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1.0 OVERVIEW

The U.S. Air Force (AF) uses the Specialty Knowledge Test (SKT) and Promotion Fitness 
Examination (PFE) as part of its Weighted Airman Promotion System (WAPS). These tests are 
presently administered once per year for pay grades E-5 (Staff Sergeant) and E-6 (Technical 
Sergeant). Because candidates for promotion who are not selected during their first year of 
eligibility can test again as long as they remain eligible for the targeted higher rank (a period of 5 
to 8 years), Airmen have the opportunity to complete the SKT or PFE on multiple occasions. 
Thus, promotion candidates could complete the SKT for E-6 as many as four to seven times. 
This leads to the likelihood that candidates will see some of the same test items upon re-
administration. Elevated item exposure raises questions about the potential for test compromise 
for later test administrations provided to a given candidate.

To help address AF concerns regarding the effects of item exposure on WAPS test performance, 
HumRRO examined the testing literature concerning item exposure, test compromise, forensics 
to detect item/test compromise, and test security in general. These topics are discussed in three 
sections:

Test Security, Item Exposure, and Test Compromise;

Test Forensics; and

Recommendations.
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2.0 TEST SECURITY, ITEM EXPOSURE, AND TEST COMPROMISE

Test security matters because it safeguards test validity, ensures test fairness, and limits test 
compromise (Ferrara, 2017). Failures in test security create several costs to organizations:

reduction in test validity, which reduces the quality of employees hired and promoted;

replacement of compromised test items; 

reduction in the perceived fairness of the selection/promotion system, which makes it 
more difficult to recruit qualified employees and reduces morale among current staff; and

risk of litigation.

To minimize these costs, sound test security policies and procedures should be developed and 
adhered to in all phases of test development and administration. Test security can be 
compromised in several ways:

Examinees discover test content before the exam. This is called pre-knowledge.

During the exam, examinees communicate with people or refer to cheat sheets or similar 
aids. Examples of communication include copying answers and receiving text messages.

Although it is not really a breach in test security, examinees can also benefit by remembering 
items they took during a previous test administration. After taking the exam, they can write down 
the content they remember and study that content prior to retaking the test in the future. This can 
reduce validity when examinees are exposed to some of the same items on multiple test 
administrations. This can occur when examinees retake an exam using the same test form (or 
overlapping test forms), or when the test forms for different promotion levels share items.

2.1 Best Practices for Prevention of Test Compromise

As mentioned above, one form of test compromise involves pre-knowledge—that is, examinees 
discovering some test content before the test administration. Pre-knowledge can occur in several 
ways:

During test development, items are leaked (either purposely or inadvertently) by item 
writers or reviewers. 

Testing staff members leak items (either purposely or inadvertently).

Electronic files or e-mails containing items are obtained by unauthorized persons. 

Previous examinees tell some future examinees about the test content they remember. 
These future examinees can then pass the content along to other future examinees.

Some items on the current test were also on a previous test taken by the examinee.

People who sell stolen test content hire examinees to memorize or copy (e.g., secretly 
taking pictures of the items) test items. This is called item harvesting.

Preventative measures can be taken to reduce the risk of such test compromise. Regardless of the 
organization and the test, many of the best practices concerning methods to prevent pre-
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knowledge from occurring in the first place remain the same. The best practices outlined below 
reflect general principles of test security and standards that are applicable across many testing 
settings. 

During test development, it is important to explain security risks and procedures to test 
contributors (e.g., test developers, SME’s) (Wollack & Fremer, 2013). Here is a list of best 
practices:

Official letters remind test contributors about security concerns and that they must not be 
involved with test preparation—formally or informally. 

Confidentiality agreements require that test contributors refrain from discussing test 
content, have no conflict of interest, and not take the exam within 18 months. 

Security reminders are used to remind test contributors that they (a) must receive any 
shipments of exam materials in person, (b) package exam materials separate from other 
materials and be labeled “confidential,” (c) lock up secure paper exam materials when not 
in use, and (d) delete or shred exam materials when the materials are no longer needed. 

Formalized security training is provided for test contributors and/or contributors are 
asked to take a written security pledge. Security training and security pledges are not 
often implemented but would have little downside. 

Examinees tend to share information with each other before and after a test administration. Best 
practices limit item exposure due to examinees sharing information (Wollack & Fremer, 2013). 
These practices are as follows:

Test administrators clearly convey to examinees that test content is copyright-protected 
so exam users know there are legal repercussions for sharing materials after the test.

Test developers become familiar with all websites designed for exchange of test 
information among likely examinees.

Test developers are prepared to immediately email a “cease and desist” letter (prepared in 
advance) to hosts of online posts who reveal too much content about the test. 

Finally, to prevent instances of test compromise, organizations can conduct a test security audit 
(Olson & Fremer, 2013). The audit should be conducted under the following specifications: 

Conduct the audit using expert staff from outside the organization, such as (a) a
consultant specializing in test security or (b) the organization’s test development and/or 
delivery vendors.

Use staff with firsthand knowledge of the organization’s testing policies and practices.

Use formal test security standards to help guide the audit.

Identify security vulnerabilities as well as recommendations for dealing with the 
identified vulnerabilities.
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2.2 Impact of Test Construction on Test Security

During test construction, there are multiple decisions that affect the level of item exposure and 
overall test security. These decisions include the size and management of item pools, the 
construction of test forms, and the type of items chosen for the test. One key decision is whether 
to use traditional paper-and-pencil testing or computer-based testing (CBT). Paper-and-pencil 
testing has the added security risk of exposing the content to additional people during printing, 
distributing, and proctoring. In paper-and-pencil testing, having many test forms and long tests 
makes the test more resistant to cheating, but some types of CBT such as computerized adaptive 
testing (CAT) and randomized item sequencing (on the fly) are more resistant to cheating than 
are paper-and-pencil tests (Guo, Tay, & Drasgow, 2009). The use of paper-and-pencil vs. CBT 
formats will affect subsequent decisions that can be made regarding test security. The same 
principles of test security apply to paper-and-pencil tests and CBT, but they are implemented 
using different methods due to the limited nature of paper-and-pencil tests. CBT offers more 
freedom with regard to decisions about test security relative to paper-and-pencil tests. Most of 
the strategies discussed below (regarding item pools, the construction of test forms, and item 
types) are impossible or difficult to implement using paper-and-pencil testing.

According to test standards stipulated by Caveon Test Security (Olsen & Fremer, 2013), tests 
should be designed to “discourage memorization and sharing and make common methods of 
cheating less effective. They should limit item exposure, thereby prolonging the usefulness of 
test items and test results” (p. 59). This can be done by using a variety of methods and following 
various rules of thumb. With regard to the item pool, the minimum item pool size is affected by 
factors such as the length of the testing window, the number of administrations per year, and the 
number of examinees per window. Under the best of circumstances (e.g., administered one day 
per year, small candidate volume, one test form per administration), item pools should, at a 
minimum, contain twice the number of items that are currently in the operational test form 
(Wollack & Fremer, 2013). Rules about the size of item pools also vary by test type. For 
example, for a CAT, it is recommended to have item pools that are 8 to 10 times as large as the 
tests (Mills & Stocking, 1996). More items in the overall item pool reduce the risk of test 
compromise by limiting item exposure (particularly when item exposure algorithms are 
employed to ensure equal exposure of items throughout the pool). 

