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1. Introduction
An increased understanding of the mechanics of soft biological tissues is needed to
develop improved practices or products in medical, transportation, and defense in-
dustries. For example, models of the static soft tissue response can be used to inform
novel surgical procedures and to aid design of medical implants with surrogate ma-
terials of similar properties. Dynamic tissue models are important for describing the
response of the human body to impacts encountered in sporting activities, vehicular
collisions, and ballistic events. Such models, in turn, support design of protective
systems in automobiles and personal protective equipment for police, security, and
military personnel.

Deformations are very often large, even within normal ranges of everyday biolog-
ical activity (e.g., muscle functions, circulation, and breathing), necessitating non-
linear constitutive models.1–3 The equilibrium nonlinear elastic response dominates
for low loading rates, while viscoelasticity becomes important to account for rate
dependence, hysteresis, and stress relaxation. For traumatic events, damage may be
incurred in the tissue, and models linking degradation of mechanical properties to
loss of biological function are sought.4,5 The present work seeks to develop a gen-
eral theoretical framework enabling modeling of the physical phenomena of non-
linear elasticity, viscoelasticity, and damage. The framework should be applicable
to a host of soft biological tissues (e.g., muscle, skin, and internal organs) as well as
other viscoelastic solids, such as polymers, capable of sustaining very large defor-
mations. Dynamic behaviors (i.e., inertial effects) and irreversible structure changes
that accompany damage are also encompassed. At the microscopic level, many if
not most tissues are heterogeneous and contain fluid; the present approach treats
the material as a homogeneous solid body whereby local microstructure effects are
embedded in macroscopic state variables and commensurate effective properties, as
opposed to more intricate theories enabling fluid-structure interactions, for exam-
ple.6,7

The thermodynamic framework developed herein accounts for nonlinear viscoelas-
ticity in a general setting similar, but not identical, to the theoretical-computational
schemes of Simo, Holzapfel, and coworkers.8–11 In these prior approaches, tensor
internal variables are used to account for time dependence, essentially leading to
an additive decomposition of the second Piola-Kirchhoff stress tensor into equilib-
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rium (i.e., limiting hyperelastic) and non-equilibrium (i.e., viscous) parts. Evolu-
tion equations for these internal variables generalize standard viscoelastic spring-
dashpot models in a setting consistent with positive dissipation mandated by the
second law of thermodynamics.9,10 Some formulations enable different material-
specific kernels in the convolution representation of the internal variable or its ther-
modynamic conjugate force.8 Particular choices of internal variables are consistent
with a multiplicative decomposition of the deformation gradient into elastic and vis-
cous parts,8,12 similar to constructions used in elastic-plastic crystal mechanics.13–15

Multiplicative decompositions have also been proposed as fundamental kinematic
assertions in viscoelasticity11; their usage is not mandatory, however, for thermody-
namic consistency of a general theory. Another noteworthy and innovative approach
for shape memory polymers invokes a multiplicative decomposition of the deforma-
tion gradient into an instantaneous thermoelastic part and an upper triangular matrix
for temporarily frozen deformation of the permanent network.16

When nonlinear elastic and viscoelastic theories are extended to include damage,
one or more scalar internal state variables are often used to represent degradation in-
curred in a soft solid when deformed to a regime exceeding some strain-history de-
pendent tolerance, for example a critical strain or stored energy. Progressive degra-
dation of the stiffness may be incurred in polymers8 as well as biological tissues5

when subjected to cyclic deformations of increasing amplitude. If the load level is
fixed, then the stress hysteresis converges to a saturated response curve, though rem-
nant strains may persist. Sophisticated kinetic laws consistent with these physics
and the laws of thermodynamics have been developed for collagenous soft tissues
comprising arterial walls.5 Similar concepts, with extension to stochastic aspects,
have been invoked for other fibrous soft tissues.4

Herein, damage is distinguished physically from viscoelasticity as follows. The for-
mer is associated with irreversible changes in microstructure that remain upon un-
loading of the solid to its original undeformed shape. Typically damage evolution
involves bond breaking corresponding to crack extension, void nucleation, and other
tearing modes in the solid that generate free internal surfaces. In polymers, damage
may be attributed to permanent chain and multi-chain breakages and micro-void
formation.8 Such mechanisms tend to impart a reduction in overall stiffness of the
material, which is evident on unloading to, and subsequent reloading from, the ori-
gin in stress-strain space. In contrast, viscoelasticity is associated with dissipative,
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rate-dependent structural rearrangements that are restored or removed when the ma-
terial is unloaded to its original shape. Hysteresis is evident in cyclic loading, de-
pending on rate. Stress relaxation behavior is characteristic of viscoelastic solids.
Transient changes in microstructure may occur under a purely viscoelastic response,
but these are impermanent, in contrast to damage that is evident upon inspection of
a material element with residual cracks or pores.

