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Abstract

One of the technical challenges that face designers of hypersonic vehicles is the high

thermal loads that theses vehicles encounter in flight. The Thermal Protection System

(TPS) is the main system which deals with these high thermal loads. The dominant

factor affecting the TPS design is the predicted transition location and characteristics

as turbulent boundary layers can produce up to ten times higher thermal loads than

laminar boundary layers [1]. The heating rates of turbulent boundary layers and the

length of flight time under turbulent boundary layer conditions drives the material

choice and thickness of thermal protection system. The materials used for the thermal

protection systems, along with many other factors, affects the stability and transition

of the boundary layer. Many thermal protection systems use ablation as a means

of dissipating thermal energy. These systems add new species to the boundary layer

changing the chemistry and introduce instabilities with the blowing of mass into the

flow. Carbon-based ablators in particular have gained popularity due to their ablative

characteristics. The addition of carbon species, specifically CO2, into a hypersonic

boundary layer has the known effect of damping out second mode instabilities at

hypersonic flight conditions due to the ability of CO2 to absorb disturbance energy

into the multiple vibrational modes.

Using current gas-surface chemistry models and controlled freestream CO2 con-

centrations, the effect of CO2 on the stability was examined over both sharp and blunt

cones. A concentration study was conducted to determine the required CO2 concen-

tration in the boundary layer to effect transition characteristics. The boundary layer

was saturated at a specific CO2 concentration, and it was held constant throughout

the boundary layer. The results of the concentration study showed that, due to the
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higher temperatures in the boundary layer of a blunt cone, lower concentrations of

CO2 were required to obtain the same delay in transition as compared to a sharp cone.

Also, as the enthalpy of the flow increased, lower concentrations of CO2 were required

to obtain the same transition delay, highilighting the importance of boundary layer

temperature on the effects of CO2 damping.

An examination of the current air-carbon gas-surface interaction models was also

conducted to determine if ablation provided sufficient concentrations of CO2 in the

boundary layer. The gas-surface interaction models currently used for carbon-based

ablators include the Park76, Park, Zhluktov and Abe, Modified Zhluktov and Abe,

Zhluktov and Abe with nitridation and a MURI carbon oxidation model. Study

results showed that the ablation models can produce sufficient concentrations of CO2

in the boundary layer to affect transition location. However, the actual efficacy of

CO2 damping depends on the freestream conditions, the boundary layer temperature

profile and the geometry of the vehicle. Flows with higher enthalpy over a blunt cone

showed the greatest delay in transition due to CO2 damping.

The stability of the boundary layer is complex, with interdependence of multiple

factors. Furthermore, uncertainties exist in the air-carbon gas-surface interaction

models which affect the production of CO2 on the surface and in the gas. Therefore,

a parametric study of the interplay between freestream flight conditions based on

altitude, surface temperature and the gas-surface interaction model parameters was

completed to determine the sensitivity of the boundary layer to these changes. The

effect of increased surface temperature showed that there existed a complex interplay

between the amount of CO2 created and the surface temperature which stabilized the

boundary layer and the increased mass flux from a hotter surface that destabilized

the boundary layer. Overall, the higher surface temperature increased the stability

of the flow even though it did not always increase the total CO2 concentration. The

v



site density parameter controls the number of adsorbed surface reactions that can

occur. This parameter is not well characterized based on material or experimental

data and is usually arbitrarily chosen for the simulation. Each model responded

differently to a change in this parameter, but the overall stability of the boundary

layer remained basically insensitive to these changes due, again, to the competing

mechanisms of increased CO2 damping versus the destabilization of increased mass

flux. The altitude parameter study was conducted using typical reentry trajectory

characteristics and standard atmospheric conditions [2]. The results of the altitude

parameter study showed an increased efficacy of CO2 damping as altitude decreased

to approximately 40,000 ft in altitude. Below this altitude, second mode instabilities

became less dominant in the boundary layer and CO2 damping was no longer effective.

vi



To my wonderful husband for his unfailing support and to my children for reminding

me of what is important in life.

vii



Acknowledgements

I want to thank Dr. Greendyke for his exceptional patience, direction and dedi-

cation to this research. I want to thank Lt Col Komives and Dr. Candler for sharing

their awesome numerical wisdom and gridding expertise. I want to thank Dr. Wag-

nild, Dr. Jewell and Dr. Leyva for their added support and incredible insight into

the CO2damping mechanism. I want to thank Dr. Schneider for starting the whole

effort.

Olivia S. Elliott

viii



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Questions, Tasks, and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Boundary Layer Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Disturbances and Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Receptivity and Transition Mechanisms . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Transition Prediction: eN Method . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Nosetip Bluntness Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Entropy Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Swallowing Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Bluntness Effects on Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 CO2 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Carbon Ablative Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 CO2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 High Enthalpy Tunnel Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 State Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Chemical Source Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.5 Vibrational Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.6 Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Linear Stability Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Numerical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



Page

3.3.1 Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Time Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Gas-Surface Models for Wall Boundary Conditions . . . . . . . . . . . . . . . . . . 56
3.4.1 Park Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Zhluktov and Abe (ZA) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Modified Zhluktov and Abe (MZA) Model . . . . . . . . . . . . . . . . . . . 60
3.4.4 Modified Zhluktov and Abe Model with

Nitridation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.5 MURI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 US3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 STABL3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 CO2 Concentration Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Model Comparison and Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. CO2 Concentration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Model Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 High Enthalpy Freestream Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Wind Tunnel Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Equivalent Flight Representative Freestream

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Low Enthalpy Freestream Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Wind Tunnel Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Equivalent Flight Representative Freestream

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Ablation Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Low Density Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.1 High Enthalpy Flow - V∞ = 6000 m

s
, total

enthalpy = 18.2 MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.2 Low Enthalpy Flow - V∞ = 3000 m
s

, total

enthalpy = 4.7 MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 High Density Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2.1 High Enthalpy Flow - V∞ = 6000 m

s
, total

enthalpy = 18.4 MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Low Enthalpy Flow - V∞ = 3000m
s

, total

enthalpy = 5.0MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

x



Page

6.3.1 Model Sensitivity to Site Density . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.2 Model Sensitivity to Surface Temperature . . . . . . . . . . . . . . . . . . . 168
6.3.3 Altitude Effects on Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xi



List of Figures

Figure Page

2.1. Paths to Turbulence [3] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Entropy Layer over a Blunt Cone (taken from [4]) . . . . . . . . . . . . . . . . . . . 18

2.3. Rotta’s Swallowing Distance (taken from [5]) . . . . . . . . . . . . . . . . . . . . . . . 18

2.4. Bluntness effects on transition location (taken from [6]) . . . . . . . . . . . . . . 21

2.5. Bluntness effects on transition Reynolds number (taken
from [6]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Transition Reynolds number versus stagnation enthalpy
[7] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7. Transition Reynolds number at reference temperature
versus stagnation enthalpy [7] (with permission) . . . . . . . . . . . . . . . . . . . . 27

2.8. Amplification rate versus frequency in flows with CO2

[8] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9. Absorption rates at different temperatures [9] (with
permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10. Disturbance frequencies compared to absorption rate of
CO2 [9] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11. Disturbance frequencies compared to absorption rate of
air [9] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.12. Numerical simulations with reacting and non-reacting
flows on transition location [10] (with permission) . . . . . . . . . . . . . . . . . . . 32

2.13. Numerical results of enthalpy and CO2 concentration
changes on transition location [10] (with permission) . . . . . . . . . . . . . . . . 33

3.1. Stability Diagram for Blasius Boundary Layer for (a)
Spatial and (b)Temporal Analysis [3] (with permission) . . . . . . . . . . . . . . 50

3.2. Gas-Surface Mass Balance Boundary Condition [11]
(with permissions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1. Wire diagram of the sharp cone grid used . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



Figure Page

4.2. Wire diagram of the blunted cone grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3. Grid detail at the blunted nosetip showing surface
clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4. Pressure at x=1.24m highlighting variations cause by
including the wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5. Pressure within the boundary layer at x=1.25m with
and without a wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6. Convergence study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1. Stability diagram for for high enthalpy test case,
8.45MJ

kg
, with vibration enabled and disabled . . . . . . . . . . . . . . . . . . . . . . . 74

5.2. Maximum N factors for high enthalpy test case, 8.45MJ
kg

(non-vibrational results represented with a dashed line) . . . . . . . . . . . . . . 75

5.3. Stability Diagram for low enthalpy, 5.12MJ
kg

with

vibration enabled and disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3. Stability Diagram for low enthalpy, 5.12MJ
kg

with

vibration disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4. Maximum N factors for high enthalpy test case
(non-vibrational results represented with a dashed line) . . . . . . . . . . . . . . 76

5.5. Numerical error near the sharp tip due to high cell
aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6. N factors for sharp cone with varying CO2

concentrations at high enthalpy, 8.45MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7. N factors for sharp cone with varying CO2

concentrations with and without vibration at high
enthalpy conditions (solid lines: vibrational effects,
dashed lines: no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8. N factors for blunt cone with varying CO2

concentrations at high enthalpy, 8.45MJ
kg

(solid lines:

vibrational effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . . 82

xiii



Figure Page

5.9. Temperature profile in the boundary layer at x=1.0 m
for the blunt and sharp cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10. Velocity profile in the boundary layer at x=1.0 m for
the blunt and sharp cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11. N factors for CO2 concentrations with and without
vibration for the sharp and blunt cone at high enthalpy,
8.45MJ

kg
(solid lines: vibrational effects, dashed lines: no

vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11. N factors for CO2 concentrations with and without
vibration for the sharp and blunt cone at high enthalpy,
8.45MJ

kg
(solid lines: vibrational effects, dashed lines: no

vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.12. Temperature contours in the boundary layer on blunt
and sharp cone at high enthalpy, 8.45MJ

kg
. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.13. N factors for matching enthalpy between wind tunnel
and flight representative conditions (solid lines:
vibrational effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . . 89

5.14. N factors for matching maximum boundary layer
temperatures between wind tunnel and flight
representative conditions (solid lines: vibrational effects,
dashed lines: no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.15. N factors for wind tunnel and flight representative
conditions (solid lines: vibrational effects, dashed lines:
no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.16. N factors for wind tunnel and flight representative
conditions compared without Reynolds number effects
(solid lines: vibrational effects, dashed lines: no
vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.17. Temperature profile for x=1.0 m for T5 wind tunnel
and flight representative conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.18. N factors for sharp cone with varying CO2

concentrations at low enthalpy, 5.12MJ
kg

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



Figure Page

5.19. N factors near the nosetip for sharp cone with varying
CO2 concentrations at low enthalpy, 5.12MJ

kg
. . . . . . . . . . . . . . . . . . . . . . . . 93

5.20. N factors for sharp cone with varying CO2

concentrations with and without vibration at low
enthalpy, 5.12MJ

kg
conditions (solid lines: vibrational

effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.21. N factors for a blunt cone at low enthalpy, 5.12MJ
kg

. . . . . . . . . . . . . . . . . . 96

5.22. Temperature contours of boundary layer on a blunt and
sharp cone at low enthalpy, 5.12MJ

kg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.23. N factors for CO2 concentrations with and without
vibration for the sharp and blunt cone at low enthalpy,
5.12MJ

kg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.23. N factors for CO2 concentrations with and without
vibration for the sharp and blunt cone at low enthalpy,
5.12MJ

kg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.24. Temperature profile in the boundary layer at x=1.0 m
for the sharp and blunt cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.25. Velocity profile in the boundary layer at x=1.0 m for
the sharp and blunt cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.26. N factors for matching enthalpy between wind tunnel
and flight representative conditions (solid lines:
vibrational effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . 102

5.27. N factors for matching maximum boundary layer
temperatures between wind tunnel and flight
representative conditions (solid lines: vibrational effects,
dashed lines: no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.28. N factors for wind tunnel and flight representative
conditions (solid lines: vibrational effects, dashed lines:
no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.29. N factors for wind tunnel and flight representative
conditions without Reynolds number effects (solid lines:
vibrational effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . 103

xv



Figure Page

5.30. Temperature profile for x=1.0 m for wind tunnel and
flight representative conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1. Surface mass flux on blunt cone at V=6000 m
s

, low density . . . . . . . . . . 107

6.1. Surface mass flux on blunt cone at V=6000 m
s

, low density . . . . . . . . . . 108

6.2. Maximum concentration of CO2 along the blunt cone at
V=6000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3. Thermal and concentration boundary layer thickness at
x= 1.0 m on a blunt cone using the Park model at
V=6000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4. Maximum N factor for all ablation models at V=6000
m
s

, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5. Frequency Comparison on a blunt cone at V=6000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5. Frequency Comparison on a blunt cone at V=6000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6. Stability results with vibrational relaxation enabled and
disabled for the ZA model (solid lines: vibrational
effects, dashed lines: no vibrational effects) . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7. Surface mass flux on sharp cone at V=6000 m
s

, low
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7. Surface mass flux on sharp cone at V=6000 m
s

, low
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7. Surface mass flux on sharp cone at V=6000 m
s

, low
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8. Concentration of CO2 along the body for a sharp cone
at V=6000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.9. Maximum N factor for all ablation models on a sharp
cone at V=6000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.10. Frequency Comparison on a sharp cone at V=6000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xvi



Figure Page

6.10. Frequency Comparison on a sharp cone at V=6000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11. Stability diagrams with no ablation at V=6000 m
s

, low
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.12. Surface mass flux at V=3000 m
s

, low density . . . . . . . . . . . . . . . . . . . . . . . 121

6.12. Surface mass flux at V=3000 m
s

, low density . . . . . . . . . . . . . . . . . . . . . . . 122

6.12. Surface mass flux at V=3000 m
s

, low density . . . . . . . . . . . . . . . . . . . . . . . 123

6.13. Concentration of CO2 along the body for the blunt cone
at V=3000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.14. Concentration of CO2 along the body for a sharp cone
at V=3000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.15. Maximum N factor for all ablation models on a blunt
cone at V=3000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.16. Maximum N factor for all ablation models on a sharp
cone at V=3000 m

s
, low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.17. Stability diagram for sharp cone at V=3000 m
s

, low
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.18. Frequency Comparison on a blunt cone at V=3000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.18. Frequency Comparison on a blunt cone at V=3000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.19. Frequency Comparison on a sharp cone at V=3000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.19. Frequency Comparison on a sharp cone at V=3000 m
s

,
low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.20. Surface mass flux on blunt cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.20. Surface mass flux on blunt cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvii



Figure Page

6.21. Surface mass flux on sharp cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.21. Surface mass flux on sharp cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.22. CO2 concentration for blunt cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.23. CO2 concentration for sharp cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.24. Maximum N factors for all ablation models on a blunt
cone at V=6000 m

s
, high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.25. Maximum N factors for all ablation models on a sharp
cone at V=6000 m

s
, high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.26. Frequency Comparison on a blunt cone at V=6000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.26. Frequency Comparison on a blunt cone at V=6000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.27. Frequency Comparison on a sharp cone at V=6000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.27. Frequency Comparison on a sharp cone at V=6000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.28. Stability diagram for a sharp cone at V=6000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.29. CO2 concentration for blunt cone at V=3000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.30. CO2 concentration for sharp cone at V=3000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.31. Maximum N factor for a blunt cone at V=3000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.32. Maximum N factor for sharp cone at V=3000 m
s

, high
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xviii



Figure Page

6.33. Frequency Comparison on a blunt cone at V=3000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.33. Frequency Comparison on a blunt cone at V=3000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.34. Frequency Comparison on a sharp cone at V=3000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.34. Frequency Comparison on a sharp cone at V=3000 m
s

,
high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.35. Concentration of CO2 for the ZA model based on
varying site density parameter, V= 6000 m

s
, high density . . . . . . . . . . . . 155

6.36. Concentration of CO2 for the MZA model based on
varying site density parameter, V= 6000 m

s
, high density . . . . . . . . . . . . 156

6.37. Surface mass flux on ZA and MZA models at site
density parameter of 1x10−2mol

m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.37. Surface mass flux on ZA and MZA models at site
density parameter of 1x10−2mol

m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.38. Surface mass flux on ZA and MZA models at site
density parameter of 1x10−15mol

m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.38. Surface mass flux on ZA and MZA models at site
density parameter of 1x10−15mol

m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.39. Concentrations for the MURI model based on varying
site density parameter, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 162

6.40. Maximum N factors for MZA model with site density
variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.41. Maximum N factors for MZA model with site density
10−5mol

m2 with vibrational modes enabled (a) and
disabled (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.42. Maximum N factors for MZA model with site density
10−2mol

m2 with vibrational modes enabled (a) and
disabled (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xix



Figure Page

6.43. Frequency analysis of amplified frequencies at 10−2mol
m2

and 10−5mol
m2 site density for the MZA model . . . . . . . . . . . . . . . . . . . . . . . 167

6.44. Surface temperature effects on the first and second
mode instabilities [12] (with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.45. Maximum species concentrations with Park model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 170

6.45. Maximum species concentrations with Park model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 171

6.46. Maximum species concentrations with MZA model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 173

6.46. Maximum species concentrations with MZA model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 174

6.46. Maximum species concentrations with MZA model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 175

6.47. Maximum species concentrations with MURI model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 175

6.47. Maximum species concentrations with MURI model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 176

6.47. Maximum species concentrations with MURI model at
varying temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 177

6.48. Maximum N factor for the Park model at 1.0 and 2.5
times the original surface temperature, V= 6000 m

s
,

high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.49. Maximum N factor for the MZA model at varying
surface temperatures, V= 6000 m

s
, high density . . . . . . . . . . . . . . . . . . . 180

6.50. Frequency analysis for the MZA model at 1.0 and 2.5
times the original surface temperature, V= 6000 m

s
,

high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.51. Frequency analysis for the MZA model at 1.0 and 1.5
times the original surface temperature, V= 6000 m

s
,

high density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xx



Figure Page

6.52. Maximum concentration of CO2 in the boundary layer
with the MZA model at typical reentry trajectory
altitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.53. Maximum concentration of CO2 in the boundary layer
with the Park model at typical reentry trajectory
altitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.54. Maximum concentration of CO2 in the boundary layer
with the MURI model at typical reentry trajectory
altitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.55. Maximum N factors for altitudes from 100k to 10k ft for
the MZA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.56. Maximum N factors for altitudes below 50k ft for the
MZA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.57. Maximum N factors for altitudes below 50k ft with
vibration enabled (solid lines) and vibration disabled
(dashed lines) for the MZA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.58. Maximum N factors for altitudes above 50k ft for the
MZA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.59. Maximum N factors for altitudes above 50k ft with
vibration enabled (solid lines) and vibration disabled
(dashed lines) for the MZA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.60. Maximum N factors at 50k ft for the Park, MURI and
MZA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.61. Maximum N factors at 40k ft for the Park and MZA
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xxi



List of Tables

Table Page

3.1. Forward Reaction Rates [13] (with permissions) . . . . . . . . . . . . . . . . . . . . . 57

3.2. Park 76 model[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3. Park model[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4. Zhluktov and Abe (ZA) model[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5. ZA model with nitridation (Alba) [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6. MURI model [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1. Test case freestream conditions [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2. Test case freestream air composition by mole fraction [17] . . . . . . . . . . . . 72

5.3. Test case transition characteristics [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4. High enthalpy transition location changes on the sharp
cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5. High enthalpy transition location changes on the blunt
cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6. Low enthalpy transition location changes on the sharp
cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7. Low enthalpy transition location changes on the blunt
cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1. Freestream input conditions for typical trajectory . . . . . . . . . . . . . . . . . . 182

xxii



List of Abbreviations

Abbreviation Page

LST Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

PSE Parabolized Stability Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TPS Thermal Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

STABL3D Stability and Transition Analysis for Hypersonic
Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DNS Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LST Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

PSE Parabolized Stability Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

GALCIT Graduate Aeronautical Laboratory at the
California Institute of Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

DSMC Direct Simulation Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

STABL3D Stability and Transition Analysis for hypersonic
Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xxiii



List of Symbols

A, Ao amplitude and initial amplitude of disturbance

As, Bs, Cs, A4, A5 constants

cs average species molecular speed

cg, ci, cr disturbance speed

cp, cv, cvs specific heats

Dsr binary diffusion constant

E total energy

Ev total vibrational energy

evs vibrational energy per unit species

~F , ~FI , ~FV flux, inviscid flux and viscous flux

f2nd second mode frequency

Go
q Gibbs free energy

gs degeneracy of species s

hs specific enthalpy of species s

hos heat of formation of species s

Keq, Kf , Kb reaction coefficients

Le Lewis number (dimensionless)

Me edge Mach number (dimensionless)

N N factor (dimensionless)

P pressure

Pr Pradtl number (dimensionless)

Qtv translational vibrational energy exchange

Q steady state flow amplitude

qi, qvi heat transfer

xxiv



q′ disturbance amplitude

R, R gas constant, universal gas constant

R
√
Re (dimensionless)

r density disturbance value

Re∞ freestream unit Reynold’s number (dimensionless)

ReN nose radius Reynold’s number (dimensionless)

Retr, Re
∗
tr transition Reynold’s number (dimensionless)

T , Tv temperature, vibrational temperature

u′ contravariant velocity

V volume

vsi diffusion velocity

x, y, z Cartesian coordinates

Xsw swallowing length

αi spacial amplification

αsq, βsq stoichiometric coefficients (dimensionless)

δ boundary layer thickness

δ∗ displacement thickness

δvs limiting cross section

κ heat conductivity

µ dynamic viscosity

ν viscosity

ρ density

τ relaxation time

τij stress tensor

θ temperature disturbance value

θ∗ momentum thickness

xxv



θvs characteristics temperature

ωi frequency

ωs species production

xxvi



EFFECTS OF CARBON-BASED ABLATION PRODUCTS ON

HYPERSONIC BOUNDARY LAYER STABILITY

1. Introduction

In 1904, Prandtl first observed the existence of the thin boundary layer in a fluid

flow where viscous effects were confined. Since then, instability and transition of the

boundary layer has been a focus of over a century of research. The boundary layer is a

thin region in a fluid field where viscous forces become significant and cause a “no-slip”

condition at the solid surface, requiring the relative velocity to go to zero. A boundary

layer is characterized by three main types: laminar, turbulent or transitional. A

laminar boundary layer is characterized by smooth flow over the vehicle with parallel

streamlines and viscous diffusion is the main force acting on the flow from the body.

A turbulent boundary layer is characterized by random and chaotic motion caused

by vortices of various sizes. This motion causes mixing of the high-speed inviscid

flow with the slower boundary layer flow creating higher gradients in the velocity

and temperature profiles in the boundary layer, as well as increases the thickness of

the boundary layer. The higher gradients cause increased skin friction drag and heat

transfer. The transitional boundary layer is characterized by processes by which the

laminar boundary layer becomes unstable, eventually leading to turbulent flow. It is

this transition process that remains, despite years of study, difficult to predict and

model.

Predicting the boundary layer transition is difficult due to the interdependence on

numerous mechanisms that cause transition. Tollmein and Schlichting were among

the first to identify the source of the instability causing transition from a laminar
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to turbulent boundary layer in the subsonic regime near the body and these dis-

turbances are now called Tollmein-Schlichting (TS) waves [18]. An extension of the

TS waves are commonly called first mode disturbances in compressible flow and are

the dominant instabilities in low speed flows. However, as Mach increases, this first

mode is stabilized. In hypersonic flight regimes, second mode disturbances, first the-

orized by Mack and characterized as high frequency, acoustic-type waves, are the

dominant instability and the cause of transition [19]. Mack hypothesized that for a

slender body, second mode disturbances become the dominant instability mode as

early as Mach 2.5, but are dependent on the edge velocity of the boundary layer

[19]. The hypothetical second mode instability was later proven to exist through the

experiments of Demetriades, Kendall and Stetson et. al. [20, 21, 22]. With the as-

sumption that second mode instabilities will dominate the transition process in the

hypersonic boundary layer, understanding what stabilizes or destabilizes this mode,

mainly nose bluntness [23] and wall heating [24], becomes critical to accurate predic-

tions. However, as speed increases into the hypersonic regime, the real gas effects and

the interactions of the gas with the surface become increasingly important as they

not only affect the fluid properties of the gas but also impact the characteristics of

the boundary layer in both size and composition. At hypersonic speeds, the inclusion

of the chemical and thermal state of the gas, including the gas-surface interactions

for an ablating surface, is imperative for an accurate understanding of transition.

