributors to teamwork. 

2.2 Taxonomy of Classifying Teams 

Previous sections presented some of the models of teamwork that describe how 
teams function. In this section we discuss the classification of team characteristics. 
In an attempt to create a generalizable taxonomy for classifying and describing 
teams, Hollenbeck et al. (2012) devised a method for describing teams on three 
dimensions: skill differentiation, authority differentiation, and temporal stability. 
Hollenbeck et al. argued that the lack of consensus on how to define and classify 
teams presented challenges when trying to compare results and aggregate findings 
across studies of teams. All three dimensions provide insight into the 
communication patterns of the team, so the discussion of each dimension briefly 
addresses how it relates to team communication. 

2.2.1 Skill Differentiation 

Skill differentiation refers to the extent to which the skills held by each team 
member are shared or unique. Some teams are characterized by a high degree of 
specialization among their members; consider surgical teams in which the lead 
surgeon cannot do the anesthesiologist’s job, for example. Other teams have little 
differentiation, as in a crew of service technicians where members may be cross-
trained on each other’s roles. This method for classifying teams provides insight 
into the communication of the team because the overlap between team member skill 
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sets relates to how much skill-based knowledge is shared by team members. With 
less skill differentiation, team members can assume a shared base of knowledge 
(see Section 1.2.3.1 regarding shared cognition), whereas a higher degree of skill 
differentiation implies that some discussions may need to involve reaching a 
common ground of understanding (see Section 2.3.5 regarding grounding).  

2.2.2 Authority Differentiation 

Authority differentiation describes the extent to which leadership or influence is 
balanced across the team or concentrated in one or a few members. Teams with 
high authority differentiation may be hierarchical, relying on the team’s leadership 
to make decisions or set goals. This is the structure typically employed across 
various levels of the US Army and other military organizations. On the low end of 
this dimension, a team with low authority differentiation would engage in team 
processes in a more democratic fashion, allocating tasks in a manner that allows for 
more shared participation and opportunity for different members to contribute to 
decision making. For example, this might characterize design teams that focus on 
creative problem solving. The authority structure of a team directly affects the 
communication patterns that can be exhibited within a team. Teams with looser 
authority differentiation and more shared participation can have more dispersed 
communication between team members, whereas teams with clear authority 
differentiation have rigid hierarchies and thus similarly rigid communication 
structures. Ultimately, different contexts will require different structures for 
authority (and thus, different communication patterns) based on mission needs. 

2.2.3 Temporal Stability 

Temporal stability represents the expected lifespan of the team (i.e., how long the 
team is expected to remain intact). Team temporal stability affects many other 
factors such as trust and shared mental models, so this dimension is an important 
consideration for the analysis of teamwork. Teams with high temporal stability 
have very little turnover between projects and rely on a consistent set of team 
members over time. In contrast, teams with low temporal stability may be formed 
for a sole purpose and then reformed or disbanded, as with ad hoc virtual teams that 
are assembled to complete tasks rapidly (Crisp and Jarvenpaa 2013). Team 
temporal stability affects team communication primarily due to how those 
constructs relate to shared cognition. More temporal stability means more time to 
build shared cognitions, trust, and team cohesion using communication. Teams 
with little temporal stability may instead be formed rapidly to address tasks in a 
limited time frame, but they may not have time to engage in enough communication 
to fully develop trust and team cohesion. 
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The use of dimensions provides better granularity for understanding teams and their 
communication patterns. However, there are a few drawbacks to this approach. 
There is not an exact way to operationalize where a team lies on a dimension; in 
other words, it is a subjective matter to decide whether one team has more skill 
differentiation than another and to identify the extent of that difference. Thus, finer 
distinctions of teams remain difficult. Another issue lies in the number of 
dimensions used. While Hollenbeck et al. (2012) argue that the explanatory power 
of the three dimensions is considerable, authors have suggested that this approach 
may need to be expanded to account for the wide variability in the compositions, 
functions, and performance of modern teams (Benishek and Lazzara 2019). 
Further, other dimensions may account for variance in team performance that is not 
explained by this model. For example, a dimension of virtuality (i.e., the extent to 
which a team is geographically separated and reliant on technology-mediated 
communication) may be warranted given the recent consensus that team virtuality 
is measured dimensionally rather than dichotomously (Schweitzer and Duxbury 
2010; Hollenbeck et al. 2012). In the context of HAT, it is also possible that another 
dimension of the model could reflect the extent to which the team makes use of 
autonomous assets, though as discussed with previous limitations, operationalizing 
exactly where a team falls on dimension could prove challenging. Despite this 
limitation, methods for describing and classifying HATs will be continually useful 
given the ever-evolving capabilities and implementations of intelligent agents.  

2.3 Communication Models 

There is a vast field of research into many aspects of communication due to its 
importance to any kind of group interaction. Due to the breadth of this research, a 
variety of theories and models of communication have risen to prominence over the 
years. This section outlines a selection of prominent theories and models of 
communication, and discusses the relevance of the communication theories and 
models to teamwork, and specifically HAT, where applicable. 

2.3.1 Shannon’s Model of Communication 

Shannon (1948) published the first widely adopted model of a communication 
system in an effort to characterize how communication systems such as the 
telephone transported information. Figure 4 depicts this model of communication. 
Shannon’s model has a few parts: 

• Source: the object, system, or person from which the message originates. 

• Transmitter: the system or mechanism that produces and encodes the 
message for transmission. 
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• Signal: the information being sent from source to destination. 

• Noise source: refers to anything that introduces noise into the system, 
potentially affecting the quality of the transmitted message; for example, 
background sounds, electrical interference, and the like. 

• Received signal: the signal after considering the effects of noise.  

• Receiver: something that receives and decodes the message.  

• Destination: the final location for the message. 

 

Fig. 4 Model of information transmission (adapted from Shannon [1948]) 

Notably, while Shannon’s model was designed to represent technological systems 
such as phones or radio, it was eventually applied to other contexts, such as person-
to-person communication, because it represents the conceptual process of 
information transmission. However, this reveals one of the limitations of the model: 
it ends at receipt of the message and does not account for any other processing of 
the information. This processing could, for example, involve a Soldier interpreting 
a superior’s order based on their positions in the battlespace. Another limitation of 
the model is that it becomes unwieldy in situations involving group, one-to-many, 
or back-and-forth communication. Like the IPO Model, this model does not account 
for the cyclical or reciprocal nature of interaction, in this case communication. To 
address this shortcoming, Marko (1973) extended Shannon’s model to involve two 
sources exchanging information. In this bidirectional communication theory, 
Marko (1973) argued that information exchanges between humans, animals, or 
other “multivariate complex systems” could be described. Further discussion on 
communication as a reciprocal interaction can be found in Section 2.3.3. 

The limitations of Shannon’s model necessarily stem from the original purpose of 
Shannon’s work, which was to characterize telephone and radio communication. 
Despite its drawbacks, the model remains effective at conceptually outlining the 
process of transmitting information between two points. 
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2.3.2 Berlo’s Sender-Message-Channel-Receiver (SMCR) Model 

In response to some of the limitations of Shannon’s model of communication, Berlo 
(1960) created a communication model that better accounts for the human aspect 
of communication. Berlo’s SMCR model contains the following four components: 

• Sender: source of the message. 

• Message: information being transmitted from sender to receiver. 

• Channel: medium used to transmit the message. 

• Receiver: person receiving the message. 

Further, each component involves several subcomponents. Sender encompasses 
one’s characteristics such as attitudes, culture, knowledge, and communication 
skills. Message involves the structure, content, and purpose of the message. 
Channel invokes the ways in which the senses are used to transmit the message: 
sight, hearing, touch, and so on. Receiver encompasses the receiver’s attitudes, 
knowledge, culture, communication skills, and so on, similarly to how these 
subcomponents play a role for the Sender. 

