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Abstract

Space missions to the Moon have received renewed interest in recent decades. Science

missions continue to be sent to the Moon, and several space agencies have aspirations

of establishing a human presence on the Moon. With the increased number of artificial

objects in cislunar space, the problem of tracking these objects arises. Optical sensors

are able to track these objects in deep space. However, optical sensors cannot track

objects that are close to the Sun as viewed from the observer. This unobservable

region is the Sun-exclusion zone (SEZ). This research attempts to create optimal

Moon-Earth transfers which are completely in the SEZ using a genetic algorithm–

direct method hybridization. Such transfers demonstrate how much the SEZ can

limit optical sensors from maintaining custody of a satellite. Transfers from L1 and

L2 Lyapunov orbits to geosynchronous orbit are generated while optimizing fuel and

time of flight. Remaining inside of the SEZ is shown to significantly increase the fuel

required to make the transfer.
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CISLUNAR TRAJECTORY GENERATION WITH

SUN-EXCLUSION ZONE CONSTRAINTS USING A GENETIC ALGORITHM

AND DIRECT METHOD HYBRIDIZATION

I. Introduction

1.1 Background and Motivation

The U.S. has benefited from leadership in space economically, militarily, and sci-

entifically [2]. U.S. forces depend on space for Pointing, Navigation, and Timing

(PNT); Space Situational Awareness (SSA); Intelligence, Surveillance, and Recon-

naissance (ISR); and satellite communications (SATCOM) [3]. With a dependence

on space, our assets in space become a potential vulnerability.

A constant threat to U.S. assets in space includes collision with man-made objects,

like space debris or other satellites. The 2007 test of a Chinese destructive anti-

satellite (ASAT) system [2] is an example of both the passive and active potential

threat. The guided anti-satellite weapon is an active threat, intentionally intercepting

the path of a satellite. The 3,000 pieces of debris [3] left by the collision illustrates

the passive threat. Countries continue to pursue anti-satellite weapons, perceiving

the U.S. assets in space as a vulnerability [4].

The United States maintains the Space Surveillance Network (SSN) to track man-

made objects orbiting the Earth [5]. One function of the SSN is to identify and track

the active and passive threats in orbit. The SSN has a collection of radar and opti-

cal sensors. The Ground-based Electro-Optical Deep Space Surveillance (GEODSS)

System, a part of the SSN, can track an object as small as a basketball in geosyn-
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chronous Earth orbit (GEO) [5]. This network is foundational for understanding the

capabilities and intentions of other actors in space, and the DoD is committed to

improving the quality and quantity of the information the SSN provides [2].

Although the United States is the leader in space situational awareness [2], there

are natural limitations to the SSN. Weather conditions can limit the effectiveness of

ground based optical systems [5]. Ground based optical systems are also limited to

operating primarily at night [5]. Another limitation is the Sun-exclusion zone (SEZ).

It is difficult for an optical sensor to detect a satellite when the satellite lies between

the sensor and the Sun. The optical noise from the Sun limits the ability to detect the

light emanating from the satellite body. A satellite in geosynchronous orbit is in the

Sun-exclusion zone for about 6 hours a day for an observer at the Earth [6]. A satellite

in an even higher orbit such as near the Moon will be in the Sun-exclusion zone for

about 8 continuous days each month. A possible solution to remove Sun-exclusion

zone outages may be to add high altitude sensors to the SSN [6].

These outages may limit the U.S. ability to quickly observe new space debris. The

outages could also mask the movement of reconstitution satellites from a parking orbit

to a desired conventional orbit [7]. Outages could restrict attribution of the movement

of satellites, and therefore the ability to effectively respond to such activity [2].

1.2 CR3BP Environment

The most basic model in orbital mechanics is the two-body problem in which

a smaller body with negligible mass orbits a larger body, such as a satellite in or-

bit about the Earth. The two-body problem has an analytical solution, which is

desirable. However, when a second massive body is considered, the two-body approx-

imation may not be valid for some applications. The circular restricted three body

problem (CR3BP) models the gravitational effect on a satellite by two larger bodies

2



in circular orbit about their common barycenter. An example of a system that could

be reasonably modeled this way is the Earth-Moon system, with the Moon having an

eccentricity of 0.0549.

No analytical solution to the CR3BP exists, and solutions need to be numerically

integrated. The CR3BP is a chaotic system, meaning that small changes to the initial

conditions can produce large effects to the state over elapsed time. Therefore, the

CR3BP can be computationally expensive and seemingly unpredictable [8].

With the added complexity of modeling the CR3BP, there are also added bene-

fits. The CR3BP is a more accurate model than the two-body problem for modeling

cislunar trajectories because it accounts for the effects of both massive bodies si-

multaneously. The CR3BP provides insight into the Lagrange equilibrium points,

locations where a smaller satellite remains fixed in a rotating reference frame. These

equilibrium points have been used for science missions [9], and have been suggested

to support Moon missions as staging areas and for providing communications [10].

One way to model a cislunar trajectory is patched conics. Patched conics assume

an Earth two-body problem when a satellite is in the Earth’s sphere of influence.

When the satellite enters the Moon’s sphere of influence, a Moon two-body problem

is used. The two systems are patched when the satellite transitions from the Earth

sphere to the Moon sphere. This technique ignores the use of invariant manifolds

that exist in the CR3BP. Invariant manifolds come from dynamical systems theory,

and are “superhighways” [11] that exist in the CR3BP, and are able to transport a

satellite from the Earth sphere to the Moon sphere, or vice versa, with a very small

amount of fuel. These manifolds are able to provide lower cost Earth-Moon transfers

by using the natural CR3BP dynamics.

Satellites in higher altitude orbits, especially near the Moon, are at less risk from

space debris compared to satellites at lower orbits. Cislunar space is less populated

3



and costly to reach, making collisions with other satellites less likely. Using high alti-

tude orbits and CR3BP dynamics may be useful for designing reconstitution satellites.

Reconstitution satellites are satellites used to replace a degraded space capability. A

reconstitution satellite could remain in orbit near the Moon until it is needed at a

lower orbit.

1.3 Thesis Overview

The current research investigates the transfer of a satellite near the Moon (L1

and L2 Lyapunov orbits) to geosynchronous orbit while remaining inside of the Sun-

exclusion zone for an optical sensor near the Earth. This will determine the effect

of Sun-exclusion zone outages to observation of cislunar trajectories. The research

uses a genetic algorithm and direct method hybridization to generate Pareto optimal

solutions. The hybridization will optimize the time of the transfer and the fuel used.

The research is designed to answer the following questions:

1. Can a genetic algorithm–direct method generate transfers from L1 and L2 Lya-

punov orbits to geosynchronous orbit while optimizing fuel and time of flight?

2. What is the feasibility of making transfers from L1 and L2 Lyapunov orbits

to GEO while enforcing a constraint that the transfer must remain inside of a

Sun-exclusion zone?

To answer the research questions, the research is organized into the following:

• Chapter 2 will go over the background and characteristics of the CR3BP that

are leveraged in this research. This will include the generation of periodic orbits,

the state transition matrix, and invariant manifolds. A brief overview of genetic

algorithms and trajectory optimization will also be included.
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• Chapter 3 will cover the methodology for answering the research questions by

laying out the test plans and solution algorithms. This chapter will discuss

how the genetic algorithm–direct method hybridization is used to find Pareto

optimal solutions and satisfy SEZ constraints.

• Chapter 4 will show and analyze the results following the methodology proposed

in Chapter 3. The chapter will discuss how the technique performed in finding

optimal solutions. The results for the transfer while remaining in the SEZ will

be discussed.

• Chapter 5 will provide main conclusions to the work. Recommendations for

future work will be provided.
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II. Background

2.1 Chapter Overview

For designing optimal transfers from the L1 and L2 Lyapunov orbits to the Moon,

the CR3BP is used to model the Earth-Moon system. This section gives the necessary

background of the CR3BP as well as some of the tools and methods used when

performing mission design in the CR3BP. The section also gives a brief overview of

trajectory optimization.

2.2 The N-Body Problem

The CR3BP is a specialized case of the N-Body problem (NBP). The NBP is a

system of N point masses, with the force acting on a particle being a combination

of mutual gravitational attractions [12]. According to Newton’s second law, the sum

of the force on an object is equal to its mass times its acceleration, shown in Eq.