The current formulation differs from the above-mentioned constitutive models in
several respects. With regard to kinematics, emphasized here is a Gram-Schmidt
factorization or QR decomposition: F = QR. This is a decomposition of the defor-
mation gradient F into a product of an orthogonal matrix, often written as Q, and
an upper triangular matrix, often written as R. This QR decomposition is contrasted
to the more traditional emphasis on a split of deformation into volumetric and de-
viatoric parts8,17 via F = J1/3F̄, where J = det F. The QR decomposition results
in a field of local physical frames, each back-rotated from a global Cartesian spatial
frame of reference, where material response data are most readily measured and
interpreted.18,19

The upper triangular matrix R, called the “Laplace stretch”19,20 can be calculated ex-
plicitly from terms in the deformation gradient. Seven physically descriptive scalar
strain attributes, in the terminology of Criscione,21 are associated with dilatation,
squeeze, and shear, and six of which are independent, can be obtained readily from
components of R. Conjugate scalar measures of stress can be derived from rates
of the strain attributes and the definition of stress power.19 The QR decomposition
apparently was first proposed in the setting of continuum mechanics of solids by
McClellan22 and has received renewed attention in recent years following work of
Srinivasa.23

Advantages of use of the QR decomposition in the context of finite hyperelasticity
are discussed at length in previous works.18–20,23–25 Explicit hyperelastic potentials
can be constructed from the strain attributes rather than classical strain invariants,
where the former approach appears more physically intuitive than the latter.23 This
approach is permissible and objective since six independent strain attributes exist
in one-to-one fashion with six independent components of the deformation tensor
C = FTF = RTR. Components of Q and R can be obtained from F by simple al-
gebraic formula, without recourse to an expensive eigenvalue calculation necessary

3



for determination of terms entering a polar decomposition of F into rotation and
stretch. Upper triangular matrices are closed under both addition and multiplica-
tion, and their determinants and inverses are trivially calculated, so constraints such
as incompressibility are easily enforced.16 Another benefit is that derivatives of the
strain energy can be calculated simply and directly from measured or prescribed
values of stress and deformation. Depending on the choice of strain attributes used,
stresses can be written in terms of (nearly) orthogonal components consisting of
derivatives of strain energy density with respect to each attribute. Such orthogo-
nality is beneficial in the context of formulation of energy potentials for hypere-
lasticity under large deformations when the form of such potentials is undecided a
priori.21,23 Classical invariant-based theories, on the other hand, suffer from the cou-
pling among invariants that forbids isolation of contributions to energy of each from
data obtained in traditional stress-strain experiments. The QR decomposition also
appears well-suited for addressing symmetry requirements in materials of mono-
clinic, orthotropic, and transversely isotropic symmetry groups.23

Implicit elastic models, to which Fung-type exponential theories can be manipu-
lated,26–30 have also been proposed whereby both strain and stress attributes simul-
taneously enter the thermodynamic potentials. Implicit theoretical representations
may offer a more intuitive calibration procedure than usual explicit hyperelasticity
for biological tissues that demonstrate a strain-limiting response.27,28 Explicit and
implicit models invoking QR kinematics have been developed for planar analysis
of biological tissues (i.e., membranes24), but have not been fully applied to 3-D
continua until the present work.

The present report also newly invokes scalar stress-like attributes in its description
of viscoelasticity, rather than tensor-valued viscous stresses as in prior models.8–10,12

Along similar lines, kinetic equations for damage evolution herein utilize thermo-
dynamic driving forces ultimately depending on strain attributes rather than strain
invariants as implemented in biomechanics applications.4,5 It is anticipated that the
same advantages mentioned already in the context of QR hyperelastic materials will
be inherited in analogous formulations of viscoelasticity and damage. The present
approach ultimately seeks a constitutive framework with more physically descrip-
tive, fewer, and easier calibrated parameters for a given soft solid than existing
models. Demonstrative examples will be presented that seek to achieve this goal.
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Most of the present work is of general nature, intended to account phenomeno-
logically for viscoelastic and damage phenomena through generic internal state
variables whose kinetics can be calibrated to macroscopic stress-strain data, for
example. This is the approach taken in works dealing with polymers and biological
tissues.5,8 Linkages between fine-scale material structure and effective properties
are highly microstructure-specific, and analytical formulae can be obtained only
under ideal circumstances (e.g., otherwise homogeneous linear elastic solids with
rather dilute concentrations of voids or cracks31–33). For elastic solids with Griffith
cracks, a general expression for compliance changes in terms of integration of local
stress intensity factors is given by Rice.34 Derivation of new multi-scale relations
between microscopic structure changes and macroscopic behavior is beyond the
present scope, and it may not be feasible for highly complex nonlinear materials
such as heterogeneous biological tissues.