Compared with Shannon’s model of communication, the SMCR model is better 
able to explain aspects of human communication, such as purpose, prior 
knowledge, and emotional content. Further, unlike Shannon’s model, the SMCR 
model can account for the greater context of the communication via the Source and 
Receiver factors of attitudes, social systems, and culture. Because they capture a 
broader perspective of human communication, these features allow for better 
applicability to team communication work. However, some limitations to this 
model are worth considering. First, like Shannon’s model, the SMCR model does 
not account for the reciprocal nature of communication and is not able to effectively 
represent feedback processes or one-to-many communication. Second, unlike 
Shannon’s model, the SMCR model does not consider or represent the effects of 
noise (i.e., unwanted signal or interference) on the communication channel, and 
many forms of noise can affect communication. Despite these limitations, the 
SMCR model was a significant step forward for models of communication because 
it highlighted the importance of psychological and contextual factors to 
communication. 

2.3.3 Turn-Taking 

Whereas communication can be conceptualized as the transmission of information 
(as outlined in the preceding two sections), a conversation involves a back-and-
forth exchange of information between two (or more) parties. Research by the 
contemporaries of Shannon (1948) and Berlo (1960) focused on the former 
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perspective, and this eventually gave way to research that sought to develop the 
latter perspective and advance an analytical view of language as a reciprocal 
interaction between parties. One line of work in this movement sought to establish 
the importance of turn-taking to conversation. Sacks et al. (1974) noted that  
turn-taking allows us to communicate effectively by dictating how we shift 
speakers during a conversation. They argued that communication comprises 
utterances marked by transition-relevance places (TRPs), which indicate 
conversational boundaries that allow speakers to exchange turns. TRPs allow 
conversation to flow between speakers. Jurafsky and Martin (2007) summarize 
what happens at each TRP as follows: 

• If during this turn, the current speaker has selected A as the next speaker, 
then A must speak next. 

• If the current speaker does not select the next speaker, any other speaker 
may take the next turn. 

• If no one else takes the next turn, the current speaker may take the next turn. 

This system of turn-taking uses TRPs to flow between speakers during a 
conversation. It is a considerable advancement of the science of communication 
from the models of Shannon and Berlo because it provides a foundation for 
understanding the exchange of information between two (or more) speakers as 
opposed to those models that represent communication as a one-way transmission. 
If we adopt the perspective of Sacks et al., we can begin to understand 
communication as a joint coordination activity between two or more parties, which 
provides a theoretical basis for the importance of communication to teamwork. The 
view of communication as a two-way exchange of information was also echoed by 
Barnlund’s (2008) transactional model of communication, originally published in 
1970. In this model, Barnlund considered a conversation to be a multilayered 
feedback system in which two speakers exchange information both verbal and 
nonverbal. 

In a recent extension of the turn-taking concept, Gibson (2003) proposed a 
framework for analyzing conversations based on “participation shifts”. These shifts 
capture how a conversation shuffles between speakers and recipients. Each 
participation shift incorporates a temporal element by capturing two consecutive 
communication acts (e.g., A talks to B, then B talks to A; or A talks to B, then A 
talks to Y). Gibson tested this framework by analyzing meetings of managerial 
groups and was able to identify sequential patterns in speakers that governed “who 
could speak and be addressed in a given turn”. 
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From these perspectives, communication involves a fundamental level of 
coordination to share information, so if this process encounters problems, other 
teamwork processes (which rely on coordination) are more likely to subsequently 
experience problems. Communication and teamwork are thus interlinked. Consider 
the following hypothetical example of this link. A fire team leader might spot a 
target and call on one of his riflemen to confirm visual on the target. If the next 
person to speak is instead the radio operator with information about a transmission, 
the expected turn-taking order was violated. This could potentially lead to a 
decrement in SA if the rifleman needed immediate clarification from the team 
leader, and could also potentially affect the team’s response time when dealing with 
the target.  

However, turn-taking violations are not always indicators of poor team 
communication practices. For example, in an interaction between a doctor and two 
nurses regarding a patient, if the first nurse asks the doctor about the dosage for an 
antibiotic that should be provided to the patient, but the second nurse interrupts by 
clarifying that the patient’s records indicate an allergy to that antibiotic, we would 
likely conclude that this was a necessary and helpful violation of expected turn-
taking. In brief, the turn-taking mechanics proposed by Sacks et al. (1974) provide 
a critical link between the theories of communication and teamwork. This 
perspective allows us to understand communication within a team as a coordinated 
sequence of information exchanges, and the ability of a team to effectively navigate 
those exchanges plays a role in how well it can perform in different scenarios. Other 
publications from this era advanced and expanded this view, a selection of which 
is detailed in the following two sections. 

2.3.4 Grice’s Maxims 

In the body of research on language, another landmark effort developed an 
analytical view of conversation. Grice (1974) argued for the existence of guidelines 
that governed how conversations worked. Grice posited that efficient conversations 
would follow four maxims: 

• Manner: those in conversation should speak logically and in an orderly 
fashion. 

• Quality: conversational information should be based in fact. 

• Quantity: those in conversation should say only what is needed. 

• Relation: those in conversation should say only what is relevant. 

Together, the four maxims comprise Grice’s “cooperative principle”. It was Grice’s 
belief that, when engaging in conversations, individuals should “make their 
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conversational contribution such as is required, at the stage at which it occurs, by 
the accepted purpose or direction of the talk exchange in which they are engaged”. 
The four maxims offer a method for understanding the mechanisms that underpin 
a conversation. For example, consider a situation in which two team members are 
searching for a simulated enemy in a building. Following Grice’s maxims, a team 
member should not offer information about their dinner plans in response to a 
question about the last known location of the enemy, as this would violate the 
maxim of relation. While this seems intuitive, there was not previously a theory 
that outlined functional aspects of communication in a manner that prescribed 
aspects of successful conversation. 

While Grice’s maxims represent a landmark in communication research, they are 
not all-encompassing. For example, they do not provide insight into defining the 
concepts; for example, “what is relevant” can mean different things to different 
people looking at the same situation. Therefore, this theory provides a set of general 
heuristics for understanding what makes conversations effective, and not a concrete 
methodology. However, it remains a scientific contribution that offered a 
framework for understanding what makes certain conversations more effective than 
others. 

2.3.5 Grounding 

Another seminal area of research in communication involves the concept of 
grounding, a collaborative effort between speaker and listener that involves shared 
information about what is known, what is said, and what is intended. In 
conversation, to ensure that future utterances will be understood, speakers need 
evidence that listeners are attending to and understanding what they are saying  
(Goodwin 1981; Clark and Schaefer 1987). As such, when communicating we use 
grounding to establish and maintain a common understanding (Clark and Brennan 
1991).  

During a conversation, speakers use coordination techniques to ensure that they are 
on the same page. Using speech or nonverbal cues, speakers can indicate their 
understanding of the current conversation (e.g., by nodding the head) as well as 
problems arising from a lack of common ground (e.g., by furrowing the brow or 
asking a question). If a squad leader says “Vehicle at our 3 o’clock”, he is assuming 
that the squad shares the common understanding that 12 o’clock is at a certain 
orientation relative to the squad and thus bases his comment on that assumption. In 
most cases, these assumptions are effective and allow us to exchange a vast amount 
of information quickly. How to achieve grounding between humans and intelligent 
systems remains an active area of research (Boularias et al. 2015; Chai et al. 2016), 
and the construct of transparency has been noted to be important to human–
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autonomy grounding (Stubbs et al. 2007; see Section 1.2.1.2 for discussion on 
transparency). The goal of having humans communicating efficiently with 
intelligent agents using normal, unconstrained speech is still a ways off, partly due 
to problems with getting synthetic agents to understand humans’ intentions based 
on their speech (Demir et al. 2015). However, researchers have highlighted the 
importance of grounding to effective human–autonomy coordination in efforts to 
improve the effectiveness of interdependent HATs (Bradshaw et al. 2009; Johnson 
et al. 2014). 