(1). Newton’s law of universal gravitation states that two objects attract each other

along the line intersecting their center of masses with a force directly proportional to

the product of their masses, and inversely proportional to the square of the distance

between them, shown in Eq. (2). Combining Eq. (1) and Eq. (2) gives the equations

of motion for the NBP in Eq. (3) [12]. The NBP is shown in Figure 1.

m~̈r =
∑

~F (1)

F = G
m1m2

|~r|2
(2)

mi~̈ri =
N∑

j=1,j 6=i

Gmimj(~rj − ~ri)
|~rj − ~ri|3

(3)
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x̂

ŷ

ẑ

mi

mj

~ri

~rj

~rj − ~ri

Figure 1. The N-body Problem

2.3 Circular Restricted Three Body Problem

The CR3BP is defined as two “primaries” that are in circular orbits about their

common barycenter, and a third body being influenced by the gravity of the two

primaries [13]. The three major assumptions of the CR3BP are [13]:

1.) The primary masses m1 and m2 are assumed to be point masses.

2.) The third body’s mass is much smaller compared to the primaries (that is, m3 <<

m1,m2) and does not influence the motion of m1 and m2.

3.) The two primary bodies are in circular orbits about their common barycenter.

The CR3BP models the motion of the third body under the influence of the two

primary masses in a rotating reference frame. Starting with the EOMs of the NBP

in Eq. (3), the acceleration on m3 caused by m1 and m2 is shown in Eq. (4). The

vectors used in Eq. (4) are shown in Figure 2.

m3~̈r3 =
Gm1m3(~r1 − ~r3)
|~r1 − ~r3|3

+
Gm2m3(~r2 − ~r3)
|~r2 − ~r3|3

(4)
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î

ĵ

k̂

m1

m2

m3

~r1

~r2

~r3

~r1 − ~r3

~r2 − ~r3

Figure 2. CR3BP in a Barycentric Inertial Reference Frame

The vectors ~D and ~R are introduced as:

~D = ~r3 − ~r1

~R = ~r3 − ~r2

Vector ~r3 is denoted as ~p. The EOM for the third body is shown in Eq. (5).

~̈p = −Gm1
~D

|| ~D||3
− Gm2

~R

||~R||3
(5)

The next step is to find the equations of motion in the CR3BP rotating reference

frame, shown in Figure 3. The origin of the reference frame is the m1, m2 barycen-

ter. The x-axis points in the direction of m2, the z-axis extends in the direction of

the angular momentum of the system, and the y-axis completes this right handed

coordinate frame. The angular velocity of the CR3BP rotating reference frame with

respect to an inertial frame will be ~ωRI , the same angular velocity of the two bodies

about their common barycenter. Since the two primary bodies are in circular orbits,

this angular velocity is constant, and ~̇ωRI = 0. The transport theorem is used to find

the EOMs in the rotating reference frame.
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x̂

ŷ

ẑ

m1

m2

m3

~p
~D

~R

Figure 3. CR3BP Rotating Reference Frame

The transport theorem is defined in Eq. (6), where the I and R superscripts

represent the inertial and CR3BP rotating reference frames, respectively.

I d

dt
() = R d

dt
() + ~ωRI × () (6)

By applying the transport theorem, the first and second derivatives of ~p in the

inertial frame are

I ~̇p = R~̇p+ ~ωRI × ~p (7)

I ~̈p = R~̈p+ 2~ωRI × R~̇p+ ~ωRI × (~ωRI × ~p) (8)

Substituting Eq. (8) into Eq. (5), gives the following

R~̈p = −2~ωRI × R~̇p− ~ωRI × (~ωRI × ~p)− Gm1
~D

|| ~D||3
− Gm2

~R

||~R||3
(9)

The vector ~p and the rotation ~ω are defined in Eqs. (10) and (11). The rotation
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rate is the mean motion of the two primary bodies. In Eq (11), a represents the

distance between the two primary bodies.

~p = Xx̂+ Y ŷ + Zẑ (10)

~ωRI = Nẑ =

√
G(m1 +m2)

a3
ẑ (11)

The cross products in Eq. (9) are performed.

~ωRI × R~̇p = −NẎ x̂+NẊŷ (12)

~ωRI × R~p = −NY x̂+NXŷ (13)

~ωRI × (~ωRI × R~p) = −N2Xx̂−N2Y ŷ (14)

Substituting Eqs. (12) and (14) into Eq. (9)

R~̈p = −2(−NẎ x̂+NẊẑ)− (−N2Xx̂−N2Y ŷ)− Gm1
~D

|| ~D||3
− Gm2

~R

||~R||3
(15)

~D and ~R are defined as:

~D = (X +D1)x̂+ Y ŷ + Zẑ

~R = (X −D2)x̂+ Y ŷ + Zẑ

where D1 are D2 are defined as the distances between the barycenter and the m1

and m2 masses, respectively. The equations of motion of the CR3BP in the rotating
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reference frame are

Ẍ = 2NẎ +N2X − Gm1(X +D1)

D3
− Gm2(X −D2)

R3
(16)

Ÿ = −2NẊ +N2Y − Gm1Y

D3
− Gm2Y

R3
(17)

Z̈ = −Gm1Z

D3
− Gm2Z

R3
(18)

The EOMs are nondimensionalized to simplify the problem further. The CR3BP is

nondimensionalized by choosing characteristic quantities for length, mass, and time.

The characteristic length, l∗, is chosen as the distance between the two primary

bodies. Since the distance between the two primaries is changing, a mean value

for the distance is used. The characteristic mass, m∗, is chosen as the sum of the

mass of the two primary bodies. The characteristic time is chosen such that the

nondimensional time for one revolution will be 2π. The quantity µ is introduced,

which is defined as µ = m2/m
∗. The characteristic quantities are shown in Tables 1

and 2. Since the CR3BP is a chaotic system and sensitive to small changes, sixteen

significant figures are used for characteristic quantities during computations. The

original X, Y , Z, D, and R used in the dimensional EOMs will be represented by

their respective lowercase letters in the nondimensional EOMs.

Table 1. Characteristic Quantities for Earth-Moon, Sun-Earth Systems

System l∗ (km) m∗ (kg) t∗

Earth-Moon 384400 6.045825684978303e+24 4.342479844022600 days

Sun-Earth 149587457 1.988477791702254e+30 58.126336238550834 days
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Table 2. µ for Earth-Moon, Sun-Earth Systems

System µ

Earth-Moon 0.012150586550569

Sun-Earth 3.003486074446236e-06

The nondimensional equations of motion are shown in Eqs. (19)-(21), the deriva-

tives shown with respect to time.

ẍ = x+ 2ẏ − (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(19)

ÿ = y − 2ẋ− (1− µ)y

d3
− µy

r3
(20)

z̈ = −(1− µ)z

d3
− µz

r3
(21)

where

d =
√

(x+ µ)2 + y2 + z2 (22)

r =
√

(x− 1 + µ)2 + y2 + z2 (23)

The CR3BP is a highly coupled set of nonlinear ODEs. There exists no closed-

form solution for the CR3BP differential equations [14]. Therefore, trajectories in the

CR3BP are calculated using numerical integration.

2.3.1 Coordinate Transformations.

It is often useful to visualize trajectories in an inertial reference frame. A trans-

formation matrix will be derived to convert from the barycentric rotating reference
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frame to an Earth-Centered Inertial (ECI) frame. The ECI frame is non-rotating and

the origin lies at the center of the Earth. In this particular ECI frame, the z-axis will

be the same as the z-axis of the barycentric rotating frame. The CR3BP rotating

reference frame is centered at the m1-m2 barycenter. Before performing the rotation,

the position in the barycentric rotating frame must be offset by µ in the x direction.

After the offset is performed, the new position in the ECI frame is found with a

rotation about the z-axis:

Ip =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (Rp+ µx̂) (24)

The angle θ represents the barycentric frame offset from the ECI frame about

the z-axis. The angle θ can be given at a desired value at initial time, and is then

advanced using the constant rotation of the CR3BP rotating reference frame. The R

and I superscripts represent the rotating and inertial reference frames respectively,

and p represents the position. To get an expression for the rotating velocity in the

inertial frame, the product rule is used as outlined in [7].