Effective moduli obtained for elastic solids with penny-shaped cracks32 and spher-
ical voids31 are invoked in a few specific examples towards the end of the present
work. The intent is demonstration of how a phenomenological damage variable can
be explicitly related to flaws, possibly evolving, in real materials, and how realistic
effective moduli can be incorporated from micromechanical studies in a thermody-
namically consistent way, such that damage is dissipative. These moduli are extrap-
olations of solutions from micromechanics for isotropic linear elastic bodies, since
exact solutions for effective moduli of solids with cracks or voids do not exist for
the present nonlinear constitutive theory. The results do become rigorous for small
deformations because the present theory is consistent with linear elasticity in the
limit of small deformations.

This report is organized as follows. Kinematics and balance laws of continuum me-
chanics, with emphasis on aspects derived from the QR decomposition, are given
in Section 2. Constitutive assumptions and resulting derived thermodynamic rela-
tions are given in Section 3, where very general internal state variable frameworks
are admitted. The equilibrium responses of solids with several material symmetries
(e.g., approximately cubic and isotropic) are addressed via hyperelasticity in Sec-
tion 4. Viscoelasticity and damage are addressed in respective Section 5 and Sec-
tion 6. Conclusions are given in Section 7. Notation follows conventions of mod-
ern continuum mechanics, where vectors and tensors of higher order are written in
boldface type, and scalars and scalar components are written in italics. When in-
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dex notation is used for clarity, summation is implied over repeated indices. Other
mathematical devices are defined as necessary when they appear.

2. Kinematics and Balance Laws
Kinematics and balance laws of geometrically nonlinear continuum mechanics are
presented with an emphasis on the QR decomposition and its ramifications.

2.1 Kinematics of Finite Deformation
Let X and x denote Lagrangian and Eulerian position vectors of a material particle in
respective reference and spatial configurations, each referred to a global Cartesian
system with fixed origin to be described in more detail later. Let t denote time.
Motions between configurations are the mappings

x = ϕϕϕ(X, t), X = ΦΦΦ(x, t). (1)

Herein, these are presumed sufficiently smooth to enable existence of all subsequent
space-time derivatives. The present work does not deal with shocks or other surfaces
of singularity. Denote the material time derivative, material gradient, and spatial
gradient of a generic quantity f by the respective operations

ḟ(X, t) =
∂f(X, t)
∂t

, ∇0f(X, t) =
∂f(X, t)
∂X

, ∇f(X(x, t), t) =
∂f(X(x, t), t)

∂x
.

(2)
Particle velocity and acceleration are

υυυ(X, t) = ẋ(X, t), a(X, t) = υ̇υυ(X, t). (3)

Arguments of functions, for example (X, t) in the Lagrangian description, are dropped
henceforth unless needed for clarity.

The deformation gradient and its inverse are

F = ∇0ϕϕϕ = ∂x/∂X, F−1 = ∇ΦΦΦ = ∂X/∂x. (4)

6



Consequences of Eq. 4 include the local integrability conditions15,35

∂F i
J

∂XK
=

∂2xi

∂XJ∂XK
=
∂F i

K

∂XJ
= 0 ⇔ ∇0 × F = 0,

∂(F−1)Ij
∂xk

=
∂2XI

∂xj∂xk
=
∂(F−1)Ik
∂xj

= 0 ⇔ ∇× F−1 = 0.

(5)

The referential and spatial velocity gradients are

∇0υυυ = Ḟ, ∇υυυ = ḞF−1. (6)

Let dv and dV denote spatial and referential volume elements. Then

dv = (det F)dV = JdV, J̇ = J∇ · υυυ = J tr(ḞF−1), (7)

with J > 0 the Jacobian determinant and tr(·) the trace operator. All relations above
are standard.