Item pools also should be strategically managed to reduce item exposure and the risk of test 
compromise. One such strategy is to give items periodic “vacations” from operational test forms 
and shuffle item pools unpredictably to substantially increase the number of exposed items that 
an examinee would have to memorize to gain an advantage (Mills, Potenza, Fremer, & Ward, 
2005). Another strategy for item pool management, especially with large item pools, is to break 
up the item pools into more manageable subsections (Mills & Stocking, 1996). Separate 
subdivisions of item pools would decrease the amount of item exposure that a single security 
break could impose. 

Randomizing item order within a given test form is another way to enhance test security. If items 
are presented in a different order to every examinee, it will be more difficult for examinees to 
communicate the correct answers, copy each other’s answers, or use a stolen answer key. 
Randomizing item order would also make it more difficult for an examinee to recall correct 
answers on the test. If test items retain the same order, then at a later retesting date the examinee 
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may have greater recall of the test items if they cue one another in memory. An advanced form 
of item randomization is called linear on-the-fly-testing (LOFT). LOFT generates randomized 
equivalent test forms by randomly selecting the item to be presented to the examinee from the 
total item pool (Gibson & Weiner, 1998). LOFT further increases the security of the test by 
giving each examinee a unique test form. LOFT is a compromise between multiple fixed forms 
testing and computerized adaptive testing (CAT), and it can be implemented using statistical 
equating through Item Response Theory (IRT) statistics or Classical Test Theory (CCT) 
statistics. LOFT is preferred over CAT when the test must have a specific number of items in 
each topic area (or in other item characteristic categories such as cognitive level). 

Some testing programs use automated item generation to generate test items during test 
development or even during a test administration. The use of computer technology that 
automatically generates item variants from a parent item enhances test security (Bennet, 1999). 
Item cloning takes advantage of this approach. Item cloning is used to create items that mirror 
each other on item statistics and the construct assessed but differ slightly in the actual wording or 
content of the item. “Parent items”—also known as “item forms,” “item templates,” or “item 
shells” —are created along with algorithms to derive families of clones (Osburn, 1968). 
Computer algorithms determine the item content based on substitution sets governed by rules. 
For instance, replacement-set procedures can pick distractors randomly from a list of possible 
wrong answers or substitute random elements in open places in the stem of the item and adjust 
the alternatives accordingly. Item clones created from parent items should be created with 
substitution sets that artificially differ in content but do not substantively change the meaning of 
the construct the item assesses. Upon retesting with item cloning, an examinee would be less 
likely to recognize that two items are assessing identical content, prolonging the shelf life of the 
items and reducing the rate of item exposure. Clearly, automated item generation is much more 
appropriate for some types of tests (e.g., arithmetic) than others (e.g., reading comprehension). 

Discrete Option Multiple Choice (DOMC) items also decrease the rate of item exposure by 
changing the way that the examinee is presented with the item. With DOMC items, examinees 
are presented with each item response option one at a time and must assess whether the response 
option is correct or incorrect independently of other response options. The option that is 
presented to an examinee is chosen at random by an algorithm. Response options will no longer 
continue being presented to examinees for a given item if the examinee provides either (a) the 
incorrect answer for a distractor or (b) the correct or incorrect answer for the keyed response. For 
example, consider an examinee presented with a sample item that has four response options (A, 
B, C, and D) where option C is keyed as the correct answer. The computer randomly chooses 
option B for presentation to the examinee with the stem. If the examinee indicates (incorrectly) 
that option B is the right answer, then the entire item is scored as incorrect for the examinee, and 
they are not presented with any more response options for that particular item. If the examinee 
indicates (correctly) that option B is not the correct answer, the computer would randomly select 
one of the three other response options (A, C, or D) to present to that examinee. Suppose the 
computer next selects option C to present to the examinee, and the examinee (correctly) indicates 
that this is the right answer. Then the entire item is scored as correct, and the examinee moves on 
to the next item. If the examinee (incorrectly) indicates that option C is not the right answer, then 
the item is scored as incorrect and the examinee moves on to the next item. Using this approach,
not every examinee will see all the response options for every question, thus limiting the test 
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content that is exposed. DOMC items are a relatively new innovation in testing (Foster & Miller, 
2009), but initial research indicates they may reduce the impact of test-wiseness, which is the 
ability to find subtle cues towards the solution by the simultaneous comparison of available 
response options (Willing, Ostapczuk, & Musch, 2015). However, there are some disadvantages 
to DOMC items, because different examinees see different versions of each item. As a result, the 
item’s difficulty differs for different examinees, and an item might measure different things for 
different examinees.

2.3 Effects of Retesting on Validity and Subgroup Performance

Several issues arise when retesting in operational employment settings. First, there is the issue of 
the validity of retest scores and whether they are as valid as scores from the initial 
administration. Are score gains in retesting due largely to construct-irrelevant factors such as 
increased test-wiseness, coaching, or pre-knowledge of some items? A second issue with 
retesting concerns differences in subgroup performance on retests. Offering multiple retesting 
opportunities may level the playing field for some subgroups that might be at a disadvantage in 
terms of test-wiseness or test anxiety. Conversely, retesting opportunities could exacerbate 
existing subgroup differences in test performance. 

Research has demonstrated that retest scores for job knowledge tests are more valid than initial 
tests (Lievens, Buyse, & Sackett, 2005; Van Iddekinge, Morgeson, Schleicher, & Campion, 
2011). Of particular relevance to the AF, retesting did in fact enhance criterion-related validity 
for job knowledge tests. That is, the scores on the retest were slightly better predictors than the 
scores on the initial test. These effects of retest gains in validity for job knowledge tests have 
also been shown to generalize to real-world employment settings (Van Iddekinge et al., 2011). In 
addition to retest scores on job knowledge tests being better predictors of performance than 
initial scores, retest scores are typically higher than initial test scores. 

Gains in test scores are not necessarily equivalent across subgroups, however. Research has 
investigated how retesting affects subgroup performance (Randall, Villado, & Zimmer, 2016; 
Schleicher, Van Iddekinge, Morgeson, & Campion, 2010; Van Iddekinge et al., 2011). 
Schleicher et al. (2010) investigated the effects of retesting and differences in subgroup 
performance, including Black-White differences, White-Hispanic differences, White-Asian 
differences, Gender differences, and Age differences. They also looked at how these results may 
vary across different test types, including verbal ability tests, job knowledge tests, biodata tests, 
interviews, a leaderless group exercise, and a case analysis exercise. When comparing relative 
score gains among subgroups, they found that Whites’ test scores improved more than Blacks’ or 
Hispanics’ test scores. Whites improved more than Hispanics and Blacks on what were classified 
as written tests: job knowledge (White d = 0.21, Hispanic d = 0.10, Black d = 0.08), biodata 
(White d = 0.37, Hispanic d = 0.22, Black d = 0.17), and verbal ability (White d = 0.12, Hispanic 
d = 0.06, Black d = 0.04).1 No retest differences by race were found for performance-based tests 
(i.e., interviews, a leaderless group exercise, and a case analysis exercise). In addition, women 
and applicants under 40 years of age showed larger improvements with retesting than did men 

1 The d statistic is Cohen’s d – the standardized mean difference between test scores from a reference group (say, 
Whites or Males) and a focal group (say, Blacks or Females). The difference is expressed in units based on the 
standard deviation as calculated on either the reference group or the entire sample (i.e., a pooled standard deviation).
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and applicants over 40. Subsequent investigations assessed the effects of retesting on validity and 
subgroup differences, specifically in a job knowledge context (Van Iddekinge et al., 2011). 
Consistent with other research, evidence was found that retesting may reduce the likelihood of 
adverse impact against some subgroups (e.g., female candidates) but increase the likelihood of 
adverse impact against other subgroups (e.g., older candidates).