I ṗ =


− sin(θ) − cos(θ) 0

cos(θ) − sin(θ) 0

0 0 1

 (Rp+ µx̂) +


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 Rṗ (25)

Eqs. (24) and (25) are combined to get the transformation of the full state into

the inertial frame:
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Ip

I ṗ

 =



cos(θ) − sin(θ) 0 0 0 0

sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0

− sin(θ) − cos(θ) 0 cos(θ) − sin(θ) 0

cos(θ) − sin(θ) 0 sin(θ) cos(θ) 0

0 0 1 0 0 1



(Rp+ µx̂)

Rṗ

 (26)

2.3.2 Equilibrium Points.

An equilibrium point of a dynamic system is a state that does not change over

time, or a fixed point. If the equations of motion for a system are known, f( ~X, t),

the equilibrium points are solved for by finding the states ~Xe where the following is

true:

f( ~Xe, t) = 0 (27)

The equilibrium points in the CR3BP are known as Lagrange points. The three

collinear Lagrange points were first discovered by Leonhard Euler in 1765 [15]. The

equations of motion shown in Eqs. (19)-(21) are examined to find the collinear La-

grange points. The velocity components for equilibrium points will be zero: ẋ =

0, ẏ = 0, ż = 0. Setting y = 0 and z = 0, acceleration is eliminated in the y and z

directions. This leaves the following:

ẍ = x− (1− µ)(x+ µ)(√
(x+ µ)2

)3 − µ(x− 1 + µ)(√
(x− 1 + µ)2

)3 (28)

This is now a matter of finding the values of x which will satisfy ẍ = 0. A Newton-

Raphson method can be implemented to solve for the three collinear points. These

are shown for the Earth-Moon system in Table 3.
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Table 3. Collinear Lagrange Points in the Earth-Moon System

Lagrange Point x (Nondimensional) y (Nondimensional)

L1 0.836915121142416 0

L2 1.155682169063843 0

L3 -1.005062646202315 0

The last two Lagrange points were discovered by Lagrange in 1772 [16], from

which they get their name. These are found by setting r = d = 1. This satisfies zero

acceleration for Eqs. (19) and (20). This leaves the equation of motion:

z̈ = −z (29)

which is satisfied when z = 0. The values of x and y which satisfy r = 1 and d = 1

are then found. There are two equations, Eqs. (22) and (23), and two unknowns x

and y. Solving for x and y gives:

x =
1

2
− µ (30)

y = ±
√

3/2 (31)

The positive y corresponds to the fourth Lagrange point and the negative y to the

fifth Lagrange point.
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Table 4. Equilateral Lagrange Points in the Earth-Moon System

Lagrange Point x (Nondimensional) y (Nondimensional)

L4 0.487849413449431 0.866025403784439

L5 0.487849413449431 -0.866025403784439

Figure 4 shows the five Lagrange points of the Earth-Moon system in the CR3BP

reference frame.

Figure 4. Lagrange Points in the Earth-Moon System

2.3.3 Jacobi’s Constant.

Energy is not a constant in the CR3BP due to the rotating formulation of the

differential equations [14]. However, there is an “energy-like” integral of motion,
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known as Jacobi’s Constant (JC). Jacobi’s Constant is derived in this section, starting

by introducing the CR3BP pseudo-potential. The pseudo-potential function is defined

as:

U∗ =
x2 + y2

2
+

(
1− µ
d

+
µ

r

)
(32)

The partial derivatives of the pseudopotential with respect to x, y, and z are

U∗x = x− (1− µ)(µ+ x)

((x+ µ)2 + y2 + z2)3/2
− µ(µ+ x− 1)

((x+ µ− 1)2 + y2 + z2)3/2
(33)

U∗y = y − (1− µ)y

((x+ µ)2 + y2 + z2)3/2
− µy

((µ+ x− 1)2 + y2 + z2)3/2
(34)

U∗z = − (1− µ)z

((x+ µ)2 + y2 + z2)3/2
− µy

((µ+ x− 1)2 + y2 + z2)3/2
(35)

Substituting these partial derivatives into the equations of motion gives

ẍ− 2ẏ = U∗x (36)

ÿ + 2ẋ = U∗y (37)

z̈ = U∗z (38)

Next, multiplying Eq. (36) by ẋ, Eq. (37) by ẏ, and Eq. (21) by ż:

ẍẋ− 2ẏẋ = U∗x ẋ (39)

ÿẏ + 2ẋẏ = U∗y ẏ (40)

z̈ż = U∗z ż (41)

And then adding Eqs. (39), (40), and (41), which becomes
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ẍẋ+ ÿẏ + z̈ż = U∗x ẋ+ U∗y ẏ + U∗z ż (42)

The above on each side is the time derivatives of two quantities.

1

2

d

dt
(ẋ2 + ẏ2 + ż2) =

dU∗

dt
(43)

Now taking the integral of Eq. (43) with respect to time

ẋ2 + ẏ2 + ż2 = 2U∗ − C (44)

where C is a constant of integration. Rearranging arrives at the definition of Jacobi’s

Constant in Eq. (45), where v is the absolute value of the velocity.

C = 2U∗ − v2 (45)

The change in the Jacobi Constant can be tracked during numerical integration.

Being a constant, the Jacobi Constant should only be expected to change near the

same order of magnitude as the integration tolerances.

2.3.4 Zero-Velocity Curves.

The Jacobi Constant can provide insight into permissible and forbidden regions in

the CR3BP without changes to the JC. The zero-velocity curves (ZVC) are the locus

of points that satisfy zero velocity in the rotating frame for a given JC [11]. The curve

represents the bounded region where a spacecraft can travel, and areas outside of the

ZVC are considered the forbidden region. This is because a satellite in a forbidden

region for a specific JC would require a complex velocity. Plotting the ZVC tells us

where a satellite can travel without performing a ∆V . The interior region, exterior
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region, and Moon region are only accessible for certain energy levels [17].

(a) JC = 3.2551 (b) JC = 3.1862

(c) JC=3.0962 (d) JC=3.0035

Figure 5. Forbidden Regions for Varying Jacobi Constants, Forbidden Regions Drawn
in Gray

As shown in Figures 5a-5d, the forbidden region can restrict a satellite from moving

between the different regions. In Figure 5a, all three regions are restricted from

reaching the others. In Figure 5b, the interior region is able to reach the Moon

region. In Figure 5c the interior, exterior, and Moon regions are all accessible to

eachother.
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2.3.5 State Transition Matrix.

The state transition matrix (STM) is used to understand the trajectories “close”

to a given numerically integrated trajectory [18], shown in Eq. (46). The STM

provides the understanding of “close” trajectories by giving information about the

sensitivity of the final state to initial conditions, and is also known as the sensitivity

matrix. The STM satisfies the differential equation shown in Eq. (47) [18].

Φ(t, t0) =
∂X(t)

∂X(t0)
(46)

Φ̇(t, t0) = A(t)Φ(t, t0) (47)

Φ(t0, t0) = I (48)

The matrix A(t) is the first order partial derivative of the equations of motion

with respect to the problem variables, shown in Eq. (49).

A(t) =
∂f

∂X
(49)

For the planar CR3BP, A(t) is shown in Eq. (50). The pseudopotential U∗ is

shown in Eq. (32).

A(t) =



0 0 1 0

0 0 0 1

U∗xx U∗xy 0 2

U∗yx U∗yy −2 0


(50)
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For the planar CR3BP, Φ is defined in Eq. (51).

Φ(t, t0) =



∂x(t)
∂x(t0)

∂x(t)
∂y(t0)

∂x(t)
∂ẋ(t0)

∂x(t)
∂ẏ(t0)

∂y(t)
∂x(t0)

∂y(t)
∂y(t0)

∂y(t)
∂ẋ(t0)

∂y(t)
∂ẏ(t0)

∂ẋ(t)
∂x(t0)

∂ẋ(t)
∂y(t0)

∂ẋ(t)
∂ẋ(t0)

∂ẋ(t)
∂ẏ(t0)

∂ẏ(t)
∂x(t0)

∂ẏ(t)
∂y(t0)

∂ẏ(t)
∂ẋ(t0)

∂ẏ(t)
∂ẏ(t0)


(51)

Numerically integrating the Φ matrix (Eq. (51)) and the N equations of motion

(Eqs. (19)-(21)) requires simultaneously calculating N2 + N first order differential

equations. The N corresponds to the equations of motion, and N2 corresponds to

the Φ matrix. For the planar CR3BP, N=4, and 20 first order differential equations

must be numerically integrated. This is more computationally expensive than the

four equations of motion needed to numerically integrate a trajectory. The STM will

be used to target periodic orbits in the CR3BP as shown in Section 2.3.6, and to find

stable and unstable manifolds as shown in Section 2.4.

2.3.6 Lyapunov Orbits.

One symmetry in the planar CR3BP is over the x axis and time, such that if

x = x(t), y = y(t) is a solution, then x = x(−t), y = −y(−t) is also a solution [13]. If

a trajectory has two perpendicular crossing of the x-axis, then its mirrored trajectory

across the x-axis will also have two perpendicular crossings, and will effectively “close

the loop” and is a periodic orbit in the CR3BP reference frame. The periodic orbits

that orbit a Lagrangian point and lie in the x−y plane are known as Lyapunov orbits.

In order to find Lyapunov orbit solutions the shooting method is used. The shoot-

ing method is a multi-dimensional version of Newton’s method [18]. Newton’s method

seeks to find roots of real-value functions. The STM is numerically integrated while

implementing the shooting method and supplies the gradient information required
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[14]. In the Newton formulation, the design variables are designated as the vector X

[14].

X =


X1

...

Xn

 (52)

The shooting method is performed to achieve some conditions, defined by con-

straint equations F (X), shown in Eq. (53). The constraint equations might be to

satisfy a final position or velocity, angle of attack, altitude, etc.