2.2 QR Kinematics
A fixed global Cartesian frame with spatial basis vectors {ei}, i = 1, 2, 3, is intro-
duced, to which all vector and tensor components are referred unless noted other-
wise. Thus, with capital Roman indices J = 1, 2, 3 denoting Lagrangian compo-
nents,

ei = ei = δiJeJ = δiJeJ . (8)

The deformation gradient is

F = F i
Jei ⊗ eJ = Fijei ⊗ ej. (9)

The deformation gradient can be decomposed uniquely into the product of a rotation
Q and upper triangular matrix R, where the latter is called the Laplace stretch:

F = QR = Qi
αR

α
Jei ⊗ eJ ; Q−1 = QT, det Q = +1. (10)

Greek indices α = 1, 2, 3 correspond to an intermediate configuration whose tan-
gent vectors are pulled back from the spatial configuration by Q−1 or pushed for-
ward from the reference configuration by R. The same global Cartesian basis is
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chosen for this configuration, called the “physical configuration” in prior work19:

eα = eα = δiαei = δJαeJ . (11)

Refer to Fig. 1.

{e
K
}

global frame

{g }

local frame

reference 

configuration

(X)

current 

configuration

(x)

physical

(intermediate) 

configuration

F

R

Q

Fig. 1 Configurations, deformations, and coordinate frames

The Laplace stretch is written as follows in matrix form, where all components are
referred to the global Cartesian coordinate system of Eq. 8 and Eq. 11:

R =

R11 R12 R13

0 R22 R23

0 0 R33

 =

a aγ aβ

0 b bα

0 0 c

 =

a 0 0

0 b 0

0 0 c


1 γ β

0 1 α

0 0 1

 = ΛΛΛΓΓΓ. (12)

Physically descriptive deformation measures are the three positive elongation ratios
a, b, c that enter the extension tensor ΛΛΛ and the three shear magnitudes α, β, γ that
enter the simple shear tensor ΓΓΓ. Volume change is measured by

J = det R = detΛΛΛ = abc. (13)

Parameters a, b, c, α, β, γ are physical attributes because they can be measured di-
rectly by an experimentalist in the physical coordinate system to be introduced in
Eq. 18 without need for post analysis.18,19,25

8



Let

C = FTF = RTR = CIJeI ⊗ eJ = F i
IδijF

j
JeI ⊗ eJ = Rα

I δαβR
β
JeI ⊗ eJ (14)

denote the right Cauchy-Green deformation tensor. Nonzero components of R =

RIJeI ⊗ eJ are obtained explicitly from CIJ by the following sequence of basic
recursive calculations23:

R11 =
√
C11, R12 = C12/R11, R13 = C13/R11, R22 =

√
C22 − (R12)2,

R23 = (C23 −R12R13)/R22, R33 =
√
C33 − (R13)2 − (R23)2.

(15)

Elongations and shears are

a = R11, b = R22, c = R33; α = R23/R22, β = R13/R11, γ = R12/R11.

(16)

The inverse of R is also upper triangular and can be written explicitly in matrix
form in the global Cartesian coordinate system as

R−1 = ΓΓΓ−1ΛΛΛ−1 =

1/a −γ/b (αγ − β)/c

0 1/b −α/c
0 0 1/c

 . (17)

With Eq. 17 at hand, Q = FR−1 can then be calculated by matrix multiplication.
A stated benefit from the perspective of computations is that, given F i

J , no diag-
onalization (e.g., eigenvalue analysis) is required to calculate any terms in a QR
decomposition, in contrast to a polar decomposition.

2.3 Physical and Convected Bases
There is a choice of assignment of index numbers 1, 2, 3 to the {ei} that is ideal
when the QR decomposition is used. Let the {ei} be rotated by an amount Q. Then
for this ideal choice, the direction aligned with the rotated 1-axis and the direction
normal to the rotated 1-2-plane remain invariant under the transformation R. It is
assumed henceforth that the {ei} have been so ideally labeled. An algorithm for
pivoting to achieve the corresponding upper triangular dominance of R is presented
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in another reference.19

The so-called physical basis of Freed and Zamani,19 denoted here by {gα}, α =

1, 2, 3, corresponds to the aforementioned rotated coordinate system:

gα = gα = Qi
αei = Qi

αδ
J
i eJ , ei = (Q−1)αi gα = (QT)αi gα. (18)

It is in this physical frame that the three elongations a, b, c and three shears α, β, γ,
which are the physical attributes of the Laplace stretch R, are measured. The {gα}
comprise a local Cartesian frame (i.e., orthonormal right-handed triad) at each ma-
terial point X. If Qt(X) = Q(X, t) is not homogeneous in space, then obviously the
gα do not comprise a global rectilinear frame.