Investigating how subgroup differences among retest scores may contribute to adverse impact, 
Randall et al. (2016) contended that even though some groups (e.g., whites and women) may 
have greater score gains than others, the general increase in scores and the increase in validity of
retests may play a role in decreasing adverse impact. This could occur if score increases result in 
a higher number of applicants from protected groups meeting established cutoff scores. 
Therefore, although some groups may outperform others on retests, even the groups being 
outperformed still have score gains that could decrease the rate of adverse impact if the score 
gains result in higher rates of applicants being promoted or selected. However, if the number of 
applicants who are ultimately selected does not change regardless of score gains due to retesting, 
(e.g., rank order selection) then adverse impact will not be ameliorated. Green and McCloy 
(2018) provide a recent review of best practices regarding testing policy.

2.4 Test Security in Police and Fire Departments

In police settings, it is common for promotion testing to be performed with only one testing 
window, so as to limit the amount of information-sharing that occurs after the test. We are 
unaware of instances in police promotion testing where the test is completed more than once by 
any eligible candidates, unless there are extreme extenuating circumstances that would warrant a 
retest. Indeed, we are aware of no other setting where candidates take the same promotion test 
multiple times throughout their career to be promoted to different pay grades. However, we 
investigated how police and fire departments have dealt with test security issues and present 
these examples below. 

2.4.1 The Los Angeles Sheriff’s Department

The Los Angeles Sheriff’s Department uses a paper-and-pencil test with one test administration 
period. They use one testing window to prevent items from being exposed to other candidates 
after the administration. The paper-and-pencil testing precludes them from using CAT, because 
they test 1,500 candidates at a time and do not have a testing facility that could accommodate 
1,500 CATs at one time. 

To improve their test security, the Los Angeles Sheriff’s Department implemented a stand-alone 
server which is accessible only to the test developers. Since the Department implemented this 
server, the mean score for their promotion test has fallen 1.5 to 2.0 standard deviations and has 
remained at that level. Before this change, they often had one or two candidates earning a close 
to perfect score; now, no one scores higher than in the low 90% range. Additional controls were 
implemented to prevent dissemination of test material. 
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2.4.2 Jefferson County Fire Department

The Jefferson County (Alabama) Fire Department discovered that a small group of SMEs was 
leaking content for their promotional exam, even though they had security measures in place. 
They subsequently made changes to their test development and test administration procedures to 
enhance test security. During test development, the Department began (a) to use out-of-state 
SMEs rather than local SMEs, (b) to question SMEs about their relationships with local fire 
personnel, (c) to inform SMEs of prior cheating issues and require them to sign a confidentiality 
agreement, and (d) not to disclose the test development efforts to the local fire departments. They 
also made changes to test administration procedures, which included confiscating cell phones 
during testing, assigning testing rooms and seating, and not allowing any outside non-fire 
materials to be brought into testing. They found that the new procedures and controls did not 
result in adverse impact against any group, and test scores declined. 
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3.0 TEST FORENSICS

Test compromise and fraud are major concerns for organizations. Each year, millions of dollars 
are spent on test development (Chingos, 2012; Meinert, 2015). When cheating occurs, or items 
become compromised, a burden is placed on the organization to respond to these test integrity 
concerns, which in turn requires additional time, money, and resources (O’Leary & Smith, 
2017). But the expense of developing tests is not the only reason cheating is an issue. Test 
compromise undermines the validity of the assessments (Cizek & Wollack, 2017). Test scores 
are used to determine that examinees have obtained a certain level of proficiency in the area 
being tested. In the presence of cheating or item compromise, we can no longer be confident in 
the conclusions drawn from these scores. This is especially troublesome when important 
outcomes like job promotion are affected by test performance. 

To support the validity of inferences made from test scores, many organizations incorporate 
cheating detection methods into their testing programs. The forensic tools and practices available 
can be categorized into five distinct types of methods that function to detect the following: 
(a) answer copying between pairs of examinees, (b) aberrant responding, (c) examinees who had 
pre-knowledge of the item content (usually due to item compromise), (d) unusual answer-
changing behavior, and (e) unusual gains in scores between two testing periods (Cizek & 
Wollack, 2017; Kingston & Clark, 2014). In most situations, statistical methods and practices 
provide evidence rather than conclusive proof of test fraud. They are tools that assign a 
probability that cheating occurred and can offer reasoned conclusions based on statistical 
evidence (Cizek & Wollack, 2017). Cheating by a group (e.g., an entire school) is easier to detect 
than cheating by a single person. Researchers disagree whether statistical evidence alone is 
sufficient to conclusively prove that an individual has cheated. Organizations typically ask an 
individual to retest, under greater scrutiny using an uncompromised test form, when there is 
statistical evidence of cheating. 

3.1 Answer Copying

A standard practice to detect test fraud is to examine response data for evidence of answer 
copying. To detect answer copying, it is important to understand what response behavior looks 
like in the absence of answer copying. It is expected that, to some extent, examinees who share 
similar experiences (e.g., received the same training, had the same instructors) would also have a 
similar understanding of the test material and that this common understanding might manifest in 
their responses to exam items (Allen, 2014). Accordingly, a baseline needs to be established for 
similarity in response patterns so that those who have similar responses because of non-
independent test-taking behavior can be distinguished from those who have similar responses for 
reasons unrelated to test fraud. 

Response similarity indices are the quantitative tools used by organizations to detect these true 
instances of answer copying. They are used to evaluate the probability of agreement between the 
response vectors for two examinees given the assumption that the examinees were taking the 
exam independently (Zopluoglu, 2017). Generally, response similarity indices vary in two 
primary ways: (a) their definition of agreement between two response vectors, and (b) the 
statistical distributions they depend on to evaluate what is considered anomalous response 
behavior. 
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Agreement between response vectors can be defined as matching incorrect responses between 
examinees. Indices like the K index and a few of its variants (i.e., K1, K2, S1) endorse this 
definition (Zopluoglu, 2016). Approaches 2 consider agreement between 
vectors in terms of matching both incorrect and correct responses. In addition, some indices take 
into account all responses and consider matching responses to imply copying and non-matching 
responses to imply the absence of copying (Zopluoglu, 2017). 

Response similarity indices can also be differentiated by the distributions on which they are 
based. Some indices are based on empirical null distributions (i.e., the distribution when there is 
no copying), whereas others rely on already established statistical reference (i.e., theoretical) null 
distributions (e.g., normal, binomial; Zopluoglu, 2017). To create an empirical null distribution 
for the number of shared responses between two examinees, an organization matches examinees 
on a third variable (e.g., geographical location, test site) so that the data reflect pairs of 
examinees for which answer copying is not possible. Creating this empirical null distribution 
requires access to a large dataset so that the probabilities of response matches can be estimated 
accurately (Sotaridona, Wibowo, & Hendrawan, 2014). When an empirical distribution is used, 
confidence in the results is increased when a method based on a theoretical distribution finds 
similar results. 

After a null distribution is developed, goodness-of-fit analyses must be conducted to ensure that 
an index’s statistical assumptions have been met (Sotaridona et al., 2014). Methods based on an 
empirical null distribution are too cumbersome for some testing programs because of the 
additional analyses required. With WAPS, for example, several empirical null distributions 
would have to be developed. Because matched responses between examinees will likely vary 
depending on the test items used, abilities of the examinees, and myriad other variables, a 
distribution would not be able to be used interchangeably across different test forms, job 
functions, or administration times. A separate distribution must be created for each specific 
testing instance (Zopluoglu, 2017). For these reasons, this approach has not received much 
attention in the literature. Accordingly, we do not see it as a useful approach for the WAPS 
testing program. 