Significant wind tunnel experimentation in stability and transition characteriza-

tion has occurred since the early 1960s. One recent conclusion drawn from high

enthalpy testing was that as enthalpy increased in the flow, transition was delayed

[7, 25, 17]. The hypothesis from this result was that real gas effects and chemical

reactions within the boundary layer help stabilize it, and thus, the need to accurately

model the chemical effects in the flow becomes essential to understanding and predic-
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tion of transition [25]. Numerical simulations show that endothermic or exothermic

reactions can dampen or amplify energy fluctuations, respectively [8]. This hypothe-

sis has been supported from an increased transition Reynolds number in flows with

higher oxygen concentrations due to the higher dissociation energy of N2 than O2 [8].

Hypersonic flows containing CO2, which has a lower dissociation energy, have been

shown to be even more stable due to the dissociation and the multiple internal modes

in which energy can be stored [8]. The damping effect of CO2 on disturbances in

the boundary layer have been known since the 1960s [26]. Camac determined that

the vibrational modes of CO2 had nominally the same relaxation time and this was

hypothesized to allow a large amount of energy to be stored in the internal vibra-

tional modes at high enough flow velocities [26]. If the chemical composition and

the types of reactions, which includes the gas-surface chemical reactions, that take

place within the boundary layer affect stability it is imperative to understand and

accurately model these reactions to predict transition.

Along with studying experimental results to understand the nature of the tran-

sition process, progress has been made in the modeling tools to predict it. Stability

analysis is one of the preferred means of predicting transition. It is based on the

analysis of the amplification of wave-like disturbances within the boundary layer and

determining the distance along the vehicle when these disturbances amplify to a spe-

cific value signifying transition. There are two main types of stability analysis: Linear

Stability Theory (LST) [27] and Parabolized Stability Equations (PSE) [28]. Both

tools have been improved to provide highly accurate modal disturbance growth pre-

dictions. As computing power has increased, the ability to produce highly accurate

numerical flow solutions as an input to the stability analysis has further increased the

fidelity of the results. Specifically, the inclusion of high fidelity models of the real gas

effects has provided a more realistic flow simulation and stability result [8].
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Despite the difficulty in transition prediction, it remains an invaluable asset to

designing a hypersonic vehicle. Determining the transition of a vehicle is impor-

tant, especially at hypersonic speeds, due to the impact on the design parameters

that govern the vehicle: aerodynamic forces, skin friction drag and surface heating.

Specifically, the impact of transition on surface heating is critical to the design of the

Thermal Protection System (TPS), a vital design component for a hypersonic vehicle.

Understanding the transition process and accurately determining when a boundary

layer transitions from laminar to turbulent, where surface heating rates can be ten

times higher [29], allows for engineers to optimize the TPS design. This optimization

includes not only determining the correct thickness of the TPS, and thus weight of

the system, to prevent burn-through, but also in the choice of material used for the

TPS. Since turbulent boundary layers increase surface heating, maintaining a lam-

inar boundary layer may help maximize the efficacy of the TPS while minimizing

the weight. Under-design the TPS and the vehicle will fail in flight. Over-designing

the TPS wastes resources and limits the total possible payload due to the increased

weight of the basic vehicle.

1.1 Research Questions, Tasks, and Scope

The main purpose of this research was to identify the effect of real gas and gas-

surface interactions on the stability of the hypersonic boundary layer. Specifically,

this research will examine the effects of carbon-based ablative products on the dom-

inant second mode instability. To accomplish this goal, two areas of study were

considered. First, a study was performed to determine the minimum concentration

of CO2 required in the boundary layer to have a stabilizing effect which was set as

a 10 cm delay in transition location. Second, numerical flow simulations and linear

stability analyses using current carbon gas-surface models were conducted and com-
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pared to determine if sufficient CO2 could be produced by ablation of carbon-based

materials to affect boundary layer stability. As each gas-surface interaction model pro-

duces different concentrations of chemical species, each boundary layer was unique.

Additionally, as there exists uncertainties in these gas-surface models, a parameter

study on the effects of altitude, surface temperature and surface characteristics were

conducted to determine the sensitivity of the results.

In order to meaningfully advance the research in this area, the scope is limited to

simple geometries and focused only on how CO2 affected the stability of the boundary

layer. Simple geometries allow for an in-depth study of the thermophysics and gas

dynamics within the boundary layer without introducing added complexities into the

flow. A 10 degree half-angle cone with a sharp and 12.7 mm radius blunt nosetip

were used for the study. A sharp cone geometry allowed for a detailed examination

of the gas-surface interactions affects without geometry effects caused by a blunted

nose and could be compared to wind tunnel experimental results. However, this sharp

cone model is not a flight representative geometry as the heating rates on a sharp

nose tip in flight would be too high. Thus, to fully comprehend the impact of CO2 in

flight regimes, a blunt cone model was also used. Due to the limited models available

and the focus on the study of CO2 effects on boundary layer stability, the surface for

the study was modeled as a carbon graphite, introducing only carbon-based ablative

products into the flow. Other ablative species are not known to have similar damping

effects and will not be examined in this study.

Specific research questions relating to the study objectives are:

1. What is the sensitivity of a hypersonic boundary layer to changes in the species

concentrations of carbon-based ablative species, specifically CO2, at both wind

tunnel and flight representative freestream parameters?
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2. What are the variations in the current gas-surface chemical models and what

effects do these variations have on the CO2 concentrations and the stability of

a hypersonic boundary layer over a sharp and blunt cone?

3. What is the sensitivity of the current gas-surface chemical models to changes in

the freestream flow parameters, surface temperature and site density and what

are the stability effects?

The research used US3D, a parallel, implicit CFD solver developed at the Univer-

sity of Minnesota, to simulate the flow over a simple 10 degree half-angle cone with a

sharp nose and a 12.7 mm nose radius [30]. A dedicated study to determine the total

concentration of CO2 needed in the boundary layer to affect the stability characteris-

tics was conducted. The input freestream parameters for the flow solver were used to

set specific CO2 concentration in the boundary layer. After determination of the CO2

concentration requirements, a study was conducted examining the addition of CO2

into the boundary layer through the multiple air-carbon gas-surface interaction mod-

els. The US3D solver included a user-defined module to allow for the manipulation

of ablation model and the gas-surface chemistry boundary conditions. Six current

air-carbon gas-surface ablation models were used in determining the boundary con-

ditions in the simulations: Park [31], Park76 [32], Zhluktov and Abe [14], modified

Zhluktov and Abe [15], Zhluktov and Abe with nitridation [15] and the MURI carbon

oxidation model [16]. A set of parameter studies were also conducted to determine

the interdependence of the flow conditions, surface characteristics and the chemical

models on the stability of the boundary layer. Stability and Transition Analysis for

Hypersonic Boundary Layers (STABL3D), a linear stability analysis code developed

to utilize the results of a US3D flow simulation to determine transition and stability

parameters, was used to determine the stability characteristics of the boundary layer

[33].
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Several assumptions and limitations needed to be made to successfully bound the

research tasks outlined above.

1. The changes in the shape of the body, specifically the nose, due to ablation

are considered to be negligible. This assumption was made based on the small

total shape change of past flight vehicles. For the sharp cone, it was necessary

to maintain a sharp nose to avoid geometry effects. For the blunted nose cone,

a slight increase in the nose bluntness was assumed to be small enough when

compared to the original nose radius so as not to have a significant impact.

2. Surface roughness was not included in this study. Though ablation is known to

cause roughening of the surface, roughness has been shown to have a transient

growth, or even a bypass transition, effect which would not be modeled by

the linear stability theory. These effects are typically non-linear in nature and

are not captured in the traditional modal analysis of LST. Excluding surface

roughness allows the focus of the study to remain on the real gas effects only.

3. The surface was modeled only as graphite. While many TPS materials and

designs have become more advanced, others remain carbon based. Significant

research has been done on the sublimation and oxidation of graphite under

hypersonic flow conditions, and as such the surface properties are well known

and used. Multiple carbon gas-surface interaction models have been developed

from experimental data and are well characterized. CO2 is added to the flow

only by the ablation of the carbon surface. This limitation allowed for the in-

depth study of the effects of CO2 without unduly increasing the computational

requirement with other ablative species.

4. Linear stability analysis is used in the stability study despite the simplifying

assumption of parallel, or locally parallel flow and the linearization of the equa-
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tions of motion of the flow. This assumption was valid as the damping effect of

CO2 affects only the second mode instabilities of a hypersonic boundary layer.

The second mode instability is a linear instability, and therefore these effects

could be captured with an LST analysis. In order to capture non-linear effects,

a non-linear PSE or a Direct Numerical Simulation (DNS) would need to be

conducted at great computational cost but without a direct focus on research

questions.

5. No freestream disturbances were included in the flow simulations. This assump-

tion is valid at all flight representative freestream conditions due to it being a

low noise environment as flight conditions contain no continuous freestream

disturbances.

6. All flow simulations are assumed to be at zero angle of attack. This assumption

also simplifies the flow and allows for lower computational requirements as the

flow can be modeled axi-symmetrically.

Chapter 2 provides an overview of boundary layer instability concepts including

receptivity, transition mechanisms, transition characteristics, nose bluntness effects

and CO2 damping effects on stability. Chapters 3 reviews the mathematical models

and numerical methods used in the study. Chapter 4 reviews the methodology used

for the numerical simulation and stability analysis. Chapter 5 reviews the results

from the CO2 concentration study. Chapter 6 reviews the results from the gas-

surface interaction study and the parameter study. Chapter 7 provides conclusions

and proposed future work. A separate appendix will be provided comparing flight

test transition data with the stability analysis results of the simulations using each

of the aforementioned models.
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2. Boundary Layer Instability

2.1 Disturbances and Instability

2.1.1 Receptivity and Transition Mechanisms.

Receptivity of the boundary layer is defined as the process by which disturbances

generate instability waves in the boundary layer and the instability initial conditions

are created. Receptivity is influenced by such flow characteristics as ablation, surface

roughness, nose bluntness, and Mach number [34]. The growth or recession of the

disturbance in the boundary layer is determined by how receptive the boundary layer

is to the specific disturbance characteristics. If it is receptive, the initial disturbance

will be amplified by one or more of the instabilities, which can also interact with

each other [35]. Numerous instabilities exist for a hypersonic boundary layer and

the conditions at the surface, geometry and the boundary layer edge flow determines

which is, or are, the dominant instability mechanism [36]. Fedorov [37] outlined the

four main paths to transition: traditional modal, modal transient growth, non-modal

transient growth and large amplitude forcing. Traditional modal growth mechanisms

are the first and second modes, crossflow and Gortler instabilities which all occur in

low-disturbance environments. Modal transient growth disturbances provide a higher

initial amplitude to the eigenmode path but remains linear in nature in the process to

transition, such as tunnel noise or large surface roughness [37]. Non-modal transient

growth mechanisms are generally the supposition of nonorthogonal, highly oblique

waves onto the modal system and have a nonlinear effect. Both the transient growth

mechanisms bypass the traditional modal growth concept and, along with the large

amplitude forcing functions on a nonlinear nature, are referred to as bypass transition

and exists outside the linear growth regime [37].
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First mode instability is a Tollmien-Schlichting type wave with maximum ampli-

fication occurring when the wave fronts are oblique to the streamwise direction[19].

First mode instabilities tend to dominate the flow at only at sub- or low supersonic

speeds, so are not usually the dominant instability in hypersonic boundary layers.

The second mode instability are trapped, acoustic-type waves which are the most

amplified when the wave fronts are normal to the streamwise direction [19]. These

are the dominant instabilities in hypersonic flows, especially with cold walls, and

usually require an edge Mach number of 2.5 or above to be the dominant transition

mechanism [19]. Due to the relative supersonic mean flow, relative to the distur-

bance phase velocity, the boundary layer acts as an acoustic wave-guide, where the

disturbances are reflected between the surface and the relative sonic line [37]. Second

mode tends to dominate the stability of a flow as its growth rates are higher than first

mode [37]. Crossflow instabilities are the result of a pressure gradients outside the

boundary layer, which causes curved streamlines and the creation of a secondary flow

in the boundary layer that is perpendicular to the inviscid streamline [34]. The cross-

flow instability are co-rotating vorticies in the flow which exists in three-dimensional

boundary layers and typically occur on swept geometries or cones at angles of attack.

These instabilities are not present over axi-symmetric geometries and are not consid-

ered to be a likely transition mechanism for this study. Gortler instabilities form with

concave walls or with the existence of concave streamline curvature and are charac-

terized by the presence of counter-rotating vorticies [35]. Again, these instabilities

are considered to be absent in this study, based on the geometry and flow direction

used.

There are also non-linear transition mechanisms that have been identified: sec-

ondary instabilities, non-modal instabilities and bypass instabilities. These instabil-

ities are not modeled or predicted by Linear Stability Theory (LST) or Parabolized
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Stability Equations (PSE), and other methods of prediction, such as Direct Numerical

Simulation or Input/Output Analysis are needed to visualize and predict these insta-

bilities [38]. Secondary instabilities arise after the linear growth period of the modal

instabilities where non-linear interactions between instabilities can no longer be ne-

glected [39]. When the linear instabilities, often referred to as primary instabilities,

begin to breakdown and/or experience interactions with other primary instabilities,

the result is a non-linear region of the instabilities, which often occurs right before the

boundary layer transition [39]. There also exist non-modal instabilities that affect the

boundary layer flow. These first became important to help explain the blunt body

transition reversal phenomena seen in Stetson’s windtunnel experiments [23, 4, 40].

This work is explained in detail in Section 2.2. Also of interest are entropy layer

instabilities as a result of nose bluntness. These instabilities are discussed in more

detail in Section 2.2.1.

2.1.1.1 Second Mode Instabilities.

The second mode instability is the focus of the research effort due to the fact that is

often the dominant instability in axi-symmetric hypersonic flow, and it is the instabil-

ity most affected by the vibrational damping of CO2. The increased freestream Mach

number at hypersonic speeds translated directly to increased velocity in the boundary

layer. It was discovered by Mack [41] that in hypersonic boundary layers there exists

flow where the relative Mach number (the difference between the mean velocity and

the disturbance phase velocity) is at or greater than 1. When the flow reaches these

values, Mack showed that the disturbance equations become hyperbolic, rather than

parabolic, in nature and thus instead of a single solution at each frequency, there

exist a family of solutions, which he named “modes”. Of these modes, Mack showed

that the second mode is the dominant mode for instability [42]. The existence of sec-
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ond mode instabilities has been supported by wind tunnel experiments conducted by

Kendall(1974), Demetriades(1978) and Stetson and Kimmel(1982) showing stability

characteristics consistent with second mode disturbances [21, 20, 22].

Second mode disturbances are often classified as high-frequency, acoustical type

disturbance which grow faster than the Tollmien-Schlichting (first mode) disturbances

and dominate the hypersonic boundary layer. The higher frequency nature of these

instabilities cause the hypersonic boundary layer becomes “tuned” to only those fre-

quencies which amplify these instabilities. It was found that a wavelength of ap-

proximately twice the boundary layer thickness are amplified the most, especially

when aligned with the mean flow [23]. Analyses using LST have shown that second

mode disturbances are well-predicted on sharp cones. Nose bluntness, however, tends

to stabilize second mode instabilities when the entropy layer thickness exceeds the

boundary layer thickness [43]. However, once the entropy layer is entrained into the

boundary layer, the stability of the flow become more difficult to predict. Real gas

effects destabilizes second mode disturbances [44] while chemical non-equilibrium has

a slight stabilizing effect [45].

2.1.2 Transition.

The purpose of understanding the causes of instability in a boundary layer is

mainly to determine how to better predict the transition from laminar to turbulent

flow, with respect to location and mean flow conditions. Predicting the initial break-

down of laminar flow through the amplification of these instabilities is only the start

of the transition process as the flow then passes through a series of instabilities. Her-

bert [39] stated that the evolution of transition happens in three instabilities: primary

instability, as seen with the growth of traditional modal instabilities, secondary insta-

bilities, with the growth of three-dimensional spanwise disturbances commonly know
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as lambda-type vorticies, and tertiary instability, where the flow exhibits turbulent

spots. The secondary and tertiary instabilities are decidedly non-linear in nature.

While LST analysis does not consider the non-linear effects of the secondary and ter-

tiary instabilities, it is still able to predict the onset of transition which is considered

to be dominated by linear processes and occurs before secondary instabilities start to

dominate the flow [39].

White [3] provides a pictorially representation of transition in a boundary layer

in Figure 2.1

Figure 2.1. Paths to Turbulence [3] (with permission)

Factors affecting the transition include freestream and edge of the boundary layer

Mach numbers, nose bluntness, angle of attack, external or freestream disturbances,

wall temperature, surface roughness, pressure gradient, non-equilibrium flow and mass

transfer [23]. Morkovin showed that for hypersonic vehicles the main mechanisms for
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transition are pressure gradient, cross-flow disturbances and ablation, which causes

mass injection into the boundary layer at and near the surface [46].

2.1.3 Transition Prediction: eN Method.

Understanding the stability theory and the stability of a flow, however, does not

provide a determination of the transition point. Semi-empirical methods to predict

transition were first developed by Smith and Gamberoni [47] and Van Ingen [48] and

later updated by Jaffe, Okamura and Smith in 1970 [49]. Using wind tunnel data at

that time and applying an LST analysis, both Smith and Van Ingen independently

developed the e9 method, in which the ratio of the disturbance amplitude at a initial

time or x-location and a place later in the flow can be calculated from

A

Ao
= exp

(∫ t

to

ωidt

)
(2.1)

A

Ao
= exp

(∫ x

xo

−αidx
)

(2.2)

where the quantity
∫ t
to
ωidt or

∫ x
xo
−αidx is known as the amplification factor, σ∗.

From their work, an amplification factor of 7.8 indicated the start of transition, while

an amplification factor of 10 indicated the end of transition [48].

This method was later renamed eN . Instead of using an amplification ratio of 9

to signify transition, an N-factor was introduced as

N = ln

(
A

Ao

)
=

∫ x

xo

−αidx (2.3)

where N is the amplification factor and αi is the amplification in the imaginary direc-

tion. Calculating N facotrs as a function of the x for a range of frequencies provides

a set of N-curves. The envelope of these curves gives the maximum amplification
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factor which occurs at any x location [50]. While widely accepted, this method is not

useful in flows dominated by non-linear instabilities, such as cross-flow, and requires

knowledge of the neutral stability point amplitude, Ao [48]. This method of predic-

tion requires that a mean flow be known at a large number of streamwise locations

and, at each of these locations, an LST analysis performed for all the frequencies for

the normal modes, both of which can be computationally expensive to do [50]. Also,

the results of this method are empirical in nature and the value of N which represents

transition comes directly from experimentation[47]. In wind tunnels, transition is

noted to occur by an N factor of 10 (given quiet tunnel operations) while flight N

factors at transition range from 8.5 to 14 [51]. Despite these weaknesses, this method

remains the most widely used for predicting transition location.

2.2 Nosetip Bluntness Effects

2.2.1 Entropy Layer.

Entropy is the thermodynamic quantity which represents the unavailability of

energy for conversion to mechanical work and is often described as the degree of

randomness in a system or the direction which a thermodynamic process is allowed

to take. The second law of thermodynamics states that the direction a process takes

will always increase, or maintain constant, the total entropy. Generation of entropy

is due to irreversible processes, such as dissipative phenomena of viscosity, thermal

conductivity and mass diffusion[52]. A shock is an irreversible process which increases

the entropy of the system, equivalent to the total pressure loss across the shock. This

increase is directly related to the strength of the shock; a normal shock is stronger

than an oblique shock thus a higher increase in entropy. A blunt body traveling

at hypersonic speeds will create a curved shock, known as a bow shock. At the

nose, a streamline travels through the nearly normal shock at the center-line and
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has a large increase in entropy. Each subsequent streamline that passes through

the bow shock will have a smaller increase in entropy, creating an entropy gradient

along the streamlines called the entropy layer. Figure 2.2 shows a representation

of the entropy layer. For hypersonic regimes, the entropy layer is initially larger

than the boundary layer, however, at some distance down the body, depending on

nose radii and Reynolds number, the boundary layer entrains, or “swallows”, the

entropy layer. The entropy layer has been shown to have a stabilizing effect on

the second mode instabilities through experimentation, but there has been limited

work done on determining the mechanism of that stabilization. Recent work by

Kuehl et al. examined the theoretical possibility that in an entropy layer, the density

gradients vary due to the entropy variations which limit the second mode disturbances

ability to amplify and are in the process of matching theory to experimental results

[53]. Despite not understanding the mechanisms in the entropy layer which stabilized

the boundary layer, experimentation by Stetson showed that before a critical nose

bluntness, based on the ratio of the nose radius to the base radius, the entropy layer

stabilized the boundary layer until it was “swallowed” and then the boundary layer

rapidly transitioned to turbulence which was attributed to entropy-layer instabilities

[6].

The effect of instabilities in the entropy layer on the stability of the boundary

layer is not well understood and remains an area of active study. The entropy layer

is a region of strong vorticity due to the high gradients based on Crocco’s Theorem.

This vorticity causes entropy-layer instabilities [54]. Entropy layer instabilities are

an inviscid phenomenon and the most amplified waves are not necessarily oblique

waves [6]. Stetson et al. measured entropy layer instabilities in blunted cone exper-

iments and found that these disturbances grew slowly outside the boundary layer,

then quickly amplified inside the boundary layer to cause transition [6].
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2.2.2 Swallowing Distance.

In flight vehicles, nose tip bluntness, both in vehicle design and as a result of

ablation, further complicates the physics of the boundary layer and transition predic-

tion. The simplest approach to calculate the boundary layer edge parameters is to

neglect the coupling of the inviscid flow with the boundary layer region. While this

method is acceptable for sharp cone designs, in the early 1950’s work by Ferri and

Libby [55] showed that the entropy gradients induced by the bow shock curvature

around a blunted nose produced a coupling effect between these two regions. The

external streamline vorticity and continuously varying entropy aft of the nose region

affects the stability of the flow in the boundary layer. To account for the variable

boundary layer entropy, the concept of a swallowing distance was introduced by Za-

kkay and Krause [56] and later quantified by Rotta [5]. Rotta developed a method

to quantify the effects of shock curvature on the flow and identified a location where

the streamlines that crossed the curved portion of the shock become entrained in the

lower entropy viscous boundary layer, which he called the “swallowing distance” [5].

Stetson later described the swallowing distance as the location on frustum where the

local Mach number and the flow properties at the edge of the boundary layer were

nearly (0.96 to 0.98) the same as would be found on a sharp cone [4]. Figure 2.2 shows

the geometry of the blunt nose and the resulting curved shock and entropy layer. The

overall result of Rotta’s computations for the swallowing distance was to show that

the swallowing distance was proportional to Re∞/ft
1
3 and R

4
3
N . These results were

simplified in a graph shown in Figure 2.3. This concept of swallowing distance has

been used extensively in analyzing wind tunnel data on the effect of nose bluntness

on stability.
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Figure 2.2. Entropy Layer over a Blunt Cone (taken from [4])

Figure 2.3. Rotta’s Swallowing Distance (taken from [5])
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2.2.3 Bluntness Effects on Stability.

Wind tunnel experiments have been conducted since the 1960’s looking at the

effect of nose bluntness on boundary layer transition [57, 58, 40, 4, 59]. Despite the

number of different experiments, the work done by Stetson is considered the most

comprehensive. Early work by Stetson and Rushton in 1967 [40], conducted on an 8

degree half-angle cone at Mach 5.5, showed that the transition on a blunt cone was

mainly affected by the reduction in the local Reynolds number, calculated using the

boundary layer edge conditions, as a result of the blunt nose. This decrease resulted

in a rearward movement of the transition location compared to a sharp nose until the

nose radius reached a critical bluntness. As the nose bluntness increased past this

critical bluntness, a reversal was seen and the transition location moved forward on

the cone indicating an optimum nose radius for a given flow condition. Stetson and

Rushton also introduced swallowing distance as a parameter to examine the effects of

nose bluntness on transition, thus allowing cones with different half-angle and nose

radii, as well as different freestream flow characteristics to be compared [6].

Between 1978 and 1982, Stetson conducted 196 sharp and blunt cone experiments

run in the Air Force Research Lab’s (AFRL) Mach 6 wind tunnel and Arnold Engi-

neering Development Center (AEDC) Mach 9 wind tunnel. The results of his sharp

cone experiments verified Mack’s theory that the hypersonic boundary layer was dom-

inated by the second mode disturbances and were very selective in the frequencies

that were amplified [4]. These frequencies were directly related to the boundary layer

thickness as predicted. They also provided Stetson with a basis for analysis for the

effects of nose bluntness.