Like the collaborative nature of conversational turn-taking, grounding also involves 
collaboration between those in conversation. While the concept of turn-taking 
accounts for mechanics of conversation, the concept of grounding serves as a 
clearer link between conversation and psychology. It accounts for how we derive 
understanding from communication. Thus, by considering turn-taking and 
grounding together, we can gain a broader perspective on how communication 
influences aspects of coordination and teamwork. 

2.3.6 Synthesizing Communication and Teamwork  

Given the conceptual and practical links between communication and teamwork, 
researchers have devoted considerable attention to understanding the interplay 
between the two. Broadly, team communication factors can be broken down into 
factors of content, quality, timing, and type. Content relates to what is said; quality 
relates to how it is said; timing relates to how quickly, how often, or how much it 
is said, and also encapsulates the order in which things are said; and type refers to 
the purpose for saying what is said (e.g., to share general knowledge or to elaborate 
on existing information). Problematically, researchers often inconsistently 
operationalize these factors, complicating efforts to synthesize findings across 
studies of team communication. 

In a recent meta-analysis of communication and teamwork, Marlow et al. (2018) 
sought to address this inconsistency and evaluate the relationships between various 
team communication characteristics and team performance. Their findings 
suggested that there is less of a relationship between the frequency of 
communication and performance, but rather it is in the quality or type of 
communication (depending on team familiarity and proximity) that can positively 
or negatively affect a change in performance (Fig. 5). However, additional research 
is needed to quantify communication as a whole rather than individual variable 
effects on performance.  
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Fig. 5 Meta-analytic model of team communication and performance with moderators 
(adapted with permission from Marlow et al. [2018]) 

The broad perspective on team performance taken for this meta-analysis represents 
the current and future directions of research into team communication; that is, to 
better understand team performance, researchers need a broadly informed 
understanding of the team’s communication. This driving force is especially 
important in HAT contexts where the communication abilities of agents are under 
constant development and involve rapid technological advancement. Efforts are 
underway to build new models of human–autonomy team communication that can 
accommodate these factors, but more work is needed to synthesize data gathered 
from the many disciplines involved in this area (Evans et al. 2017). With respect to 
the model provided in Fig. 5, it is possible that another set of moderators, agent 
characteristics, could be added to account for the unique considerations of 
intelligent agents. Again, more research will continue to shed light on a possible 
model of human–autonomy team communication. 

2.4 Human–Autonomy Team Applications of Models and 
Theories  

Given the increasing complexity of intelligent agents and autonomous systems, 
better methods and metrics are needed for understanding team communication in 
HAT, given that communication shapes critical aspects of teamwork, performance, 
cohesion, and trust. To achieve this objective, we need to build our understanding 
on a foundation of both teamwork and communication. The models and theories 
discussed in the preceding sections represent a broad cross section of theoretical 
scaffolding for understanding how teams work. The models and theories identify a 
variety of constructs critical to effective teamwork and represent aspects of teaming 
and coordination in different ways. Although HAT is complex, we can blend 
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different models and theories to gain deeper insights. To understand the dynamics 
of interactions within HATs, it will be appropriate to combine the programmatic 
information theory approaches (e.g., Shannon 1948; Berlo 1960) with the 
cognitive-based approaches (e.g., Grice 1974; Clark and Brennan 1991). By 
drawing from several models and theories, the multimodal interactions that will 
characterize HATs can be better explained and understood. For example, we can 
conceive that each step of turn-taking during a conversation involves an individual 
transmission involving a source, a message, a channel, and a receiver, blending 
Berlo’s approach with that of Sacks (1974) and offering a deeper way to think about 
why turn-taking might result in certain team outcomes whether or not the team 
involves autonomy. This broader theoretical foundation can thus provide a 
framework for understanding how communication results in other psychological 
phenomena, such as team trust, team cohesion, and SA. 

The theories discussed in the preceding sections can be leveraged to gain new 
perspectives on the ways in which team composition and team communication are 
affected by intelligent agents. The team taxonomy advanced by Hollenbeck et al. 
(2012) can provide insight into critical aspects of the dynamics between humans 
and agents. Paralleling the taxonomy’s dimension of authority (see Section 2.2.2), 
much ongoing research in HAT involves some aspects of control authority and task 
allocation, especially given the increasing functionality of intelligent agents (Chen 
and Barnes 2014). The dimension of temporal stability is also relevant to HAT. 
Because future HATs will need to be adaptive and flexible in the face of evolving 
threats, teams may need to reorganize their membership in emergent situations, 
which places stress on team communication and coordination. For example, there 
may be a need for increased communication of intent or general reasoning at the 
start of a new team’s interaction to build a shared understanding of their tasks and 
roles, underscoring the extent to which a team’s taxonomic characteristics impact 
its communication patterns. Diverse mission environments and novel situations will 
challenge teams, and no matter how complex such teams become, a strong 
theoretical basis for understanding their interactions and performance can be found 
in these principles of teamwork and communication. 

3. Communication Metrics and Analysis Methods 

The complexity of HAT requires that a variety of metrics and methods be used to 
capture different aspects of teaming. This requirement extends to communication. 
While there are many methods for analyzing and evaluating team communication, 
each method has certain considerations regarding its utility. This section discusses 
several modern communication analysis methods and, where applicable, their 
utility to examining HAT topics.  
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3.1 Qualitative Coding 

Qualitative communication coding is an approach used to systematically derive 
information about team communication. To code communication data, the first step 
usually involves transcribing audio recordings into text. Once transcribed, it can 
then be coded by manually sorting portions of language-based data into categories 
based on predefined criteria. Alternatively, if categories are not defined a priori, a 
set of categories may be defined organically during review of the data set. In any 
case, the process of coding derives an explanation of meaning from communication 
data (Charmaz 2001). There are many approaches to qualitative coding depending 
on the design and goals of the research at hand (for a thorough review of qualitative 
coding, see Saldaña 2013). Regardless of the approach used, qualitative coding can 
provide rich insights into team processes and emergent states. 

Qualitatively coded data can offer researchers information about what teams are 
saying, when, and why, which can allow researchers to better understand other 
teaming concepts such as the team’s shared mental models, goals, attitudes, and 
more (see the Appendix for a review of some studies that used qualitative coding). 
However, this method is not without its drawbacks. Qualitative coding of 
communication data is time-intensive. While exact time requirements are highly 
variable and depend on the amount of data being gathered and the coding scheme 
used, estimates can sometimes reach as high as 30 min of effort to code 1 min of 
communication (Tiferes et al. 2016). 

While coding can be done manually, software programs designed for qualitative 
coding have been developed, such as NVivo (QSR International 2019), MaxQDA 
(VERBI GmbH 2019), and ATLAS.ti (ATLAS.ti Software Development GmbH 
2019). These programs are typically called computer-assisted qualitative data 
analysis software, or CAQDAS. These types of software facilitate the storage, 
organization, management, and reconfiguration of data throughout the analysis 
process (Saldaña 2013). Using CAQDAS, a researcher can more efficiently manage 
a data set and perform qualitative coding. CAQDAS programs can also have 
features that allow the user to visualize the qualitative data in different ways, such 
as by displaying color labels or graphical representations of relationships between 
codes. While CAQDAS programs make qualitative communication analyses more 
efficient, the task of coding still ultimately falls to the researcher, meaning that 
qualitative communication coding remains a time-consuming process (for more 
discussion of CAQDAS programs, features, and methods, see Saldaña 2013). 