As mentioned above, an alternative to developing an empirical null distribution is to use 
response similarity indices that are based on existing reference statistical distributions 
(Zopluoglu, 2017). To evaluate the performance of these indices, the Type I error rate and 
statistical power should be considered. With response similarity indices, Type I error rate is 
defined as the proportion of honest examinee pairs who are incorrectly identified as copiers (i.e., 
false positives), whereas power is defined as the proportion of copying examinee pairs who are 
correctly identified as copiers (i.e., true positives). Most response similarity indices perform 
sufficiently well and have empirical Type I error rates below the theoretical level for both 
dichotomous (e.g., multiple-choice) and nominal response (e.g., 1-5 rating scale) outcomes. 

error rate as indicated by the empirical Type I error rates being closest to the nominal (i.e., true) 
levels (Zopluoglu, 2017). With respect to statistical power, the
for correctly detecting examinee pairs who copied. Other methods like the K index and GBT 
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index have relatively low empirical Type I error rates, but their conservative nature comes at the 
expense of power, leading to poore

observed agreement of both incorrect and correct responses between two examinees to the 
expected agr
derived from item parameters based on the nominal response model (Bock, 1972)2 of item 
response theory (IRT). This model is used to estimate the expected values (i.e., probability of 
endorsement) of each alternative response while taking into account the ability of each examinee 
in a pair of examinees (Sunbul & Yormaz, 2018). However, this model requires creating and 
using an option matrix that can be difficult to manage. Therefore, many organizations use 
dichotomous IRT models like the 1-parameter, 2-parameter, 3-parameter, and Rasch models 

oy, it 
may not be worth the effort to use them if answer copying is not a concern for the AF. The AF 
Instruction (AFI) 36-2605 lists specific requirements for test facilities. For example, the facility 
should have a minimum space of 15 square feet per examinee. This, combined with the 
requirement that the test facility be setup in a way that ensures the test examiner can see and hear 
examinees at all times, suggests that necessary measures have been taken to discourage answer 
copying. Assuming these guidelines are adhered to, it seems unlikely that answer copying would 
be a widespread issue for the WAPS testing program unless examinees communicate via mobile 

Appendix A.

3.2 Aberrant Responding

Another forensic approach involves detection of aberrant responding. For example, it is normal 
for an examinee to do better on easy items than on hard items. If an examinee does just as well 
(or better) on many of the hard items as on the easy ones, that is evidence for some type of 
cheating, such as getting some of the test content ahead of time. Aberrant responding can also 
occur when test items are field tested using non-candidates who have little or no reward for 
doing well on the test. In that case, some candidates can become unmotivated during the exam 
and start responding randomly or carelessly. Aberrant responding is an issue because 
organizations want to be confident that a test is reliable and valid in assessing examinees’ ability 
on the construct being measured. The presence of irregular response patterns is a potential 
indicator of test fraud; it undermines the credibility of the test (Cizek & Wollack, 2017) and 
leads to some unqualified candidates being hired, promoted, etc. 

Many organizations use person-fit indices as a method of detection. Unlike response similarity 
indices, which compare the response patterns of two examinees, person-fit indices compare an 
examinee’s response vector to the response patterns of other examinees under a statistical model 
of interest (Zopluoglu, 2017). For example, an examinee should tend to do much better on the 

2 The nominal response model is a polytomous IRT model that is an extension of the 2PL IRT (2-parameter logistic 
item response theory) model. A nominal test item contains unordered categorical options. 
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easier items. If an examinee’s responding deviates from what is expected under the model, it is 
flagged for further review. 

There are two types of person-fit indices: parametric and non-parametric. The former identifies 
when an examinee’s responding is inconsistent with the response pattern expected from an IRT 
model. Examples of parametric person-fit indices include the lz index, the lz* index, and 
Cumulative Sum (CUSUM). Non-parametric person-fit indices derive expected responses using 
classical test theory or Guttman scales (Guttman, 1944). U3 and HT are two commonly used 
nonparametric person-fit indices.

Using person-fit indices to identify aberrant responding has received little attention in the 
literature (Zopluoglu, 2017). This can be attributed to the fact that aberrant response patterns can 
be the result of many factors that are unrelated to test compromise or fraud (e.g., careless 
responding, guessing). Therefore, the usefulness of the information derived from these indices is 
questionable. When person-fit indices are used to flag aberrant responding alone, the lz, lz*, and 
U3 indices tend to flag the same examinees (Kim, Woo, & Dickison, 2017). The main difference 
between these indices is that the first two require IRT parameter estimates, whereas the U3 index 
does not. Despite being variations on the same index, the CUSUM indices (i.e., CUSUM C+ and 
CUSUM C-) tend to flag very different examinees as aberrant. The CUSUM indices tend to be 
more liberal in flagging examinees than other indices. The CUSUM C- index tends to flag 
examinees whose performance is better toward the latter part of the test (i.e., it takes these 
examinees time to “warm up”). Although there are many person-fit indices to choose from, it is 
unclear which performs best because all have been shown to flag only a subset of the examinees 
flagged by test data providers.

Person-fit indices have also been used to detect answer copying but have been criticized for 
being underpowered when used for this purpose (Zopluoglu, 2017). Overall, they perform worse 
than response similarity indices when used to classify honest pairs and copying pairs. D and HT

(Sijtsma, 1986) are two indices that have been shown to perform acceptably. However, the 
effectiveness of person-fit indices can vary depending on the amount of copying that occurs and 
the abilities of the examinee pairs. For example, in one simulation, D had comparable 
performance to response similarity indices when a low-ability examinee copies 40% or 60% of 
items from a high-ability examinee, but at other variations in ability and percentages of items, it 
did not perform as well (Zopluoglu, 2017). In contrast, HT is a bit more stable in its detection 
across conditions and has been found to perform better relative to the other person-fit indices 
(Dimitrov & Smith, 2006). HT is also particularly easy to interpret. The HT statistic ranges from 
0 to 1, with aberrance indicated when HT < .3 (Sijtsma & Meijer, 1992). The formula for 
computing HT can be found in Appendix A.

Because person-fit indices are considered underpowered when used for answer copying, some 
argue that instead of using person-fit indices alone, a combination of person-fit indices and 
response similarity indices should be used in forensic detection (Belov & Armstrong, 2010). 
Specifically, a two-step approach has been recommended: use a (a) person-fit index to flag 
potential copiers (i.e., flag examinees whose response pattern differs from the typical examinee) 
and (b) response-similarity index to identify if agreement between examinees within close 
proximity is unusual. For the WAPS testing program, though, we do not feel that using person-fit 
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indices would be particularly productive. They perform worse than response similarity indices in 
the detection of answer copying and do not yield specific information about the possible cause of 
the aberrance when used for aberrant response detection. As we discuss in subsequent sections, 
other detection methods identify aberrance and provide information that is potentially more 
useful (e.g., aberrant responding that suggest pre-knowledge, aberrant gain scores that suggest 
answer changing post-exam).

3.3 Item Compromise and Pre-Knowledge

Up to this point, we have discussed methods that analyze response patterns for non-independent 
test taking or irregularities. These issues are usually localized to an individual examinee or pair 
of examinees. However, test compromise can also occur because of a more widespread issue, 
such as when many examinees have pre-knowledge of test items. This can be the result of a 
variety of factors, including 

items being overexposed because of continuous testing windows that use the same test 
form, 

instructors sharing items with examinees before the test, 

examinees sharing information about items with other examinees who have not taken the 
test yet, or 

items being fraudulently acquired and posted to a “brain dump” website (Eckerly, 2017).