F(X) =


F1(X)

...

Fm(X)

 (53)

The Jacobian matrix, DF(X) represents the partial derivatives of the constraints

with respect to the free variables [14]:

DF(X) =
∂F

∂X
=



∂F1

∂X1

∂F1

∂X2
· · · ∂F1

∂Xn

∂F2

∂X1

∂F2

∂X2
· · · ∂F2

∂Xn

...
...

. . .

∂Fm

∂X1

∂Fm

∂X2

∂Fm

∂Xn


(54)

The update equation for the shooting method is defined as Eq. (55).

Xj+1 = Xj −DF(Xj)−1F(Xj) (55)

In Eq. (55), Xj+1 represents the next iteration. The shooting method continues

to iterate until an error tolerance between the final conditions to the target conditions

is met.
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In the case of targeting an L1 Lyapunov orbit, the goal is to find a trajectory with

two perpendicular crossings of the x-axis. The initial state will be along the x-axis

with no x component of velocity. The target state will also be on the x-axis with no

x component of velocity. The control variables are then time of flight and the initial

y component of velocity

X =

ẏ0
tf

 (56)

The contraint equations are constructed such that final y position is zero, and the

final x velocity is zero.

F(X) =

yt − yf
ẋt − ẋf

 =

0

0

 (57)

The t subscript denotes target (in this case both yt and ẋt are 0) and f denotes

final time in Eq. (57). The Jacobian matrix DF(X) is defined as Eq. (58).

DF(X) =

 ∂yf
∂ẏ0

∂yf
∂t

∂ẋf

∂ẏ0

∂ẋf

∂t

 =

 ∂yf
∂ẏ0

ẏf

∂ẋf

∂ẏ0
ẍf

 (58)

Information from the STM and the state from final time are used to define the

Jacobian matrix. The shooting method requires an initial guess, and if a poor initial

guess is chosen then the shooting method may not converge, or may take a long time

to converge. Using a method like Lambert’s problem might be a good enough initial

guess in some cases. In this case the initial state of a periodic orbit in the linearized

system was used as an initial guess [13]. The shooting method being used to target

a perpendicular crossing of the x-axis is shown in Figure 6.
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Figure 6. Shooting Method Targeting Perpendicular Crossing of x-axis

Additional periodic orbits can be found using numerical continuation [19]. This

numerical continuation takes a known periodic orbit with the state on the x-axis,

and displaces the x position by some amount. This displaced state is used as the

initial guess for finding a new periodic orbit. The ∆X must be small enough for

the shooting method to converge. Continuation is often used to generate families of

periodic orbits around Lagrange points [19]. A family of periodic orbits around the

L1 Lagrange point is shown in Figure 7.
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Figure 7. L1 Lyapunov Orbits Found Using Continuation Method

2.4 Stable and Unstable Manifolds

Manifolds are defined as “surfaces of lower dimension embedded within the phase

space”[18]. This is also to say that, in the CR3BP model, once a trajectory is on

the surface of a manifold it will remain on the manifold [20]. The path of the orbits

in the manifold constitute the surface of the manifold. Also considered manifolds

are trajectories that asymptotically approach and leave the manifolds, which are

called stable and unstable manifolds, respectively [20]. These manifolds are also

titled invariant manifolds, and have origins rooted in dynamical systems theory.

Stable and unstable manifolds have been described as “low energy passageways”

for their ability to connect separate regions of the CR3BP [19]. This is true of the
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stable and unstable manifolds associated with periodic orbits around L1 and L2, which

are able to transport objects between the two primary bodies [19]. Using stable and

unstable manifolds has shown to be useful in trajectory design, where conventional

tools fall short of understanding the multi-body problem [20]. These manifolds serve

as a guide to understanding the dynamical flow of the CR3BP, and offer design options

for targeting orbits around Lagrange points [20].

In order to find the stable and unstable manifolds from a periodic orbit, infor-

mation about the trajectories near the periodic orbit is required, and the STM is

used [19]. Specifically, the monodromy matrix is used, which is the STM after one

complete orbit. The eigenvalues of the monodromy matrix will reveal the stability of

the periodic orbit. In the case of Lyapunov orbits in the planar CR3BP, the following

eigenvalues will exist [19]

λ1 > 1; λ2 =
1

λ1
; λ3 = λ4 = 1 (59)

The eigenvalue greater than one corresponds to an unstable eigenvector, vu, and

the eigenvalue less than one corresponds to a stable eigenvector, vs. Suppose the state

~x0 is the starting point from which the monodromy matrix, Φ(0, T ), was calculated.

One period of the orbit is T . To move the state onto the unstable or stable manifold

requires the perturbations shown in Eq. (60) and (61), respectively.

~xu = ~x0 + εvu (60)

~xs = ~x0 + εvs (61)

In Eqs. (60) and (61), ε should be sufficiently small so as not to violate the

linear estimate, but not too small such that the time of flight to depart or approach
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the periodic orbit is too long [19]. When multiple stable and unstable manifolds are

propagated they form manifold tubes as they travel throughout different regions of the

CR3BP. In order to see the motion of these tubes unstable manifolds are propagated

in positive time, and stable manifolds are propagated in negative time. Stable and

unstable manifold tubes from L1 and L2 Lyapunov orbits are shown in Figures 8 and

9.

Figure 8. L1 and L2 Lyapunov Orbit Manifold Tubes
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Figure 9. L1 and L2 Lyapunov Orbit Manifold Tubes

2.5 Genetic Algorithms

Genetic algorithms (GA) are a stochastic optimization method which attempt to

mimic principles of Darwinian evolution [21]. A group of possible solutions called

individuals make up a generation. Each individual in the generation is evaluated,

and then acted upon by genetic operators to search for better solutions. Genetic

algorithms use three basic operators: selection, crossover, and mutation. Selection is

the process of choosing which individuals will move on to create the next generation,

which is done through the evaluation of a fitness function. Crossover is the process

of producing a child solution from more than one parent solution. Mutation is the

process of randomly changing characteristics of an individual.
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GAs offer a number of advantages over other methods. GAs require no initial

guess to start the optimization process. The initial population is randomly generated,

although initial population guesses can also be provided. They are also more likely in

general to find a global minima than other methods which may converge onto local

minima [11]. GAs are robust, and are easily implemented without requiring a detailed

understanding of the optimization problem [22]. A drawback to GAs is they are

computationally expensive compared to other optimization techniques that leverage

gradient information [21]. This is especially true when constraints are imposed on

the problem.

2.6 Trajectory Optimization

Most common trajectory optimization methods can fit into two categories: di-

rect and indirect [22]. Indirect methods require deriving necessary conditions for

optimality [23], while direct methods typically transcribe the problem into a nonlin-

ear programming problem. Both methods provide benefits and drawbacks. Indirect

methods have a small region of convergence and require an initial guess fairly close to

the optimal solution, where direct methods tend to have a more robust convergence

[22]. Indirect methods are more difficult to implement because they require analyti-

cally deriving conditions for optimality, which can be complex for nonlinear dynamics

and constraints [22]. For these reasons, indirect methods have become increasingly

less common in space trajectory optimization [11].

Another distinguisher between trajectory optimization problems is the use of

impulsive-thrust or continuous-thrust. Impulsive-thrust assumes that a change in

velocity is preformed instantaneously. Impulsive-thrust maneuvers become param-

eter optimization problems, which tend to be solved directly, with parameters like

magnitude of ∆V , direction, and timing [11]. Continuous-thrust, however, requires
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solving for control variables with continuous time histories [11]. This study is con-

cerned with impulsive-thrust maneuvers, and the continuous-thrust case will not be

considered.

The parameter optimization problem of impulsive-thrust trajectory optimization

lends itself to be solved using nonlinear programming (NLP). NLP has become an

indispensable tool for trajectory optimization, which uses gradient information to

converge to local minima while satisfying constraints [23]. There are a vast num-

ber of NLP solvers in use, one in particular is MATLAB’s fmincon(). The NLP

solver fmincon() is a multi-purpose parameter optimizer that has been used for a

wide number of spacecraft trajectory optimization problems [23]. In this study fmin-

con() will be solving two-point boundary value problems (TPBVP) (that is, solving

for the trajectory between two stationary positions in the CR3BP) using sequential

quadratic programming (SQP) to solve the nonlinear optimization problem. A signif-

icant drawback to the NLP solver is its likelihood to converge onto a solution in the

neighborhood of the initial guess [11]. This is especially challenging for a multimodal

design space where many local minima exist [21]. Evolutionary algorithms, and in

specific genetic algorithms, may be more suited to search these design spaces to find

global minima. However, genetic algorithms also have significant drawbacks. Hy-

brid techniques combining genetic algorithms and gradient-based methods have been

shown to be effective for a number of trajectory design applications [24] [25] [21].