For his blunt cone experiments, Stetson used the same model and facilities, but

made the nose tip interchangeable to allow for varying nose bluntness. The conclu-

sion to most of his bluntness analysis was that the blunting effects competed for the
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dominant role in transition and large changes in transition Reynolds number were

believed to be dependent on what transition mechanism was dominant. Stetson iden-

tified three regions of interest when looking at the effects of bluntness. In the region

where the transition location was approximately the same as the swallowing distance,

the nosetip had a stabilizing effect on the boundary layer and the transition Reynolds

number was greater than on a sharp cone [4]. Near the front of the cone, when

XT
XSW

= 0.03, the flow was dominated by the nosetip flow and the surface conditions

and lower transition Reynolds number were found [6]. However, the location where

XT
XSW

= 0.1 showed a transition Reynolds number less than a sharp cone but Stetson

could not identify the dominant instability producing transition [4]. He was able to

show, however, that the rearward displacement of transition was very sensitive to

freestream Mach number as well as the nose tip bluntness [6]. This effect is shown

in Figure 2.4. Overall, for the different bluntness tested, the maximum transition

Reynolds number was shown to be where transition occurred right before the entropy

layer was swallowed. Figure 2.5 shows Stetson’s results.
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Figure 2.4. Bluntness effects on transition location (taken from [6])

Figure 2.5. Bluntness effects on transition Reynolds number (taken from [6])
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2.3 CO2 Damping

2.3.1 Carbon Ablative Surfaces.

Significant characterization of carbon graphite oxidation and sublimation was done

in the late 1960s. Blyholder and Eyring noted that many of the oxidation charac-

teristics were based on the purity, porosity and defects in the material itself and

noted that as graphite ablates significant variations in the surface area or active sites

were noted [60]. Through oxidation experiments with graphite at high temperatures

(though overall surface temperatures were limited to 1300 F), Blyholder determined a

general number of active carbon sites in graphite to be 3.5x1015 atom
cm2 or 5.81x10−8 kmol

m2

and that the sites were mobile in nature, where the adsorbed O atom could move

sites along the surface [60].

Further work done by Scala and Gilbert examined the sublimation reactions of

graphite where the total number of active sites were found to be a function of the

surface temperature and ambient pressure [61]. However, these conclusions were also

dependent on ratio of sublimation to oxidation and it was noted that as the sur-

face temperature increased, sublimation became the dominant reaction thus reducing

the amount of oxygen adsorbed more so than the number of active sites [61]. Also,

Scala’s work showed nominal concentrations of C4 and C5 in the sublimation flow

thus only C, C2 and C3 needed to be included for accurate sublimation results. In

similar sublimation experiments, Metzger et al. showed that the mass loss rate and

diffusion controlled oxidation was independent of the crystalline structure of the ma-

terial and dependent on surface temperature and pressure [62]. Lundell et al. later

determined through high temperature experiments, that as the surface temperature

of graphite approaches 4000 K, the vaporization temperature of graphite, mass loss

reactions become independent of pressure and varies only with temperature making

the sublimation rates different as the material approaches these high temperatures
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[63]. This change in rates typically leads to over prediction of mass loss at hypersonic

speeds. While these results are valid for graphite, carbon fiber materials are not able

to use the same assumptions and work is currently being conducted to determine how

the carbon fiber structure affects the overall ablation rates [64, 65]. Modern carbon

gas-surface ablation models still use the active site number and limit the sublimation

reaction to C, C2 and C3.

2.3.2 CO2 Properties.

Molecular vibrational relaxation is a non-equilibrium process that depends on a

specific relaxation time [66]. The theory of relaxation processes absorbing energy

from acoustic waves was detailed by Vincenti and Kruger [67] in 1965. A general

understanding of the process is for a gas in non-equilibrium, and the characteristic

acoustic time is close to the relaxation time of the gas, then the changes in density

due to the pressure differential of the disturbance lag that of the gas pressure as a

number of collisions are required for the gas to achieve the new value. If the acoustic

wave has a frequency that is higher than that of the optimum absorption frequency,

then the energy does not have time to transfer to the internal modes and the gas

appears frozen. If the acoustic wave frequency is lower than the absorption, then the

gas equilibrates as the wave travels through the gas. The damping effect is decreased

as the vibrational mode is in equilibrium.

While molecules can absorb energy by the vibrational relaxation process, the

specific vibrational characteristics of the CO2 molecule provide specific damping ca-

pabilities in hypersonic flows. CO2 is a linear, tri-atomic molecule that possesses a

circular axial symmetry around an axis passing through the three atoms[68]. CO2

has three vibrational modes: a double degenerate transverse bending mode (ν2) with

a characteristic vibrational temperature of θ2 = 960.1K, a symmetric longitudinal
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stretching mode (ν1) with a θ1 = 1992.5K and an asymmetric longitudinal stretch-

ing mode (ν3) with θ3 = 3380.2K. The uniqueness of this molecule comes from the

fact that the vibrational modes all have approximately the same relaxation time as

discovered by Camac in 1966 [26]. Camac, testing with shock tubes, discovered that

at higher freestream velocities, above 6.5 mm
µsec

, the internal vibrational modes of the

molecule were completely coupled. Specifically for his tests with CO2, he saw that

all four vibrational modes could be excited simultaneously and were completely cou-

pled from 2000-6000K with approximately the same relaxation time [26]. From his

experimentation, he determined the relaxation time for all four modes to be

ln (A4τCO2p) = A5T
− 1

3 (2.4)

where A4 = 4.8466x102 Pa
s

and A5 = 36.5 degK
1
3 .

This coupling of the vibrational modes of the CO2 molecule comes from the VV

(vibrational-vibrational) relaxation between the modes which is responsible for the vi-

brational energy redistribution within each isolated mode [69]. Polyatomic molecules

can have two or more vibrational levels corresponding to different vibrational modes

that have nearly the same activation energy and same symmetry type which causes

an “accidental” degeneracy known as Fermi resonance [70]. For CO2, this mutual in-

teraction between the vibrational modes ν1 and 2ν2 and ν3 and 3ν2 results in energy

transfer between them and is essentially non-linear in nature [71, 72]. However, these

intra-mode VV energy exchanges are almost resonant and very rapid when compared

to other energy transitions (such as vibrational-translational exchanges) and thus do

not affect the overall fluid dynamic variables of the flow [69].
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2.3.3 High Enthalpy Tunnel Testing.

The damping effect from the presence of CO2 in the boundary layer is well doc-

umented by numerous wind tunnel experiments in the California Institute of Tech-

nology’s Graduate Aeronautical Laboratory at the California Institute of Technology

(GALCIT) piston-free T5 wind tunnel. High enthalpy wind tunnel testing was con-

ducted by Germain and Hornung [25] and Adam and Hornung [7] in which a sharp, 5

degree half angle cone was used. These experiments were the first to look at transition

at high Mach numbers but not in a cold flow facility. Since cold flow facilities achieve

high Mach numbers by lowering the speed of sound, the kinetic energy remains too

low to look at kinetic effects on the molecules in the flow. Using freestream gases

of air, N2 and CO2, this testing showed that as enthalpy increased so did transition

Reynolds number and it was noted that all the testing done with CO2 yielded a

slightly higher Reynolds number than the other gases [25]. Adam noted that while

there seemed to be little correlation with enthalpy when comparing Retr, when com-

pared to a reference temperature (Equation 2.6), the transition Reynolds number for

flows with CO2 showed a significant increase[7]. Figures 2.6 and 2.7 shows these re-

sults. It was determined from these studies that CO2 showed the greatest absorption

when the freestream enthalpy was between 3 and 11 MJ
kg

. Above this value, the energy

of the flow as high enough to cause most of the CO2 to dissociate.

Re∗tr =
ρ∗uextr
µ∗

(2.5)

T ∗

Te
= 0.5 + 0.039M2

e + 0.5
Tw
Te

(2.6)

These results were studied computationally by Johnson who focused his examina-

tion on the effects of chemical reactions on the stability of the boundary layer that
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Figure 2.6. Transition Reynolds number versus stagnation enthalpy [7] (with permis-
sion)

were seen at these high enthalpy flows [8]. While his results showed a similar effect of

higher enthalpy increasing transition Reynolds number, he related these results to the

effects of the chemical reactions on amplification of disturbances at high frequencies.

Johnson conducted stability analyses on the flow twice, once with chemical effects

enabled and once with the chemical reactions disabled. Figure 2.8 highlights the

difference in the amplification of disturbances with a reacting and non-reacting gas

[8]. Johnson concluded that due to the lower dissociation energies (an endothermic

and therefore stabilizing reaction) and the larger number of vibrational modes of CO2

which transitioned the kinetic energy from the disturbance into internal vibrational

energy was the cause of the transition delay [8]. As was stated above, for CO2, if

the flow has a high enough enthalpy, or high enough temperatures to activate the

vibrational modes, then all four modes can be used to absorb energy at the same

frequency as the disturbance frequency.

Fujii and Hornung continued this research focusing on correlating CO2 absorp-

tion frequencies to the second mode instability frequencies [9]. Using the absorption
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Figure 2.7. Transition Reynolds number at reference temperature versus stagnation
enthalpy [7] (with permission)

estimation procedures found in Vincenti and Kruger [67], Fujii showed that the fre-

quencies at which CO2 had the maximum absorption rate could be estimated. Using

the frequency estimation procedure, Fujii calculated the absorption rates for CO2

from 1000-6000K (Figure 2.9, where the maximum absorption peaks between 500

kHz to 10 MHz [9]). Combining this with the estimate of the most amplified second

mode frequency, estimated by Equation 2.7 [22], Fujii was able to determine when the

frequencies of maximum CO2 absorption coincided with the second mode instability

frequencies.

f2nd = A
ue
2δ

(2.7)

where ue is the boundary layer edge velocity, δ is the boundary layer thickness, and

A has been estimate to be between 0.7 [10] to 1 [9].

Fujii and Hornung were able to show that the absorption rates for CO2 were similar

to the amplification rates for the instabilities from 1-10 MHz for the high enthalpy

flows from 3 to 15 MJ
kg

. This range of frequencies is coincident with the second
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Figure 2.8. Amplification rate versus frequency in flows with CO2 [8] (with permission)

mode disturbances in hypersonic boundary layers. Figures 2.10 and 2.11 shows the

numerical stability results for air and CO2[9]. From these results, it is clearly seen

that in air, the instability frequencies are much higher than where air is able to absorb

energy. However, for the flow with CO2, the instability frequencies coincide with the

absorption frequencies.
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Figure 2.9. Absorption rates at different temperatures [9] (with permission)

Figure 2.10. Disturbance frequencies compared to absorption rate of CO2 [9] (with
permission)
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Figure 2.11. Disturbance frequencies compared to absorption rate of air [9] (with
permission)
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These results led directly to the research done by Leyva et al [73] to try to de-

termine if injection of CO2 into the boundary layer would provide boundary layer

stabilization. Leyva et al. used the same geometry as the previous T5 experiments

but injected CO2 into the boundary layer via a porous section near the tip of the

cone. Their research showed that for a specific range of mass injection flow rates and

flow conditions, increased transition Reynolds number could be achieved, however,

the disturbance of the injection of the gas into the boundary layer for most flow condi-

tions caused transition of the boundary layer at the injection site [73]. Examining the

experimental results in numerical simulations, Wagnild showed the same results that

were experimentally determined by Leyva [51] for a wider variation of flow conditions.

Jewell et al., working as part of the same research effort, used the same 5 degree

half-angle cone geometry examining the variation of enthalpy and concentration of

CO2 in the freestream [10]. Jewell showed results comparing the effect of reacting

versus non-reacting gas flow but also the impact of freestream total enthalpy on flows

with CO2 present. Figure 2.12 and Figure 2.13 show the results of changing the react-

ing nature of the gas as well as the freestream versus CO2 mass fraction. Figure 2.12

shows the numerical result of a constant flow enthalpy while varying the CO2 concen-

tration. The result shows an asymptotically decreasing effect as CO2 concentrations

decrease until the reacting flow shows similar results to the frozen flow. Figure 2.13

compares results of varying enthalpy with the changing concentrations of CO2. At

high enthalpy conditions, a large effect is seen in the increased transition location.

However, at lower enthalpies, the effect is greatly decreased. These results were used

to determine the range of enthalpy values used in the current CO2 concentration

study.

These experiments and numerical simulation all used CO2 in the freestream as the

delineating condition. However, these are not conditions that would be seen in flight
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Figure 2.12. Numerical simulations with reacting and non-reacting flows on transition
location [10] (with permission)

conditions here on Earth. As CO2 has a lower dissociation energy than either N2 or

O2 , there is an amount of freestream CO2 that dissociates before the boundary layer.

Neither the experiments nor the numerical simulations attempted to assess the actual

concentration within the boundary layer or the effects of CO2 dissociation across the

shock and the consequent gas property changes.

32



Figure 2.13. Numerical results of enthalpy and CO2 concentration changes on transition
location [10] (with permission)

33



3. Mathematical Models

3.1 Governing Equations

3.1.1 Conservation Equations.

To adequately model the physical processes in hypersonic flows, an enhanced

set of the Navier-Stokes equations are required, including both chemical reactions

and vibrational-electronic energy. Due to the inclusion of chemical reactions, each

species in the flow must have a conservation equation. Also, a vibrational-electronic

energy equation is included along with the translational-rotational energy equation.

The divergence form of the conservation equations below are expressed in Einstein

notation using Cartesian coordinates.

The species conservation equation is Equation 3.1 where ρs is the mass density of

the species s, ui is the fluid velocity in the xi direction and vsi is the diffusion velocity

of the species in the xi direction. The term ωs is the species chemical source term

for species creation and is determined by the reactions allowed in the gas model as

well as the gas-surface interaction model. The sum of all species densities will still

preserve the total mass of the system.

∂ρs
∂t

+
∂

∂xi
(ρsui) = − ∂

∂xi
(ρsvsi) + ωs (3.1)

The conservation of mixture mass is given in Equation 3.2 where ρ is defined as

the mixture density.

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (3.2)

ρ =
∑
s

ρs (3.3)
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The conservation of momentum is given by Equation 3.4 where p is the fluid

pressure, ρ is defined by 3.3 and τij is the viscous stress tensor.

∂

∂t
(ρui) +

∂

∂xi
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xi

(3.4)

The total energy of the system is conserved and given by Equation 3.5 where qi

is the heat transfer of translational and rotational energy and qvi is the vibrational

heat transfer in the i-direction and hs is the enthalpy of species s.

∂E

∂t
+

∂

∂xj
(uj(E + p)) =

∂

∂xj
(uiτij)−

∂qi
∂xi
− ∂qvi
∂xi
− ∂

∂xi

(∑
s

ρshsvsi

)
(3.5)

A vibrational-electronic energy conservation equation is added to the compressible

Navier-Stokes equations and is given by Equation 3.6 where evs is the vibrational

energy per unit mass of species s and Qt−v is the translational-vibrational energy

exchange.

∂Ev
∂t

+
∂

∂xi
(uiEv) = −∂qvi

∂xi
− ∂

∂xi

(∑
s

ρsevsvsi

)
+Qt−v +

∑
s

evsws (3.6)

3.1.2 State Equations.

The total fluid pressure is found using the ideal gas law:

P = ρRT =
∑
s

ρs
Ms

RT (3.7)

For this equation, T is the translational-rotational temperature, R is the gas

constant specific to the mixture and R is the universal gas constant. The assumption
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of a single translational-rotational temperature is valid due to the equilibration of the

rotational state to the translational state within a few molecular collisions.

The total energy per unit volume of the fluid is defined as the sum of the kinetic

energy and the internal energy states of the species in the flow, given by Equation

3.8.

E =
1

2
ρuiui +

∑
s

ρscvsT +
nms∑
s

ρsevs +
∑
s

ρsh
o
s (3.8)

cvs = ctrvs + crotvs =
3

2

R

Ms

+
R

Ms

(3.9)

evs = gs
R

Ms

θv,m

e
θv,m
Tv − 1

(3.10)

On a per-unit-volume basis, the first term is the kinetic energy of the flow. The

second term,
∑

s ρscvsT represents the internal energy in the species based on the

translational-rotational temperature, T. The vibrational energy in the flow is given

by
∑nms

s ρsevs, where evs is determined by Equation 3.10 and θv,m is the characteristic

vibrational temperature of mode m, nms is the number of vibrational modes and Tv

is the vibrational temperature. The inclusion of the two temperature model, first

developed by Park [31], allows for non-equilibrium in the flow. The formation energy

of the species is defined by
∑

s ρsh
o
s, where h0

s is the formation enthalpy of species s.

The specific heat at constant volume per species assumes a linear polyatomic struc-

ture and the vibrational energy per unit mass of species s, evs, assumes a harmonic

oscillator model and a Boltzmann distribution for the vibrational states and gs is the

degeneracy for species s.
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3.1.3 Transport Properties.

The Navier-Stokes equations above are closed through the relations for the trans-

port properties of mass, momentum and heat. The transport of mass is expressed by

the species diffusion as given by Fick’s Law of mass diffusion which is:

ρsvsi = −ρDsr
∂

∂xi

(
ρs
ρ

)
(3.11)

where Dsr is the binary diffusion constant of species s through species r, derived

from a constant Lewis number. Lewis number represents the relationship between

the thermal conductivity to the mass diffusion and is defined as:

Le =
κ

ρcpD
(3.12)

where cp and κ are mixture values. The mixture values of cp, cv, h
o and ev are

found using a mass-weighted average based on species concentration from Equation

3.13.

φ =
ns∑
s

φs
ρs
ρ

(3.13)

The shear stress, τij, is expressed by equation 3.14 and describes the transportation

of momentum in the system where µ is the dynamic viscosity of the mixture. Stoke’s

hypothesis where λ = −2
3
µ is used to determine the bulk viscosity. There has been

some debate at the to suitability of Stoke’s hypothesis on flows with poly-atomic

particles, especially at hypersonic speeds [74]. It has been shown that the second

coefficient of viscosity, λ, is nearly 103µ for flows containing high concentrations of

CO2 [75]. However, despite nearly 150 years of debate, there still remains limited

agreement on a viable alternative to Stoke’s simplification.
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τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

+
2

3

∂uk
∂xk

δij

)
(3.14)

Finally, the heat flux is defined using Fourier’s Law and allows for non-equilibrium

based on the two temperature model for the translational and vibrational tempera-

tures.

qi = −κ ∂T
∂xi

(3.15)

qv = −κv
∂Tv
∂xi

(3.16)

where κ is the translational-rotational heat conductivity of the gas mixture and

κv is the vibrational heat conductivity.

The gas mixture viscosity and conductivity are found by using Wilke’s mixing rule

given by Equations 3.17 through 3.20

µ =
∑
s

µsρsM

φsρMs

(3.17)

κ =
∑
s

κsρsM

φsρMs

(3.18)

κv =
∑
s

κvsρsM

φsρMs

(3.19)

φs =
∑
r

ρrM

ρMr

[
1 +

√
µs
µr

(
Mr

Ms

) 1
4

]2 [
8

(
1 +

(
Ms

Mr

))]− 1
2

(3.20)

The species viscosity is found using Blottner’s model

µs = 0.1exp [(AslnT +Bs) lnT + Cs] (3.21)
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In this model, the constants As, Bs and Cs are constants determined for each

species in the flow. The species conductivity is computed from Eucken’s relation for

translation, rotation and vibration:

κtr,s =
5

2
µscvs (3.22)

κrot,s = µscvs (3.23)

κv,s = µscvvs = µs
∂evs
∂Tv

(3.24)

3.1.4 Chemical Source Term.

The chemical reaction considered in the models include dissociation and exchange

reactions. The chemical production rate of a species, s, in a reaction q, is represented

by [76]:

ωs,q = (βsq − αsq)

[
kf,q

∏
j

(
ρj
Mj

)α
sq

− kb,q
∏
j

(
ρj
Mj

)β
sq

]
(3.25)

where α and β are the stoichiometric coefficients for the reactions.

Using this production rate for for each reaction, the total source term for the

species mass conservation is given by:

ωs = Ms

∑
q

ωs,q (3.26)

The dissociation reaction forward rates are based on Park’s [31, 77, 78] geometric

average of the translational-rotation and the vibrational-electronic temperatures

T =
√
TTv (3.27)
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which also accounts for the vibrational-dissociation coupling [79] or the two temper-

ature kinetic model[80]

T = T qv T
1−q (3.28)

where q is a value between 0.3 and 0.5. US3D uses Equation 3.27 to calculate the

temperature [30].

The backwards rates are determined from the forward rate and the equilibrium

constants.

kb,q =
kf,q
Keq,q

(3.29)

Keq,q = Ka,q

( p0

RT

)νgq
(3.30)

νgq =

Kg∑
k=1

(
ν

′′

kq − ν
′

kq

)
(3.31)

Ka,q = exp

[−∆Go
q(T )

RT

]
= exp

[
−

K∑
k=1

νkq

(
Hk(T )

RT
− Sk(T )

R

)]
(3.32)

where νgq is the stoichiometric exponent, νkq is the net stoichiometric constant for

species k in reaction q and Go
q(T ) is the Gibbs free energy. The US3D code uses the

NASA Chemical Equilibrium with Applications(CEA) [81] database to compute the

activity and concentration-based equilibrium constants.

3.1.5 Vibrational Source Terms.

The translational-vibrational energy exchange rate is calculated using the Landau-

Teller model whereQt−v,s is the energy exchange rate between the vibrational-electronic

and translational-rotational energy modes, ev,s is the vibrational energy evaluated at

the translational-rotational temperature or the vibrational-electronic temperature at

a relaxation time, τs.
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Qt−v,s = ρs
ev,s(T )− ev,s(Tv)

τs
(3.33)

The rate of change in vibrational state assumes molecules behave as harmonic

oscillators and vibrational levels are restricted to one quantum level change at a time

[67].

The relaxation time, τs, is found from the species averaged relaxation time

τs =

∑
rXr∑
r
Xr
τsr

(3.34)

The inter-species relaxation time is modeled using the Millikan and White [82]

curve fit

τsr =
1

p
exp

[
Asr(T

− 1
3 − 0.015µ

1
4
ms)− 18.42

]
(3.35)

Asr = 1.16x10−3µ
1
2
srθ

4
3
v,s (3.36)

µsr =
MsMr

Ms +Mr

(3.37)

For these simulations, the relaxation time is corrected by a collision limited relax-

ation time if the flow reaches a very high temperatures, τcs [31]

τcs =
1

σvcsN
(3.38)

cs =

√
8RT

πMs

(3.39)

σv = σvs

(
50000

T

)2

m2 (3.40)

where σvs is the limiting cross section for species s and can be found in Park [77], N

is the number density for the mixture and cs is the average molecular speed. In the
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US3D code, if the limiting cross section is not specified the value defaults to that for

Nitrogen, 3× 10−21m2.

3.1.6 Boundary Layer Equations.

Using the Navier-Stokes equations from section 3.1.1, the conservation equations

for the boundary layer can be derived and has been accomplished at varying levels of

difficulty by multiple authors [83, 18, 52]. The basis for boundary layer theory was

originally developed by Prandtl to explain the viscous effects near the surface where

the no-slip boundary condition brings the fluid to rest and shear stresses exist. As

these viscous effects are confined to a thin layer near the surface of the body, it is

convenient to solve the inviscid flow and the more complex viscous boundary layer

flow separately. There are defined three different boundary layers thicknesses used in

defining a boundary layer: velocity boundary layer thickness, thermal boundary layer

thickness and the species concentration boundary layer thickness. Each boundary

layer thickness relates to the physical conservation on momentum, energy and mass,

respectively. The thicknesses of each boundary layer increases with distance from

the leading edge. The main purpose of the boundary layer theory is to determine

the gradients in velocity and temperature to define the shear stress and the heat

transfer to the surface. Some fundamental boundary layer dimension quantities are

the displacement thickness and momentum thickness. These values are often used

to determine an edge Reynolds number or edge Mach number often used in stability

theory.

The displacement thickness is defined as

δ∗ =

∫ ∞
0

[1− u

U∞
]dy (3.41)
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and proportional to the
√
ν, the kinematic viscosity. The physical interpretation of

the displacement thickness is the amount an streamline in the mean flow is deflected

due to the presence of the boundary layer.