Given the laborious nature of qualitative coding, researchers have sought to shift 
the task of coding data from humans to algorithms. In doing so, researchers hope 
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to more efficiently tap into communication data using computational methods to 
evaluate the structure and function of team communication. 

3.2 Computational Approaches 

To tackle the complexities of communication analysis, advanced algorithms, 
mathematics, and computation have been used to derive information from team 
communication far more quickly than would be possible with human interpretation 
alone. Computational approaches are very diverse and highlight the flexibility of 
algorithmic applications. In this section, we highlight several computational 
approaches to team communication analysis, although this is not intended as an 
exhaustive list. 

The variety of computational approaches to team communication is as diverse as 
the variety of algorithms that can be written; this is not intended as an exhaustive 
list of all computational methods for analyzing communication. In general, while 
these methods can be mathematically very complex and sometimes limited in 
adoption, they can provide unique, rich insight into team communication and 
coordination processes. Because computation methods can often analyze data much 
more quickly than human-reliant methods like qualitative coding, we believe these 
methods will be extremely useful to analyzing HATs in lab settings as the 
capabilities of intelligent systems evolve. 

3.2.1 Latent Semantic Analysis 

Latent semantic analysis (LSA) is a theory and method in computational linguistics 
that derives meaning from the context and pattern of word usage irrespective of 
word meaning or syntax (for reviews, see Landauer et al. 1998; Dong 2005). LSA 
focuses on word co-occurrence and assumes that words that occur more frequently 
together are conceptually linked. LSA can be used as a way to annotate team 
communication (Foltz and Martin 2008) and has been applied to analysis of other 
communication content such as task relevance and topic shifting. Gorman et al. 
(2003) used LSA to evaluate communication in three-person teams that operated 
simulated Predator UAVs. The authors found that team communication density was 
related to performance, and that LSA was useful in distinguishing high-performing 
and low-performing teams. Further, they tested an automated communication 
annotation system by using it to tag a data set that was then compared with a human-
tagged data set. Their automated system performed only 10%–20% poorer than 
human taggers, suggesting that their method could be refined to save some of the 
time investment required for automated tagging. Ultimately, the authors noted that 
their method still required a significant time investment to produce the 
communication transcripts that form the basis of the tagged data but suggested that 
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speech recognition software might eventually prove useful to automate 
transcription as well. In a final example of research using LSA, Gorman et al. 
(2013) analyzed communication among teams in submarine training simulations, 
finding that LSA was able to differentiate experienced and less-experienced crews. 
In addition, their LSA data were found to be cross-correlated with a metric of team 
neurophysiological synchrony, suggesting that future work might further develop a 
paradigm for understanding team performance through a framework involving 
team communication and team neurophysiology.  

3.2.2 Dynamical Analysis 

In this computational approach, Gorman et al. (2012) developed a method for 
dynamically analyzing communication events to detect unexpected critical events 
in team communication. In their method, the dynamical stability of team 
communication is measured using advanced algorithms to reveal fluctuations and 
perturbations in communication in real time. These perturbations consisted of 
prompts by a confederate that interrupted the normal flow of communication within 
three-person teams in a simulated UAV environment. Team members attempted to 
maintain their usual communication patterns during the interruptions, but the 
demands of the confederate necessarily impacted these patterns. The authors noted 
that their method was able to reveal the normal dynamics of the team’s information 
flow as well as the effects of the perturbation, and these are measures that cannot 
be captured by a human observer. However, the authors note that this method is not 
diagnostic and cannot provide meaning for the perturbations; in other words, this 
real-time dynamical analysis can identify unexpected critical communication 
events, but these events could have been due to entirely routine changes within the 
team rather than maladaptive ones. Therefore, this approach can offer insight into 
the relative stability of team communication, but it should be complemented by 
others to gain a fuller picture of how the team’s communication resulted in 
performance.  

3.2.3 Computational Approaches for Analyzing Linguistic Features 

Linguistic features such as word choice, sentence structure, and word counts can 
be analyzed to reveal similarities and differences between two or more pieces of 
text (or speech that has been transcribed to text), linking communication to 
cognitions, attitudes, or behaviors. Software such as LIWC (Linguistic Inquiry and 
Word Count) can be used to analyze text and reveal these features (Tausczik and 
Pennebaker 2010; Pennebaker et al. 2015). The measurement of similarities in the 
communication between two or more people is sometimes called language style 
matching (LSM), and it has been shown to predict cohesiveness and performance 
in some groups (Gonzales et al. 2010). This is because cohesive groups tend to 
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converge in the ways in which they communicate, such as by using similar words 
or phrases (Tausczik and Pennebaker 2013). LSM, and by extension other text 
analysis methods, can therefore be a useful way of measuring team cohesion. 

3.3 Social Network Analysis (SNA) 

SNA is a growing field that involves the measurement and analysis of relational 
structures to provide insight into team communication, coordination, and 
consequently evaluating performance. SNA is built upon graph theory, where in a 
communication network the individual entities are represented by vertices or nodes, 
and the relationships or interactions between the entities are represented by edges 
(Butts 2008; Newman 2010). Representing these underlying relationships or 
interactions as matrices allows for novel ways of analyzing qualitative data. For 
example, Pokorny et al. (2018) proposed a method of importing qualitative coding 
data into statistical software and conducting network analysis on the data to 
graphically represent the qualitative aspects of the communication, whereby the 
nodes represent the qualitative code labels and the edges represent the locations of 
the codes relative to each other in the source data. This method is promising because 
it synthesizes the qualitative approach to team communication with the 
computational strengths of the network analysis approach 

These relational structures can vary vastly in scale, from intrapersonal networks of 
known concepts to networks involving large organizations (Butts 2008). For 
example, Reagans and Zuckerman (2001) analyzed research and development 
teams and found a link between network heterogeneity (i.e., team demographic 
diversity), network density (i.e., frequency of team communication), and team 
productivity. In another study, Wolf et al. (2009) applied SNA to software 
development teams and found that communication structures predicted the success 
or failure of software build integration. In a human–robot interaction paradigm, 
Litaker and Howard (2013) used SNA during a 2-week field study involving two 
NASA Rovers to better understand the communication networks of the interlinked 
ground control, flight, and planetary science crews. Through this process the 
researchers were able to identify two distinct communication structures and thus 
revealed the need for a more stable communication network among the crews. As 
a final example of SNA, Army researchers recently modeled the communication 
structures between individuals before and after a simulated mass casualty event, 
revealing critical insights into the factors that affected the organization’s response 
to the situation; some of these factors involved a person’s SA, self-reporting as 
more cooperative or motivated, or occupation of a coordinative role (Fitzhugh and 
DeCostanza 2018). Given the predicted complexities of future HAT, SNA is 
promising as a means for representing and analyzing communication patterns in 
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HAT, as it can account for diverse group structures and offers potential for future 
research into team communication. 