Pre-knowledge is a serious issue that needs to be addressed. The methods used by organizations 
to detect item pre-knowledge and compromise can be categorized into four distinct approaches 
that have methods to detect suspect individuals, groups, or items. Each method detects one of the 
following: (a) individual examinees who may have had prior knowledge of item content, (b) the 
specific items that may have been compromised, (c) the individual examinees who may have 
benefited from pre-knowledge and the items that may have been compromised, or (d) groups of 
examinees who may have had prior knowledge of item content.

The Deterministic Gated Item Response Theory Model (DGM) and the Scale-Purified 
Deterministic Gated Item Response Theory Model are two approaches that have been used to 
detect individual examinees who may have had pre-knowledge of item content (Eckerly, 2017). 
These methods are employed when an organization is fairly certain that a subset of test items 
have been compromised. This is because the formulas used with these methods require that items 
be specified as either compromised or secure. This information, in conjunction with examinee 
performance and item parameters, is used to classify examinees into two groups: those who 
performed (a) better on the compromised items (i.e., the pre-knowledge examinees), and 
(b) equivalent or better on the secure items. Through simulations, the proportion of the time an 
examinee is assigned to each of the two groups is determined. Examinees who are assigned to 
the pre-knowledge group above a specified proportion of the time are flagged. The primary 
difference between the two methods is that the scale-purified DGM uses a scale-purification 
procedure to reduce biases in the item and person parameter estimates. This adaptation of the 
original DGM decreases the false positive rate (i.e., proportion of examinees incorrectly 
identified as having pre-knowledge) and, under most conditions, increases the true detection 
rates (i.e., proportion of examinees correctly identified as having pre-knowledge). However, the 
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performance of the scale-purified DGM is markedly better than the original DGM only when 
there is a high base rate of examinees benefiting from prior item knowledge. At low base rates, 
the scale-purified DGM performs only marginally better than the original DGM. The equations 
for the DGM and scale-purified DGM can be found in Appendix A.

A concern with using either of these methods is that they rely on the user having accurate 
knowledge of which items have and have not been compromised (Eckerly, 2017). In some cases, 
an organization can be fairly certain that a group of items has been compromised (e.g., the 
organization discovers test content online). However, there might be additional compromised test 
content unbeknownst to the organization. Moreover, it is possible that items may have been 
compromised but not necessarily exposed to a large number of examinees. Therefore, it seems 
unwise to make designations about an item’s state of compromise. Nevertheless, it is our 
understanding that WAPS testing program staff has, or will have, a fairly strong sense of items 
that have been overexposed (e.g., knowledge of how long items have been operational, the 
number of administrations and forms that have used the items, results of the archival data 
analysis) and is aware of brain dump websites (if any) that exist. Therefore, we believe these 
methods are still likely to be worthwhile. 

If either of these methods is used, simulations need to be conducted (Eckerly, 2017). Expected 
false positive rates are sensitive to the number of items that have been identified as 
compromised. Therefore, to correctly interpret and draw conclusions using these detection 
methods, we need to understand what these rates look like in the absence of pre-knowledge. The 
analyses would involve simulating data that reflect conditions under which no compromise has 
occurred but for which the item and person parameters are derived from historical data for the 
exam size. This is necessary to compare the false positive rates under these simulated conditions 
with those that are observed. If the rates between these conditions are similar, it would provide 
support for item flags being errant. If there is a large difference in these rates, it would support 
the idea that items were compromised and would also give an indication of the extent of the 
compromise. 

There are other methods used to identify individuals benefiting from pre-knowledge that are 
simpler and less time-intensive. For example, some organizations use Trojan-horse items to flag 
individuals who have benefited from prior knowledge of the answer key (Eckerly, 2017). This 
particular practice involves miskeying several items on the exam scoring key and relies on the 
principle that if the key is lost or stolen, examinees will put stock in the idea that the key is 
unequivocally correct. For each examinee, the probability that he/she answered a particular 
Trojan-horse item incorrectly given his/her ability (i.e., score on the operational items) is 
estimated. Examinees who were likely to answer the item correctly (given their relatively high 
ability) but got it wrong are flagged. Although this seems like a relatively simple practice to 
employ, it only benefits the organization if the most egregious form of test compromise occurs—
exposure of the answer key. Furthermore, examinees with high ability may recognize when an 
item is miskeyed and respond based on their knowledge of the content being tested instead of 
depending on the key. However, if the analyses and simulations associated with the DGM and 
scale-purified DGM seem a bit overwhelming, this may be a useful alternative.
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More commonly though, knowledge about which items have been compromised is unavailable. 
Fortunately, there are detection methods to identify these specific items. One of the most 
prominent ways is using the method of moving averages to detect changes in an item’s difficulty 
(Han, 2003) over time. The moving-averages method shows how the average p-value for an item 
changes over time for a pre-determined and fixed sample size. This method allows items to be 
flagged soon after they have been compromised because it provides more precise information 
about when the p-value began to change. The underlying idea is that as items become
compromised, they should become easier, and this will manifest in their p-values. A moving 
average is used to smooth out random fluctuations in the average caused by sampling error. The 
formulas for using the method of moving averages can be found in Appendix A.

The method of moving averages relies on the assumption that the distribution of examinee ability 
is stationary over time (Eckerly, 2017). Therefore, it might not be the most appropriate method 
for detecting item compromise for the WAPS testing program. When this assumption is not met, 
the moving averages method performs poorly and is too liberal in flagging items as compromised 
(Han & Hambleton, 2004). Because WAPS examinees are able to take an exam multiple times, it 
is logical to conclude that the distribution of examinee ability will change over time, because 
unsuccessful examinees (i.e., those low in ability) are the ones re-testing during subsequent 
administrations. On the other hand, the moving averages could be limited to first-time 
examinees.

Compared to moving averages of p-values, moving averages of item residuals or of standardized 
item residuals have been shown to perform better in these instances, except when items are 
particularly easy or at low levels of compromise. Similar to DGM and scale-purified DGM, we 
recommend that more research needs to be done with moving averages to identify what the 
distribution of examinee responses might look like in the absence of compromise. Because 
compromise can take a variety of forms (e.g., examinees sharing information about the exam 
content, scoring keys being stolen), it is not easy to specify what this variation in response 
patterns will look like. Therefore, simulations under a variety of conditions need to be conducted 
to better allow for the accurate detection of compromise and to avoid making improper 
conclusions. 

There are also methods for detecting both individual examinees who may have benefited from 
item pre-knowledge and the specific items that were compromised. These approaches use a two-
step process that entails (a) first screening the data for examinees who are likely to have 
benefited from item pre-knowledge and (b) then identifying the specific items that are likely to 
have been compromised. One well-known method involves a combination of Differential Person 
Functioning (DPF) and Differential Item Functioning (DIF; O’Leary & Smith, 2017). With DPF, 
examinee performance on two subsets of items (i.e., operational items and unscored 
experimental pretest items) is compared. Examinees who are aberrant based on their scores to the 
two subsets of items are flagged. For example, examinees who perform particularly well on the 
operational items but do not perform well on the pre-test items would be a cause for concern. 
This method assumes that candidates who had pre-knowledge of the items would likely have a 
higher score on operational items and a lower score on pre-test items, and that the operational 
items were the only items that were compromised. 
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After DPF is used to classify examinees into those likely to have had pre-knowledge and those 
not likely to have pre-knowledge, DIF analysis is conducted (O’Leary & Smith, 2017). The 
intent is to compare the item difficulty measures of those flagged as having pre-knowledge with 
those who were not flagged. Items that were not subject to compromise should be similar in 
difficulty for both groups of examinees, whereas items that were compromised should favor the 
group of pre-knowledge examinees. It is through these analyses that specific items in need of 
being replaced or retired are identified. The benefit of using this approach is that it can be easily 
customized to the Air Force. For example, with DPF, the thresholds used to indicate a 
meaningful difference in performance between operational and pre-test items can be established 
to meet the goals of WAPS. If the aim of the testing program is to enforce the Air Force policy 
directive regarding military testing, it would be advisable to set conservative flagging parameters 
such that only the most extreme cases would be flagged (e.g., examinees who have the largest 
discrepancies between their scores on the operational and pre-test items). Further, the Air Force’s 
budget and resources for item development, ability to replace and retire items, number of test
forms, and status of the item bank could all be considered when deciding the thresholds used for 
flagging suspect items. In the case of limited resources, multiple test forms, and/or a meager item 
bank, the AF could set the DIF thresholds higher so that these constraints are factored in, but 
item exposure concerns are still addressed.