Similarly, the momentum thickness is defined as the decrease in momentum flow

due to the presence of the boundary layer and is defined by the equation

θ∗ =

∫ ∞
0

u

U∞

[
1− u

U∞

]
dy (3.42)

To calculate the governing equations of the boundary layer, an order of magni-

tude analysis is made on the complete Navier-Stokes equations using the assumption

that the boundary layer thickness is much less than the length scale used, the flow is

steady-state, and the Reynolds number is large [18]. For a simple, two-dimensional

flow, this reduction of the conservation equations results in Equations 3.43 through

3.46.

∂

∂xi
(ρsui) = − ∂

∂y
(ρsvsi) + ωs (3.43)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
(3.44)

0 = −∂p
∂y

(3.45)

ρu
∂h

∂x
+ ρv

∂h

∂y
= µ

(
∂u

∂y

)2

+ u
∂p

∂x
+

∂

∂y
(κ
∂T

∂y
+ κv

∂Tv
∂y

) (3.46)
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Boundary conditions for these equations are such that the flow comes to rest at the

surface and at y → ∞, the edge of the boundary layer, return to freestream values.

The x-direction is assumed to be parallel with the surface and the y-direction is normal

to the surface. At lower Mach numbers, the flow structure does not support a static

pressure gradient in the body-normal direction as there is no momentum available

to maintain the pressure difference. The y-momentum equation will not hold true at

very large hypersonic Mach numbers, for as the Mach grows large, the assumption

that pressure is constant in the normal direction through the boundary layer is no

longer valid. Phenomenologically, if the freestream Mach number is large enough so

that 1
γM2 is on the order of the displacement thickness, than the assumption that ∂p

∂y

must also be on the same order as the displacement thickness is not true and can

thus be large which would allow for such a pressure differential [52].

3.2 Linear Stability Theory

Linear Stability Theory (LST) owes its initial development to the combined ef-

forts of work of hydrodynamic stability theorists such as Rayleigh, Orr, Sommerfeld,

Tollmien, Schlichting and Lin for the theoretical development of the incompressible

theory [84] . This theory was supported with careful experimentation including those

by Liepmann [85] and Schubauer and Skramstad [86]. The over-arching conclusion

established from these works was that in an incompressible fluid, the flow will become

unstable above a specific critical Reynolds number and cause the flow to transition

from laminar to turbulent. It was the development of the Tollmien-Schlichting waves,

a self-excited inviscid disturbance in the flow, that grow large enough to cause tran-

sition from laminar to turbulent flow. Building upon the incompressible theory, Lees

and Lin [87] developed the compressible theory, which was later expanded by Lees

[87], Dunn and Lin [88] and Lees and Reshotko [89]. In compressible stability the-
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ory, the basic stability mechanisms found in incompressible theory still exist, but the

relative importance of each mechanism changes due to the appreciable interchange

of mechanical and heat energy [87]. Specifically, the compressibility of the fluid and

the conductivity can no longer be neglected [87] and the viscous dissipation becomes

the dominant factor for stability and so terms with gradients of viscosity, conduc-

tivity and dissipation become important. The changes in pressure fluctuations and

the production of disturbance energy and viscous dissipation near the surface due to

an increased Mach number make terms previously neglected in incompressible theory

important [89]. Lees and Reshotko showed that the inviscid pressure fluctuations

decrease farther from the surface in compressible flow at higher Mach numbers [89].

The basic concept of linear stability theory is derived from the Navier-Stokes

equations of motion, either in the incompressible or compressible forms depending on

the flow. Into these equations the values for the flow quantities are then expressed

as a steady mean flow value and a fluctuation term shown in Equation 3.48. A

critical assumption of parallel, or locally-parallel, flow is made in which the mean-

flow quantities are a function only of the normal direction [27].

q(x, y, z, t) = Q(x, y, z) + q′(x, y, z, t) (3.47)

q′ = φe[i(αx+βz−ωt)] (3.48)

where U = U(y), W = W (y) and V = 0 and φ represents the disturbance amplitude.

These values are substituted into the Navier-Stokes equations and the mean flow

is subtracted out resulting in expressions for the fluctuating values. The resulting

equations are then further simplified by linearization, based on the assumption of

small fluctuations, and any term where fluctuations, or derivatives of fluctuations,

are multiplied can be neglected. The disturbance equations for dimensionless, linear
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compressible flow as developed by Mack without chemical reactions [19] are shown

in Equations 3.50 through 3.54, with conservation of mass, momentum and energy,

respectively.

∂r

∂t
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ v

∂p

∂y
+ U

∂r

∂x
+W

∂r

∂z
= 0 (3.49)

ρ

(
∂u

∂t
+ U

∂u

∂x
+ v

∂U

∂y
+W

∂u

∂z

)
= − 1

γM2
e

∂p

∂x

+
1

R

[
2µ
∂2u

∂x2
+ µ

(
∂2u

∂y2
+
∂2u

∂z2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)]
(3.50)

+
1

R

[
2

3
(λ− µ)

(
∂2u

∂y2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+
∂µ

∂T

∂T

∂y

(
∂u

∂y
+
∂v

∂x

)]
+

1

R

[
∂µ

∂T

(
∂2U

∂y2
θ +

∂U

∂y

∂θ

∂y

)
+
∂2µ

∂T 2

∂T

∂y

∂U

∂y
θ

]

ρ

(
∂v

∂t
+ U

∂v

∂x
+W

∂v

∂z

)
= − 1

γM2
e

∂p

∂y

+
1

R

[
2µ
∂2v

∂y2
+ µ

(
∂2v

∂x2
+
∂2v

∂z2
+

∂2u

∂x∂y
+

∂2w

∂y∂z

)]
(3.51)

+
1

R

[
2

3
(λ− µ)

(
∂2v

∂y2
+

∂2u

∂x∂y
+

∂2w

∂y∂z

)
+
∂µ

∂T

(
2
∂T

∂y

∂v

∂y
+
∂U

∂y

∂θ

∂x
+
∂W

∂y

∂θ

∂z

)]
+

1

R

[
2

3

(
∂λ

∂T
− ∂µ

∂T

)
∂T

∂y

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
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ρ

(
∂w

∂t
+ U

∂w

∂x
+ v

∂W

∂y
+W

∂w

∂z

)
= − 1

γM2
e

∂p

∂z

+
1

R

[
2µ
∂2w

∂z2
+ µ

(
∂2w

∂y2
+
∂2w

∂y2
+

∂2v

∂y∂z
+

∂2u

∂x∂z

)]
(3.52)

+
1

R

[
2

3
(λ− µ)

(
∂2w

∂z2
+

∂2u

∂x∂z
+

∂2v

∂y∂z

)
+
∂µ

∂T

(
∂2w

∂y2
θ +

∂w

∂y

∂θ

∂y

)]
+

1

R

[
∂2µ

∂T 2

∂T

∂y

∂w

∂y
θ +

∂µ

∂T

∂T

∂y

(
∂w

∂y
+
∂v

∂z

)]

ρ

(
∂θ

∂t
+ U

∂θ

∂x
+ v

∂θ

∂y
+W

∂θ

∂z

)
= −(γ − 1)

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
(3.53)

+
γµ

PrR

[
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
+

1

κ

∂κ

∂T

∂2T

∂y2
θ +

2

κ

∂κ

∂T

∂T

∂y

∂θ

∂y
+

1

κ

∂2κ

∂T 2

(
∂T

∂y

)2

θ

]

+γ(γ − 1)M2
e

1

R

[
2µ
∂U

∂y

(
∂u

∂y
+
∂v

∂x

)
+ 2µ

∂W

∂y

(
∂v

∂z
+
∂w

∂y

)
+
∂µ

∂T

(
∂U

∂y

)2

θ

]

+γ(γ − 1)M2
e

1

R

[
∂µ

∂T

(
∂W

∂y

)2

θ

]

where R is the reference Reynolds number, R =
√
Re = UeL

νe
=
(
Uex
νe

) 1
2
, Pr is the

Prandtl number, given by κ
cpµ

, γ is the ratio of specific heats, and θ and r are the

temperature and density disturbances, respectively.

These can be also be expressed with terms for chemical reaction by including

species density and forcing terms, Fn [90] where φ is a vector of the disturbance

quantities and the coefficients are Jacobian matrices depending only on the mean

flow quantities or their derivatives.
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Γ
∂φ

∂t
+ A

∂φ

∂x
+B

∂φ

∂y
+ C

∂φ

∂z
+Dφ

+Vxx
∂2φ

∂x2
+ Vyy

∂2φ

∂y2
+ Vzz

∂2φ

∂z2
(3.54)

+Vxy
∂2φ

∂x∂y
+ Vxz

∂2φ

∂x∂z
+ Vzy

∂2φ

∂y∂z
+ F n = 0

φ = (ρ′1, · · · ρ′ns, u′, v′, w′, p′, T ′, T ′v) (3.55)

3.2.1 Linear Stability Equations.

Based on the parallel flow assumption, the coefficients of the disturbance equations

are functions only of the normal direction and therefore the actual solution to these

equations can be introduced as [19]

[u, v, w, p, r, θ]T = [û(y), v̂(y), ŵ(y), p̂(y), r̂(y), θ̂(y)]T exp

[
i

(∫
αx+ βz − ωt

)]
(3.56)

This type of disturbance is known as a modal disturbance and assumed to be

sinusoidal in nature and the values of α, β and ω may be either real or complex

depending on whether a temporal or spatial stability is being analyzed [19]. When

substituted into the LST equations, a system of ordinary differential equations are

obtained to solve for α, β and ω. For axi-symmetric flow, the values of β are set

to zero. For temporal amplification, α and β are assumed to be real, while ω is

complex, ω = ωr +ωi. For spatial amplification, ω is real while α and β are complex.

Therefore, the sign of the imaginary quantity determines whether the disturbance

will be damped or amplified. For two dimensional, spatial amplification to determine

48



the location of transition, the solutions for αi are used to build the stability diagram

(see Figure 3.1).

A relation between temporal and spatial amplification is given by Gaster’s rela-

tions [91]

αi(s) =
αci(T )

cg
(3.57)

cg =
∂(αcr)

∂α
= cr + α

∂cr
∂α

(3.58)

where cg is the group velocity.

When Equation 3.56 is substituted into the disturbance equations, the results are

the stability equations. For incompressible flow, and assuming Squires theorem, these

equations can be reduced to the Orr-Sommerfield equation, a fourth order system to

solve for a two-dimensional boundary layer. For compressible flow, the equations form

an eighth-order system of equations, which can be reduced to a sixth-order system

with the assumption that one of the four dissipation terms in the energy solution

is negligible [19]. The eigenvalues of the stability equations are calculated to find

the stability of the flow, with the specification of both the Reynolds number and

frequency, as well as with the satisfaction of the boundary conditions. The results

are most often displayed in a stability diagram. An example of the stability diagram

for a Blasius boundary layer shown in the Figure 3.1. These curves are often referred

to as thumbprint curves and represent the regions of instability where disturbances

are amplified. The neutral curve is that line where the amplification, −αi = 0. This

curve is the boundary between areas of amplification and damping. The curves where

−αi is positive show areas of instability.
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Figure 3.1. Stability Diagram for Blasius Boundary Layer for (a) Spatial and
(b)Temporal Analysis [3] (with permission)

3.3 Numerical Models

The numerical methods used in this research to solve the flow used the compress-

ible, reacting Navier-Stokes equation using a finite volume method. The finite volume

approach solves the Navier-Stokes conservation laws in Cartesian coordinates and can

be expressed by Equation 3.59, where U is defined as the vector of conserved vari-

ables, ~F is the sum of inviscid and viscous fluxes and the source term, W, is a matrix

with the species production terms and the change in vibrational energy.

∂U

∂t
+5 · ~F = W (3.59)
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U = [ρs, ρui, Ev, E]T (3.60)

W = [ωs, 0, Qt−v +
∑

evsωs, 0]T (3.61)

Integrating Equation 3.59 over an arbitrary volume results in Equation 3.62 where

Ū and W̄ equal the averaged quantities of the finite volume element, V is the volume

and ∂Ω represents the surface of the volume.

∂Ū

∂t
+

1

V

∫
∂Ω

(~F · ~n)dS = W̄ (3.62)

If the volume is assumed to be a polygon, then Equation 3.62 can be re-written

to

∂Ū

∂t
+

1

V

∑
sides

(~F · ~n)S = W̄ (3.63)

where S is the face surface area. This equation is discretized over the flow domain

to solve for the average value in each polygon or grid cell. The conserved variables

represent the values of the cell center and the fluxes at the face will be reconstructed

from those values.

3.3.1 Fluxes.

The inviscid flux vector in X-Cartesian coordinate direction is

FI = [ρsu, · · · , ρuu+ P, ρuv, ρuw,Evu, (E + P )u]T (3.64)

This equation can be written for both y- and z- directions substituting the velocity

component in that direction in for u. Due to the hyperbolic nature of the inviscid
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fluxes when Mach is greater than 1, the flow variables travel along characteristics.

US3D uses a Steger-Warming flux-vector splitting method to solve the inviscid fluxes

[30, 92]. In the original upwind Steger-Warming method, the fluxes are split according

to the signs of the characteristic speeds of the flow [92].

~FI(U) = AU =
∂ ~F

∂U
U (3.65)

This flux can then be split into left and right moving components based on the

characteristic velocity, which are defined by the eigenvalues of A, the flux Jacobian.

Since A is difficult to diagonalize, the introduction of V, a matrix of primitive variables

is used such that

V = [ρs, ui, ev, p]
TA =

∂U

∂V

∂V

∂U

∂ ~FI
∂V

∂V

∂U
(3.66)

∂V

∂U

∂ ~FI
∂V

= C−1ΛC (3.67)

S =
∂U

∂V
(3.68)

Λ is a diagonal matrix of the eigenvalues (λ = u, u+a, u−a) and C is a matrix of the

associated eigenvectors. Λ can then be split into positive and negative moving char-

acteristics by making Λ+ all the positive eigenvalues and Λ− the negative eignevalues.

Thus the total flux then becomes the sum of the fluxes

~F+ = S−1C−1Λ+CSU (3.69)

~F− = S−1C−1Λ−CSU (3.70)

~FI = ~F+ + ~F− (3.71)
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Often, the flux must be evaluated at the local coordinate system based on the face

normal direction, in which case the contravariant velocity shown in Equation 3.74 is

used in place of u and ~FI becomes

~FI · ~n = F ′I (3.72)

~n = [sx, sy, sz] (3.73)

u′ = usx + vsy + wsz (3.74)

The original implementation of the Steger-Warming method is fairly dissipative

in nature [92] and is usually modified [30, 93]. The modification includes calculating

the Jacobians from an arithmetic average of the neighboring cells and is known as the

Modified Steger-Warming Method [93]. This central-difference method reduces the

numerical dissipation, but is not used in the area of shocks due to the high gradients

[92]. In this research, a pressure switch is used to transition between the original and

modified methods when large pressure gradients exist [30].

To obtain second-order spatial accuracy, a MUSCL (Monotonic Upwind Scheme

for Conservation Laws) [94] approach is chosen in the simulations. In this method,

the fluxes are evaluated in estimates of the left and right data, which are calculated

by extrapolating the face value from neighboring data, such as [95]

UL =
3

2
Ui −

1

2
Ui−1 (3.75)

UR =
3

2
Ui+1 −

1

2
Ui+1 (3.76)
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In the presence of strong gradients, this averaging will produce an aphysical result

and is limited so that new extrema aren’t produced. A limiter is often used to

eliminate the new extrema, such as the minmod function which takes the smaller of

two arguments if they have the same sign else returns a zero if the signs are different

[95].

The viscous flux is defined by Equation 3.77.

~FV = [ρsvs,x, · · · ,−τxx,−τxy,−τxz, qv,x +
∑

ρsevvs,x, qx + qv,x− uiτi,x +
∑

ρsevvs,x]
T

(3.77)

As the viscous fluxes are elliptic in natures, they are calculated using a central-

based scheme [30] where the flow variables are calculated by an average of the neigh-

boring cells and the derivative quantities are calculated using a deferred correction

method [30]. The cell-centered gradients needed are calculated using a weighted

least-squares reconstruction.

3.3.2 Time Advancement.

US3D uses Data-Parallel Line-Relaxation method for implicit time advancement

[30, 96]. Re-writing the finite volume governing equation in temporal form is shown

in Equation 3.78

∂Un

∂t
+

1

V

∑
faces

(F n+1
I + F n+1

V )S = W n+1 (3.78)

Linearization of the flux and production terms results in
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F n+1
I ' ~F n +

∂F n
I

∂U
∂Un (3.79)

W n+1 ' ~W n +
∂W n

∂U
∂Un (3.80)

∂Un = Un+1 − Un (3.81)

This system of linear equations is then solved using the DPLR method [96] in

which off-line terms are updated during a relaxation process. This relaxation process

involves a series of relaxation steps for ∂Un

∂U0 = 0

for k=1,kmax

∂Uk +
∆t

V

∑
online

A+∂UL + A−∂UR)kS − ∂W n

∂U
∂Uk = − 1

V

∑
F nS +W n

− 1

V

∑
offline

A+∂UL + A−∂UR)k−1S

∂Un = ∂Ukmax (3.82)

The on-line elements are on the left hand side of the solution while the off like

elements are relaxed to the right hand side. For these simulations, kmax was set to 4

for optimal convergence [97]. Line relaxation approaches are particularly effective for

high Reynolds number flows especially when the grid is highly stretched to resolve

the near-wall boundary layer and is much less computationally expensive than solving

the full system of equations [97]. Candler et al in [96] and [95] provide greater detail

into the DPLR approach.
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3.4 Gas-Surface Models for Wall Boundary Conditions

The finite-rate model for surface-gas interactions was developed by Marschall and

MacLean [13, 98]. The model is based on the separation of the system into three

environments: the gas, surface (s) and bulk (b) environments. The gas environment is

a single phase defined by multiple gas species. The surface environment has multiple

phases, each containing a fraction of the total surface area, which contain a finite

number of active sites where surface reactions can occur. The surface species consist

of the adsorbed species as well as available sites. The total number of sites is conserved

in the model to limit the surface reactions based on physical material limitations. The

bulk environment consists of the solid phase with species that could participate in

the ablation process. For a graphite ablator, the total number of bulk species is 1,

carbon. The separation of the environments allows for surface reactions with species

in different states, i.e. gas vs solid, to specify appropriate rate parameters.

At the surface, the boundary condition for each species is set by a mass balance

in the gas phase of mass fluxes entering and leaving each control volume in the CFD

simulation. The equation for this is mass balance is

ρwDkδykcw +Mkωk = ρwvwyk,w (3.83)

where yk denotes the k species mass fraction and vw is the normal velocity at the

surface. This balance is shown in Figure 3.2 [11]. Each gas-surface model determines

the species production term in this equation based on the reactions allowed and

reaction rates used.

The source term used as the boundary condition at the surface is determined by

the specific forward and backward rates specified in the gas-surface interaction model.
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Figure 3.2. Gas-Surface Mass Balance Boundary Condition [11] (with permissions)

The forward equilibrium rates are determined by one of the reaction types specified

in Table 3.1[13]

Table 3.1. Forward Reaction Rates [13] (with permissions)

The Arrhenius formulation, the most simple to implement as a surface reaction,

is difficult to relate the coefficients to physical processes and so are often replaced

by the Eley-Rideal (ER), adsorption, Langmuir-Hinshelwood (LH) or sublimation

formulation [11]. These kinetic-based formulas require a total active site density, Φ

to be specified. Also, a sticking coefficient, S0 or an ER reaction efficiency, γER,

dimensionless quantities are used and have values between zero and one. For the ER

mechanism, only one of the molecules is adsorbed onto the surface while the other

reacts directly from the gas phase. However, for the LH mechanism, both molecules

adsorb to neighboring sites and then undergo molecular reactions.
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The backward rate coefficient is found by dividing the equilibrium constant (found

by Equation 3.30) by the forward rate. For adsorption and desorption, the equilibrium

constants are defined directly using [13]

Keq = AeqT
′K0exp

(
Edes − Ead

RT

)
(3.84)

where Ead or Edes are activation energies and T ′ = T
1K

. Aeq can be found using either

a mobile or immobile formulation based on the assumption of whether an adsorbed

molecule can move on the surface or whether it is fixed.

Aeq =
Av
B

(mobile) (3.85)

Aeq = Av(immobile) (3.86)

and K0 is

K0 =

(
2πMiRT

A2
vh

2

)− 1
2

(mobile) (3.87)

K0 =

(
2πMiRT

A2
vh

2

)− 3
2

(immobile) (3.88)

3.4.1 Park Models.

The Park models, called Park76 and Park in this research, are derived from the

works of Park [32, 31, 99, 100] and Chen and Milos [101] and are emperical in nature.

The surface reactions used in this model are shown in Tables 3.2 and 3.3. The

earlier Park76 model does not contain any surface reactions with nitrogen and no

sublimation/condensation of C3 which is an obvious weakness to the model. Both

models are fairly low fidelity models only accounting for oxidation reactions, though

the Park model does allow for a sublimation/condensation reaction with C3 and a

58



nitridation reaction. Further criticism of the model is the lack of backwards reaction

rates, except for the condensation of C3 in the Park model, and adherence to the linear

Arrhenius reaction form despite non-linearity shown in experimentation [102, 60]. The

Arrhenius expression can be valid over a limited range of temperatures and pressures,

but cannot be applied reliably outside that range [102]. While these models do

not consider a large number of reactions, they are computationally inexpensive and

produce adequate agreement with experimental data at moderate temperatures.

3.4.2 Zhluktov and Abe (ZA) Model.

Zhluktov and Abe [14] later created a different kinetic finite-rate gas-surface model

with 12 separate reactions shown in the Table 3.4 [14]. The rates derived for this

model were empirical in nature and were determined to provide general fit to the

data rather than match a specific data set due to the wide variations in experimental

results [14]. In this model the surface reactions take place in both directions, as

opposed to the Park model. This model does still include the simple Arrhenius form

for some reactions, but also include adorption, desorption and Eley-Rideal reactions to

better match wider temperature and pressure conditions [14]. One of main criticisms

of the model is the lack of nitridation reactions creating CN in the flow, which has

been seen in experimental results and also adds competition to the oxidation reactions

[102]. The original implementation of this model into the US3D code, as given by

Candler [103], did not define the desorption rates of O and N as was provided in the

original ZA model nor did it allow for the mobile site parameter which was originally

included in the ZA model [15].
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3.4.3 Modified Zhluktov and Abe (MZA) Model.

The ZA model above was modified in the US3D code by Alba to include the

calculate of the mobile site coefficient and the desorption rates for O and N [15].

The modification involved first computing the surface coverage for adsorbed N and

O atoms and then computing the formation of gas phase species through a kinetics-

based process [103]. The desorption rates for the modified model are given in Table

3.4 in reaction 1b and 2b [15]. While addressing some of the limitations of the original

implementation of the ZA code, the nitridation reactions were still not included.

3.4.4 Modified Zhluktov and Abe Model with Nitridation.

In addition to modifying the ZA model with the adsorption/desorption of O and

N atoms, Alba also expanded the model to include carbon nitridation reactions, both

by direct nitridation and adsorbed nitrogen on the surface addressing one of the

limitations found in the ZA model [15, 102]. Alba also updated oxidation reaction

rates based on his experimentation and includes the mobile site parameter [15]. Table

3.5 gives the forward rate model used for the nitridation reactions [15].

3.4.5 MURI Model.

A Multi-University Research Initiative (MURI) executed by University of Min-

nesota and University of Montana produced new oxidation reaction rates based off

electron beam experiments conducted in 2017 [16]. Macroscopic finite rates were con-

structed off the scattered fluxes determined during the experiments. One of the key

assumptions made in the development of the model was the flux of O atoms detected

in the scattered products was equal to the incident O atom flux and any products

where the desorption time was greater than the data collection window were not con-

sidered [16]. This model was later examined by Swaminathan-Gopalan et al. in a
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Direct Simulation Monte Carlo (DSMC) showed a number of discrepancies when time-

of-flight and angular distribution were considered [104]. The DSMC results showed

that many of the rates did not include the thermally desorbed components of oxygen,

the slow components of CO distributions or the impulsively scattered O atoms [104].