Apply Eq. 10 to a simply connected region of a body deforming by F and param-
eterized by reference coordinates {XK} and spatial coordinates {xk}. At a fixed
time instant t, these coordinate charts are related by a diffeomorphism as implied
by Eq. 1. Then the same region in the physical (intermediate) configuration can
be covered by a chart of coordinates {yα} that exist in one-to-one correspondence
with {xk} and {XK} if and only if integrability conditions analogous to Eq. 5 hold
simultaneously for Q−1 and R. The former requires that Qi

α be spatially constant,
since a pure rotation must be homogeneous (i.e., of rigid-body type) to be inte-
grable to a vector field: its contortion must vanish (proven elsewhere,35 p. 112).
The Laplace stretch need not be homogeneous to be integrable (i.e., for condi-
tions Rα

I = ∂yα/∂XI to hold globally over the region). Rather, only the curl-free
conditions ∂Rα

I /∂X
J = ∂Rα

J/∂X
I need be fulfilled when {yα} exist and corre-

spondingly, when Q is homogeneous. Thus, when chart {yα} exists with the afore-
mentioned properties, then the orthonormal physical basis {gα} is global over the
corresponding domain. Otherwise it is a local basis, and the {yα} are anholonomic
coordinates.36

In the physical coordinate system, introduce a unit cube with edges parallel to the
{gα}. The Laplace stretch of the deformation gradient, R = QTF, deforms such a
cube to a parallelepiped whose edges are the oblique basis vectors {γγγα}, neither
orthogonal nor of unit length, in general. The specific operation by which these
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“convected basis vectors” are calculated is18

γγγα = Λδ
αΓβδgβ ↔ {γγγα} = ΛΛΛΓΓΓT{gα} ↔


γγγ1

γγγ2

γγγ3

 =

 a 0 0

bγ b 0

cβ cα c




g1

g2

g3

 . (19)

The convected basis vectors {γγγα} are generally neither homogeneous over a simply
connected body nor tangent to any global material lines. An in-depth analysis of
compatibility conditions that would ensure existence of a curvilinear coordinate
chart in which such lines are embedded is outside the present scope.

A convected metric tensor with covariant components γαβ = γγγα · γγγβ can be con-
structed to enable a geometric description of strain. It was stated without proof in
a previous work18 that Christoffel symbols associated with gradients of γαβ vanish
identically in a local convected coordinate system. This assertion is obviously true
if F is homogeneous with respect to X, since then Q and R must also both be ho-
mogeneous as the Gram-Schmidt decomposition is unique. When R, and thus any
of a, b, c and/or any of α, β, γ are heterogeneous, material gradients of γαβ are gen-
erally nonzero, so connection coefficients constructed from {γγγα} may not vanish,
depending on how these coefficients are defined.

2.4 Velocity Gradient
The mixed-variant velocity gradient in the second of Eq. 6 can be written

∇υυυ = ḞF−1 = Q̇Q−1 + QṘR−1Q−1 = ΩΩΩ + QηηηQ−1, (20)

where ΩΩΩ is a skew (spin) tensor and the rate contribution from the Laplace stretch
is contained in

ηηη = ṘR−1 =

ȧ/a aγ̇/b a(β̇ − αγ̇)/c

0 ḃ/b bα̇/c

0 0 ċ/c

 . (21)

All components in the matrix representation in Eq. 21 are referred to the global
basis {ei} of Eq. 8 and Eq. 11. These components follow readily from Eq. 12 and
Eq. 17, noting that the product of two upper triangular matrices is also always up-
per triangular. These components are also notably equal to the components of the
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second term in the last of Eq. 20 when referred to the local physical basis {gα}:

QṘR−1Q−1 = Qi
αṘ

α
J (R−1)Jβ(Q−1)βj ei ⊗ ej = Ṙα

J (R−1)JβQ
i
αei ⊗ (Q−1)βj ej

= ηαβgα ⊗ gβ.
(22)

Rate terms in Eq. 21 are mostly orthogonal in the terminology of Criscione,21 the
exception being η13 that contains both β̇ and γ̇.

2.5 Strain Attributes
Let a0, b0, c0 and α0, β0, γ0 denote respective values of a, b, c and α, β, γ in an initial
reference state corresponding to time instant t = t0. Two different sets of dimen-
sionless scalar strain attributes and their rates are then defined as follows, the first
consisting of six attributes ei, i = 1, . . . , 6:

{ei} =



e1

e2

e3

e4

e5

e6


=



ln(a/a0)

ln(b/b0)

ln(c/c0)

γ − γ0

α− α0

β − β0


, {ėi} =



ė1

ė2

ė3

ė4

ė5

ė6


=



ȧ/a

ḃ/b

ċ/c

γ̇

α̇

β̇


. (23)

The six strain attributes in Eq. 23 are independent with regard to reconstruction
of R, where e1, e2, e3 quantify logarithmic extensions and e4, e5, e6 quantify simple
shears.