These hybrid techniques have also been termed as memetic algorithms (MA) [26].

Memetic algorithms are a population based search where the individuals are able to

search for local minima [26]. The relation to Darwinian evolution is the ability of an

individual to adapt and learn during its lifetime given some baseline characteristics

(genes).

Cislunar trajectory optimization has been a renewed topic with the growing inter-
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est in sending missions to the Moon. In combination with this renewed interest are

the advancements in dynamical systems theory (DST) and the proven effectiveness

of invariant manifolds in mission design [9] [27]. Invariant manifolds in the CR3BP

open up new pathways to travel to and from the libration points [20] which offer new

low-fuel trajectories [11]. Stable manifolds can now be used as patch points instead of

the periodic orbits from which they originate [20]. Similarly, unstable manifolds can

be traveled departing a periodic orbit until a suitable patch point is found. What is

left is a TPBVP to be solved between a point on the manifold and the start/ending

orbit [11].

The optimization technique in this study will leverage the global search ability

of genetic algorithms. The technique will also use the quick convergence of NLP

solvers and their ability to handle complex constraints by using gradient information.

Finally, this study will use invariant manifolds to leverage the natural dynamics of

the CR3BP.

2.7 Summary

This chapter defined the CR3BP and its characteristics, including stable and

unstable manifolds, Lagrange points, and periodic orbits around Lagrange points.

The CR3BP will be the model used for the test cases in Chapter 3. This chapter also

gave a brief overview of trajectory optimization techniques. Chapter 3 will describe

the genetic algorithm–direct method hybridization technique that will be used in this

research to solve for optimal transfers in the CR3BP. The hybridization technique

will also incorporate CR3BP manifolds and periodic orbits as have been discussed in

this chapter.
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III. Research Methodology

3.1 Chapter Overview

This chapter will outline the research methodology which will be used to answer

the research questions listed in Chapter 1. The test plans will include finding transfers

from L1 and L2 Lyapunov orbits to GEO. The details of the test plans will be given.

This chapter will also describe the hybridization technique that is used to solve for

the transfers.

3.2 Problem Description

The planar CR3BP is considered in this thesis. Because the Moon’s orbit is in-

clined with respect to the Earth’s equatorial plane, the target orbit is geosynchronous

but not geostationary, where most satellites in GEO reside. The dimensions of the

two Lyapunov orbits are given in Table 5 and shown in Figure 10.

Table 5. L1 and L2 Lyapunov Orbit Details

Orbit x (km) y (km) JC

L1 28,024.6 95,168.4 3.126294272311462

L2 36,656.8 101,734.0 3.126294272311462
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Figure 10. L1 and L2 Lyapunov Orbits Used in Tests

3.2.1 Sun-Exclusion Zone.

Traditionally, ground based radars have been used to track objects in low Earth

orbit, while objects in higher orbits (such as geosynchronous) have been tracked us-

ing optical systems [30]. The Space-Based Visible (SBV) program is an example of

space-based space surveillance, and relied on a visible band electro-optical camera

[31]. Visible sensors, like the one used in the SBV program, are limited to detecting

targets illuminated by the Sun [31]. Ground-based optical sensors are larger and

more sensitive to light, but are also limited by the weather and tend to operate only

at night [30]. Both ground- and space-based optical sensors are limited in detecting

objects when they pass between the Earth and the Sun, or the Sun-exclusion zone.

In order for an optical sensor to detect light reflected from a target, the object must

remain outside of the SEZ. The SEZ will be defined as the angle between the Sun

and the target as viewed from the center of the Earth, which will be assumed to be

50 degrees [30] [6], shown in Figure 11.
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Figure 11. Sun-Exclusion Zone

In Tests 2-5 the objective for the satellite will be to arrive at geosynchronous

orbit while remaining in the Sun-exclusion zone of an optical sensor that is located

at Earth. Remaining in the SEZ would make the satellite unobservable to the optical

sensor of interest. If an optical sensor’s field of view is pointed in the direction of

a spacecraft while it lies in the Sun-exclusion zone, the optical sensor cannot detect

that satellite. Therefore, the search technique of the optical sensor does not need to

be considered.

A fundamental assumption of the CR3BP is that the two major bodies are rotat-

ing about the common barycenter at a constant angular rate I~ωEarth−Moon, where I

represents an inertial reference frame. In order to include a Sun vector, the rotation

of the Sun-Earth system needs to be incorporated to know the pointing of the Sun

vector. For this purpose, it will also be assumed that the Sun and Earth are rotating

at a constant angular rate about their common barycenter, I~ωSun−Earth.
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The Sun vector can be tracked by initializing the vector and tracking its rotation

using the angular rate of the Sun-Earth system in the Earth-Moon CR3BP reference

frame. The initialization of the Sun-Vector angle can be chosen at different values

at t0 to examine different scenarios. The Sun-Earth and the Earth-Moon orbits are

assumed to be in the same plane for all of the tests. In order to examine addi-

tional seasonal variations, the plane differences between the orbits would need to be

considered.

3.3 GA–Direct Method Hybridization

Hybrid optimization techniques have been shown to be effective in the design

of interplanetary missions. Because interplanetary missions are expansive and mul-

timodal, genetic algorithms are used for their global search ability [21]. Genetic

algorithms have shown to be useful when paired with patched-conic mission analysis

code for inerplanetary trajectory optimization [28].

The hybrid framework has also been applied to the CR3BP. The hybrid technique

has been used to design transfers from low-Earth orbit to L1 and L2 Lyapunov orbits

[25], and extended to include resonant orbits in the CR3BP [29]. References [25] and

[29] use outer loops consisting of genetic algorithms (Non-Dominated Sorting Genetic

Algorithm II [NSGA-II]) controlling phase variables, and an inner loop that uses a

solver for large scale nonlinear optimization problems (Sparse Nonlinear OPTimizer

[SNOPT]) to solve a boundary value problem of two points in the CR3BP.

In order to find solutions for a transfer from a given Lyapunov orbit to geosyn-

chronous orbit a hybrid technique is used that leverages unstable manifolds in the

CR3BP. This will combine a genetic algorithm to perform a global search of the design

space, and a gradient-based solver to solve for a locally optimal trajectory between

two boundary points. The outer loop uses MATLAB’s gamultiobj() and controls the
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phase level variables. Within the genetic algorithm evaluation, fmincon() is used to

solve a two point boundary value problem. This will be a multi-objective optimiza-

tion problem, where time of flight and ∆V will be optimized simultaneously to find

the Pareto optimal solutions.

3.4 Test Plan Overview

The objective of the following tests is to examine how practical it is for a satellite

to transfer to geosynchronous orbit from L1 and L2 Lyapunov orbits and remain in

the Sun-exclusion zone. In order to assess the feasibility of such transfers the Pareto

optimal solutions are solved for to provide a trade space for decision makers and

mission planners. These solutions are found using a hybrid framework optimizing

time of flight and total ∆V .

In order to establish the feasibility of the transfer from L1 and L2 to GEO with

SEZ constraints, the Pareto front will first be found without any SEZ constraints

(Test 1). This will serve as a baseline for when SEZ constraints are imposed in Tests

2-5. The objectives will be the TOF to reach geosynchronous orbit from the starting

orbits, and the ∆V required in the impulsive maneuvers. The starting orbits will be

Lyapunov orbits around L1 and L2 with matching Jacobi Constants.

In Tests 2-5 the transfer will be constrained to remain in the SEZ, and the Pareto

fronts solved for. These Pareto fronts will be compared to the baseline Pareto fronts

from Test 1.

In Tests 6 and 7 a limited detection range of the optical sensor will be introduced.

The transfers will then be constrained to be in the SEZ, or outside of the maximum

detection range during the transfer. Pareto fronts will be solved for and compared to

the other tests.
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Table 6. Test Plan

Test SEZ Constraint Sensor Detection Range

1 None N/A

2 ≤ 10 hours outside SEZ infinite

3 ≤ 3 hours outside SEZ infinite

4 ≤ 1 hours outside SEZ infinite

5 0 hours outside SEZ infinite

6 0 hours outside SEZ while inside detection range varies

7 0 hours outside SEZ while inside detection range varies

3.5 Dual-Loop Framework

The following section will describe the hybridization technique between the genetic

algorithm and direct method. Figure 12 shows how information is passed between

gamultiobj() and fmincon() to solve for the Pareto optimal solutions. Algorithm 1

additionally shows how the genetic algorithm and direct method interact.
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Figure 12. Hybridization Framework Overview
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Algorithm 1 Hybridization Framework

1: Given: Initial and Final Orbits, Sun Constraints, maxGenerations

2: Genetic algorithm gamultiobj() generates individuals i in generation G1

3: while n Generation ≤ maxGenerations do

4: for all i in Gn do

5: Evaluate fitness and constraint satisfaction of each individual i.

fmincon() solves two point boundary value problem

6: end for

7: Genetic algorithm creates Gn+1 with selection, crossover, mutation.