These changes to the MURI model are still being developed and validated. Another

limitation of the model was the inclusion of only of the oxidation reaction. The im-

plementation of this model for this study included the updated oxidation rates shown

in Table 3.6 with the inclusion of the ZA model reactions for nitrogen adsorption and

desorption and carbon sublimation (reactions 2, 2b, 5, 9, 10, 11, and 12 from Table

3.4). The implementation did not include carbon nitridation as this was shown by

Alba to impact the oxidation rates [15].

Table 3.2. Park 76 model[13]

reaction γ E ( kJ
gmol

)

1 O2 + (s1) + C(b)→ CO +O + (s1) 0.01 0
2 O + (s1) + C(b)→ CO + (s1) 0.63 9.6444
3 O + (s2)→ O + (s2) 0.63 9.6444
4 O +O(s2)→ O2 + (s2) 0.63 9.6444

Table 3.3. Park model[13]

reaction γ E ( kJ
gmol

)

1 O + (s) + C(b)→ CO + (s) 0.63 9.644
2 O2 + (s) + 2C(b)→ 2CO + 2(s) 0.50 0
3 N + (s) + C(b)→ CN + (s) 0.30 0
4 3(s) + 3C(b)→ C3 + 3(s) 5.19x1013 775.81
5 C3 + 3(s)→ 3(s) + 3C(b) 0.610 0
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Table 3.4. Zhluktov and Abe (ZA) model[14]

reaction type S0/γER/A/ν T́ β E ( kJ
gmol

)

1 O + (s)↔ O(s) Ads 1 0 0
2 N + (s)↔ N(s) Ads 1 0 0
3 2O(s)↔ O2 + 2(s) Arrh 3.58x1010 1 256.07
4 O2 + (s)↔ O +O(s) E-R 1 0 118.06
5 CO2 + (s)↔ CO +O(s) E-R 0.9 0 0
6 O(s) + C(b)↔ CO + (s) Arrh 2.08X109 1 332.56
7 O +O(s) + C(b)↔ CO2 + (s) E-R 0.8 0 16.63
8 2O(s) + C(b)↔ CO2 + (s) Arrh 3.58x1014 1 332.56
9 C + (s)↔ (s) + C(b) E-R 0.24 0 0
10 C2 + 2(s)↔ 2(s) + 2C(b) E-R 0.5 0 0
11 C3 + 3(s)↔ 3(s) + 3C(b) E-R 0.023 0 0
12 N2 + (s)↔ N +N(s) E-R 1 0 636.85
1b O + (s)↔ O(s) des 1.72x104 0 374.13
2b N + (s)↔ N(s) des 1.72x104 0 304.29

Table 3.5. ZA model with nitridation (Alba) [15]

reaction type γorA β E ( kJ
gmol

)

1 N + (s) + C(b)↔ CN + (s) ER 0.36 0 36.86
2 N(s) + C(b)↔ CN + (s) Arrh 0.57 1 69.46

Table 3.6. MURI model [16]

reaction rate rate constant (k) units

1 O + (s)→ O(s) k1[O][s] 1
4B

√
8kbT
πmo

m3mol−1s−1

2 O(s)→ O + (s) k2[O(s)]
2πmok2bT

2

Bh3
exp −44.277

T
s−1

3 O +O(s) + C(b)→ CO +O(s) k3[O][O(s)] 1
4B

√
8kbT
πmo

57.37 exp −46.67
T

m3mol−1s−1

4 O +O(s) + C(b)→ CO2 + (s) k4[O][O(s)] 1
4B

√
8kbT
πmo

8.529x10−6 exp 6958
T

m3mol−1s−1

5 O + C(b) + (s)→ CO + (s) k5[O][(s)] 1
4B

√
8kbT
πmo

0.1203 exp 2287
T

m3mol−1s−1
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4. Methodology

The general method used for this study was to produce a high fidelity hypersonic

flow over a simple sharp and a 12.7mm nose-radius, 10 degree half-angle cone with

a length of 3 meters. The grids were designed to capture the high gradients within

the boundary layer. An 11-species finite-rate gas chemistry model was used for the

mean flow, which included N2, O2, NO, CO, CO2, C2, C3, C, N and O where the

gas reactions rates were determined by Park [31, 77, 78]. This gas model allowed

for the gas phase reactions with air species as well as gas phase interactions with

the ablative species as diffusion occurred. The chemical reactions considered in the

model for the gas phase include dissociation and exchange reactions. The boundary

conditions at the surface were determined by the choice of gas-surface reaction model

at a defined wall temperature. A data file defining surface temperature values at

defined x-locations along the body was used as the surface temperature boundary

conditions. Between the defined locations, the temperature was extrapolated in a

decreasing linear function, creating a step-wise defined function with no discontinu-

ities. These flow results were then used as input to an LST analysis. The frequencies

for the LST input were chosen based on Equation 2.7. The body location values for

the LST were designed to match the stability grid to the computational grid to limit

interpolation errors.

4.1 Grids

The grids used were structured, axi-symmetric grids of a simple 10 degree half-

angle cone, with cells clustered at the surface and rotated through 10 degrees. The

nosetip consisted of either a sharp nose or 12.7 mm nose radius and the total cone

length was 3 meters. Figures 4.1 and 4.2 show the grid outline with Figure 4.3
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highlighting the clustering at the nose tip of the blunt cone. Over 100 cells were

clustered in the boundary layer to ensure a y+ value of 1 or less along the entire

length of the cone. Initially, the grid was modeled with and without a wake to

ensure that modeling the flow without the expansion at the end of the vehicle did not

significantly affect the flow properties or the stability characteristics. The deletion of

the wake from the grid saved approximately 25% in total cell count. Figure 4.4 shows

the results for pressure at the end of the cone and Figure 4.5 shows the pressure in the

boundary layer. The maximum percent difference in the pressure for the flow with

and without a wake is 5.2%, highlighted in the circled areas in Figure 4.4. Within

the boundary layer, the maximum percent difference is 0.5%. Given the small error

in the results with a significant saving in computation, the no-wake grid was used

for the study. Similar simplifications to the computational domain by not modeling

the wake were employed by Jewell and Wagnild in their computational studies of the

CO2 wind tunnel results [105, 51].

Figure 4.1. Wire diagram of the sharp cone grid used

A convergence study was completed to ensure accurate, grid-independent solutions

while minimizing computational effort. High resolution of the flow was desired in the

boundary layer of the solution and points were distributed to cluster within this layer.

The flow for the convergence study was run with an adiabatic, non-reacting wall with

a 7-species gas phase model. Figure 4.6 shows the results from the convergence

study. Due to the similar results shown in the three finest grids, grid 3 was originally
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Figure 4.2. Wire diagram of the blunted cone grid

Figure 4.3. Grid detail at the blunted nosetip showing surface clustering

Figure 4.4. Pressure at x=1.24m highlighting variations cause by including the wake
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Figure 4.5. Pressure within the boundary layer at x=1.25m with and without a wake

selected and being grid independent, for a total grid size of nearly 240,000 cells.

However, the grid was later expanded to use 360 cells in the body normal direction

(with 110 cells remaining cluster in the boundary layer) and 300 cells per meter in

the streamwise direction, for a total grid size of 324,000 cells. These dimensions

allowed for greater agreement between the sharp and the blunt cone grids from the

tangent point back along the body. Also, this additional refinement allowed for greater

agreement between the computational and stability grids from the tangent point back

and the higher number of cells in the nosetip region reduced the stability error caused

by the higher gradients in this region on the blunt cone. Matching the stability

and computational grids reduced errors in the stability analysis that arose from the

polynomial interpolation of the computational grid onto the stability grid.
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Figure 4.6. Convergence study results

4.2 US3D

The US3D code was used to solve the flow field for all the simulations. US3D[30]

was originally developed as an unstructured follow-on to the NASA Data Parallel

Line Relaxation (DPLR)[30] code and has been validated on a wide-range of high-

speed test cases and experimental data. The solver uses a finite-volume formulation

of the compressible Navier-Stokes equations with selectable switches to include finite-

rate internal energy excitation and chemical kinetics [106]. The modified Steger-

Warming flux vector splitting method was used to calculate the convective fluxes,

with a Monotonic Upwind Scheme for Conservation Laws (MUSCL) scheme for second

order accuracy. A weighted least-squares reconstruction of the primitive variables is

used to calculate cell-centered gradients. The DPLR time integration method was

used to speed up simulation convergence [30]. The US3D code has the ability to

include user programmed subroutines to allow for modification to the base code.

To conduct an analysis using the different ablation models discussed in Chapter 3,

a user-defined set of subroutines was used. These routines read in an user-defined

surface temperature model (described above) which were held constant for each flow
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condition. The user-defined gas-surface interaction subroutine used this temperature

profile as the input value for the chosen model. This routine determined the surface

boundary conditions for the species production.

An input file was used to specify the choices for specific parameters, such as

the number of relaxation iterations or whether the flow is laminar or turbulent. For

chemically reacting and activation of vibrational energy the user has a choice of energy

modeling, viscosity models, and molecular diffusion models. The flow was assumed

viscous and laminar with both chemical reactions and vibrational energy relaxation

activated. The vibrational-electronic energy modeling used the NASA Lewis data

with a Blottner viscosity model [107] using Wilke’s mixing rule [108] and diffusion

coefficient derived from a constant Lewis number. The relaxation constants were from

Park and Millikan [77, 31, 82] except for the CO2 constants which came from Camac

[26]

4.3 STABL3D

Stability and Transition Analysis for hypersonic Boundary Layers (STABL3D)

code was developed to use the flow solution from US3D to calculate the linear stability

of the boundary layer [33]. The code takes a streamline solution from a user defined

starting point from the US3D mean flow solution and calculates the boundary layer

characteristics along that streamline. The flow characteristics are then used to solve

the linear stability equations at user specified frequencies and locations along the

body. The streamline starting position for the analyses was chosen past the tangent

point and expanded in both directions. The flow solutions were all run assuming

2-dimensional flow with no crossflow instabilities, a valid assumption based on the

geometry used. These results are then used to produce a stability diagram and a
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maximum N factor envelope plot along the body to show the maximum amount of

amplification in the boundary layer and the frequencies where there is amplification.

4.4 CO2 Concentration Study

The concentration study was conducted using a freestream gas composition of the

specified CO2 concentration (between 50% and 2.5%) and the N2 and O2 concentra-

tions as found in air. To ensure a constant CO2 concentration in the boundary layer,

dissociation of CO2 across the shock and in the high temperature gas regions was

not modeled in the gas file. There were no gas-surface interactions used during this

phase of the research and the wall temperature was set to isothermal wall (to match

experimental conditions) at 298.3K. First, the model was validated using two experi-

mental test runs, one with high enthalpy flow and one with lower enthalpy flow, taken

from Jewell [17] and the stability results were compared. These results were run on a

sharp 5 degree half-angle cone to match experimental models and were used only to

validate the methodology. Using the experimental freestream parameters for both the

high and low enthalpy cases, a sharp 10 degree half-angle cone model was used and

the concentration of CO2 in the freestream was reduced from 50% in 10% increments

until the change in transition location due to CO2 damping was considered marginal.

The same flow conditions were then run on the blunt cone from 50% to 2.5% to ex-

amine the effects of nose bluntness on the CO2 damping effects. The freestream flow

parameters were then changed to model flight-representative quantities while match-

ing the experimental enthalpy or boundary layer maximum temperature. An LST

analysis was done on each flow result for the vibrational modes active and inactive

to determine the amount of damping provided by the chemical composition of the

boundary layer.
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4.5 Model Comparison and Parameter Study

For the gas-surface interaction model comparison phase of the research, the freestream

gas composition was air and the freestream state variables were determined from the

1976 Standard Atmosphere Tables [2]. The surface temperature was determined using

an non-ablative flow simulation with an adiabatic wall boundary condition. In condi-

tions where the wall temperature from these simulations was too high (i.e. where the

wall temperature was significantly higher than sublimation temperature of graphite,

approximately 3800-4200K [109]) the wall temperature was reduced to 4000K. The

flight conditions chosen for the study were a re-entry type altitude and a high den-

sity altitude condition, at both relatively low and high enthalpies, with a freestream

velocity of 3000 m
s

and 6000 m
s

, respectively.

Simulations were run on both the sharp and blunt cones at each flight condition

using each of the six ablation models as well as a control flow that had no ablation.

An LST analysis allowing full chemical and vibrational modes was conducted on each

simulation result comparing the effects of each ablation model and the subsequent

chemical species concentrations on the stability of the boundary layer. Those flows

which contained significant amounts of CO2 in the flow, as determined by the CO2

concentration study, were also analyzed with vibrational modes disabled to investigate

the CO2 damping effects.

Parametric studies to determine the sensitivity of the air-carbon gas-surface ab-

lation model and the boundary layer stability on altitude, wall temperature and site

density. An altitude analysis was conducted examining the differences in the CO2

production through various points of a simulated reentry trajectory. The stability

results from the Park, modified ZA and the MURI models were also analyzed to

relate the subsequent effects on the boundary layer stability. The altitude was var-

ied in 10, 000 ft altitude increments, with the freestream temperature and pressure
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determined from the 1976 Standard Atmosphere Tables [2] at a freestream velocity

relevant to a standard reentry trajectory. The effects of increasing density would

increase the amount of CO2 produced, assuming non-saturation of the site density,

and decrease the boundary layer thickness changing the receptivity to second mode

frequencies. To determine the effect of wall temperature on the production of CO2

from the ablation models and the subsequent effect on stability, the wall temperature

used was increased, or decreased, by a given factor from the original adiabatic tem-

perature distribution, maintaining a maximum temperature of approximately 4000K

for the sublimation of graphite. The Park, modified ZA and the MURI models were

used for this parameter study. Finally, the effect of site density was examined by

varying the site density parameter from the base value of for graphite.
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5. CO2 Concentration Results

5.1 Model Validation Results

To validate the methodology for the concentration study, the simulation and sta-

bility results were compared to experiments conducted in GALCIT T5 wind tunnel by

Jewell [17]. His work consisted of multiple wind tunnel experiments measuring tran-

sition using a sharp, 5 degree half-angle cone in air, N2 , 100% CO2 or 50% CO2/air

mixtures. Two specific test runs were chosen with a 50% CO2/air mixture at a high

and low enthalpy as the validation cases. Tables 5.1 through 5.3 show the freestream

wind tunnel conditions, air composition and transition characteristics computed [17].

Table 5.1. Test case freestream conditions [17]

shot Tw K hres
MJ
kg

ρ∞
kg
m3 T K Tv K V∞

m
s

2729 298.0 8.45 0.12 1572.3 1573.1 3426
2813 298.0 5.12 0.06 862.1 965.8 2783

Table 5.2. Test case freestream air composition by mole fraction [17]

shot N2 O2 CO2 NO CO N O
2729 0.361 0.139 0.362 0.0474 0.0881 0 2.1x10−3

2813 0.365 0.118 0.440 0.038 0.0377 0 2.58x10−4

Table 5.3. Test case transition characteristics [17]

shot xtr Ntr NtrNoV ib

2729 0.758 10.32 19.94
2813 0.605 9.06 11.34

The freestream conditions were used in US3D as the input conditions and a linear

stability analysis was done with and without vibration enabled. The high enthalpy
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validation results are shown in Figures 5.1a and 5.1b and the maximum N factors

for the high enthalpy flow shown in Figure 5.2. The results show N factor values

at x = 0.758, the location of transition in the experiments, of 10.18 and 19.64, for

vibrational modes enabled and disabled, respectively. These results are within 1% of

those originally calculated by Jewell for the high enthalpy cases [17]. Similar results

were seen in the lower enthalpy case, shot 2813 (Figures 5.3a through 5.4). At a

experimental transition location of x = 0.605, the vibrational and non-vibrational N

factors were 8.89 and 11.29, respectively, within 2% of the results calculated by Jewell

[17].
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(a) Stability diagram with vibration enabled

(b) Stability diagram with vibration disabled

Figure 5.1. Stability diagram for for high enthalpy test case, 8.45MJ
kg , with vibration

enabled and disabled
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Figure 5.2. Maximum N factors for high enthalpy test case, 8.45MJ
kg (non-vibrational

results represented with a dashed line)

(a) Stability Diagram with vibration enabled

Figure 5.3. Stability Diagram for low enthalpy, 5.12MJ
kg with vibration enabled and

disabled
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(b) Stability Diagram with vibration disabled

Figure 5.3. Stability Diagram for low enthalpy, 5.12MJ
kg with vibration disabled

Figure 5.4. Maximum N factors for high enthalpy test case (non-vibrational results
represented with a dashed line)
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Given the low error between the two studies, the methodology was shown to be

valid. A 10 degree half-angle cone with both a sharp and 12.7 mm nose radius blunt

cone was used for the remainder of the concentration study. The grid dimensions for

the 10 degree half-cone angle grid was equal to those used for the validation study

grid.

5.2 High Enthalpy Freestream Conditions

Using the freestream conditions for the high enthalpy test case, a series of flow

simulations were conducted using decreasing concentrations of CO2. CO2 was not

allowed to dissociate across the shock to maintain a constant concentration of CO2

in the boundary layer and the only gas reaction allowed that would change the con-

centration of CO2 in the gas was the exchange between CO and O2, which did not

change the concentration by more then 0.4% in the boundary layer.

5.2.1 Wind Tunnel Conditions.

Figure 5.6 shows the N factor comparisons of the varying CO2 concentrations over

a sharp cone. Higher concentrations of CO2 produce less total amplification, showing

vibrational damping. However, highlighting the graph at x=0.3 and below, there

appears to be a slight reversal in the effects of CO2 concentrations, as it appears

that the lower concentrations produce lower N factors. This result is caused by

numerical error at the nosetip of the sharp cone due to the grid rather than a physical

result. The grid was designed with a small number of cells to allow the simulation

start prior to encountering the cone, allowing for a larger initial time step to be

taken at the start of the simulation. While the grid is highly resolved in the body

normal direction, the streamwise resolution is low in this area and these cells are

very narrow, long cells. As the concentration of CO2 changes, the cp value of the
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freestream also varies and at the inflow region of the grid, the flow become very

sensitive to these variations due to the high gradients, especially near the shock.

Examining this numerical error closely, as the concentration of CO2 decreases, the

shock actually becomes “detached”, effectively producing a small blunted nose-type

effect and introducing an entropy layer. For the CO2 values used in these simulations,

the “equivalent nose radius”, determined using Rotta’s method, was determined to

be approximately 5 mm at 10% concentration and decreased with increasing CO2

concentrations. Figure 5.5 shows the shock contour at each CO2 concentration. At

50% CO2 the shock contour is sharp and resembles an oblique shock. However, at

10% CO2, there is a clear curvature to the shock caused by the lower streamwise

resolution which, for the flow, resembles a nose bluntness. This effect is evident in

the increasing x location where the instabilities start amplifying as the concentration

decreases. For the 50% flow, amplification begins right at the nose of the cone,

while the 10% doesn’t show any amplification until x=0.05 m, giving the appearance

lower amplification despite the higher rate of amplification indicated by the slope

of the line. This numerical error, however, does not impact the conclusions of this

study as the comparisons are only made between the vibrational and non-vibrational

results at each concentration, rather than between concentrations. The total change

in the amplification start point is less than 0.05 m at the high enthalpy conditions

(see Figure 5.6) between all concentration levels. The starting streamwise location

of amplification is the same when the concentration is constant whether vibration is

enabled or disabled and so has no impact when comparing these two stability results.

Comparing the stability results with and without vibration, the effects of CO2

damping becomes evident at the high enthalpy flow conditions. Figure 5.7 shows

the resulting N factors with and without vibration enabled, where the dashed line

represent the stability results without vibration. Based on empirical data, flight

78



transition occurs between N factors of 8.5 and 14 [51], so for this study transition

is assumed to occur at an N factor of 10 and Table 5.4 shows the changes in the

transition location for the various concentrations. For the high enthalpy flow, a

minimum concentration of just greater than 10% CO2 is necessary to change the

transition location by at least 10 cm on a sharp cone. These results are similar to

what was seen in the T5 wind tunnel experiments [7, 25, 17].

Table 5.4. High enthalpy transition location changes on the sharp cone

Concentration xtr xtrNoV ib δxtr
50% 0.8323 0.3782 0.4541
40% 0.7630 0.4039 0.3591
30% 0.6959 0.4291 0.2668
20% 0.6348 0.4596 0.1752
10% 0.5750 0.4902 0.0848

Figure 5.8 shows the N factors results of the blunt cone at varying concentrations

of CO2, where the dashed lines represent non-vibrational results. Of note, for the

sharp cone models, the amplification starts at the same location regardless of vibra-

tional excitation being enable or disabled. This is not the case for the blunt cone

model. The differences in the starting location of the amplification without vibration

enabled on the blunt cones, are due to the entropy layer [43]. The existence of the en-

tropy layer is the cause of the large increase in the streamwise location first indicating

the start of amplification on the blunt cone compared to the sharp cone as the entropy

layer has a stabilizing effect on the second mode instability. The small changes in the

start of amplification over the blunt cone model are due to the changing value of cp

in each flow due to the differing freestream gas composition which changes the shock

standoff distance and the shock shape. The trend shown in the data is increasing

CO2 concentration slightly decreases the detached shock distance, thus decreasing

the thickness of the entropy layer and the entropy layer swallowing distance, where
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Figure 5.5. Numerical error near the sharp tip due to high cell aspect ratio

Figure 5.6. N factors for sharp cone with varying CO2 concentrations at high enthalpy,
8.45MJ

kg
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Figure 5.7. N factors for sharp cone with varying CO2 concentrations with and without
vibration at high enthalpy conditions (solid lines: vibrational effects, dashed lines: no
vibrational effects)

the entropy layer is entrained into the boundary layer [4]. These small changes move

the start of amplification forward in the streamwise direction as is shown when vibra-

tion is disabled. However, the results with vibration enabled show a reversal in this

trend: increasing CO2 concentration increases the streamwise location for the start

of amplification. This reversal highlights the damping effect of CO2 on the bound-

ary layer stability. There is a significant difference in the streamwise location of the

start of amplification between the 10% and 50% concentration results when vibration

enabled.
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Figure 5.8. N factors for blunt cone with varying CO2 concentrations at high enthalpy,
8.45MJ

kg (solid lines: vibrational effects, dashed lines: no vibrational effects)

Table 5.5 shows the change in streamwise location for transition on the blunt cone

model. For the same concentration of CO2 there is a marked increase in the change

in transition location for a blunt cone compared to a sharp cone, indicating a greater

damping effect on the blunt cone model than a sharp cone for the same freestream

conditions. Examining the boundary flow conditions, the temperature and velocity

profiles differ between the two boundary layers. The blunt cone has a thicker velocity

and thermal boundary layer and a higher temperature in the boundary layer (see

Figures 5.9 and 5.10).

Table 5.5. High enthalpy transition location changes on the blunt cone

Concentration xtr xtrNoV ib δxtr
50% 2.8265 1.2165 1.610
30% 2.3734 1.2906 1.0828
10% 1.8062 1.3464 0.4198
5% 1.659 1.420 0.239

2.5% 1.539 1.437 0.102
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Figure 5.9. Temperature profile in the boundary layer at x=1.0 m for the blunt and
sharp cones

Figure 5.10. Velocity profile in the boundary layer at x=1.0 m for the blunt and sharp
cones
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Figures 5.11a through 5.11c compare the results of the sharp and blunt cones at

50%, 30% and 10% CO2 concentrations at the higher enthalpy flow. For the sharp

cone, the start of amplification for both the vibrational and non-vibrational simula-

tions are the same, while there is a significant difference for the blunt cone simulations.

As the concentration of CO2 increases, the location of the start of amplification con-

tinues to moves downstream in the streamwise direction. At 50% concentration of

CO2, amplification starts at approximately 1.5 m along the body, but this value is

decreased to 1.0 m for a 10% concentration. At 50% concentration of CO2, the change

in start of amplification between the vibrational and non-vibrational stability anal-

ysis shows as 0.7 m change, which is reduced to only 0.14 m for the flow with 10%

concentration. Again, the increased temperature of the boundary layer for the blunt

compared to the sharp cone allows for this increased CO2 damping to occur. Figures

5.12a and 5.12 show the temperature contours in the boundary layer for the sharp and

blunt cones. The blunt cone has both a thicker thermal boundary layer and higher

temperatures.
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(a) N factors for 50% CO2 concentration

(b) N factors for 30% CO2 concentration

Figure 5.11. N factors for CO2 concentrations with and without vibration for the sharp
and blunt cone at high enthalpy, 8.45MJ

kg (solid lines: vibrational effects, dashed lines:

no vibrational effects)
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(c) N factors for 10% CO2 concentration

Figure 5.11. N factors for CO2 concentrations with and without vibration for the sharp
and blunt cone at high enthalpy, 8.45MJ

kg (solid lines: vibrational effects, dashed lines:

no vibrational effects)

(a) Contour plot of temperature in the
boundary layer for sharp cone

(b) Contour plot for temperature in the
boundary layer on blunt cone

Figure 5.12. Temperature contours in the boundary layer on blunt and sharp cone at
high enthalpy, 8.45MJ

kg
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5.2.2 Equivalent Flight Representative Freestream Conditions.