The second set consists of seven attributes εi, i = 0, . . . , 6:

{εi} =



ε0

ε1

ε2

ε3

ε4

ε5

ε6


=



ln(abc/a0b0c0)
1
3

ln(ab0/a0b)
1
3

ln(bc0/b0c)
1
3

ln(ca0/c0a)

γ − γ0

α− α0

β − β0


, {ε̇i} =



ε̇0

ε̇1

ε̇2

ε̇3

ε̇4

ε̇5

ε̇6


=



ȧ/a+ ḃ/b+ ċ/c
1
3
(ȧ/a− ḃ/b)

1
3
(ḃ/b− ċ/c)

1
3
(ċ/c− ȧ/a)

γ̇

α̇

β̇


.

(24)
Only six of the seven strain attributes in Eq. 24 are independent kinematic variables
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since
ε1 + ε2 + ε3 = 0 ⇒ ε̇1 + ε̇2 + ε̇3 = 0. (25)

A logarithmic measure of the dilatation occupies position ε0. When a0 = b0 =

c0 = 1 is chosen as the datum reference state, then ε0 = ln J follows from Eq. 13.
This choice is used henceforth for convenience, as are the convenient prescriptions
α0 = β0 = γ0 = 0, meaning the reference volume element at t = t0 is considered
undeformed. Logarithmic squeeze modes occupy ε1, ε2, ε3; these are collectively
isochoric in the sense that the sum of their rates equals zero, though isolated in-
dividual modes do not preserve volume. Simple shears occupy ε4, ε5, ε6; these do
individually preserve volume since none of α, β, γ affects J . Reasoning behind the
definitions in Eq. 23 and Eq. 24 will become clear later in the context of stress
power.

2.6 Stresses and Stress Power
Denote by σσσ, k, s, and P the Cauchy stress tensor, Kirchhoff stress tensor, rotated
Kirchhoff stress tensor, and first Piola-Kirchhoff stress tensor, respectively. Eval-
uating all components in the global Cartesian frame {ei} = {eJδJi }, these stress
tensors are related by

σσσ = J−1PFT = J−1k = J−1QsQ−1 ↔

σij = J−1P i
KF

K
j = J−1kij = J−1Qi

αs
α
β(Q−1)βj .

(26)

The first two stress measures, σσσ and k, are always symmetric in covariant and con-
travariant forms as follows from the usual local angular momentum balance. Sym-
metry of sαβ = JQiασ

ijQjβ then follows immediately in Cartesian coordinate sys-
tems since Q−1

αi = Qiα.

Components of the rotated stress s are equal to those of the Kirchhoff stress when
the latter is referred to the local physical basis {gα}:

k = kijei ⊗ ej = kij(Q
−1)αi gα ⊗Q

j
βgβ = sαβgα ⊗ gβ. (27)

For this reason, s is also referred to as a physical stress tensor. The Cauchy pressure
is

p = −1

3
trσσσ = − 1

3J
trk = − 1

3J
trs. (28)
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The stress power per unit reference or initial volume is

P : Ḟ = Jσσσ : ∇υυυ = k : ∇υυυ = s : ηηη, (29)

with ηηη defined in Eq. 21. The final expression relies on the symmetry of k and the
anti-symmetry of Ω and is derived in component form as

kij∇iυ
j = kijḞ

j
K(F−1)Ki = kijQ

j
αṘ

α
K(R−1)Kβ (Q−1)βi = sαβη

β
α. (30)

Stress power can also be expressed in terms of rates of strain attributes in Eq. 23
or Eq. 24 and their scalar stress conjugates. For the former six-attribute form in
Eq. 23, define the stress conjugates {t̂i}, i = 1, . . . , 6 in terms of components of
s = sαβeα ⊗ eβ referred to the global frame {eα = eα = eiδiα} as19

{t̂i} =



t̂1

t̂2

t̂3

t̂4

t̂5

t̂6


=



s11

s22

s33

(a/b)s21 − α(a/c)s31

(b/c)s32

(a/c)s31


. (31)

Normal stresses are t̂1, t̂2, t̂3; shearing stresses are t̂4, t̂5, t̂6. Note that s21 = s12,
s31 = s13, and s32 = s23.