SNA is a method that provides unique information about a team’s communication, 
and researchers are increasingly leveraging SNA to analyze teams in a variety of 
contexts (Schaefer and Cassenti 2015; Serrat 2017). It has considerable flexibility 
in the types of data that it can be used to model, as it can be used on verbal or text-
based communication, and it can even be applied to survey-type data. However, the 
data type selected can sometimes cause issues with the analysis if self-report is 
involved, because participants may not accurately remember details about their 
networks (Krackhardt 2014). For example, if the focus of a study involves modeling 
the social network of an organization by asking employees who they communicate 
with, they might forget someone who they only speak with occasionally, which will 
affect the validity of the network analyses. For this reason, some advocate relying 
on behavioral logs (phone, email, transactions, etc.) to mark interactions rather than 
relying on individuals’ perceptions of their networks (Butts 2008; Kitts 2014). 
Another difficulty with SNA stems from defining the boundaries of a network. 
When using SNA the analyst must decide what gets included and what gets 
included within the network, a task that is sometimes complicated by the 
phenomenon being studied. Generally, the analyst will either use boundaries that 
populations impose on themselves (all members of a classroom, all members of an 
organization, etc.) However, SNA can also be applied to custom-defined 
populations, such that all people that meet a certain criterion will be included in the 
network (e.g., all organization members who sent more than three e-mails per day 
in a 2-week period). The selection of a boundary has implications for the 
generalizability of the network, and analysts must be cognizant of how a boundary’s 
definition can affect the data set. 

Despite these considerations, we expect SNA to be useful in the study of HATs 
because we expect that these teams will use multimodal interaction as a bridge 
between computer screens, teammates, and intelligent agents, and SNA can model 
complex, multimodal interactions in networks of varying sizes. SNA is also 
valuable in evaluating the structure of team communication because of the network 
analysis results in visual representation of the team member relationships that can 
be used for description and comparison in a number of different ways. With 
measures and methods at the individual and network-level, SNA offers a multitude 
of avenues for analyzing relational data. 
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3.4 Voice Analysis 

Voice analysis techniques are aimed at measuring vocal characteristics, such as 
pitch and intensity, to derive insights into communication. When we communicate 
with others, our voice characteristics change in relation to what we are saying and 
how we have to say it. The goal of these analyses is to capture those fluctuations to 
relate them to how we are working together. If one team shouts commands and 
another calmly speaks them, the loudness of their conversation can relate to a 
variety of possible causes. We might imagine that the former team might be 
coordinating less effectively, dealing with degraded communication channels, 
experiencing frustration, or simply are in a noisy environment. Additionally, the 
semantic content of the speech used between team members may interfere with 
effective coordination and team cohesion. For example, Neubauer et al. (2016) 
found that teams that used more language (i.e., the semantic content) relating to 
emotion performed less cohesively than teams that used language relating to 
cognitive processing and problem solving. In this context, overly emotional 
language usage may interfere with effective communication and, in turn, team 
cohesion. 

Generally, the information that can be derived using vocal cues is limited in scope, 
so research using these cues tends to fall into analyses of stress patterns (Kuroda  
et al. 1976; Harnsberger et al. 2009; Olguin et al. 2016), though some other work 
has evaluated vocal patterns of deception (Harnsberger et al. 2009). More 
specifically, fundamental frequency (f0), an indicator of prosody and its relationship 
to human expression of emotion, has been the most extensively studied feature in 
vocal analysis (Kuroda et al. 1976; Scherer 1981). Here, a typical finding is that an 
increase in f0 tends to reflect an increase in the emotional load of a speaker 
regardless of the verbal context (Hecker et al. 1968; Scherer et al. 1984). For 
example, Williams and Stevens (1969, 1972) found significant increases in f0 in the 
cockpit recordings of pilots during inflight emergencies and the voice of a radio 
announcer describing the approach of the Hindenburg when it burst into flames. 
However, the data obtained from real-life emergencies were limited with regard to 
the quantity of speech samples and the number of voices recorded. While the 
majority of research on the vocal expression of emotion focused on pitch, other 
researchers have explored the role of vocal quality in the expression of emotional 
states (Gobl 2003). Results indicate that the changes in vocal quality (e.g., a 
whispered, breathy, or tense voice) can create differences in perceived speaker 
affect. Additionally, these researchers found that a breathy voice was perceived by 
listeners as expressing boredom or fear, while a harsh voice expressed stress or 
anger. 
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Typically, voice analyses are used in conjunction with other physiological analyses 
of body signals, such as electrocardiography or galvanic skin response, to reveal 
more information about team members during a task. For example, the primary 
determinant of f0 is the result of passive stress on the vocal fold cover that is created 
by elongating the vocal fold via cricothyroid muscle activity. Because physical 
activation is necessary to produce speech signals, there is some evidence that vocal 
features, and specifically f0, are related to the autonomic nervous system due to the 
fact that the laryngeal muscles are innervated by the vagus nerve. For example, one 
Army initiative found that vocal tension and cardiovascular measures varied 
together as a function of psychological stress during a task (Neubauer et al. 2017). 
Given the limited scope of the data that can be extracted from voices, this is not a 
large area of group research, and these analyses are often used to complement other 
physiological and psychological measures. Despite the limited scope of voice 
analysis, we expect that this method will be useful in the study of HATs, as it 
provides an unobtrusive avenue for assessing psychological states such as stress. A 
better understanding of the multimodal interactions that characterize HATs is 
needed, and voice analysis can help reveal how psychological states change during 
the course of those interactions. 

3.5 Current Research Gaps for Human–Autonomy Teams 

The communication methods described in previous sections can be applied to the 
HAT context with several considerations, as follows:  

• Qualitative coding provides rich insights into communication data, but if 
spoken communication is to be analyzed, it must be transcribed prior to 
coding. When done manually, transcribing audio into text can take upward 
of 4 h for each hour of audio (Britten 1995; Patton 2002), and this figure 
rises when audio recordings involve multiple speakers or poor audio 
sources. However, transcription software such as Google’s Cloud Speech 
API can be a means for rapidly and automatically transcribing audio (Ziman 
et al. 2018). Once the transcription is obtained, the resulting data are then 
analyzed, and depending on the method of coding used, this can require 
extensive amounts of additional time. This means that qualitative coding, 
while rich, can be considerably (and sometimes prohibitively) time 
intensive. Further, future team communications may not always use spoken 
or text-based communication, given that users can interact with intelligent 
agents (and each other) via interfaces that use touch or point-and-click. This 
will limit the utility of qualitative coding and require other methods (e.g., 
event logging) to capture those interactions.  
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• Computational methods are highly diverse, and we expect them to 
continue to be explored and developed. Approaches such as those outlined 
in Foltz and Martin (2008) can automate coding, but this also requires 
transcription and the automated system is not yet as accurate as a human 
annotator. The dynamical approach discussed in Gorman et al. (2012) 
provides real-time communication analysis insights, which offers a 
significant improvement over qualitative coding in that it does not have a 
considerable time investment. However, the data produced by this method 
are far more limited, as they can reveal unexpected critical events in 
communication but cannot diagnose those communication events for cause, 
context, or content. Latent semantic analysis can shed light on the links 
between communication content and teamwork (Gorman et al. 2003, 2013). 
A variety of other computational methods exist. Generally, computational 
approaches require specialized software/hardware and training, which can 
sometimes limit their applicability to different contexts. 

• SNA is promising and offers fewer limitations. In addition to its 
applicability to spoken communication, it can also be applied to text-based 
data such as e-mails or instant messages as well as to survey data. SNA data 
can also be used to evaluate and visualize information transmission or 
communication throughout a network that can be either very small or very 
large. However, it is sometimes difficult to define the boundaries of the 
network depending on the phenomenon being studied. In addition, if  
self-report data forms the basis of the network analysis, participants’ self-
report biases and poor recall can impair the quality of the resulting network. 