In order to achieve high enthalpy flow conditions in the T5wind tunnel, the

freestream temperature is increased to higher than standard atmospheric values (see

Table 5.1). However, this increased temperature is not representative of flight con-

ditions, where the freestream temperature varies only slightly from standard atmo-

spheric conditions and higher enthalpy is achieved through increased velocity [2].

The freestream flow parameters were modified to maintain the freestream total en-

thalpy but match flight representative parameters (freestream values of density of

2.371x10−1 kg
m3 , T and Tv of 216.2 K, and velocity of 4000 m

s
). When the wind tunnel

condition simulations at 10% CO2 concentrations were compared with those with the

flight representative conditions, a significant change in stability results were seen. Fig-

ure 5.14 shows an N factor comparison over the sharp cone, with vibrational enabled

and disabled, for matching enthalpy conditions. There is a significant increase in the

amplification seen with significantly higher N factors. This increase is due mainly to

the increase in the Reynolds number of the flow, with the wind tunnel Reynolds num-

ber being 6.1x106 and the flight values being 5.8x107. However, comparing the impact

on the transition location, the results are very similar, with the wind tunnel delaying

transition approximately 8 cm, while the flight representative cases delayed transition

6.4 cm. Examination of the temperature profiles of the boundary layer between these

two flows shows that the maximum temperature in the flight representative boundary

layer is significantly less than the wind tunnel (see Figure 5.17).

The flight conditions were changed such that the boundary layer maximum tem-

perature matched ( 2.371 × 10−2 kg
m3 , T and Tv of 216.2 K, and freestream velocity

of 4500 m
s

with a freestream enthalpy of 9.7MJ
kg

) while maintaining a 10% CO2 con-

centration in the boundary layer. Comparing the results at these new conditions

shows that even when the maximum temperatures in the boundary layers match, the
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flight still produces significantly higher N factors when compared to the wind tunnel

simulations, again due to the Reynolds number being 6.5x107, 10 times higher than

the wind tunnel flow. Figure 5.14 compares the stability analysis results of these two

flow conditions, with and without vibration enabled. For this condition, the total

delay in transition location was 8.2 cm, similar to the wind tunnel case. Examin-

ing the results of these three simulations (Figure 5.15) shows that, while the flight

representative simulations vary only slightly from each other despite the temperature

differences they vary greatly from the N factors for the wind tunnel case. Figure 5.17

shows the boundary layer temperature profiles for all three cases. The temperature

gradient between the tunnel and flight simulations when the total enthalpy is matched

are similar up to the maximum temperature. The flight representative case, however,

quickly decreases back to the freestream temperature of 216.2 K at an equally high

gradient, while the simulations using the wind tunnel conditions continues to in-

crease in temperature (at the same rate) reaching a 400 K higher temperature before

slowly decreasing to 1573 K, the free stream temperature. The higher freestream tem-

perature for the wind tunnel conditions increases the total thermal boundary layer

thickness, but also maintains a higher temperature throughout more of the boundary

layer. When the maximum boundary layer temperature is matched, while the initial

gradients are higher than the wind tunnel case, a similar difference in the thermal

boundary layer thickness and higher temperature profile is seen. The higher sustained

temperatures with the wind tunnel conditions may allow for the slightly greater CO2

damping effects despite the lower total amplification. Comparing the results of flight

versus wind tunnel results removing that Reynolds number effects show a similar

overall damping effect, though the wind tunnel results still shows a slightly higher

damping effects (see Figure 5.16).
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Figure 5.13. N factors for matching enthalpy between wind tunnel and flight represen-
tative conditions (solid lines: vibrational effects, dashed lines: no vibrational effects)

Figure 5.14. N factors for matching maximum boundary layer temperatures between
wind tunnel and flight representative conditions (solid lines: vibrational effects, dashed
lines: no vibrational effects)
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Figure 5.15. N factors for wind tunnel and flight representative conditions (solid lines:
vibrational effects, dashed lines: no vibrational effects)

Figure 5.16. N factors for wind tunnel and flight representative conditions compared
without Reynolds number effects (solid lines: vibrational effects, dashed lines: no
vibrational effects)
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Figure 5.17. Temperature profile for x=1.0 m for T5 wind tunnel and flight represen-
tative conditions

5.3 Low Enthalpy Freestream Conditions

Using the freestream conditions for shot 2813, the low enthalpy flow at 5.12MJ
kg

, a

series of flow simulations were conducted using the same decreasing concentrations of

CO2 as with the high enthalpy flow. The highest CO2 used was 50% and decreased

10% per simulation until the resulting change in transition location was considered

nominal. Again, CO2 was not allowed to dissociate across the shock to maintain a

constant concentration of CO2 in the boundary layer. The only gas reaction allowed

that would change the concentration of CO2 in the gas was the exchange between CO

and O2, which did not change the concentration by more then 0.2% in the boundary

layer.

5.3.1 Wind Tunnel Conditions.

Figure 5.18 shows the N factor comparisons of the varying CO2 concentrations.

Even at the lower enthalpy condition, it is clearly seen that the higher concentrations

of CO2 produce lower amplification rates though with a lesser impact than seen in the
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higher enthalpy flow. Highlighting the graph at x=0.8 and below (see Figure 5.19), the

same reversal seen in the high enthalpy flow appears where the lower concentrations

of CO2 produce lower N factors. As the same grids were used as the high enthalpy

flow, this result is caused by the same numerical error at the nosetip of the sharp

cone where the streamwise resolution is too low. For the 50% flow, amplification

begins right at the nose of the cone, while the 10% doesn’t show any amplification

until x=0.17 m, giving the appearance lower amplification despite the higher rate of

amplification indicated by the slope of the line. Again, this numerical error does not

impact the conclusions of this study as the comparisons are only made between the

vibrational and non-vibrational results at each concentration, rather than between

concentrations, and the numerical error is the same between these two simulations.

The effects of this numerical error are more pronounced at these conditions than in

the higher enthalpy flow.

Comparing the stability results with and without vibration, the effects of CO2

damping are clearly higher at higher concentrations. Figure 5.20 shows the result-

ing N factors with and without vibration enabled, where the dashed line represent

the stability results without vibration. For each concentration value, amplification

starts at the same streamwise location as noted earlier, whether vibration is enable

or disabled. If transition is assumed to occur at an N factor of 10, Table 5.6 shows

the changes in the transition location for the various concentrations. At 50% concen-

tration, the total change in transition location is almost 4 times higher than that at

10%. If a transition location change of less than 10 cm was considered to be nominal,

in a low enthalpy flow, a minimum of approximately 30% CO2 is necessary to change

the transition location by at least 10 cm on a sharp cone.

The same flow conditions are used in simulations conducted on the blunt cone

model. Figure 5.21 shows the N factors results of the blunt cone at 50%, 30% and
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Figure 5.18. N factors for sharp cone with varying CO2 concentrations at low enthalpy,
5.12MJ

kg

Figure 5.19. N factors near the nosetip for sharp cone with varying CO2 concentrations
at low enthalpy, 5.12MJ

kg
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Table 5.6. Low enthalpy transition location changes on the sharp cone

Concentration xtr xtrNoV ib δxtr
50% 0.6810 0.5279 0.153
40% 0.6941 0.5640 0.130
30% 0.7097 0.5962 0.1135
20% 0.7208 0.6391 0.0817
10% 0.7280 0.6817 0.0463

Figure 5.20. N factors for sharp cone with varying CO2 concentrations with and without
vibration at low enthalpy, 5.12MJ

kg conditions (solid lines: vibrational effects, dashed

lines: no vibrational effects)

10% concentration CO2, where the dashed lines represent non-vibrational results.

Examining the non-vibrational results, the streamwise location of the start of am-

plification varies significantly with higher concentrations of CO2 indicating a similar

result as explained for the high enthalpy cases due to the changing gas composition.

Table 5.7 shows the change in streamwise location for the blunt cone model. For the

same concentration of CO2, there is a marked increase in the change in transition

location for a blunt cone compared to a sharp cone, indicating a greater damping

effect on the blunt cone model than a sharp cone for the same freestream conditions.

Examining the boundary flow conditions, the temperature and velocity profiles differ
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between the two boundary layers. The blunt cone has a thicker velocity and thermal

boundary layer and a higher temperature in the boundary layer.

Table 5.7. Low enthalpy transition location changes on the blunt cone

Concentration xtr xtrNoV ib δxtr
50% 1.9086 1.3426 0.5626
30% 1.8244 1.4482 0.3762
10% 1.7232 1.5669 0.1563
5% 1.674 1.601 0.073

Figures 5.23a through 5.23c compare the results of the sharp and blunt cones

at each concentration. The differences in the starting location of the amplification

without vibration enable on the blunt cones, indicates the effect of CO2 damping on

the stability of the boundary layer. The existence of the entropy layer is the cause of

the delay in the start of amplification on the blunt cone compared to the sharp cone, as

the entropy layer has a stabilizing effect on the second mode instability [43]. However,

the results with vibration enabled show the damping effect of CO2 on the boundary

layer stability. As the concentration of CO2 increases, the start of amplification

continues to moves downstream in the streamwise direction for both cases. At 50%

concentration of CO2, amplification starts at 1.0 m, but this is decreased to 0.9 m

for a 10% concentration. However, at 50% concentration of CO2, the difference in

the location of the start of amplification between the vibrational and non-vibrational

stability analyses shows a 0.3 m change in amplification start. This difference is

reduced to only 0.05 m for the flow with 10% concentration.

95



Figure 5.21. N factors for a blunt cone at low enthalpy, 5.12MJ
kg

(a) Contour plot of temperature on
sharp cone

(b) Contour plot of temperature on blunt
cone

Figure 5.22. Temperature contours of boundary layer on a blunt and sharp cone at low
enthalpy, 5.12MJ

kg
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(a) N factors for 50% CO2 concentration

(b) N factors for 30% CO2 concentration

Figure 5.23. N factors for CO2 concentrations with and without vibration for the sharp
and blunt cone at low enthalpy, 5.12MJ

kg
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(c) N factors for 10% CO2 concentration

Figure 5.23. N factors for CO2 concentrations with and without vibration for the sharp
and blunt cone at low enthalpy, 5.12MJ

kg
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Examining the temperature of the flow along the body, the blunt cone has a

significantly higher temperature in the boundary layer than does the sharp cone. This

increased temperature in the boundary layer allows for more CO2 vibrational damping

to occur as more vibrational modes can be activated at the higher temperatures and

thus less amplification of boundary layer instabilities. Figures 5.22a and 5.22b show

the temperature contours on the sharp and blunt cones at this streamwise location.

5.3.2 Equivalent Flight Representative Freestream Conditions.

A similar examination of flight representative freestream simulations compared to

the lower enthalpy wind tunnel conditions was conducted, using a 30% CO2 concen-

tration. The freestream flow parameters were modified to maintain the freestream

total enthalpy but match flight representative parameters (freestream values of den-

sity of 1.864x10−1 kg
m3 , T and Tv of 216.2 K, and velocity of 3000 m

s
). Figure 5.26 shows

an N factor comparison over the sharp cone, with vibrational enabled and disabled,

for matching enthalpy conditions. The flight conditions were changed such that the

boundary layer maximum temperature matched (1.864x10−2 kg
m3 , T and Tv of 216.2

K, and velocity of 3500 m
s

). Comparing the results at these new conditions shows a

similar, though less pronounced effect as was seen at the high enthalpy conditions.

Figure 5.27 shows the stability analysis results of these two flow conditions, with and

without vibration enabled. Examining the results of these three simulations show a

similar trend to the high enthalpy results (Figure 5.28). Again, the flight represen-

tative flows have Reynolds numbers approximately 10 times higher than the wind

tunnel flow, 4.2x107 and 3.6x107 versus 4.1x106. However, the overall impact on the

transition location is similar, with the wind tunnel case having an 11 cm delay in

transition, with the flight representative cases having an 8.4 cm and 9.9 cm delay for

matching enthalpy and temperature, respectively. Figure 5.30 shows the boundary
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Figure 5.24. Temperature profile in the boundary layer at x=1.0 m for the sharp and
blunt cone

Figure 5.25. Velocity profile in the boundary layer at x=1.0 m for the sharp and blunt
cone
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layer temperature profiles for all three cases. The same general trends as with the

high enthalpy flow are seen in the lower enthalpy flow and, again, the higher sustained

temperatures with the wind tunnel conditions may allow for greater CO2 damping

effects. As with the high enthalpy cases, if the N factors for the wind tunnel and flight

simulations are compared without the Reynolds number effect, the CO2 damping on

the stability of the flow is very similar (see Figure 5.29).

101



Figure 5.26. N factors for matching enthalpy between wind tunnel and flight represen-
tative conditions (solid lines: vibrational effects, dashed lines: no vibrational effects)

Figure 5.27. N factors for matching maximum boundary layer temperatures between
wind tunnel and flight representative conditions (solid lines: vibrational effects, dashed
lines: no vibrational effects)
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Figure 5.28. N factors for wind tunnel and flight representative conditions (solid lines:
vibrational effects, dashed lines: no vibrational effects)

Figure 5.29. N factors for wind tunnel and flight representative conditions without
Reynolds number effects (solid lines: vibrational effects, dashed lines: no vibrational
effects)
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Figure 5.30. Temperature profile for x=1.0 m for wind tunnel and flight representative
conditions
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6. Ablation Model Results

6.1 Low Density Results

The first freestream conditions considered for a study to compare the different

gas-surface ablation models and the subsequent affect on hypersonic boundary layer

stability was re-entry type condition at high altitude, resulting in flow conditions with

a freestream density of 7.5995× 10−3 kg
m3 , T and Tv of 216.2 K with an angle of attack

of 0 degrees. Simulations at this condition were conducted on both the blunt and

sharp cones. Simulations were conducted at both a high and low enthalpy condition,

approximately 18 MJ
kg

and 5 MJ
kg

, respectively. At the high enthalpy flow condition, the

minimum edge Mach number for the sharp cone is 9 and for the blunt cone is 4. At

these edge Mach numbers, the flow should be dominated by second mode instabilities

[42]. For the low enthalpy flow, the edge Mach numbers are 6 and 3 for the sharp

and blunt cone, respectively. These flows should also be dominated by second mode

instabilities. However, with an edge Mach number of 3, the possibility exists for the

blunted cone to have first mode instabilities which may dominate.

6.1.1 High Enthalpy Flow - V∞ = 6000 m
s
, total enthalpy = 18.2 MJ

kg
.

The mass fluxes at the surface along the body for each of the models when simu-

lated on a blunt cone at the above conditions are presented in Figures 6.1a through

6.1e. The positive flux shows species being adsorbed or condensed onto the surface

and the negative flux shows are species desorbed or sublimated from the surface. The

two Park and MURI models do not produce an appreciable amounts of CO2, whereas

the ZA and MZA models do. Examining the surface fluxes clearly shows the mod-

els produce significantly different results for the species and amounts of each species

produced. The Park and Park 76 models produce similar fluxes with the exception
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of C3, which is only produced in the Park model. The ZA and MZA models produce

similar fluxes from the surface with the exception of a slight decrease in the CO2

flux from the surface for the MZA model. While the flux from the surface are the

direct result from the different models, it is the overall concentration of CO2 in the

boundary layer, as a result from the combination of the gas-surface species reacting

in the gas phase with the gas model, which will affect the stability of the boundary

layer. The maximum concentration of CO2 in the boundary layer is shown in Figure

6.2. The highest concentration was almost 20% CO2 at the nose and then quickly

decreasing to less that 5% for the ZA and MZA. The other models produced less than

1%.

Examining the distribution of CO2 within the boundary layer shows the highest

concentration is located near the wall from ablation and decreases with increase wall

normal direction. Figure 6.3 shows that for the Park model the thermal boundary

layer is much larger than the concentration boundary layer and the concentration of

ablation products decreases significantly before the thermal boundary layer reaches its

maximum temperature. This result is consistent with the other models used, varying

only in the total concentration of CO2. From boundary layer theory and Mack’s

work [42], the second mode instabilities will occur near the wall where the relative

sonic line which traps the acoustic-type wave. The higher concentration of CO2 near

the wall should promote damping on the second mode instabilities. However, the

thermal boundary layer profile shows that the higher temperatures are reached not

at the maximum CO2 concentration, but as the concentration starts to decrease.

The resolution of the grids used in the study are not resolved enough to determine

where the correlation between the location of the instabilities and the boundary layer

temperature or CO2 concentration at that location.
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(a) Surface mass flux on Park76 model

(b) Surface mass flux on Park model

(c) Surface mass flux on ZA model

Figure 6.1. Surface mass flux on blunt cone at V=6000 m
s , low density
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(d) Surface mass flux on MZA model

(e) Surface mass flux on ZA with nitridation
(Alba) model

(f) Surface mass flux on MURI model

Figure 6.1. Surface mass flux on blunt cone at V=6000 m
s , low density
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Figure 6.2. Maximum concentration of CO2 along the blunt cone at V=6000 m
s , low

density

Figure 6.3. Thermal and concentration boundary layer thickness at x= 1.0 m on a
blunt cone using the Park model at V=6000 m

s , low density
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Comparing the results of the stability analysis, the maximum N factor envelopes

are shown in Figure 6.4. The ZA and MZA models which produces significantly

higher CO2 concentrations show similar N factor results as the Park models, which

also had concentrations of less than 1% CO2. The concentration of CO2 does not

appear to have a direct correlation on the resulting stability of the boundary layer.

The maximum N factor at this flow condition for any model is approximately 4.5,

which is not significant amplification and would not be expected to cause transition.

The combined effect of the low CO2 concentration and the low amplification show no

impact of CO2 damping on this flow condition.

Figure 6.4. Maximum N factor for all ablation models at V=6000 m
s , low density

As CO2 damping is known to affect the higher frequencies more than lower fre-

quencies, if the amplification rate per frequency is examined a clearer determination

of the damping effect can be made. Figures 6.5a through 6.5c shows these results.

Due to the similar results of Park versus the Park76 model and ZA versus the MZA

model only one frequency analysis is shown. In these figures, the no ablation model

shows the amplification per frequency without CO2 in the flow and is represented by

the solid line. The amplification per frequency results when ablation is modeled is
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shown dashed line with the highest amplification marked by a solid square symbol.

The Park model shows almost no difference in the amplification value per frequency

as compared to the no ablation model as compared to the ZA and MURI models

(see Figure 6.5a). The ZA and MURI models both show no amplification at higher

frequencies compared to a simulation with no ablation. This lack of high frequency

amplification would be expected to reduce the overall N factor and would indicate

CO2 damping. However, examining Figure 6.11a showing the stability diagram, the

high frequency amplification occurs only over a small streamwise range which would

not contribute much to the overall maximum N factor, which may explain why the

ZA and MZA models do not show reduced N factors as compared to those with lower

CO2 concentrations in conjunction with the low overall amplification. If the ZA model

stability analysis is conducted disabling the vibrational modes (see Figure 6.6), the N

factor results are nearly identical to the results using vibrational energy relaxation,

indicating a negligible impact of CO2 damping on the stability of the flow at these

conditions with this concentration and amplification.

(a) Frequency Comparison with Park Model

Figure 6.5. Frequency Comparison on a blunt cone at V=6000 m
s , low density
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(b) Frequency Comparison with ZA Model

(c) Frequency Comparison with MURI Model

Figure 6.5. Frequency Comparison on a blunt cone at V=6000 m
s , low density

112



Figure 6.6. Stability results with vibrational relaxation enabled and disabled for the
ZA model (solid lines: vibrational effects, dashed lines: no vibrational effects)

For the sharp cone at the same freestream conditions, there is a significant reduc-

tion in the CO2 produced by ablation. Due to the attached shock with the sharp

cone and smaller total surface area at high temperatures, there is a significant drop

in the production of all ablative species. Figures 6.7a through 6.7f show the flux of

species from the surface with a sharp cone.

(a) Surface mass flux on Park76 model

Figure 6.7. Surface mass flux on sharp cone at V=6000 m
s , low density
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(b) Surface mass flux on Park model

(c) Surface mass flux on ZA model

(d) Surface mass flux on MZA model

Figure 6.7. Surface mass flux on sharp cone at V=6000 m
s , low density
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(e) Surface mass flux on ZA with nitridation
(Alba) model

(f) Surface mass flux on MURI model

Figure 6.7. Surface mass flux on sharp cone at V=6000 m
s , low density
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Of note, the principle adsorbed species for the sharp cone is O2 instead of atomic

oxygen as was seen in the blunt nose cone due to weaker shock which causes less

dissociation of oxygen. Examining the total concentration of CO2 shown in Figure

6.8 along the sharp cone body, the two Park models produce more CO2 than the other

three models, however, the total concentration of CO2 is less than 0.5% (except for

an initial spike at the nose for the ZA and MZA models around 1%, which quickly

decreases to 0.1%). At these low concentrations of CO2 in the flow over a sharp

cone there would be no expected effect of CO2 damping on the stability based on the

results of the concentration study conducted.

Figure 6.8. Concentration of CO2 along the body for a sharp cone at V=6000 m
s , low

density

Examining the N factors produced with the sharp cone, the maximum N factor

is 6.1 at s=1.27m as given by Figure 6.9). A similar result is seen with the sharp

cone geometry as with the blunt cone in that the total variation in the maximum N

factor is around 20% for all the models at x=1.27m and does not correlate to the

concentrations of CO2 in the flow.
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Figure 6.9. Maximum N factor for all ablation models on a sharp cone at V=6000 m
s ,

low density

Inspecting the amplification rates at specific frequencies, shown in Figures 6.10a

through 6.10c, leads to more insight into whether CO2 is having a damping effect as

the higher frequencies would show less damping than the lower frequencies. When

compared to the no ablation control simulation, none of the models show a decrease in

amplification at any frequency indicating that at these conditions and concentrations

CO2 vibrational damping does not affect the instabilities. While there is significant

noise in the N factor results, the overall trend of low amplification is apparent.
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(a) Frequency Comparison with Park Model

(b) Frequency Comparison with ZA Model

Figure 6.10. Frequency Comparison on a sharp cone at V=6000 m
s , low density
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(c) Frequency Comparison with MURI Model

Figure 6.10. Frequency Comparison on a sharp cone at V=6000 m
s , low density
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While the differences in maximum N factor envelope between the blunted and

sharp nose geometries are relatively small, the actual stability diagram shows a

marked difference in the frequencies which are amplified. Figures 6.11a and 6.11b

show the stability diagrams for the two geometries with no ablation. The blunted

cone shows no amplification at frequencies above 600 kHz and this amplification starts

at 0.5 m along the body. The sharp cone shows amplification at 2 MHz which start

very near the nosetip. Furthermore, the total amplification for the blunted nose ge-

ometry is 11 while the sharp cone geometry total amplification was 23. This stability

of the blunted cone is caused by the stabilizing effect of the entropy layer on the

second mode instabilities [22]. Another significant result is the amplified frequencies.

Work by Fujii showed that the maximum damping rate of CO2 was primarily in the

1-10 MHz range and decreased as frequencies increased further [9]. The decreased

amplification of the instabilities is likely a result of the entropy layer and not from

the presence of CO2. Furthermore, the amount of CO2 in the flow at these conditions

is minimal when compared with the concentration study results and would have little

effect on the stability of the boundary layer.

(a) Stability diagram for blunt cone (b) Stability diagram for sharp cone

Figure 6.11. Stability diagrams with no ablation at V=6000 m
s , low density
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6.1.2 Low Enthalpy Flow - V∞ = 3000 m
s
, total enthalpy = 4.7 MJ

kg
.