Some organizations look for evidence of pre-knowledge not only through response patterns but 
also through response times (RTs). RT models are used to identify whether an examinee’s RT for 
a test item differs significantly from what the model predicts given the examinee’s overall 
performance and rate of responding. This can be used to pinpoint whether examinees had pre-
knowledge of the items (Kim, Woo, & Dickison, 2017). Examinees who had pre-knowledge of 
items are likely to answer those items more quickly than they would have without the pre-
knowledge (Eckerly, 2017). 

RT models can be applied to both items and examinees. That is, they can be used to flag items 
for which a large number of examinees responded quickly or to flag people who have brief RTs 
for multiple items. Some examples of RT models are the effective response time (ERT) model 
(Meijer & Sotaridona, 2006), the hierarchical framework for response times and item responses 
(van der Linden, 2007), the lognormal RT model (van der Linden, 2006), and the hierarchical 
lognormal RT model (van der Linden & Guo, 2008). 

The ERT model proves to be particularly promising, because it has been cross-validated with 
other methods used for detecting aberrance (Liu, Primoli, & Plackner, 2013). This approach 
involves estimating the ERT (i.e., the time an examinee needs to answer an item correctly) for 
each item so that the effects of item characteristics are removed. Given the definition of ERT, its 
equation includes only examinees who responded to the item correctly and whose probability of 
a correct response on the item is larger than a predetermined value. This effectively eliminates 
guessers when establishing the predicted ERT for each item. The difference between examinees’ 
observed response times and predicted ERTs are then used to flag those who might have had 
item pre-knowledge. The formulas for the ERT model can be found in Appendix A.

Nevertheless, the usefulness of RT models for identifying test compromise remains unclear. 
When the same flagging criterion was used for the ERT model and the hierarchical framework, 
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the results were inconsistent (Kim, Woo, & Dickison, 2017). For ERT, the criterion was too 
liberal (i.e., a large proportion of cases were flagged); for the hierarchical model, it was too 
conservative. Both methods use chi-square tests that involve summing the squares of the 
residuals. This may make it difficult to determine aberrance in a subset of items. When the 
lognormal RT model (van der Linden, 2006) and the hierarchical lognormal RT model (van der 
Linden & Guo, 2008) were used to flag both individuals with pre-knowledge and items that had 
been compromised, these approaches also yielded results that were inconclusive. Both methods 
had only a modest number of flagged items and examinees in common with a licensure 
company’s determination of the compromised items and examinees with pre-knowledge 
(Boughton, Smith, & Ren, 2017). Because more research is needed to determine the 
effectiveness of RT models in CBT, and because many things can contribute to aberrance in RT 
(e.g., poor time management during the exam), we recommend that RT analyses be used only as 
a complement to other detection approaches. 

Finally, there are methods used to detect groups of examinees who may have benefited from pre-
knowledge. With these approaches, examinees are grouped based on a common variable (e.g., 
test center, region, country). Two of the more promising methods include detection of collusion 
using cluster analysis (Wollack & Maynes, 2017) and the divergence algorithm, which stems 
from the Kullback-Leibler divergence statistic (Belov, 2017). The former does not require a 
grouping variable to be specified a priori, whereas the latter does. However, one of the issues 
with using cluster analysis to detect collusion is that the item parameter estimates are less 
accurate because the data set includes contaminated examinees (i.e., individuals who are part of 
the collusion group; Wollack & Maynes, 2017). Although this represents a realistic scenario, it 
inevitably affects the probability of answer matches and would require more examinees to share 
more answer matches in common before being flagged as atypical, resulting in less power. To 
overcome this issue, we would need data from secure test administrations (i.e., no cheating, no 
examinees have pre-knowledge) to estimate the item parameters. It is often the case that we 
cannot be entirely confident that the test data exclude data from examinees who colluded. 
Several methods have been suggested to overcome this limitation and increase power, including 
fitting the model using all examinees and then removing contaminated examinees and re-
estimating the item parameters without them, and analyzing clusters in smaller batches or 
separately by location or by other grouping variables. However, these also bring with them their 
own drawbacks, including additional data work and limited ability to detect collusion across 
groups.

Yet, cluster analysis does not attempt to identify different subsets of compromised items for 
different groups of examinees. In reality, it is very likely that different groups of examinees have 
been exposed to different groups of compromised items. Thus, we believe it is prudent to
consider a method that does address this scenario. The only method that does is the divergence 
algorithm introduced by Belov (2015). This approach has been able to identify compromised 
subsets of items with relatively high precision and performs fairly well at identifying aberrant 
examinees flagged by the test provider. Based off the Kullback-Leibler divergence statistic, it 
measures the similarity of the distributions of compromised and uncompromised items. 
However, a critical step in the algorithm involves performing a process called simulated 
annealing, which involves an iterative search to find the compromised subset of items by adding, 
swapping, and removing random items from a subset with the pool of eligible items to obtain the 
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optimal solution (Kirkpatrick, Gelatt, & Vecchi, 1983). This can be a rather tedious process, 
depending on the size of the operational test section and/or the size of the compromised subset. 
In the context of the WAPS, it is difficult to see the benefit in this approach for such a robust 
testing program with a sizable pool of operational items. The formulas and steps for the 
divergence algorithm and simulated annealing can be found in Appendix A.

3.4 Unusual Answer-Changing Behavior

Earlier, we discussed the use of RT models as a forensic detection method unique to CBT. 
Accordingly, it is only appropriate that we also discuss the detection methods that are specific to 
paper-and-pencil tests. In particular, erasure analysis is a forensic practice used to detect frequent 
erasures on a test. When an answer sheet contains many erasures, some patterns of erasures are 
consistent with cheating. Although some erasure patterns are due to cheating by an individual 
examinee during testing (Qualls, 2001), most test fraud involving erasures is performed post-
exam by someone other than the examinee (Bishop & Egan, 2017). This is most prevalent in an 
academic setting, particularly for schools that historically have not met performance 
expectations. In these situations, a teacher or administrator may feel pressure to alter incorrect 
responses to improve the test scores of a class or school. However, erasure analyses could be 
useful outside of a school setting—particularly if there is some other reason to suspect that 
someone is changing answer sheets post-exam (e.g., test administrator).

Many organizations perform erasure analyses because the technology is widely available and 
relatively inexpensive (Bishop & Egan, 2017). Most organizations use an optical mark 
recognition (OMR) device or an image scanner with the OMR software. When an answer sheet is 
processed, information about the darkness of the mark and the amount of coverage inside 
response bubbles is captured for each item. These two pieces of information are then compared 
to a set of rules to decide which responses are considered legitimate and which are deemed 
erasures. However, there are issues with this technology. For example, erasures may be so light 
that they do not register as erasures, or stray marks on the answer sheet could be incorrectly 
reported as erasures. Despite these potential issues, optical scanners remain a cost-effective way 
of detecting erasures and could be employed in the WAPS testing program.