• Voice analysis is unobtrusive and can provide insights into the emotional 
characteristics of communication such as stress or fear, revealing 
physiological information that may not be captured by other communication 
measurement methods. However, the applications of voice analyses are 
limited in scope, as they primarily rely on pitch, loudness, or vocal quality 
(e.g., breathy vs. harsh). Therefore, this approach is best used in conjunction 
with others. 

The listed measurement methods can be used in various capacities to address some 
of the most active research areas in HAT. This is because communication is at the 
root of three major thrusts in current HAT research: 1) how best to use bidirectional 
communication to improve trust, shared SA, and team cohesion, 2) how intelligent 
systems can be designed with a focus on transparency to improve how well 
operators can understand the intentions and decisions of those systems, leading to 
higher trust and better shared understanding of the tasks at hand, and 3) how 
independent, adaptive autonomy will introduce additional capabilities to HATs. To 
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address all three thrusts, research and development efforts are focused on designing 
autonomy that can communicate effectively with the rest of the team to maintain 
optimal team performance, trust, and shared SA. Therefore, to support those design 
efforts, we require a better understanding of communication in HATs. 

In research involving HATs, the best approach to analyzing team communication 
will depend on the constructs of interest, the goals of the analysis, and the resources 
available. Often one will be best served by using several measurement methods 
where possible, to capture a broader picture of a team’s communication patterns. 
With good access to advanced software and hardware, computational methods can 
prove useful at capturing advanced communication dynamics. Comparatively, 
qualitative coding can provide rich data with fewer resources but requires more 
time. Therefore, new metrics and tools will need to be developed to directly support 
the critical nature of HAT. In the modern practitioner’s toolbox, no current 
communication analysis method can be easily used in real time, requiring almost 
no resources, while still providing useful insights into team communication. The 
following section discusses a tool designed with those considerations, and the 
context of HAT, in mind. 

4. Real-time Flow, Event, and Coordination Tool (REFLECT) 

REFLECT is a software tool being designed to support analysis and evaluation of 
team communication in real time. Future HAT will be multidimensional and 
involve novel teaming structures between humans and intelligent agents. While we 
do not yet know what these future teams will look like, we will need effective 
methods of collecting and measuring how they communicate in order to understand 
and explain their performance. In the nearer term, these methods of measuring 
communication will support ongoing research and development of future HAT. To 
serve these needs, REFLECT is designed to be adaptable to teams of various sizes, 
functions, and capabilities, as well as to capture aspects of a team’s coordination 
that reveal insights into other critical constructs such as SA and team cohesion.  

The theoretical basis for REFLECT is derived from several of the models and 
theories outlined in Section 2. The models of Salas et al. (2005) and Marlow et al. 
(2018) conceptually link communication and team performance; aspects of 
communication can serve as both an inputs (e.g., what a teammate says) and 
mediators (e.g., the communication modality used) based on the IMOI model, 
leading us to study outcomes (e.g., team performance) and subsequent inputs. 
Grice’s (1974) maxims provide guidelines for communication, and can be 
considered when evaluating the effectiveness, efficiency, and precision of team 
communication (Webster 2017). The theories of turn-taking and grounding shed 
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light on the relationship between what teams say and how they think and process 
information, relating to concepts of shared SA and trust. The models of Shannon 
(1948) and Berlo (1960) are useful for understanding the relevant factors involved 
with a single transmission of information between a sender and a receiver, and 
when multiple transmissions are exchanged during a conversation, we scale back 
up to the higher-level conversation-based theories of turn-taking and grounding. 
The contributions of all of these can be summarized succinctly: If one wants to 
understand how a team performs, one must understand how it communicates. 
Indeed, Cooke et al. (2013) argued that team cognition is directly observable in the 
dynamics of team communication and coordination patterns. 

The models and theories discussed in this report offer scientific frameworks for 
understanding the various constructs involved with teamwork and communication 
as well as how they relate to each other. Based on these frameworks, REFLECT is 
designed to capture data that can be used to map how communication flows within 
the team, which can provide insights into shared cognitions, team cohesion, and 
trust. Thus, the communication flow data captured by REFLECT can inform 
analyses of the relationships between team communication and performance. 

4.1 Communication Flow Mapping 

The communication patterns within a team reveal critical information about how 
the team works together to complete tasks, share information, and coordinate 
toward goals, offering a clear picture into the team’s successful and unsuccessful 
coordination processes (Sacks et al. 1974; Kiekel et al. 2001; Tiferes et al. 2016). 
Communication flow, or the measurement of who speaks to whom throughout a 
team interaction, is a valuable way to evaluate team processes at the cognitive and 
the interpersonal level (Fischer et al. 2007). Communication flow can be modeled 
to reveal how teams coordinate and share information, which in turn reveals 
insights into aspects of team cohesion, trust, and team performance. During the 
development of HAT concepts and capabilities, it will be critical to understand how 
communication flow affects, and is affected by, intelligent systems, team structures, 
and task demands. 

In one application of communication flow, Fischer et al. (2007) noted how often 
team members in a simulated search-and-rescue task responded to each other’s 
communication to produce the flow diagrams in Fig. 6. These show structural 
differences in the communication patterns of successful and unsuccessful teams, 
revealing that successful search-and-rescue teams had a more equal distribution of 
communication, whereas unsuccessful teams tended to involve a few team 
members dominating the discourse. 
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Fig. 6 Flow diagrams for successful and unsuccessful teams (reprinted with permission 
from Fischer et al. [2007]) 

In another approach to mapping communication flow, ARL scientists collaborated 
on development of the Automated Collaboration Collection Relationship 
Understanding Environment (ACCRUE) interface for automatically capturing 
communication data (including email, chat, phone, and face-to-face interactions) 
within military staff environments (DeCostanza et al. 2018b). ACCRUE is a 
software tool that was developed as an approach that seeks to improve unit training 
effectiveness by providing real-time access to performance-related data and 
analyses, collected via unobtrusive data collection methods. Using email logs and 
sociometric badges worn around the necks of team members, the ACCRUE system 
can log the flow of communication between team members interacting virtually or 
face-to-face and present the relevant information on the Command Operations 
Dashboard, which can then be used by observers or trainers to provide feedback. 
Development of the hardware and software is ongoing. 

REFLECT is designed with a similar conceptual approach to that of Fischer et al. 
(2007) and the ACCRUE system (DeCostanza et al. 2018b). It is designed to allow 
a user to log communication flow in real time while observing a team’s interactions. 
REFLECT diverges from the approach of Fischer et al. (2007) by identifying, rather 
than ignoring, communication that was not targeted at a specific team member. An 
example of such communication might be a statement like “Hey team, I am moving 
to point B”. By accounting for this nontargeted communication to the crew, it 
becomes easier to capture information that team members might share with their 
team as a whole to improve SA and update shared mental models (Cannon-Bowers 
et al. 1993; Wildman et al. 2014). REFLECT also differs from ACCRUE by 
requiring no additional software or hardware beyond REFLECT. In this way, a 
single observer using a single computer or tablet can record team communication 
flow, whereas ACCRUE requires additional hardware and software, such as email 
traffic logs or sociometric badges that link with ACCRUE.  
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4.2 REFLECT Usage 

The information captured by REFLECT provides valuable insight into the 
coordination characteristics of a team, revealing how the team uses, shares, and acts 
upon information. The user interface of REFLECT has three main panes: the 
logging pane on the left, the data pane in the center, and the editing pane on the 
right (Fig. 7). REFLECT is currently under development, and this section describes 
the initial features of the tool. It is currently aimed at supporting the capture of 
verbal communication in teams, whether or not those teams involve autonomy, but 
we expect future iterations to support additional communication modalities. 