For the seven-attribute form in Eq. 24, define {τ̂i}, i = 0, . . . , 6 in terms of sαβ as19

{τ̂i} =



τ̂0

τ̂1

τ̂2

τ̂3

τ̂4

τ̂5

τ̂6


=



1
3
(s11 + s22 + s33)

s11 − s22

s22 − s33

s33 − s11

(a/b)s21 − α(a/c)s31

(b/c)s32

(a/c)s31


. (32)

Negative pressure per unit reference volume occupies the first entry τ̂0 = −Jp.
Normal stress differences are τ̂1, τ̂2, τ̂3. Shear stresses are τ̂4, τ̂5, τ̂6. The following
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constraint applies, suggesting the deviatoric nature of the normal stress differences:

τ̂1 + τ̂2 + τ̂3 = 0. (33)

With these definitions at hand, which differ by a factor of J from those in prior
work,19 it can be shown that stress power per unit reference volume obeys

P : Ḟ =
6∑
i=1

t̂iėi =
6∑
i=0

τ̂iε̇i. (34)

The first term in the rightmost sum is the rate of pressure-volume working: τ̂0ε̇0 =

−pJ̇ .

2.7 Conservation Laws and Entropy Production
Denote by ρ and ρ0 the local spatial and initial mass density of the material. Let b
denote body force per unit initial volume. Local conservation laws for mass, linear
momentum, and angular momentum are of the usual forms:

ρ̇+ ρ∇ · υυυ = 0, ∇0 · P + b = ρ0a, PFT = FPT. (35)

Thermodynamic potentials are expressed on a per unit initial volume basis. These
include the internal energy density U , Helmholtz free energy density Ψ, and entropy
density η, related by

U = Ψ + Tη. (36)

Absolute temperature is denoted by T > 0. Denote the heat flux in the reference
configuration by the vector q and a scalar heat source per unit reference volume by
r. The local balance of energy is

U̇ = P : Ḟ−∇0 · q + r. (37)

A local entropy production inequality and an alternative expression that follows
from Eq. 36 and Eq. 37 are, respectively,

η̇ ≥ 1

T

(
r +

q · ∇0T

T
−∇0 · q

)
, P : Ḟ− q · ∇0T

T
≥ Ψ̇ + Ṫ η. (38)
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Stress power P : Ḟ in Eq. 37 and the second of Eq. 38 can be written in any of the
equivalent forms in Eq. 29 and Eq. 34.

3. Constitutive Assumptions and Thermodynamics
A general thermodynamic formulation invoking explicit hyperelasticity in conjunc-
tion with dissipative internal state variables is presented. Strain attributes are used
as elastic state variables, while internal state variables will ultimately be invoked to
account for viscoelasticity and damage.

3.1 Thermodynamic Potentials
Thermodynamic potentials are assumed to depend on temperature (T ) or entropy
(η), internal state variables, and strain attributes. The present derivations make use
of the strain attributes {εi} introduced in Eq. 24, noting that a similar theory could
be constructed using those in Eq. 23 instead. The present choice is advantageous
for modeling problems involving isolated volume changes and pressures since the
hydrostatic response is obtained directly. However, orthogonality of terms involving
derivatives of the free or internal energy with respect to each of the strain attributes
is compromised as a result of the constraint in Eq. 25.

Denote by {χαi } a set of dimensionless, strain-like scalar variables associated with
viscoelasticity, where i = 0, . . . , 6 and α = 1, . . . ,m, with m a discrete number of
relaxation times. Most generally, each of the {χαi } is regarded as an independent
internal state variable. A constraint

χα1 + χα2 + χα3 = 0, (39)

analogous to Eq. 25, will be imposed in specific examples later to ensure ther-
modynamic consistency of particular free energy functions. Viscoelasticity may be
anisotropic or isotropic.