Several methods have been used for erasure analyses. Some organizations analyze erasures at the 
examinee level, whereas others aggregate the data at other levels (e.g., test center; Bishop & 
Egan, 2017). This information is then used to establish flagging procedures. A standard in the 
field is to flag cases that are four, five, or even eight standard deviations above the mean 
(Primoli, Liassou, & Bishop, 2011; Schiliro, 2010). Some methods like the Z-test for Population 
Means and Deviations from the Mean are based on a single dependent variable (e.g., the sum of 
wrong-to-right [WR] erasures, the ratio of WR erasures to total erasures [TE]), whereas other 
methods are regression-based approaches (e.g., student-level and group-level joint distributions) 
that take into account the conditional relations between WRs and TEs. A drawback of all of these 
methods is that they are single-level models, which means they can lead to aggregation bias and 
overlook relations that exist across nesting groups (Raudenbush & Bryk, 2002). We discuss a 
hierarchical approach later when discussing unusual gain scores.

However, both the Z-test for Population Means and the Deviations from the Mean approaches 
are appealing methods, because they indicate when a group’s erasures are too high to be 
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attributed to random sampling alone (Bishop & Egan, 2017). This alignment with the basic 
principles of statistics allows them to be interpreted by stakeholders with ease. The primary 
difference between the two approaches is that the Z-test for Population Means uses examinee-
level standard deviations to calculate the standard error, whereas the Deviations from the Mean 
approach uses standard deviations over the group means. Both methods have also been criticized 
because they assume that erasures follow a normal distribution. 

For the purposes of the WAPS testing program, either of these approaches could be incorporated 
into the testing program with ease if erasure analyses are something the AF feels are worth 
conducting. Again, this is largely contingent upon whether the AF suspects there is a reason why
erasures might occur post-exam and whether the WAPS testing program intends on continuing to 
use paper-and-pencil format in the future. As a crude flagging method, both these approaches are 
acceptable as long as it is understood that there are known issues with assuming normality of 
erasure distributions. The formulas for the Z-test for Population Means and Deviations from the 
Mean approaches can be found in Appendix A. 

It is important to note that answer-changing behavior is not limited to paper-and-pencil tests, 
pertaining to CBT as well. This area of research is relatively sparse. There is some research that 
has explored wrong-to-right answer changes during CBT and the time spent on an item’s screen 
when changing answers (Tiemann & Kingston, 2017). However, the research highlights the need 
for additional studies on what aberrant answer-changing behavior looks like. We can assume that 
a single wrong-to-right answer change made quickly might be suspicious (i.e., examinee did not 
spend much time re-considering a response) or that several wrong-to-right answer changes 
toward the end of an exam in a brief period of time are unusual. However, there could be 
alternative explanations for this test-taking behavior that do not reflect cheating.

3.5 Unusual Gain Scores

The final method we will discuss is detection of unusual score gains. This approach is closely 
associated with answer-changing behavior. If answers are changed from wrong to right, this will 
reflect a large gain in the score that may be improbable given historical performance. Gain score 
analyses are used to detect cheating by evaluating the differences between scores from two 
points in time. Groups who experience a large increase in their test score from Time 1 to Time 2 
are flagged for review (Bishop & Egan, 2017). 

One approach to gain score analyses involves using nonlinear regression (Clark, Skorupski, & 
Murphy, 2017). However, this method is best suited for when complete data are available for 
each examinee for Time 1 and Time 2. In real world settings, this is rarely the case. Without a 
complete data set, listwise deletion of cases that systematically relate to test compromise or high 
aptitude can occur. This would be particularly problematic to use for WAPS testing given that 
examinees who re-test for a promotional test (i.e., those who have data for both Time 1 and 
Time 2) would be the same individuals who were not promoted previously. Hence, data for those 
who are promoted would be systematically missing from analysis.

One method that seems relatively promising is the Bayesian Hierarchical Linear Model (BHLM) 
for detecting aberrant growth at the group level (Skorupski, Fitzpatrick, & Egan, 2017). This 
approach models examinee scores, nested within groups, over time. After considering group- and 
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time-level effects, groups are flagged based on aberrant growth in scores. One benefit of this 
method is that the examinees need not come from intact groups: the group-level information is 
incorporated only at Time 2. Examinees’ scores at Time 1 are used to set a baseline of 
achievement, but these examinees do not need to be part of that same group at Time 2. This 
flexibility may be especially important for WAPS testing if it is expected that examinees may 
transition to different groups in the Air Force between test administrations. BHLM has 
performed fairly well as demonstrated by its ability to pinpoint known aberrant groups and to 
correctly exclude known groups of honest examinees. Although this method could be applied at 
the examinee level to standardize individual growth and evaluate aberrant growth for individual 
examinees (Skorupski et al., 2017), further research needs to explore its use for that purpose. The 
formulas for BHLM can be found in Appendix A.

The utility of BHLM is largely predicated on the extent to which known group membership is 
likely to be a cheating determinant in WAPS testing. We see this as potentially meaningful if 
there are specific groups within the Air Force for which large gain scores are observed. This 
could be the result of operational items being circulated to examinees throughout an AFSC and, 
thereby, contributing to a spike in test scores results. This could also be the result of instructors 
“teaching to the exam,” but given these tests are for promotional purposes, it is unknown to us 
whether this is a plausible explanation.

3.6 Commercially Available Products

Several companies offer commercial products for detecting test compromise and fraud. 
However, because of the proprietary nature of these products, many companies understandably 
do not explicitly state which detection methods are being used. Although the exact statistical 
approaches are often not specified by these companies, some do provide insight into the 
quantitative methods used in manuals or other publicly available information (Assess Systems, 
2016). 

Caveon, Pearson, Questionmark, and Assess are a few of the companies that offer these 
commercial forensic products for statistical detection of cheating. Some are particularly vague in 
their description of products on their websites. For example, Caveon provides a brief description 
of their Secure Exam Interface (SEI) product that is intended to deliver exams protected against 
cheating and theft (Caveon, n.d.), but the mechanisms by which it achieves these goals are 
unclear based on the publicly available information. They also market their data forensic 
consulting services and claim that they can provide guidance on implementing a data forensics 
program, but they do not furnish much detail on their approach or methods for doing so. Pearson 
offers a product called IntelliVUE, which has reporting capabilities that allow organizations to 
understand and manage their testing program, including potential security issues (Pearson, n.d.). 
But the exact data they provide in the reports or the methods used are also unknown. Another 
vendor, Questionmark offers a product that has similar reporting capabilities. They provide more 
information, including screenshots of the different reports that are generated to identify potential 
cheating, flag content theft, and determine if allotted time to complete the assessment is 
sufficient (Questionmark, n.d.). Assess is one of the few companies that makes specific details of 
their product public (Assess Systems, 2016). They offer a test-compromise detection software 
application called Software for Investigating Test Fraud (SIFT). This software uses indices to 
detect answer copying, item pre-knowledge, and aberrant patterns in reaction time data. They 
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even go as far as to describe and provide the formulas used for the statistical indices in the 
product’s online user manual. 

Because of the limited information available, it is difficult to compare the vendors and their 
products. However, if the AF is leaning toward using a vendor for these forensic detection 
methods, it is might be particularly helpful to set-up demonstrations and/or speak with 
representatives from these companies so that the utility of the products for WAPS testing can be 
better evaluated. If developing a forensics program within the AF is desired, Caveon’s consulting 
services may merit further consideration.