The sharp and blunt cone geometries were also examined at a lower enthalpy,

5.0 MJ
kg

, with a freestream velocity of 3000 m
s

at the same freestream density and

temperatures. Figures 6.12a through 6.12f show the surface fluxes for each model at

this slower velocity on the blunt cone. The models show a slight reduction in the flux

of the species from the surface mainly due to the lower gas temperatures surrounding

the wall boundary condition but the surface temperature being the same as for the

earlier flows.

(a) Surface mass flux on Park76 model

Figure 6.12. Surface mass flux at V=3000 m
s , low density
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(b) Surface mass flux on Park model

(c) Surface mass flux on ZA model

(d) Surface mass flux on MZA model

Figure 6.12. Surface mass flux at V=3000 m
s , low density
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(e) Surface mass flux on ZA with nitridation
(Alba) model

(f) Surface mass flux on MURI model

Figure 6.12. Surface mass flux at V=3000 m
s , low density
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There is a significant reduction in the total surface mass flux and the CO2 con-

centration in the boundary layer on the sharp cone compared to the blunt cone for

this case, similar to the higher enthalpy case. Comparing concentrations of CO2,

presented in Figure 6.13 and 6.14, all models show a similarly small quantity, less

than 1%. As would be expected from the results of the concentration study and the

high enthalpy flow results, the N factors show very little variation, less than 10%, for

the blunt cone, and less than 12% for the sharp cone. There is considerable noise in

the stability analysis N factor results on the sharp cone most likely caused either by

a mismatch between the stability grid which causes interpolation of the flow values

used to calculated amplification. Refining to a smaller steps should eliminate some

of this noise but is computationally very expensive. The trends seen between the

models, as well as the small concentration of CO2 in the flow at these conditions,

make the added computational cost unnecessary. The variations in N factor at these

CO2 concentrations are not caused by CO2 damping.

Figure 6.13. Concentration of CO2 along the body for the blunt cone at V=3000 m
s ,

low density
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Figure 6.14. Concentration of CO2 along the body for a sharp cone at V=3000 m
s , low

density

Figure 6.15. Maximum N factor for all ablation models on a blunt cone at V=3000 m
s ,

low density
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Figure 6.16. Maximum N factor for all ablation models on a sharp cone at V=3000 m
s ,

low density
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As with the previous conditions and compared to the results of the CO2 concentra-

tion study, this small concentration of CO2 does not have an impact on the boundary

layer stability. Comparing the maximum N factors at these conditions, neither the

sharp or blunted cones show a correlation between these small concentrations of CO2

in the flow and a reduction in the total N factor (see Figures 6.15 and 6.16). The

amplification rate for the sharp cone is nearly 6 times larger than for the blunted

cone, suggesting that at these flow conditions, the small changes in the nose radius

of the vehicle has a significant impact on boundary layer stability, specifically with

the entropy layer stabilization of the dominant second mode instability. Comparing

the stability diagrams for the sharp cone to the blunt cone (seen in Figures 6.17a

and 6.17), there is no amplification on the blunt cone for frequencies above about 200

kHz and amplification doesn’t occur until almost 0.8 m down the body. On the sharp

cone, amplification begins at 0.1 m down the body at frequencies starting around 1

MHz.

(a) Stability diagram for blunt cone (b) Stability diagram for sharp cone

Figure 6.17. Stability diagram for sharp cone at V=3000 m
s , low density

Isolating the amplification rates per frequency for the slower velocity simulations

on the blunt cone, there is little difference between the simulations with ablation

and the simulation with no ablation. This frequency analysis further supports the
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conclusion that at this small concentration of CO2 there are little to no damping

effects on the high frequency disturbances as the amplification per frequency on the no

ablation simulation are the same as those simulations with ablation included. Figures

6.18a through 6.18c show the frequency analysis results for the blunt cone geometry

and Figures 6.19a through 6.19c shows the result for the sharp cone geometries. For

all figures, the base simulation, without ablation, is represented with solid lines, while

the amplification per frequency on the ablation models are shown with the dashed

line and the maximum vales are marked with a square symbol.

(a) Frequency Comparison with Park model

Figure 6.18. Frequency Comparison on a blunt cone at V=3000 m
s , low density
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(b) Frequency Comparison with ZA model

(c) Frequency Comparison with MURI model

Figure 6.18. Frequency Comparison on a blunt cone at V=3000 m
s , low density
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(a) Frequency Comparison with Park model

(b) Frequency Comparison with ZA model

Figure 6.19. Frequency Comparison on a sharp cone at V=3000 m
s , low density
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(c) Frequency Comparison with MURI model

Figure 6.19. Frequency Comparison on a sharp cone at V=3000 m
s , low density
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For all of the low density simulations, whether at high or low enthalpy, the total

concentration of CO2 in the boundary layer produced by any ablation model was

minimal and no impact of vibrational damping on overall boundary layer stability

was observed. Using the frequency analysis to examine the total amplification per

frequency, those simulations with CO2 in the flow showed nearly identical amplifica-

tion to the simulations without CO2, further showing the lack of damping effect on

stabilizing the flow. However, the total amplification seen at both enthalpy conditions

in the low density simulations was low and did not have sufficient amplification to

indicate a transitional boundary layers. This low amplification may have limited the

impact vibrational damping would have on stability.

6.2 High Density Results

As none of the simulations at low density showed a clear effect of CO2 damping of

boundary layer stability, increasing the density of the flow (freestream conditions of

density of 0.4583 kg
m3 and a T and Tv of 238.6 K) would promote higher amplification,

as well as should provide higher concentrations of CO2 from ablation. At the high

enthalpy flow condition (total enthalpy of 18.4 MJ
kg

), the minimum edge Mach number

for the sharp cone is 9.5 and for the blunt cone is 3.2. At these edge Mach numbers,

the flow should be dominated by second mode instabilities. For the low enthalpy flow

(total enthalpy of 5.0 MJ
kg

), the edge Mach numbers are 7 and 2.5 for the sharp and

blunt cone, respectively. These flows should also be dominated by second mode insta-

bilities. However, the blunt cone at the low enthalpy condition could have significant,

if not dominant, first mode instabilities.
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6.2.1 High Enthalpy Flow - V∞ = 6000 m
s
, total enthalpy = 18.4 MJ

kg
.

The total flux of species from the gas-surface interaction models on a blunt cone

are shown in Figures 6.20a through 6.20f. Figures 6.21a through 6.21f show the mass

flux for all models on a sharp cones. There is a significantly higher mass flux for all

species and all models at the higher density, as would be expected as the mass flux at

the wall is directly proportional to the density at the wall. As was seen with the lower

density results, the mass flux from the surface of the sharp cone was significantly less

than the blunt cone due to the lower surface area at high temperatures. The result

was a lower total CO2 concentration in the boundary layer for the sharp cone as

compared to the blunt cone, though higher concentrations than were seen at the low

density conditions. The maximum CO2 concentration in the boundary layer for the

blunt and sharp cones is shown in Figures 6.22 and 6.23. As with the lower density

results, the ZA and MZA models produced significant amounts of CO2 near the nose

for the blunt vehicle, a maximum concentration of 25% for the ZA model and 20% for

the MZA models, which decreased down to 10% along the body. The Park76, Park,

Alba and the MURI models all produced similar amounts of around 5%. For the

sharp cone simulations, the variations between the all the models are smaller, with

between 4-7% maximum concentrations of CO2 in the boundary layer.
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(a) Surface mass flux on Park76 model

(b) Surface mass flux on Park model

(c) Surface mass flux on ZA model

Figure 6.20. Surface mass flux on blunt cone at V=6000 m
s , high density
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(d) Surface mass flux on MZA model

(e) Surface mass flux on ZA with nitridation
(Alba) model

(f) Surface mass flux on MURI model

Figure 6.20. Surface mass flux on blunt cone at V=6000 m
s , high density
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(a) Surface mass flux on Park76 model

(b) Surface mass flux on Park model

(c) Surface mass flux on ZA model

Figure 6.21. Surface mass flux on sharp cone at V=6000 m
s , high density
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(d) Surface mass flux on MZA model

(e) Surface mass flux on ZA with nitrida-
tion (Alba) model

(f) Surface mass flux on MURI model

Figure 6.21. Surface mass flux on sharp cone at V=6000 m
s , high density
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Figure 6.22. CO2 concentration for blunt cone at V=6000 m
s , high density

Figure 6.23. CO2 concentration for sharp cone at V=6000 m
s , high density
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A comparison of the N factors for all ablation models on the blunt cone is shown

in Figure 6.24 and Figure 6.25 for the sharp cone. For the blunt cone, there is a

correlation between CO2 concentration levels and the result boundary layer stability

N factor. The no ablation case shows significantly higher N factors than all models

containing ablation. The simulations with ablation all show reduced N factors, with

the Park, ZA and MURI models, showing the similar stability characteristics. Overall,

there is a 0.65 to 0.8 m delay in the start of amplification and a similar delay in

transition, if transition occurred at an N factor of 10, clear evidence of CO2 damping

affecting stability and transition characteristics.

For the sharp cone simulations, a correlation between CO2 concentration and N

factor may exist. The simulation with no ablation does show higher amplification

rates than any of the flows with CO2 present. The Park model, which produces

marginally more CO2 than the other models shows a lower N factor, while the MURI,

Alba and MZA models, which produce similar CO2 concentrations, have a higher,

but similar, N factor. The no ablation simulation, however, shows less amplification

at locations close to the nose tip (body location less than 0.2 m) than do all the

simulations with ablation included. This increase in amplification may be due to

blowing caused by ablation which has a destabilizing effect on the boundary layer.
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Figure 6.24. Maximum N factors for all ablation models on a blunt cone at V=6000
m
s , high density

Figure 6.25. Maximum N factors for all ablation models on a sharp cone at V=6000
m
s , high density
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A frequency analysis of the models for the blunt cone shows a decrease in am-

plification at the the higher frequencies, 400-700 kHz range) for all ablation models.

Figures 6.26a through 6.26c show these frequency analyses results. This damping at

the high frequencies result in lower maximum N factors.

(a) Frequency Comparison with Park model

(b) Frequency Comparison with ZA model

Figure 6.26. Frequency Comparison on a blunt cone at V=6000 m
s , high density
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(c) Frequency Comparison with MURI model

Figure 6.26. Frequency Comparison on a blunt cone at V=6000 m
s , high density

Given the N factor results of the sharp cone at these conditions, a frequency anal-

ysis should show decreased amplification when CO2 is present and vibrational modes

are enabled. Figures 6.27a through 6.27c show the amplification per frequency for

on the sharp cone simulations but do not show a significant decrease in amplification

with the ablation model simulations as compared to the simulation with no CO2 in

the flow. However, examining the Park model closely, between the frequencies of

2-5 MHz, a slight reduction in the amplification is seen (per Figure 6.27d). These

frequencies are amplified over long streamwise distance as is shown by the stability

diagram, Figure 6.28, where a small amount of damping would produce a larger N

factor effect.
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(a) Frequency Comparison with Park model

(b) Frequency comparison with ZA model

Figure 6.27. Frequency Comparison on a sharp cone at V=6000 m
s , high density
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(c) Frequency comparison with MURI model

(d) Frequency comparison with Park model

Figure 6.27. Frequency Comparison on a sharp cone at V=6000 m
s , high density
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Figure 6.28. Stability diagram for a sharp cone at V=6000 m
s , high density
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6.2.2 Low Enthalpy Flow - V∞ = 3000m
s
, total enthalpy = 5.0MJ

kg
.

The maximum CO2 concentrations on the blunt and sharp cones at the high

density, low enthalpy simulations are shown in Figures 6.29 and 6.30. For both

geometries, the maximum concentration of CO2 in the boundary layer is less than

10%, than those seen at the high enthalpy cases in both the low and high density

simulations. Given this low concentration of CO2, no correlation between the CO2

concentration levels and the boundary layer stability results were expected. This lack

of correlation can be see in Figures 6.31 and 6.32. This result would further suggest

that at these small concentrations, and with the decreasing concentration down the

body, CO2 damping did not affect the overall stability of the boundary layer.

Figure 6.29. CO2 concentration for blunt cone at V=3000 m
s , high density
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Figure 6.30. CO2 concentration for sharp cone at V=3000 m
s , high density

Figure 6.31. Maximum N factor for a blunt cone at V=3000 m
s , high density
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Figure 6.32. Maximum N factor for sharp cone at V=3000 m
s , high density
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An analysis of the amplification per frequency on both the blunt and sharp cone

models is given by Figures 6.33a through 6.34c. There is no trend of amplification

reduction at higher frequencies on any of the ablation simulations.

(a) Frequency Comparison with Park model

(b) Frequency Comparison with ZA model

Figure 6.33. Frequency Comparison on a blunt cone at V=3000 m
s , high density
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(c) Frequency Comparison with MURI model

Figure 6.33. Frequency Comparison on a blunt cone at V=3000 m
s , high density

(a) Frequency Comparison with Park model

Figure 6.34. Frequency Comparison on a sharp cone at V=3000 m
s , high density
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(b) Frequency Comparison with ZA model

(c) Frequency Comparison with MURI model

Figure 6.34. Frequency Comparison on a sharp cone at V=3000 m
s , high density
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For all conditions surveyed, only the sharp cone model at the high density and

enthalpy flow conditions exhibited any amplification reduction due to CO2 damping.

At the lower density conditions, the concentration of CO2 in the boundary layer on

either the sharp or blunt geometry was less than 10%. The N factors at the low

density conditions for all simulations never exceeded a value of 8, which is a very low

total amplification and would not signify a boundary layer approaching transition.

The low concentration of CO2 coupled with the overall low amplification values at the

low density flow conditions, did not show any effect of CO2 damping on the boundary

layer stability. The higher density flow conditions produced greater concentrations of

CO2 on both the blunt and sharp cones. For the blunt cone, a minimum concentration

of approximately 8% CO2 was achieved for all ablation models at all body locations.

Based on the CO2 concentration study, this concentration should be high enough to

show a significant reduction of high frequency amplification. However, the high level

on noise in the stability results did not allow for a proper comparison. Also at these

flow conditions, the sharp cone model, which had minimum of approximately 5% CO2

concentration along the body, did show a reduction in the total N factor where CO2

was present as compared to the no ablation stability results.

6.3 Parameter Study

6.3.1 Model Sensitivity to Site Density.

For all the ablation models used except for the two Park models, a reaction limiting

factor was used known as the site density. The site density is a material based property

that determines the number of open sites on the surface of the body that are available

for adsorption of O or N atoms. The site density value is conserved in the model such

that the total number of sites per iteration is constant, while the number of empty

sites and those occupied by an N or O atom vary based on the reaction rates. This
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parameter sets a limit on the total number of atoms that can be adsorbed on the

surface and thus a limit on the surface reactions. All simulations for this parameter

study were conducted on the 12.7 mm nose radius cone model at a freestream density

of 0.4583 kg
m3 , a T and Tv of 238.6 K and a freestream velocity of 6000 ]fracms.

Previous research on the material properties of graphite show that the site density

values 2.1x1019 1
m2 and 5.8x1015 1

m2 [110, 60]. The total site density parameter values

is affected mainly by the purity of the sample and the average number of defects [60].

This site density translates to a total active site density of between approximately

1x10−8mol
m2 and 1x10−5mol

m2 . The first value was used as the original site density value

used in the rate determination constants for the ZA, MZA, and MURI models [14, 16].

Candler et al. accomplished a site density sensitivity analysis for the ZA model

but varied site density values by less than a factor of ten, which showed no model

sensitivity [102]. However, if the site density is varied between 10−8mol
m2 and 10−5mol

m2

there is a significant change. Similarly, if the site density is varied to higher rates,

simulating both defects or fibers, which increase site density by increasing the total

surface area, or by lower rates, simulating highly-organized carbon materials, the

sensitivity to this parameter changes. Figures 6.35 through 6.39 show the results of

CO2 concentration by varying only the site density parameter.

The original implementation of the ZA model shows a relative insensitivity to site

density parameter values close to the design parameter, but when that site density

is either increased or decreased, the production of CO2 decreases dramatically (see

Figure 6.35). The concentrations are represented by a log scale due to the large

variation in concentrations based on the site density parameter. This decrease is the

due to the desorption reaction not being included as well as the lack of mobile site

coefficient. The rate coefficients determined by Zhluktov and Abe in the original

model was based on the inclusion of a mobile site coefficient which allows adsorbed
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atoms the ability to move sites on the surface [14]. This mobility allows adsorbed

atoms to vacate sites near the nose of the cone where a high density of O and N

atoms are present allowing for more atoms to be adsorbed and allowing for a greater

production of CO and CO2 molecules where sublimation reactions are not dominant.

Without that mobile ability, increasing the site density causes more O and N atoms

to be adsorbed at the nose of the cone but decreases the number of atoms available for

adsorption further down the cone and for collisions to produce CO and CO2. The lack

of the desorption reactions would cause possible saturation of the active sites when

the site density is low, limiting the total surface reaction production of CO and CO2.

Given theses limitations on the ZA model, as the site density is decreased, fewer total

ablation products are produced as few O atoms are adsorbed and available for CO2

reactions. Also, as the site density is increased from the design value, the production

of CO2 also decreases significantly after the nose of the cone. This decrease is not

seen in the MZA model (see Figure 6.36) and would be the result of the immobility of

the sites. At the nose, the larger available sites allow for more adsorption where the

CO2 concentration is similar to the design conditions. However, farther downstream

along the cone, the production of CO2 is limited, most likely from fewer O atoms

available to create CO2 from reaction 7 of the ZA model leaving the production of

CO2 only to reaction 8 as given in Table 3.4.

The addition of the mobile site parameter and the desorption reactions for the

MZA model significantly change model sensitivity to the site density parameter. Fig-

ure 6.36 show the CO2 concentrations for changing site densities for the MZA model.

As the number of sites are decreased, which decreased the production of CO2 in the

ZA model, there is a relative insensitivity in the MZA model. This is most likely

caused by the ability for the sites to be mobile in the MZA model, so as the sites at

the nose become saturated, the O atoms are allowed to diffuse back along the body to
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Figure 6.35. Concentration of CO2 for the ZA model based on varying site density
parameter, V= 6000 m

s , high density

other sites, allowing for an increased number of site available for the CO2 reactions.

Also, the inclusion of the desorption reaction allows for O atoms to desorb as well as

adsorb making saturation less likely. As the site density is increased, however, there

is a significant increase in the production of CO2.

Examining the fluxes of O, O2 , CO and CO2 between the ZA and MZA models

at a site density of 1x10−2mol
m2 , there is a marked difference between the two models

caused by the mobile site and desorption reaction inclusion. There is nearly twice as

much adsorption of O atoms for the ZA model over the MZA model (see Figure 6.37d.

The MZA model shows a small adsorption of O2 while the ZA model shows a high

flux of O2 from the surface shown in Figure 6.37c. Similarly, the MZA and ZA models

produce opposite fluxes at the nose for both CO and CO2. Whereas the ZA model

shows a high production of CO2 which decreases to zero at a body location of 0.1 m,

the MZA models produces a small consumption of CO2 at the nose, but then a small

production consistently down the body as given by Figure 6.37a. The flux of CO

shows an opposite reaction where a large amount of CO is produced at the nose for
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Figure 6.36. Concentration of CO2 for the MZA model based on varying site density
parameter, V= 6000 m

s , high density

the MZA model, but an opposite flux occurs for the ZA model (shown in Figure 6.37b.

Very similar flux results happen when the site density is set at 1x10−5mol
m2 . However,

when the site density is reduced to 1x10−15mol
m2 , two models behave very differently.

While the flux of O and O2 remains relatively the same, the production of CO and

CO2 now match direction, with the ZA model producing significantly more of each

than the MZA model. These flux results are shown in Figures 6.37a through 6.38d.

The complexity of the model results to changing site density most likely is derived

from the empirical nature of the model itself and the fact that the rates determined

in the model were based on the assumption of a site density [14].
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(a) Surface mass flux of CO2 on ZA and MZA models

(b) Surface mass flux of CO on ZA and MZA models

Figure 6.37. Surface mass flux on ZA and MZA models at site density parameter of
1x10−2mol

m2
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(c) Surface mass flux of O2 on ZA and MZA models

(d) Surface mass flux of O on ZA and MZA models

Figure 6.37. Surface mass flux on ZA and MZA models at site density parameter of
1x10−2mol

m2
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(a) Surface mass flux of CO2 on ZA and MZA models

(b) Surface mass flux of CO on ZA and MZA models

Figure 6.38. Surface mass flux on ZA and MZA models at site density parameter of
1x10−15mol

m2
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(c) Surface mass flux of O2 on ZA and MZA models

(d) Surface mass flux of O on ZA and MZA models

Figure 6.38. Surface mass flux on ZA and MZA models at site density parameter of
1x10−15mol

m2
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The MURI model remains relatively insensitive to the site density parameter in

CO2 production (see Figure 6.39). When the site density is decreased, there is not

change in the total concentration of CO2 in the flow. There is a reduction in the

total concentration of CO2 when the site density is increased, the model favors the

adsorption of O atoms and the production of CO over CO2 as is shown in Figure

6.39b. The overall change in CO2 concentration, however, is minimal compared to

the differences in the ZA and MZA models. This difference may be caused by the

fact that the rates were experimentally determined from a single set of experiments

and less dependent on the assumptions made on material property constants.

Overall, the ZA and MZA models are very sensitive to the site density param-

eter both between the Duffa and Blytholder values as well as for greater variation.

However, the concentration of CO2 decreased in all cases except for when the site

density was increased for the MZA model. As there was a significant increase in the

concentration of CO2 at these larger site densities, there may be an impact on the

overall boundary layer stability. Figure 6.40 compares the stability analysis results

for the MZA model. Examining the N factor results for the original site density of

1x10−8mol
m2 for the MZA model compared to other site densities, decreased site density

has little impact on the overall N factor values, changing the total transition location

approximately 12 cm. Since the total concentration of CO2 changes very little with a

decrease in the site density parameter limited impact on the stability characteristics

would be expected. However, at a site density of 10−5mol
m2 , where the CO2 concentra-

tion is higher until approximately 1 m along the body and then decreases significantly

compared to the 10−2mol
m2 , the maximum N factor remain below the higher site den-

sity. Figures 6.41a through 6.42b show the stability diagrams for both the 10−5mol
m2

and 10−2mol
m2 site density values with vibrational modes enabled and disabled. From

these stability diagrams it is clear that the high concentrations of CO2 in the flow
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(a) Concentration of CO2 for the MURI model

(b) Concentration of CO for the MURI model

Figure 6.39. Concentrations for the MURI model based on varying site density param-
eter, V= 6000 m

s , high density
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dampen out all instability at x locations less than approximately 1 m where the CO2

concentrations begin to decrease. However, past this x location, the 10−2mol
m2 shows

greater amplification despite having higher concentrations of CO2 in the flow yet has

slightly higher amplification that the 10−5mol
m2 results. If the amplification per fre-

quency between these two site density simulations are evaluated, the 10−5mol
m2 shows

lower amplification at frequencies greater than 2 MHz, which would account for the

lower N factor results, as is also seen in the stability diagram. Why this increased

amplification occurs is not explained by CO2 damping nor evident from the frequency

analysis. The mechanism that is causing this could be the destabilizing blowing ef-

fect. Further simulations would need to be conducted to determine the source of the

instability.
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Figure 6.40. Maximum N factors for MZA model with site density variations
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(a) Maximum N factors for MZA model with vibrational
modes enabled

(b) Maximum N factors for MZA model with vibra-
tional modes disabled

Figure 6.41. Maximum N factors for MZA model with site density 10−5mol
m2 with vibra-

tional modes enabled (a) and disabled (b)
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(a) Maximum N factors for MZA model with vibrational
modes enabled

(b) Maximum N factors for MZA model with vibrational
modes disabled

Figure 6.42. Maximum N factors for MZA model with site density 10−2mol
m2 with vibra-

tional modes enabled (a) and disabled (b)
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Figure 6.43. Frequency analysis of amplified frequencies at 10−2mol
m2 and 10−5mol

m2 site
density for the MZA model

167



6.3.2 Model Sensitivity to Surface Temperature.

As was referenced in Chapter 2, the surface temperature not only affects the

stability of the boundary layer, but also the reaction types and production rates of the

ablative species. In hypersonic flow, an increasing surface temperature increases the

stability of the second mode instabilities [12]. Bitter et al. showed that the increasing

surface temperature, relative to the freestream temperature, destabilizes first mode

instabilities but stabilizes second mode instabilities. The impact of increased surface

temperature will also affect the production of different ablative species. Per each

ablation model, the temperature of the surface and near surface gas environment

favors certain reactions over others. For example, near a surface temperature of 3800

K, the sublimation temperature of graphite, the production of C, C2 and C3 are

favored over the adsorption of either O or N atoms [61]. Similarly, the creation of CO

versus CO2 is temperature dependent at both the surface and the near surface gas

environment as CO2 production is the favored reaction at temperatures below 3000

K whereas CO production is favored above that temperature [79]. Therefore, the

surface temperature is a significant factor when determining the ablation reactions

and changes in this temperature would change the total concentrations of the different

species.