 

Fig. 7 REFLECT main window: left pane used for logging communication events; center 
pane displays communication events as they are collected; right pane used for appending 
comments or other text to communication events 

Using the logging pane, the user first inputs the number of team members and labels 
for their roles. Then the user is able to log the source and destination of each verbal 
message heard during a team interaction. If the user is not observing a live 
interaction, an audio file may also be loaded and played within REFLECT as an 
alternative. Whether live or recorded, when someone begins speaking, the user 
clicks that person’s role, which turns red. The user then clicks the intended recipient 
for the team member’s communication, which turns blue. This completes one 
communication event. Each communication event is populated in the event pane in 
the middle of the user interface along with the timestamp (in milliseconds) of the 
communication event. The user continues logging communication events during 
the team’s interactions until the scenario is complete. 
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The output produced by REFLECT can be parsed to identify the number of 
communication events experienced by each possible sender–receiver pair. This can 
then be organized to show which sender–receiver pairs account for greater 
proportions of the team’s communication, as well as the overall flow of information 
between team members. The flow maps in Fig. 8 were created from communication 
logs of Army and Marine crews using the Wingman manned–unmanned teaming 
system (see Schaefer et al. [2019b] for more information about the system and the 
scenario).  

 
Fig. 8 After logging communication between team members, the output from the 
REFLECT tool can be used to produce communication flow maps. Thicker lines indicate more 
communication between that sender–receiver pair. Eventually, visualizations such as these 
will be produced automatically. 

These maps were created as a proof of concept for the visualizations that can be 
created using REFLECT data.1 The maps are visually intuitive; thicker lines 
indicate more communication between a sender–receiver pair. Based on that 
information, differences between the flow maps for the teams are immediately 
apparent. The Army crew exhibited a more rigid communication pattern: the 
vehicle commander only spoke to the robotic vehicle gunner. This is notable 
because the Army team had previous experience and training with the gunnery tasks 
used in the experimental scenario, and the Army team exhibited better performance 
in these tasks. In contrast, the Marine team’s communication pattern appeared to 
favor sharing information with the entire crew rather than speaking directly to 
certain crew members. The Marine crew had little prior experience with these types 
of gunnery operations, and thus the flow pattern suggests that the Marine crew 
attempted to build shared SA and a shared understanding of the task to work more 
effectively in a relatively unknown environment. However, this looser 
communication pattern came at a cost because the Marine crew exhibited, on 
average, a longer time before first firing on a target than the Army crew. While this 

                                                 
1For more information about the creation of these flow maps, we direct the reader to Schaefer et al. 
(2019a). 
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is partially due to the experience gap between the crews, the flow maps also imply 
that the stricter communication patterns within the Army team helped them fire on 
targets more quickly. This demonstrates an interesting perspective into the 
relationships among team experience, communication, and performance in the 
context of a manned–unmanned team. 

4.3 REFLECT and Future HAT  

Because the capabilities of intelligent systems are constantly evolving, scientists 
and practitioners will need multiple methods for understanding and analyzing 
communication in teams that integrate these systems. The communication patterns 
exhibited by teams will likely be different when interacting with agents in different 
roles. Sycara and Lewis (2004) distinguish between agents that support individual 
team members in completion of their tasks, agents that support the team as a whole, 
and agents that assume the role of an equal team member. Given the differences in 
responsibility allocated to each of those categories, it is expected that team 
members would communicate differently with an autonomous robotic asset versus 
a computer-based decision-making aid and versus a teleoperated vehicle given the 
extent to which those systems tangibly impact the way the team can operate. 
Multimodal interactions between humans and autonomy will add additional 
complexity to the communication patterns of the team, requiring a greater focus on 
how information flowing within the team shapes team cognitions, cohesion, and 
performance. Because REFLECT’s data output is based on the sender, receiver, and 
timestamp of each communication event, it can be applied to a wide variety of 
scenarios involving HATs and is not limited to specific contexts or team 
configurations. While the initial work described in this report involved applying 
REFLECT to a HAT using a teleoperated vehicle for gunnery, we intend to test 
REFLECT on other team structures. 

Ongoing design and development in HAT is focused on building intelligent systems 
that learn and adapt to situations in order to work independently or collaboratively 
with human teammates. To push the science forward, some of the most important 
frontiers being explored in the development of HAT involve bidirectional 
communication, individualized, adaptive technologies, and transparent systems 
(Evans et al. 2017; Chen et al. 2018; DeCostanza et al. 2018a; Marathe et al. 2018). 
Several major constructs impact those frontiers: trust, team cohesion, 
communication, and shared SA all influence the extent to which HATs can interact 
effectively. 

Bidirectional communication within a team can foster trust and shared 
understanding (Marathe et al. 2018). Individualized, adaptive technologies will 
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learn from situations and human interactions, allowing the intelligent systems to 
collaborate better with humans and improve team outcomes (DeCostanza et al. 
2018a). Transparent systems engender a better shared understanding between 
human and operator, supporting bidirectional communication and spurring 
improved trust of the autonomy (Chen et al. 2018). Ultimately, if we are to achieve 
the objective of building more-effective HATs that demonstrate improved trust, 
team cohesion, and SA, it is of fundamental importance that we more fully 
understand communication in the HAT context, given that our review of models 
and theories has highlighted the critical importance of communication to teamwork. 
To this end, REFLECT can be used to capture data that sheds light on the 
communication patterns of HATs with different capabilities, team sizes, and 
mission needs, fulfilling some of the need for new communication metrics that will 
be useful throughout the development of next-generation HAT. 

5. Conclusions 

Communication is at the core of most of the ongoing research directives in HAT 
that seek to develop more-effective teams. The future of autonomy that interacts 
seamlessly with its human teammates is impossible to realize without 
understanding the extent to which communication impacts teamwork. To this end, 
analyzing communication in mixed HATs can offer unique insights into HAT. 
Current communication analysis methods such as qualitative coding, computational 
approaches, social network analysis, and voice analysis have different advantages, 
but all are expected to be useful in deriving performance insights from future HAT 
interactions. 

Improvements in autonomy will dictate the ways that future teams can be 
structured, and the capabilities of those intelligent systems will shape how HATs 
communicate, coordinate, and cooperate. Some key obstacles in the development 
of effective HAT are the following: 

• A shared understanding of the mission space must be developed, as well as 
a basic knowledge about the other teammates (Marathe et al. 2018). 

• Multimodal input and output sources (gesture, tactile, display) will need to 
be integrated in a manner that does not impede effective communication. 

• Communication of states and intentions between humans and autonomy 
must be bidirectional to support SA and lethality. 

REFLECT, a new communication capture tool, can help address some of the 
limitations for communication data capture and analytic metrics. REFLECT is 
designed to capture verbal communication flow within a team, logging and 
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timestamping the sender and receiver of each communication event. The flow of 
communication within a team reveals insights into team cognition, coordination, 
cohesion, and ultimately performance (Fischer et al. 2007; Tiferes et al. 2016). 
Thus, REFLECT is focused on capturing data that can be used to describe the flow 
of communication in HATs, which may have diverse structures, capabilities, and 
goals. REFLECT offers a unique utility in this domain as a means to capture data, 
which can be used along other forms of analysis. 