22
Distribution A: Approved for public release MSC2019-0272; 88ABW-2019-3663, cleared 21 August 2019

4.0 RECOMMENDATIONS

Ideally, recommendations should be based on a thorough test security audit. However, we can 
still make some tentative recommendations and suggest areas to investigate. Several suggested 
actions for any testing program have already been mentioned. Some specific recommendations 
for WAPS are highlighted below. Obviously, some recommendations might not be feasible at 
this time. Some other recommendations might already be implemented or be planned for the near 
future.

1. Use a short testing window. A 1 or 2-week window is common for professional 
certification programs. The shorter the window, the less chance that test content will be 
communicated to examinees in that window. Longer windows might be necessary, but 
the length should be no longer than needed.

2. Administer the exam electronically. It is much more difficult to control access to paper 
exams. It also allows you to collect item response time data which has various uses—
including detecting test fraud and determining optimal testing time limits. Finally, CBT 
allows on-the-fly randomization of the item order.

3. Create multiple test forms for each test administration. The benefit of a candidate 
obtaining the test content on one test form is greatly reduced if he/she is administered a 
different test form. This might not be feasible for the SKT because each AFSC has its 
own test. If paper forms are used, answer-copying or pre-knowledge of the answer key 
could be reduced if two or more versions are created that contain the same items but are 
in different orders. 

4. Consider banning cell phones from the testing room.

5. Formally train the test proctors.

6. Train item writers and other test contributors in test security. Require that they sign a 
non-disclosure agreement. 

7. Carefully control test materials during test development. This includes strict controls 
over paper materials and encrypting of electronic materials. 

8. Consider using a web-based item-banking application for test development. User 
permissions can be set up so that item authors, reviewers, and others so that contributors 
see only the item content they need to see.

9. Communicate to examinees that sharing item content is forbidden. Require them to sign a 
non-disclosure agreement. Clearly communicate the consequences for test fraud.

10. Consider converting the PFE to a computerized adaptive test (CAT).

11. Compute some forensic statistics. The appropriate statistics depend considerably on the 
whether the test is CBT or paper, whether item response latency data is obtained, the 
testing volume, resources, and the statistical expertise of the staff. It also depends on the 
forensic goals and the type of test fraud that is most likely. It might be best to hire a 
consultant such as Caveon to perform the forensic services or, at least, to help determine 
what types of forensics would be appropriate. 
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12. Analyze item parameter drift (e.g., changes in item difficulty over time) to help identify 
items that might be compromised.
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APPENDIX A: FORENSICS STATISTICAL FORMULAE

w =   +  w = observed number of identical incorrect responses observed between two examinees

= observed number of items both the ith and jth examinees answered incorrectly

 = regression intercept

 = regression slope coefficientR =   + ( ) R = observed number of identical correct responses observed between two examinees

= observed number of correct responses for the ith examinee

= observed number of correct responses for the jth examinee

 = regression intercept

 = regression slope coefficient

=

= expected agreement between two examinees

= probability of selecting the oth response alternative of the kth item for the ith

examinee
2 = *(1 – )

2 = the variance of( + ) - 
HT:

HT =     ( )
= covariance between item scores of examinees i and j

= the proportion of correct items for examinee j

= the proportion of correct items for examinee k

= the proportion of correct items for both examinee j and examinee k
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DGM and Scale-Purified DGM:= (1 ) = + == , =
 (  ) (  )= , =
 (  ) (  )= 0

= 1 when <
= the jth examinee’s true ability

= the jth examinee’s cheating ability as estimated by examinee’s performance on 
items specified as compromised

= item difficulty for item i

= the gating mechanism for item i such that = 0 when assumed by the user to be 
secure and = 1 when it is assumed to be compromised

Moving Averages:

Sequence of moving p-values is denoted as: ( , , … , )
Where = , + , + + ,

= , + , + + ,
= , + , + + ,

= , + , + + ,
= window size (100 in this example)

ERT Model:ln =  + + + ~ (0, )= parameter for the mean of log response time for n items and N persons= parameter for the response time required for item i= parameter indicating the slowness of person j
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= residual assumed to follow a normal distribution with a mean of 0 and a standard 
deviation of 

Slowness parameter of person j is calculated as:(  ) (  ) (  ) = mean of person j’s log response time over n items(  ) =ln = + + +
With ~ (0, ), ,  = regression coefficients

= error term

 and = known regressors coming from the ability estimation process using known 
item parameters=  ln  ln

Where = ( 1) (  ln )2 is the variance of the log response time for item i 

Nj = the number of persons selected for item i using the two criteria (i.e., person selected the 
correct answer to item i and a person whose probability of a correct response to item i is above a 
specified value

Divergence Algorithm:

, = D * ( \ || ) \ ( ) ln \
, = expectation of the divergence statistic over examinees in the collection of random 

subsets

If for at least one examinee, , > ( ), then the group is affected. Then, each examinee 
from the affected group with , > ( ) is included in suspicious subgroup J.( ) and ( ) = critical values computed form simulated examinees drawn from N(0,1) 
population, where

, = expectation of , over examinees from the suspicious subgroup J

S = subset

j = jth examinee

= test administered to examinee j
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collection of random subsets

\ = posterior distribution of ability for examinees on a subset of items on a test 
administered to examinee j

= posterior distribution of ability for examinees on a subset of items that intersects 
with items on a test administered to examinee j

For each operational section of an exam (i.e., Oi, i = 1, 2,…,n), take the following steps:

1. Detect affected groups and suspicious subgroups using the statistic, ,
2. For each affected group, detect the compromised subset (i.e., S* ) by finding the max , , where S is the optimization variable and J is the suspicious subgroup detected.

3. For each affected group and compromised subset S* , detect the aberrant subgroup using 
the statistic ,
Simulated Annealing:

1. Set the best solution S* = max , , the current solution S0 = S*, and the 
temperature t = t0.

2. Set subset S = S0, then simulated random variable {1, 2, 3} according to the discrete 
distribution (7) and modify S, respectively.

3. If , > , , indicating that an improvement to the best solution has been found, then 
set S0 = S and S* = S (update the best solution) and go to step 5; otherwise continue to step 4.

4. Simulate a uniformly distributed [0,1]. If ,  , 0 / (the 
probability of accepting a modification to the current solution, S0, that did not improve the best 
solution, S *) then set S0 = S (update the current solution).

5. If t > t1, then t = t x d and go to Step 2 (perform more iterations to improve the best solution); 
otherwise stop (S* is detected compromised subset).

Z-test for Population Means:=   
= mean of the group

= null population value

= standard error

= standard deviation over all examinees

= number of people in the group
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Deviations from the Mean:=   
= mean of the group

= grand mean over all means for the groups in the testing program

= standard deviation calculated over the group means

Bayesian Hierarchical Linear Model:

Individual scores are simulated at Time 1 using a standard normal distribution:~ (0,1) = individual

= group1 = time 1

Individual scores at Time 2 are simulated by introducing group-level growth conditional on 
scores at Time 1 and individual random error and a possible cheating effect for classrooms 
simulated to be aberrant.= +  + +

= mean increase of scores for examinees within group g at Time 2= cheating effect

= correlation of scores between Time 1 and Time 2

= random individual error

Nested models:= += +
= the score of examinee i in group g at time t, with i = 1,…,N(g)

N(g) is the number of individuals in group g

g = 1,…,300

t = 1, 2

Individual error variance-covariance structure is estimated separately for each group:
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~ MVN(0, ), and

~ MVN(0

For growth aberrance, calculate difference between effect sizes:=  
= mean of group g at time t

= marginal mean at time t

= variance of scores for group g at time t