A sensitivity study, examining the changes in CO2 concentration and the resulting

effect on boundary layer stability was conducted. Only the Park, MZA and MURI

models were used in this study. The original implementation of the ZA model is know

to overproduce CO2 due to the lack of mobile site parameter and the desorption

reactions not being included [102] and was not included due to this known error.

Similarly, the Park76 model was not included due to the lack of sublimation reaction

in this model. The surface temperature was increased by 1.5, 2.0 and 2.5 times of the

surface temperature model used in the ablation model comparison and the blunt cone
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Figure 6.44. Surface temperature effects on the first and second mode instabilities [12]
(with permission)

geometry was used. When the surface temperature exceeded 4000 K, the sublimation

temperature of graphite, the temperature was limited to 4000 K [61]. The freestream

conditions used were the same as the high density, high enthalpy flow conditions for

the ablation model study.

The effect of species production for the Park model is shown in Figures 6.45a

through 6.45c show the maximum ablative species concentrations along the cone.

At the nose of the cone, especially at the higher temperatures, C3 is the produced

at high relative concentrations but decreases back to negligible concentrations as the

surface temperature decreases. The relationship between the production of CO versus

CO2 in this model is shown in Figures 6.45a and 6.45b. As the concentration of CO

begins to decrease due to lower temperatures along the body, the concentrations of

CO2 increase. For the Park model, as the surface temperature increases, the overall

concentration of CO2 decreases while the concentration of CO increases, as the favored

reaction.
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(a) Maximum concentration of CO2 with Park model

(b) Maximum concentration of CO with Park model

Figure 6.45. Maximum species concentrations with Park model at varying tempera-
tures, V= 6000 m

s , high density
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(c) Maximum concentration of C3 with Park model

Figure 6.45. Maximum species concentrations with Park model at varying tempera-
tures, V= 6000 m

s , high density

The results for species production at the same conditions for the MZA model are

shown in Figures 6.46a through 6.46e. For the MZA model, the production at the

nose of the cone is dominated by not only sublimation of C3 but also C2 and C,

however, produces less total sublimation products than the Park model. Whereas

the Park model favored the production of CO over CO2 throughout the flow, the

MZA model favors CO2. The same trend is seen in the MZA model as with the

Park model where the production of CO and CO2, vary inversely to each other. In

the MZA model, however, the production of CO2 is favored at a higher temperature

and so the concentration increases more rapidly and to a higher value as it becomes

the preferred reaction. Unlike the Park model, where increased surface temperature

decreased the overall concentration of CO2 in the flow, the MZA model produces

nearly the same maximum concentration. At the lower surface temperatures, 1.0 and

1.5, the concentration of CO2 spikes near the nose, inversely to the production of both
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CO and C3. At the higher temperatures, 2.0 and 2.5, the maximum concentration

reaches a similar amount of around 15%, but maintains the higher concentration for

more of the cone length. It also has a slower exponential decrease as compared to

the lower temperatures environments. However, as the surface temperature continues

to increase, especially at 2.5 times the original value, the MZA model favors the

production of CO for longer and the maximum concentration of CO2 remains below

that of the lower surface temperatures. Of the surface temperatures examined, 2.0

times the original value produces the highest concentration of CO2 in the flow a

greater portion of the cone length. Thus simply increasing the surface temperature

to higher values will not continue to produce high concentrations of CO2. As the

blunt cone exhibits amplification towards the last half of the cone length due to the

entropy layer, this increased concentration of CO2 should produce greater damping

effects.

Similar to the MZA model, the MURI model will produce all 5 of the carbonaceous

ablation species. Figures 6.47a through 6.47d show the concentration of each ablative

species at the different surface temperatures. The results of the MURI model are very

similar in both trend and maximum concentration values as the Park model. While

the MZA model produced less sublimation products than the Park model, the MURI

model favors sublimation and produces higher concentrations of C3 at the nose. The

maximum concentration of CO2 in the flow for the MURI model is approximately 5-

8%, similar to the Park model results, and as the surface temperature increases, the

formation of CO becomes the favored reaction and the production of CO2 decreases.
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(a) Maximum concentration of CO2 with MZA model

(b) Maximum concentration of CO with MZA model

Figure 6.46. Maximum species concentrations with MZA model at varying tempera-
tures, V= 6000 m

s , high density
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(c) Maximum concentration of C3 with MZA model

(d) Maximum concentration of C2 with MZA model

Figure 6.46. Maximum species concentrations with MZA model at varying tempera-
tures, V= 6000 m

s , high density
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(e) Maximum concentration of C with MZA model

Figure 6.46. Maximum species concentrations with MZA model at varying tempera-
tures, V= 6000 m

s , high density

(a) Maximum concentration of CO2 with MURI model

Figure 6.47. Maximum species concentrations with MURI model at varying tempera-
tures, V= 6000 m

s , high density
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(b) Maximum concentration of CO with MURI model

(c) Maximum concentration of C3 with MURI model

Figure 6.47. Maximum species concentrations with MURI model at varying tempera-
tures, V= 6000 m

s , high density
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(d) Maximum concentration of C2 with MURI model

(e) Maximum concentration of C with MURI model

Figure 6.47. Maximum species concentrations with MURI model at varying tempera-
tures, V= 6000 m

s , high density
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Each of the models shows a high sensitivity to the surface temperature in deter-

mining the production of the ablative species. While the Park and MURI models

produce nearly monotonically decreasing concentrations of CO2 as the temperature

increases. The MZA model shows a longer sustained higher production of CO2 along

the cone, which results in a sustained high concentration, but exhibits a monotonically

increasing concentration of CO2 at the end of the cone.

Examining the effect this change in concentration of CO2 has on the stability of

the flow, the Park and the MURI models, as the two models have similar trends and

concentration values will be assumed to produce similar results and only the Park

model stability analysis will be conducted. Figure 6.48 shows the stability results for

the Park model comparing the 1.0 and the 2.5 times temperature values. There is

a slight decrease in the total N factor for the 2.5 times surface temperature as com-

pared to the original surface temperature. The higher surface temperature is known

to stabilize the second mode instabilities, and the increase in surface temperature

has a greater stabilizing effect than the decrease in CO2 damping alone. Examining

the stability results for the MZA model, shown in Figure 6.49, increasing the surface

temperature increases the stability as well. While some of this increased stability is

due to the increased surface temperature, there is also an increase due to the CO2

damping effect. While the two Park model simulations start amplification at the same

location on the body, this is not the case with the MZA model. As the CO2 con-

centration increases, the damping effect moves the start of amplification downstream

on the body, similar to what was seen during the CO2 concentration study. This

increase in streamwise location for the start of amplification is due to the increase

CO2 in the flow. This conclusion is further supported by a frequency analysis between

the original surface temperature and 2.5 times that value. Figure 6.50 shows that at

the higher frequencies, CO2 is effective at damping the amplification. Examining the
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amplification per frequency at the lower surface temperature of 1.5 times the original

value, there is still an decrease in amplification at the higher frequencies but not as

great due to the lower concentration of CO2 after the start of amplification (see Fig-

ure 6.51. Both the higher surface temperature and the increased CO2 damping effect

decreased the total amplification, and both have a significant impact on the stability

of the boundary layer.
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Figure 6.48. Maximum N factor for the Park model at 1.0 and 2.5 times the original
surface temperature, V= 6000 m

s , high density

Figure 6.49. Maximum N factor for the MZA model at varying surface temperatures,
V= 6000 m

s , high density

180



Figure 6.50. Frequency analysis for the MZA model at 1.0 and 2.5 times the original
surface temperature, V= 6000 m

s , high density

Figure 6.51. Frequency analysis for the MZA model at 1.0 and 1.5 times the original
surface temperature, V= 6000 m

s , high density
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6.3.3 Altitude Effects on Stability.

To examine the sensitivity of the ablation models and the subsequent effects on

boundary layer stability to altitude variation, simulations were conducted evaluating

CO2 production at typical reentry trajectory parameters starting. Table 6.1 shows the

altitudes and velocities used in this study where the data variable of density, pressure

and temperature were determined from the 1976 Standard Atmospheric Tables [2].

Due to the similarities seen between the two Park models as well as the ZA, MZA

and Alba models concerning CO2 production, only the Park, MZA and MURI models

were used in this parameter study.

Table 6.1. Freestream input conditions for typical trajectory

Altitude (kft) V∞(m/s) ρ(kg/m3) T (K)
10 2300 0.904 269
20 3500 0.653 248
30 4200 0.458 228
40 5400 0.302 216
50 6100 0.186 216
60 6400 0.115 216
70 6500 0.071 217
80 6600 0.044 221
90 6700 0.027 224
100 6800 0.017 227

Figures 6.52 through 6.54 show the concentrations of CO2 produced at all altitudes

in this parameter study. The surface temperatures were not varied at the different al-

titude to isolate the altitude effects from surface temperature effects. Though surface

temperatures may be lower for high altitude points, the colder wall would destabilize

the second mode instabilities. For all models, the maximum concentration of CO2

was found to be between 40,000 to 60,000 ft. The total concentration of CO2 for the

Park and MURI models varied from 5-8% at these altitudes and decreased for both

higher and lower altitudes. The MZA model produced a concentration of approxi-
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mately 8% CO2 along most of the surface after 1.0 m with a spike in production at the

nose. Unlike the other two models, the MZA model produced a similar concentration

of CO2 at altitudes above 50,000 ft but significantly less at lower altitudes, showing

minimal CO2 production for altitude below 30,000 ft. These low altitude results are

similar to the low enthalpy, high density concentrations seen in the ablation study

results. Due to the lower concentrations of CO2 in the flow, the MZA results will be

used in the stability analysis.

Given the concentrations of CO2 in the boundary layer with the MZA model, a

decrease in amplification for altitudes 50,000 and above would be expected with an

increase in amplification at lower altitudes. Figure 6.55 shows the N factor results at

all altitudes using the MZA model where the N factor decreases with both increasing

and decreasing altitudes. Isolating the low altitude results, Figure 6.56 shows a

steady increasing stability as the altitude decreases. However, examining the results

with vibration disabled (Figure 6.57) shows that at these altitudes, the impact of

vibrational damping on boundary layer stability is minimal which would be expected

due to a low concentration of CO2. The cause for this increased stability (decreasing

N factor) at lower altitude is most likely a transition from second to first mode

dominance as the altitude decreases below 30,000 ft. The edge Mach numbers at

these conditions are approximately 3 or below, a flow condition where a transition in

mechanisms is shown in the theory.

Examining the high altitudes stability results (Figure 6.58) also shows a steady

decrease in N factors (increased stability) as the altitude increase which is caused

by the decreasing Reynolds number in the flow. When comparing the results with

vibrational modes enabled and disabled (Figure 6.59), there is a significant impact on

stability from CO2 damping and this effect is most prominent at high CO2 concentra-

tions and lower altitudes. At 90,000 ft there is evidence of CO2 damping. However, at
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Figure 6.52. Maximum concentration of CO2 in the boundary layer with the MZA
model at typical reentry trajectory altitudes

Figure 6.53. Maximum concentration of CO2 in the boundary layer with the Park
model at typical reentry trajectory altitudes
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Figure 6.54. Maximum concentration of CO2 in the boundary layer with the MURI
model at typical reentry trajectory altitudes

50,000 ft, the effect of vibrational damping is more pronounced due to higher concen-

trations and higher amplification rates at this condition. For all high altitude results,

the delay in transition due to vibrational damping is greater than 0.5 m (assuming

an N factor of 10 marks transition).

At 50,000 ft, due the lower concentration of CO2 in the boundary layer produced

by the Park and MURI model (which is approximately half that produced in the MZA

model), the stability results should show an increased N factor when compared to the

MZA model results. Figure 6.60 shows that both the Park and MURI models have

greater amplification than then MZA model and show a transition location approx-

imately 20 cm earlier than the MZA model. When these simulations are compared

with vibrational disabled, all models show similar N factors and thus the increased

stability is most likely the result of the damping effects.

The Park model produces a higher concentration of CO2 in the boundary layer

as the MZA model at 40,000 ft, approximately 8% and 5%, respectively at the end

of the cone. The stability results at this condition for these two models should be
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Figure 6.55. Maximum N factors for altitudes from 100k to 10k ft for the MZA model

Figure 6.56. Maximum N factors for altitudes below 50k ft for the MZA model
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Figure 6.57. Maximum N factors for altitudes below 50k ft with vibration enabled
(solid lines) and vibration disabled (dashed lines) for the MZA model

Figure 6.58. Maximum N factors for altitudes above 50k ft for the MZA model
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Figure 6.59. Maximum N factors for altitudes above 50k ft with vibration enabled
(solid lines) and vibration disabled (dashed lines) for the MZA model

Figure 6.60. Maximum N factors at 50k ft for the Park, MURI and MZA models
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similar, with the Park model showing slightly lower amplification if second mode

remains the dominant mechanism. Figure 6.61 compares the results of the MZA and

the Park models at these conditions and shows a slightly lower amplification with

the Park model after approximately 1.3 m. Comparing the concentrations at this x

location, both models show 6% with the MZA model concentration decreasing and the

Park model concentration increasing. With vibrational modes disable, both models

show similar results. Therefore, at 40,000 ft the second mode remains the dominant

instability and the CO2 damping is effective at increasing boundary layer stability.

The results from the altitude study show that, for a normal reentry trajectory, as the

altitude decreases, CO2 damping will dampen the second mode disturbances in the

boundary layer thus increasing boundary layer stability. When second mode is no

longer the dominant instability, below approximately 30,000ft for a typical reentry

trajectory, CO2 damping is no longer effective at stabilizing the boundary layer.
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Figure 6.61. Maximum N factors at 40k ft for the Park and MZA models
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7. Conclusions

The main purpose of this research was to examine the effects of carbon-based ab-

lative products, specifically CO2, on second mode instabilities. The research was done

in two steps: determine the minimum concentration of CO2 required to impact the

stability characteristics and the transition location and use current carbon gas-surface

models at various flow conditions to determine if ablation results in sufficient CO2

to impact transition characteristics. As each gas-surface model produces different

concentrations of chemical species, each boundary layer has unique characteristics.

In addition, as uncertainties exist in the models, the effects of altitude, surface tem-

perature and material characteristics were examined to determine the impact on the

stability characteristics.

The specific research questions addressed in this study were:

1. What is the sensitivity of a hypersonic boundary layer stability to changes in

the species concentrations of carbon-based ablative species, specifically CO2, at

both wind tunnel and flight representative freestream parameters?

2. What are the variations in the current gas-surface chemical models and what

effects do these variations have on the CO2 concentrations and the stability of

a hypersonic boundary layer over a sharp and blunt cone?

3. What is the sensitivity of the current gas-surface chemical models to changes in

the freestream flow parameters, surface temperature and site density and what

are the stability effects?

A concentration study was conducted to determine the sensitivity of the boundary

layer to varying CO2 concentrations on both a sharp and 12.7 mm blunt cone. Using
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wind tunnel experimental flow conditions, simulations were conducted at CO2 con-

centration from 10%-50% over the sharp cone and 2.5%-50% over the blunt cone at

both high and low enthalpy condition. To determine transition location, an N factor

value of 10 was used. This N factor value is a typical value seen for transition in a

wind tunnel. This study determined, for low enthalpy (approximately 5 MJ
kg

) wind

tunnel conditions, a minimum of 30% CO2 is required for a 10 cm transition location

change over a sharp cone. However, for a blunt cone, a concentration of only between

5-10% is required for the same transition location change. This study found similar

results for the high enthalpy flow, at approximately 8.5 MJ
kg

, where a concentration of

10% over a sharp cone and 2.5% over a blunt cone are required for a 10 cm delay in

transition location. The study showed that these variations were caused by the higher

temperature in the boundary layer over a blunt cones, highlighting the importance

of boundary layer maximum temperature and temperature gradients on the effect of

CO2 damping of second mode instabilities. Also, the differences in boundary layer

thickness for both the velocity and thermal boundary layers between the sharp and

blunt cone impact the frequencies of the instabilities amplified which also affects the

efficacy of CO2 damping.

Examining flight representative flow condition while maintaining a similar en-

thalpy or maximum boundary layer temperature as the wind tunnel conditions, CO2

had a similar impact on amplification. The simulations were conducted at the min-

imum CO2 concentration determined from the wind tunnel conditions. While the

flight representative cases showed higher total N factor values due to higher Reynolds

numbers at flight conditions, the variation between the amplification when vibrational

modes were enabled and disabled were similar to those seen in the wind tunnel condi-

tions for similar enthalpy values. When the maximum temperature in the boundary

layer was matched at the flight representative conditions, the differences between
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the amplification with and without vibrational modes were also similar to those seen

under the wind tunnel conditions. This trend was the same for both the high and

low enthalpy flows. Further work would need to be conducted to fully understand

the impact flight representative flow conditions versus wind tunnel condition on CO2

damping and stability.

Concerning hypersonic flight within the Earth’s atmosphere, the only CO2 found

in the boundary layer comes from the ablation of carbon species from the TPS.

Examining CFD simulations at high and low enthalpies, using the different gas-surface

models: Park76, Park, ZA, MZA, MURI and ZA with nitridation models, showed

the estimated concentrations of CO2 that would be found in the boundary layer in

flight. Simulations were conducted using all models at a low and high density flow

conditions and at 3000 m
s

and 6000 m
s

, for low and high enthalpy flows, respectively.

In general, the study showed that the models vary significantly on the amount of CO2

produced from the gas-surface interactions and the interactions with the gas. The

study showed that the ZA, MZA and ZA with nitridation models produced similar

amounts of CO2 at all conditions and produced significantly more CO2 at the nose

and along a greater length of the body. These models produced high concentrations

at the nose, especially for the blunt cone, and would asymptotically decrease down

the body. The Park76, Park and MURI also produced similar quantities of CO2

in the flow and were generally less prolific than the ZA-based models. The trend

for these models was to produce little CO2 at the nose and have an asymptotically

increasing concentration down the body. This reversal in the trend of production

sometimes resulted in similar concentrations at the aft section of the 3 m simulated

cone. The study found that over a sharp cone, due to the lower surface area at the

higher temperatures, all gas-surface models produce significantly less CO2 in the flow

as compared to the blunt, 12.7 mm nose radius, cone.
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For the low density simulations, the study showed that neither high nor low en-

thalpy flow over either cone produced high enough quantities of CO2 to show clear

evidence of damping of the second mode instabilities. However, none of the simula-

tions showed significant amplification of second mode instabilities at either of these

conditions, and the low N factor results showed that the boundary layer would not

be close to a transitional state. At higher density flow conditions, significantly higher

concentrations of CO2 were produced for all the models, with the greatest concentra-

tions produced at higher enthalpy (6000 m
s

). The study showed that at high enthalpy

and density, the sharp and blunt cones both produced high enough concentrations

of CO2 to impact transition characteristics, based off the CO2 concentration results.

For the sharp cone, there was a slight decrease in the N factors which coincided with

the CO2 concentrations along the body. The study determined, after examination of

the amplification per frequency, a slight decrease in amplification around 2-5 MHz

existed. For the blunt cone at this condition, the study showed a decrease in N fac-

tors for all models, which produced between 5-10% CO2, and the amplification per

frequency showed damping of disturbances at frequencies above 2 MHz. The study

determined that, while significant differences exist in the total CO2 produced by the

different models, high enough concentrations of CO2 to impact transition charac-

teristics can be accomplished with the ablation of a carbon-based TPS at specific

freestream conditions. For vehicle design purposes, if the CO2 in the flow approaches

the required concentration it is vital to include vibrational modes when determining

transition predictions.

A sensitivity study of the ZA, MZA and the MURI models to material site density

parameter was conducted using the blunt cone model. The Park models were not

used as they do not include a site density parameter. The ZA model showed great

sensitivity to the site density parameter and once this parameter was varied more

194



than two order of magnitude, higher or lower, the amount of CO2 produced by the

model was greatly reduced. A similar result in not seen in the MZA model, leading to

the assumption that it is the lack of desorption reactions and immobility of the sites

in the original coding of the ZA model which was the cause of sensitivity. However,

the study showed that the MZA model remained highly sensitive to an increase in

the site density parameter which caused a higher production of CO2. The MURI

model was extremely insensitive to decreases in the site density parameter but a 50%

reduction in CO2 production is seen when the parameter is increased as the model

favor the production of CO to CO2 in these conditions.

Examining the changes to stability characteristics from this sensitivity, only the

MZA model was examined as all other models produced less CO2. At site density

parameters of 1x10−5 and 1x10−2, large concentrations of CO2, around 25% were

achieved. The study determined the overall impact on stability, however, was mini-

mal, only changing the transition location by a maximum of 12 cm. Given this low

impact on stability, change in material properties with regards to defects or fiber

orientation would not significantly impact transition prediction, despite model sen-

sitivity to the site density parameter. Further work would need to be conducted to

determine the precise reactions that cause the variations to occur between the models

as well as to fully understand the interaction between the increased ablation and CO2

damping with regards to stability.

The sensitivity of the Park, MZA and MURI models to surface temperature vari-

ations was examined for the blunt cone geometry. All models showed an increase in

the production of sublimation products at higher surface temperatures, directly cor-

responding to a surface temperature near the vaporization temperature of graphite.

The study determined that the Park and MURI model both favored the production of

CO versus CO2 as the surface temperature was increased and the total concentration

195



of CO2 monotonically decreased as the temperature increased. The study showed

that the MZA model favored the production of CO2 after the surface temperature

decreased to below approximately 3500 K. However, the maximum concentration of

CO2 in the boundary layer did not increase for the MZA model, which remained

around 15%, but concentrations peaked farther downstream and did not decrease as

quickly as the temperature was increased. The study determined that the impact on

stability of the increased CO2 concentration for the MZA model was noticeable, in

both a delay in the start of transition and lower amplification which resulted in a

total change of transition location from the lowest to highest temperatures of approx-

imately 0.5 m. The impact of the decreased CO2 concentration from the Park model

was also examined and showed a slight decrease in the overall N factor as well. While

not fully resolved in this analysis, this result is assumed to be due to the higher sur-

face temperature stabilizing the second mode instabilities as opposed to vibrational

damping effects. Further work would need to be conducted to determine the over-

all impact surface temperature has versus CO2 damping on second mode instability

stabilization.

Again, using the MZA, Park and MURI models, an analysis of the sensitivity

of the models to changes in altitudes was examined. For this study, typical reentry

trajectory conditions and standard atmosphere values were used for the freestream

conditions. The study showed that the Park and MURI models had similar CO2

production and the maximum concentration occurred at 40,000 ft, decreasing at both

higher and lower altitudes. For the MZA model, there was a slight decrease in the

CO2 concentrations as altitude decreased up to 50,000 ft, though variations were

limited to less than 5%. Between 10,000 and 30,000 ft similar CO2 concentrations

were shown to decrease significantly.
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The resulting impact of altitude variation on stability was more difficult to de-

termine. The study determined that, along with the changing CO2 concentrations,

the changing Reynolds number of the flow impacted the transition characteristics

as much as the CO2 damping effects. However, the study revealed general trends

that could be determined and examined overall stability, with respect to vibrational

modes enabled or disabled. At altitude above 50,000 ft, a trend of decreasing N factor

as altitude increases is seen, most likely due to the decreased Reynolds number at

higher altitude. However, the study showed, when examining the stability results

with vibrational modes disabled, the impact of CO2 damping remained evident at

these altitudes. Examining stability results below 30,000 ft, there is a reduction in N

factor as the altitude decreases. This reduction is most likely caused by the change

in dominant instability modes from second to first mode instabilities due to the lower

edge Mach number. Examining the stability results with vibrational modes disabled,

no significant damping is occurring, though whether from the lower concentrations of

CO2 or from the transition of second to first mode dominated flow is unclear. Fur-

ther work needs to be conducted at the lower altitudes to examine the first mode

instability to determine its impact on the stability characteristics.
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