As HATs become more multimodal, communication analysis methods will be 
necessary to capture complex multimodal interactions in teams. Advanced user 
interfaces will support improvements in transparency and shared SA in HATs, and 
thus the information flowing through those interfaces will supplant some amount 
of spoken communication within the team. Communication data collection, 
measurement, and analyses will need to capture those nonspoken interactions as 
another means of communicating information within the team. Ultimately, 
communication is a fundamental aspect of teamwork, and to achieve the Army’s 
vision of a battlespace that integrates human, autonomy, and joint human–
autonomy capabilities, much research is needed to understand how team 
communication is affected by capabilities and organization of the team’s various 
members, both human and autonomous.  
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Although researchers generally design their own coding schemes a posteriori to fit 
the research study of interest, some have argued that coding schemes should be 
standardized to improve applicability across contexts and domains.1 Using 
standardized (i.e., a priori) coding schemes offers more consistency between 
research studies; however, since a posteriori coding schemes are customized to 
specific research contexts, such schemes may thus provide better insight into the 
factors of interest. While there are advantages and disadvantages to each approach, 
the key takeaway is that qualitative coding is of great use to teamwork researchers 
interested in communication. Table A-1 contains a selection of coding schemes 
found in the team communication literature, and identifies which schemes account 
for information flow, statement type, and communication content. Information flow 
accounts for the transmission of communication throughout the team, and schemes 
that account for this factor identify the source and destination of the 
communication. Statement type refers to the overarching function of the 
communication. For example, Burke et al.2 identify whether a statement is a 
question, instruction, comment, or answer, and Fischer et al.3 identify 
acknowledgments, disagreements, elaborations, answers, and missing responses. 
Content refers to the subject of the communication or its quality. For example, 
Tiferes et al.4 differentiate between communication about equipment, patient 
condition, safety, education, and so on. Rockmann and Northcraft5 code for positive 
reactions and negative reactions, among other features. Table 1 also identifies the 
relevant context of the coding scheme.  

                                                 
1Tiferes J, Bisantz AM, Guru KA. Team interaction during surgery: a systematic review of 
communication coding schemes. J Surg Res. 2015;195(2):422–432. 
2Burke JL, Murphy RR, Coovert MD, Riddle DL. Moonlight in Miami: field study of human-robot 
interaction in the context of an urban search and rescue disaster response training exercise. Hum–
Comp Interact. 2004;19(1–2):85–116. 
3Fischer U, McDonnell L, Orasanu J. Linguistic correlates of team performance: toward a tool for 
monitoring team functioning during space missions. Aviat Spa Environ Med. 2007;78(5):B86–95. 
4Tiferes J, Hussein AA, Bisantz A, Kozlowski JD, Sharif MA, Winder NM, Allers AN, Cavuoto L, 
Guru KA. The loud surgeon behind the console: understanding team activities during robot-assisted 
surgery. J Surg Edu. 2016;73(3):504–512. 
5Rockmann KW, Northcraft GB. Expecting the worst? The dynamic role of competitive 
expectations in team member satisfaction and team performance. Small Group Res. 
2010;41(3):308–329. 



 

62 

Table A-1 Sample of qualitative team communication coding schemes in the literature as well 
as the factors accounted for by the schemes. 

Citation Information 
flow 

Statement 
type Content Context 

Tiferes et al. [1] Yes Yes Yes Surgical teamwork 

Burke et al. [2] Yes Yes Yes Robot-assisted search 
and rescue  

Fischer et al. [3] No Yes Yes Team search and 
rescue 

Espinosa et al. [6] No Yes Yes Making maps in 
dyads 

Rockmann and 
Northcraft [5] No Yes Yes Team negotiation 

task 

Bales (1949) [7] No Yes Yes Group decision 
making 

Scheidel and Crowell [8] No Yes No Group idea 
development 

Riethmüller et al. [9] No Yes Yes Medical anesthesia 
training 

6 Espinosa JA, Nan N, Carmel E. Temporal distance, communication patterns, and task performance in teams. 
J Manag Inf Syst. 2015;32(1):151–191. 
7 Bales RF. Interaction process analysis; a method for the study of small groups. Cambridge (MA): Addison-
Wesley; 1949 [accessed 2018 Nov 6]. http://archive.org/details/interactionproce00bale. 
8Scheidel TM, Crowell L. Idea development in small groups. Q J Speech. 1964;50:140–145. 
9Riethmüller M, Castelao EF, Eberhardt I, Timmermann A, Boos M. Adaptive coordination development in 
student anesthesia teams: a longitudinal study. Ergonomics. 2012;55(1):55–68. 

Using such coding schemes, researchers can parse extensive communication logs 
to understand many constructs of interest. For example, the coding scheme 
described by Burke et al.2 was designed to assess team communication and 
interactions during an urban search-and-rescue training exercise involving human–
robot teams. To this end, the coding scheme allowed the researchers to conclude 
that the human–robot teams spent more time communicating about the state of the 
environment and the robot than they did navigating the robot. Further, the coded 
data provided evidence that the view screen used with the robot limited operator 
situation awareness (SA), and that operators attempted to counter this by 
communicating with team members located at the search site to improve their 
mental models of the environment. 

Qualitative coding can provide rich insights into a variety of communication-
related factors of interest to researchers, and determining what factors will be 
analyzed is up to the researcher and the research questions under investigation. 
Besides coding for aspects of task-related information exchange, Fischer et al.3 also 
coded for interpersonal affect as positive (humor, praise, reinforcement, etc.), 
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negative (blame, insult, etc.), or neutral (politeness, apology, etc.) to understand 
how team communication relates to team functioning. Rockmann and Northcraft5 
coded for strategy and tone on team members’ statements during a negotiation task 
by identifying aspects of the statement. For example, the coding scheme seeks to 
identify whether, in each statement, a team member states an issue preference, 
demonstrates a positive/negative reaction, asks a preference question, and so on. 
This allowed the authors to better understand how teams’ competitive expectations 
affected their cooperative behaviors. 

Much remains to be understood about communication in human–autonomy teams 
(HATs), especially given that autonomous capabilities are under active 
development and technology evolves rapidly. Recall the three major thrusts of 
active human–autonomy teaming research discussed in Section 3.5 of the main 
report: 1) how best to use bidirectional communication to improve trust, shared SA, 
and team cohesion, 2) how intelligent systems can be designed with a focus on 
transparency to improve how well operators can understand the intentions and 
decisions of those systems, leading to higher trust and better shared understanding 
of the tasks at hand, and 3) how independent, adaptive autonomy will introduce 
additional capabilities to HATs. Qualitative coding can be applied to each of these 
areas to provide researchers with rich information about how communication 
relates to performance. Some sample research questions for qualitative coding 
studies in human–autonomy teaming are as follows: 

• What aspects of team communication change when team trust increases or 
decreases? 

• Do teams request fewer status/location updates when systems have more 
transparency? What aspects of system transparency affect the amount of 
information requests made by teams? 

• What aspects of communication from autonomy improve team trust in high-
stress situations? 

• How can autonomy communicate uncertainty/unreliability while 
maintaining human trust? 

• How is team decision making affected by the various capabilities of 
autonomy? 
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List of Symbols, Abbreviations, and Acronyms 

ACCRUE Automated Collaboration Collection Relationship Understanding 
Environment 

CAQDAS computer-assisted qualitative data analysis software 

EOD explosive ordnance disposal 

f0 fundamental frequency 

HAT human–autonomy teaming; human–autonomy team 

IMOI input, mediator, output, input 

IPO inputs, processes, outputs 

LIWC Linguistic Inquiry and Word Count 

LSA latent semantic analysis 

LSM language style matching 

NASA National Air and Space Administration 

REFLECT Realtime Event, Flow, and Coordination Tool 

SA situation awareness 

SAT Situation Awareness-based Agent Transparency 

SMCR sender, message, channel, receiver 

SMM shared mental model 

SNA social network analysis 

TMS transactive memory system 

TRP transition-relevance place 

UAV unmanned aerial vehicle 
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