8: end while

9: Pareto optimal solutions output from GmaxGenerations.

3.5.1 Genetic Algorithm Outer Loop.

As mentioned, gamultiobj() is used as the outer loop. Genetic algorithms offer

a number of advantages over other methods. Genetic algorithms are more likely to

find a globally optimal solution over gradient-based solvers which find locally optimal

solutions [11]. Genetic algorithms do not require an initial guess to converge to a

solution, whereas gradient-based solvers typically require an initial guess close enough

to a minimum in order to converge [11]. Genetic algorithms are also extremely simple

to implement and do not require the designer to have an in-depth knowledge of the

problem being optimized [11] [22]. Genetic algorithms are a biologically inspired

stochastic method and require more computation compared to methods leveraging

gradient information [22].
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Genetic Algorithm Variables.

Listed in Table 7 are the variables used in the genetic algorithm. A complete set

of these variables would constitute a possible solution, and would be one individual

of a generation.

Table 7. Variables Used in Genetic Algorithm Outer Loop

Variable Definition Lower Bound Upper Bound

t1 Length of Time in Lya-

punov Orbit

0 (nondim time) 1 Period of Lya-

punov Orbit

t2 Length of Time on Unstable

Manifold

0 (nondim time) 8 (nondim time)

θ Angle to Insert Into

Geosynchronous Orbit

0 radians 2π radians

∆Vperturb Velocity Change to Perturb

Onto Unstable Manifold

0 m/s 200 m/s

α Objective Weighting Used

for TPBVP (inner loop)

0 1

φ Initial Sun Angle at t = t1 0 radians 2π radians

Referencing the variables in Table 7, t1 is the length of nondimensional time that

the satellite will be in the L1 or L2 Lyapunov orbit before perturbing onto the unstable

manifold, and is drawn in black in Figure 13. Shown in Table 7, t2 is the length of

time the satellite will coast along the unstable manifold, and is drawn in blue in

Figures 13 and 14. Also in Table 7, θ represents where in geosynchronous orbit the

satellite will inject into, which is shown in Figure 14. The trajectory shown in green

in Figure 14 is solved for using fmincon(). The two boundary points are defined by
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the variables generated by the GA.

Figure 13. Sample Departure of Lyapunov Orbit

Figure 14. Sample Solution, t1 = 1 (nondim), t2 = 3 (nondim), θ = 145 deg, ∆Vperturb =
50 m/s
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Genetic Algorithm Optimization Formulation.

The two objectives are to minimize time of flight and total ∆V . The MATLAB

function gamultiobj() accepts multiple objective functions to minimize. The objective

functions are shown in Eqs. (62) and (63), where X represents the control variables

from Table 7.

J1(X) = tf (62)

J2(X) = ∆V (63)

The objective function J1(X) is the time spent during the transfer, from Lyapunov

orbit to GEO, the components shown in Table 8. The objective function J2(X) is

the sum of the three impulsive burns performed during the transfer, shown in Table

9.

Table 8. J1(X) Objective Function Components

t2 Time in Unstable Manifold

tManifold−GEO Time from the Manifold to GEO

Table 9. J2(X) Objective Function Components

|∆V1| Perturbing onto Unstable Manifold

|∆V2| Maneuvering off Unstable Manifold

|∆V3| Inserting into GEO

J1 = t2 + tManifold−GEO
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J2 = |∆V1|+ |∆V2|+ |∆V3|

The variables t2 and |∆V1| come from the genetic algorithm outer loop variables

shown in Table 7. The variables tManifold−GEO, ∆V2, and ∆V3 are solved for in the

inner loop shown in Section 3.5.2. The inner loop uses fmincon() to solve a TPBVP

from the unstable manifold to the injection point in GEO.

For Test 1 there are no equality constraints, inequality constraints, linear inequal-

ities, or linear equailities included in the outer loop optimization formulation:

minimize
X

J1(X), J2(X)

subject to ẋ = f(t,x)

(64)

The equations of motion, ẋ = f(t,x), are defined in Eqs. (19)-(21). When a keep

out zone is enforced in Tests 2-7, there will be an inequality constraint that the time

spent in the keep-out zone is less than the time allowed in the keep out zone:

minimize
X

J1(X), J2(X)

subject to ẋ = f(t,x),

c(X) = tKOZ − tallowed−KOZ ≤ 0

(65)

This optimization formulation does not include a constraint that the final position

be the desired position in GEO. This is because the final position constraint is handled

within the inner loop, which will be described in Section 3.5.2.

3.5.2 Direct Method Inner Loop.

The inner loop solves the two point boundary value problem which is defined by

the outer loop. MATLAB’s fmincon() is used. A sufficiently close initial guess is
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required for fmincon() to converge to a feasible solution. Lambert’s problem is used

as an initial guess [32].

Direct Method Optimization Formulation.

The inner loop finds the locally optimal solution to a TPBVP. The NLP solver

fmincon() chooses the variables X to minimize the scalar function J(X) subject to

constraints.

The variables in X are the initial changes in x and y velocity at initial time, and

the time of flight, shown in Eq. (66). The two boundary points for the TPBVP are

the end of the unstable manifold and the injection point into GEO.

X =


∆Vx0

∆Vy0

tf

 (66)

The velocity in Eq. (66) make up the components of |∆V2| from Table 9. The

objective function J(X) is defined by the time of flight and total ∆V shown in Eq.

(67). The variable α is defined by the genetic algorithm from Table 7.

J(X) = α∆V + (1− α)tf (67)

The ∆V in Eq. (67) corresponds to the summation of |∆V1| and |∆V2| from Table

9. Equality constraints are imposed such that the final position is the desired position
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in GEO. For Test 1 the optimization formulation is then:

minimize
X

J(X)

subject to ẋ = f(t,x),

ceq1(X) = xf − xGEO = 0,

ceq1(X) = yf − yGEO = 0

(68)

An inequality constraint is imposed in Tests 2-7 when a keep out zone is enforced.

The time spent in the keep-out zone (tKOZ) must be less than or equal to the time

allowed in the keep out zone (tallowed−KOZ):

minimize
X

J(X)

subject to ẋ = f(t,x),

ceq1(X) = xf − xGEO = 0,

ceq1(X) = yf − yGEO = 0,

c(X) = tKOZ − tallowed−KOZ ≤ 0

(69)

3.6 Tests 6 and 7: Limiting Visual Magnitude

In Test 2-5 the detection range of the optical sensor is infinite. This will be

modified to include a maximum detection range. The object being observed requires

a minimum brightness magnitude to be detected by the optical sensor. This is known

as the limiting visual magnitude. The brightness of the object is dependent on the

solar phase angle, the material properties of the object, and the distance between the

object and the optical sensor.

Current space-based sensors have a limiting visual magnitude of about 16.5 [6].

The characteristics for an object being observed will be replicated from [6]. Reference
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[6] assumes an aluminum sphere with the materiel properties shown in Table 10.

With the material properties defined and an assumed limiting visual magnitude, the

maximum range of detection is a function of the solar phase angle ψ, shown in Eqs.

(70)-(72) [33]. In equations (70)-(72), v is the vector from the observer to the satellite,

s is the vector from the observer to the Sun, pdiff (φ) is the diffuse phase angle, aspec

and adiff are the specular and diffuse components of reflectance, msun is the apparent

magnitude of the Sun, and mlim is the limiting visual magnitude of the optics.

ψ = cos−1
( v · s
||v||||s||

)
(70)

pdiff (ψ) =
2

3π
[sin(ψ) + (π − ψ)cos(ψ)] (71)

ρ =

√
d2[aspec/4 + adiffpdiff (ψ)]

10(msun−mlim)/2.5
(72)

Table 10. Sensor and Satellite Properties

Diameter of Aluminum Sphere 0.5 meters (Test 6) and 1 meter (Test 7)

Aluminum Sphere Specular Reflectance 5 %

Aluminum Sphere Diffuse Reflectance 95 %

Limiting Magnitude of Optics 16.5
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Figure 15. Limited Detection Range of Optical Sensor for 0.5 and 1 Meter Diameter
Sphere

The new constraint in these tests will be to remain inside the Sun-exclusion zone,

or remain outside of the maximum detection range during the transfer. Detection

range adds another layer to consider when attempting to maintain custody of a satel-

lite in cislunar space.

3.7 Summary

This chapter explained the research methodology to answer the research questions

posed in Chapter 1. The problem scenario was described including the the L1 and

L2 Lyapunov orbits, the Sun-exclusion zone, and limiting visual magnitude. This

chapter explained the hybridization technique which will find the transfer solutions

by optimizing fuel and time of flight.
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IV. Results

4.1 Chapter Overview

Chapter 4 will go over the test results laid out in Chapter 3. The tests were

performed using MATLAB R© (R2018b). The computations were run on a MacBook

Pro computer using a 2.7 GHz Intel R© Core i5 with 8 GB of RAM.

The trajectory plots in this section will be colored in the following manner: start-

ing/ending periodic orbits are drawn in black, unstable mainfolds are drawn in blue,

and the TPBVP solutions are drawn in green.

4.1.1 Heteroclinic Connection.

The hybridization technique is first tested to find a heteroclinic connection be-

tween two periodic orbits to validate the optimization framework. A heteroclinic

connection is a “free” transfer between two orbits by connecting the unstable mani-

fold of one orbit to the stable manifold of another. Heteroclinic transfers first require

the two periodic orbits to have matching Jacobi Constants. The technique to find

heteroclinic connections is by propagating the unstable manifolds of the periodic or-

bit being departed from, and the stable manifolds of the destination periodic orbit.

The unstable and stable manifolds are propagated in positive and negative time, re-

spectively. Then a search is performed to find where there exists a matching state

between a stable and unstable manifold, usually using a surface of section [1].

Another way of finding the heteroclinic connection is by using the hybridization

technique described. If the hybridization technique is effectively performing a global

search of the design space, the algorithm should find a minimum fuel solution with

∆V = 0, or very close to zero. The work of Dahlke is recreated as a comparison [1].

Dahlke demonstrated that a pseudospectral method for optimal low-thrust trajectory
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design can converge onto a heteroclinic trajectory to find the minimum fuel solution

[1]. The initial orbit is an L1 periodic orbit and the target orbit a distant prograde

orbit (DPO) about the Moon. These orbits are defined in Table 11.

Table 11. Heteroclinic Test Orbit Definition

L1 Periodic Orbit DPO

x (DU) 0.812255 1.061692

y (DU) 0 0

ẋ(DU/TU) 0 0

ẏ(DU/TU) 0.248312 0.403877

The L1 periodic orbit and DPO orbit are shown in Figure 16.

Figure 16. Orbits Used for Heteroclinic Transfer

A Pareto front is found using the GA and direct-method hybridization shown in

Figure 17.
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Figure 17. L1 to DPO Pareto front

The red dot is the minimum fuel solution. If the technique is finding globally

optimal solutions, this min-fuel solution should be very close to the heteroclinic tra-

jectory. The trajectory path in Figure 18 is very similar to the heteroclinic connection

found by Dahlke in Figure 19.
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Figure 18. Min-Fuel Heteroclinic Connection Found Using Genetic Algorithm; start-
ing/ending periodic orbits are drawn in black, unstable mainfolds are drawn in blue,
and the TPBVP solutions are drawn in green

Figure 19. Heteroclinic Trajectory Found Between L1 Periodic Orbit and DPO, Taken
From [1]
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The ∆V found is slightly higher than the one found by Dahlke. However, 2.3 m/s

is small enough to conclude that a heteroclinic connection was found. Finding the

heteroclinic connection here did not require an initial guess.

Table 12. Results Comparison

Pseudospectral Method GA

∆V 0.8677 m/s 2.309 m/s

TOF 22 days 23.062 days

The test was repeated to find a heteroclinic connection between an L1 Lyapunov

orbit and an L2 Lyapunov orbit with matching Jacobi Constants. The L1 and L2

Lyapunov orbits used here are the ones defined in Chapter 3 for the Lagrange to GEO

transfer. The transfer was accomplished with 0.848 m/s of ∆V , and the transfer path

is shown in Figure 20.
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Figure 20. L1 to L2 Lyapunov Heteroclinic Connection; starting/ending periodic orbits
are drawn in black, unstable mainfolds are drawn in blue, and the TPBVP solutions
are drawn in green.

4.2 Results

4.2.1 Genetic Algorithm Settings.

Each generation of the genetic algorithm had a population size of 200, and each

test used 50 generations. Fifty generations converged to a Pareto front, more gener-

ations did not improve the Pareto front by a significant amount. The gamultiobj()

genetic operator settings were not altered from their default values. Figure 21 shows

the generations progressing to the Pareto front, and illustrates the diminished returns

past 50 generations. The problem being solved in Figure 21 is the transfer from the

L1 Lyapunov orbit to geosynchronous orbit.
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Figure 21. L1 Lyapunov Orbit to GEO Pareto Evolution

For multimodal problems, an adequately large population size is important for

finding solutions [34]. The population size was originally set to 50 but later increased

to 200 with better results. The run time for the genetic algorithm to complete was

long. The evaluation of each individual required the evaluation of a two point bound-

ary value problem with fmincon(). Genetic algorithms lend themselves to parallel

computing because each individual in a generation can be evaluated independently

of the others (that is, parallel computation may further decrease the computation

time). The type of problem being solved also affected run time. When the problem

had Sun-exclusion zone constraints imposed, this typically increased run time. Run

time increased when the problem involved a transfer through chaotic regions (that is,

areas where small changes produce large effects over time). An L2 to GEO transfer

with Sun-exclusion zone constraints would take 24+ hours running in parallel. An

L1 to L2 transfer with no Sun-exclusion zone constraints would take around 2 hours.
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4.2.2 Test 1: Lyapunov Orbit to GEO Transfer, No SEZ Constraints.

Test 1 was concerned with finding the Pareto optimal solutions for a transfer from

the L1 and L2 Lypaunov orbits to geosynchronous orbit. This test serves as a baseline

comparison for Tests 2-7 when additional constraints are enforced. Shown below are

the Pareto fronts produced in Test 1, as well as some sample transfers and additional

plots to illustrate some of the characteristics of the solutions. Figure 22 shows the

Test 1 results for both the L1 and L2 case.

Figure 22. L1 and L2 Lyapunov Orbit to GEO Transfer

The L1 Lyapunov to GEO case will be looked at closer. Figure 23 shows the

Pareto front for the L1 Lyapunov to GEO transfer, with specific solutions highlighted

in green, yellow, and red. These specific solutions from the Pareto front are shown in

Figures 24-26.
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Figure 23. Pareto Front for L1 to GEO Transfer, Plotted Transfers shown in Green,
Yellow, and Red

Figure 24. Green Transfer from Pareto Front in Figure 23; starting/ending periodic
orbits are drawn in black, unstable mainfolds are drawn in blue, and the TPBVP
solutions are drawn in green.
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Figure 25. Yellow Transfer from Pareto Front in Figure 23; starting/ending periodic
orbits are drawn in black, unstable mainfolds are drawn in blue, and the TPBVP
solutions are drawn in green.

Figure 26. Red Transfer from Pareto Front in Figure 23; starting/ending periodic orbits
are drawn in black, unstable mainfolds are drawn in blue, and the TPBVP solutions
are drawn in green.
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The invariant manifolds are used for transfers with longer time of flight and lower

∆V . Figure 27 shows the time spent on the invariant unstable manifold vs. the total

∆V . As is expected, the lower ∆V trajectories are those associated with longer times

on the unstable manifold. The near vertical line in Figure 27 indicates that the low

time of flight solutions spent significantly less time on the unstable manifold.

Figure 27. Total ∆V vs. Time on the Unstable Manifold

Figure 28 shows the relationship between the Pareto front and the location of

insertion into Geosynchronous orbit, in the CR3BP frame.
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Figure 28. Comparing the Pareto Solutions to the Injection Point into Geosynchronous
Orbit

4.2.3 Test 2-5: Lyapunov Orbit to GEO Transfer, SEZ Constraints.

In Test 2-5 the Sun-exclusion zone constraint is imposed. This constraint required

that the transfer only spend a limited amount of time outside of the defined Sun-

exclusion zone. This limited time ranged from 0 hours to 10 hours (0.096 in nondim

time). The Pareto front solutions with this constraint are shown in Figures 29 and

30. The Pareto front without a Sun-exclusion zone constraint is also included to give

a baseline comparison.
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Figure 29. L1 to GEO Transfer

Figure 30. L2 to GEO Transfer

The Pareto front sees a vertical shift with the more strict constraints, as is ex-
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pected. Interestingly, the least restrictive constraint (10 hours) has solutions that lie

along the unconstrained Pareto front. Although the 10-hour case had access to some

of the original Pareto front, it did not have access to the longer time of flight/low

∆V solutions. It appears that these longer time of flight solutions were long enough

that they could not remain in the Sun-exclusion zone for the duration of their trans-

fer. As more restrictive constraints are imposed (decreasing the time allowed outside

the SEZ), the Pareto front branches off of the baseline Pareto front. Eventually, as

with the zero hour case, the problem is constrained enough that its Pareto front is

completely removed from the baseline Pareto front.
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(a) ∆V Comparisons

(b) ∆V Percentage Increase Over No SEZ Constraint Case

Figure 31. Min-Fuel Comparisons with Sun-Exclusion Zone Constraints

Figure 31 shows the trade off between time spent outside of the SEZ and ∆V .

Without any Sun-exclusion zone constraints the transfer cost from L1 and L2 to GEO
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is about 1.25 km/s. This more than doubles if the constraint to remain inside the

SEZ is imposed. However, if the constraint is only to spend most of the time inside

the SEZ, this could be done with a reasonable ∆V cost increase. Since a satellite in

GEO only spends 6 hours in the SEZ, it is inevitable the satellite will be outside of

the SEZ soon after it arives in GEO.

The minimum fuel transfer for an L2 Lyapunov orbit to GEO transfer while re-

maining inside of the SEZ is shown in Figure 32a. The SEZ when the satellite departs

the Lyapunov orbit is shown by the green cone. The SEZ when the satellite arrives

at GEO is shown in red. For comparison, a transfer with no SEZ constraint and a

similar time of flight is shown in Figure 32b. This illustrates how the SEZ constraint

is altering the transfer path.

(a) Min-fuel Transfer With 0 hours
Outside SEZ

(b) Comparible TOF L2-GEO
Transfer, No SEZ Constraint

Figure 32. Trajectory Comparison With and Without SEZ Constraint

4.2.4 Test 6-7: Lyapunov to GEO Transfer, SEZ Constraints, Limited

Detection Range.

Tests 6-7 considers an L1 and L2 Lyapunov orbit to GEO transfer with a SEZ

constraint and a limited detection range of the optical sensor. In this scenario, the

transfer path is constrained to either a.) remain inside the SEZ b.) remain outside
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the maximum detection range, or c.) both a.) and b.). To define the maximum

detection range the physical properties of the transferring satellite are assumed, and

the optical sensor is given a limiting visual magnitude, shown in Table 10. The

maximum detection range is then dependent on the solar phase angle shown in Eq.

(72).

The results from Tests 6-7 are shown along with the results from Tests 1-5 in

Figures 33 and 34.

Figure 33. L1 Lyapunov-GEO Transfer
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Figure 34. L2 Lyapunov-GEO Transfer

The minimum fuel transfer in Test 7 from L2 to GEO is shown in Figure 35.

Because of the limited range, the solution is able to make use of the unstable manifold.

The solution only needs to be concerned with the SEZ at lower altitudes within the

detection range. The solution uses the SEZ for the end of the transfer.
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Figure 35. L2-GEO Transfer; starting/ending periodic orbits are drawn in black, un-
stable manifolds are drawn in blue, and the TPBVP solutions are drawn in green.

Figure 36 shows the min-fuel transfer ∆V s of all seven test cases. The transfer is

able to be made with a comparable ∆V to the unconstrained transfer case. Remaining

inside of the SEZ to avoid detection by optical sensors may be most effective at lower

altitudes, while at higher altitudes a satellite can avoid detection based on an optical

sensor maximum detection range.
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(a) ∆V Comparisons

(b) ∆V Percentage Increase Over No SEZ Constraint Case

Figure 36. Min-fuel Comparisons with Sun-Exclusion Zone Constraints, Limited Range
Included
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4.3 Summary

This chapter demonstrated the genetic algorithm–direct method hybridization was

able to find transfer solutions in the CR3BP. The hybridization was also shown to be

capable of handling Sun-exclusion zone constraints.

Remaining inside the SEZ was shown to increase the required ∆V for the transfer

significantly. For the L1 and L2 cases this required a 162% and 232% increase in

∆V , respectively. However, loosening this constraint allowed for lower ∆V transfers.

Additionally, when the properties of the optical sensor and the target satellite were

assumed and a maximum range determined, the transfer could be made more feasible.

The 1 meter diameter sphere in the L1 and L2 cases required a 52% and 81% increase

in ∆V , respectively. Overall, SEZ constraints on cislunar transfers to avoid detection

by optical sensors can be prohibitive in terms of ∆V , but considering that the optical

sensors have limited detection ranges can make the transfer more feasible.
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V. Conclusions and Recommendations

5.1 Summary of Work

The current work evaluated how effectively, in terms of fuel and transfer time, a

satellite could make a transfer from an orbit near the Moon to Earth while remaining

in the Sun-exclusion zone for an optical sensor near the Earth. The research used

a hybridization between a genetic algorithm, MATLAB’s gamultiobj(), and a direct

method, MATLAB’s fmincon(), to find solutions in the Circular Restricted Three

Body Problem. The method found Pareto optimal solutions weighing the objectives

time of flight and ∆V . A satellite would remain unobserved by optical sesnors while

remaining inside of a sensor’s Sun-exclusion zone.

The hybridization technique was used to find heteroclinic connections, demon-

strating the ability to find optimal solutions. The technique was able to find these so-

lutions with considerably low ∆V . Finding these heteroclinic connections did not re-

quire an initial guess, making this method robust for solving problems in the CR3BP.

In the first test, the hybridization technique found Pareto optimal solutions for a

transfer from L1 and L2 Lyapunov orbits to geosynchronous orbit with Sun-exclusion

zone constraints. This scenario created a baseline Pareto front to which the future

tests would be compared. These transfers used the unstable manifolds in the CR3BP

to find low-fuel solutions.

In Tests 2-5, the transfer was constrained to remain inside of a Sun-exclusion

zone. Remaining completely inside of the SEZ considerably increased the total ∆V

in the minimum fuel case. A Moon to Earth transfer is possible while remaining in

the Sun-exclusion zone, but with considerable cost in terms of fuel. For the L1 and

L2 cases it caused a 162% and 232% increase in ∆V , respectively. This much of an

increase in ∆V makes the transfers much less desirable.
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In Tests 6 and 7, the transfer was constrained to remain inside of the SEZ, or

remain outside of a defined maximum detection range of the optical sensor. This

made the transfer solutions cheaper in terms of ∆V . For the L1 and L2 cases for a 1

meter diameter sphere, a 52% and 81% increase in ∆V was required, respectively.

5.2 Contributions

In Chapter 1 the following research questions were asked:

1. Can a genetic algorithm–direct method generate transfers from L1 and L2 Lya-

punov orbits to geosynchronous orbit while optimizing fuel and time of flight?

2. What is the feasibility of making transfers from L1 and L2 Lyapunov orbits

to GEO while enforcing a constraint that the transfer must remain inside of a

Sun-exclusion zone?

For the first question, the hybridization demonstrated it was able to solve for transfers

from L1 and L2 Lyapunov orbits to GEO while optimizing fuel and time of flight.

Pareto fronts were generated to show the trade space between the objectives in Section

4.2.2.

The hybridization was shown to effectively solve for transfers starting at L1 and L2

Lyapunov orbits and ending at geosynchonous orbit while handling Sun-exclusion zone

constraints, shown in Section 4.2.3. Remaining inside of a SEZ during the transfer was

shown to significantly increase the ∆V for the min-fuel transfer case. Relaxing the

constraint made the transfers more feasible, shown in Section 4.2.4. When considering

that the optical sensors have a maximum detection range, the transfer was shown to

be more feasible in terms of fuel. To answer the second research question, the transfer

with SEZ constraints is possible, but would require a large increase in ∆V . However,

when considering a maximum detection range of the optical sensor, the transfer can
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be made with a smaller ∆V budget. The cost in terms of ∆V over the unconstrained

case is shown in Figure 36. All optical sensors will suffer from a Sun-exclusion zone.

Optical sensors have significant periods where they are unable to observe satellites in

geosynchronous orbit due to the SEZ. Along the same line, optical sensors are limited

in their ability to observe certain cislunar trajectories. The current research provides a

methodology for creating optimal cislunar trajectories with SEZ constraints enforced,

and provides insight into the limitation of near-Earth optical sensors to detect cislunar

trajectories.

5.3 Future Work

Future work could include:

• Future tests can include continuous thrust instead of impulsive thrust. Con-

tinuous thrust would enable active control during the entire transfer to satisfy

constraints. Continuous thrust transfers could offer lower ∆V solutions.

• The spatial, instead of the planar, circular restricted three body problem could

be considered. Instead of targeting geosynchronous orbit, the target orbit could

be geostationary orbit.

• The solutions recreated in a higher fidelity ephemeris model. This would serve

to check if the trajectories hold up with the additional perturbations and the

removal of CR3BP assumptions.

• Additional optical observers can be added to the problem. Additional observers

create independent Sun-exclusion zones. For the observation system consisting

of several sensors, the Sun-exclusion zone would be the overlapping region of

all sensors included. Instead of considering just one observer near the Earth,
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observers at higher altitudes like GEO or at a Lagrange point could be consid-

ered.
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