Denote by D ∈ [0, 1] an internal state variable linked to damage processes in the
solid. Damage, by construction, is limited to isotropy here in the sense that its ef-
fects are manifested by a single scalar function. Anisotropic damage, whereby ma-
terial integrity degrades differently in different material directions, can be addressed
via vector- or tensor-valued internal state variables.37
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Denote the sets of strain attributes and viscoelastic state variables, respectively, by
the column vectors

εεε = [ε0, ε1, ε2, ε3, ε4, ε5, ε6]T, χχχα = [χα0 , χ
α
1 , χ

α
2 , χ

α
3 , χ

α
4 , χ

α
5 , χ

α
6 ]T. (40)

Free and internal energy densities are assigned, respectively, the functional forms

Ψ = Ψ(εεε, T,χχχα, D), U = U(εεε, η,χχχα, D). (41)

Note that dependence of energy functions on redundant variable ε3 [and ξα3 when
Eq. 39 is imposed] requires that these variables explicitly enter the energy functions
when physically appropriate for the symmetry class of the material. An alternative
method, whereby elimination of explicit dependence on redundant variables via use
of Eq. 25 is given in prior work25; this alternative, which produces equivalent end
results, is avoided here to avoid cumbersome algebraic manipulations in forthcom-
ing constitutive equations for stresses. The current presentation addresses materials
with homogeneous physical properties in the sense that explicit dependence of the
material response on X is omitted in Eq. 41. For example, functionally graded solids
are excluded.

3.2 Constitutive Laws
Expansion of the first of Eq. 41 using the chain rule, followed by substitution of the
result and Eq. 34 into the second of Eq. 38 gives the following dissipation inequal-
ity:

6∑
i=0

τ̂iε̇i −
∂Ψ

∂εεε
· ε̇εε−

(
η +

∂Ψ

∂η

)
Ṫ −

m∑
α=1

∂Ψ

∂χχχα
· χ̇χχα − ∂Ψ

∂D
Ḋ − q · ∇0T

T
≥ 0. (42)

Stress power can be written, using Eq. 25 and Eq. 33, in terms of components of ε̇εε:

6∑
i=0

τ̂iε̇i =
2∑
i=0

τ̂iε̇i + (τ̂1 + τ̂2)(ε̇1 + ε̇2) +
6∑
i=4

τ̂iε̇i. (43)

Extending standard arguments for admissible thermodynamic processes applied to
Eq. 42,38 the following constitutive equations are deduced for stresses [as the first
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two terms in Eq. 42 cancel]:

τ̂0 =
∂Ψ

∂ε0
, τ̂1 =

∂Ψ

∂ε1
, τ̂2 =

∂Ψ

∂ε2
, τ̂3 =

∂Ψ

∂ε3
,

τ̂4 =
∂Ψ

∂ε4
, τ̂5 =

∂Ψ

∂ε5
, τ̂6 =

∂Ψ

∂ε6
;

(44)

and entropy:

η = −∂Ψ

∂T
. (45)

The first of Eq. 44 corresponds to the more familiar thermodynamic relation

p = −J−1τ̂0 = −∂Ψ

∂J
. (46)

Constraints Eq. 25 and Eq. 33, which stipulate that not all terms in ε̇εε can be varied
independently, have not been imposed in the derivation of Eq. 44. As such, for
Eq. 44 to apply under such constraints, free energy Ψ must be specified consistently
with

∂Ψ

∂ε1
+
∂Ψ

∂ε2
+
∂Ψ

∂ε3
= 0. (47)

Partial differentiation with respect to εi is performed with εj fixed for all i 6= j,
regardless of Eq. 25.

The seven-element column vector of stress variables conjugate to strain attributes is

τ̂ττ = [τ̂0, τ̂1, τ̂2, τ̂3, τ̂4, τ̂5, τ̂6]T. (48)

Concisely, this is related to strain derivatives of free energy according to

τ̂ττ = ∂εεεΨ =
∂Ψ

∂εεε
. (49)

With the seven stress components of Eq. 44 at hand, the physical stress tensor can
be reconstructed from the inverse of Eq. 32:

s11 = τ̂0 +
1

3
(τ̂1 − τ̂3), s22 = τ̂0 +

1

3
(τ̂2 − τ̂1), s33 = τ̂0 +

1

3
(τ̂3 − τ̂2),

s12 = s21 =
b

a
(τ̂4 + ατ̂6), s23 = s32 =

c

b
τ̂5, s13 = s31 =

c

a
τ̂6.

(50)

Other stress tensors can be obtained from s using Eq. 26.
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From Eq. 41 and letting T = T (εεε, η,χχχα, D),

∂U

∂εεε
=
∂Ψ

∂εεε
+
∂Ψ

∂T

∂T

∂εεε
+ η

∂T

∂εεε
,

∂U

∂η
=
∂Ψ

∂T

∂T

∂η
+ η

∂T

∂η
+ T. (51)

Then, from Eq. 44 and Eq. 45, thermoelastic relations in terms of derivatives of
internal energy are the independent stress variables

τ̂0 =
∂U

∂ε0
, τ̂1 =

∂U

∂ε1
, τ̂2 =

∂U

∂ε2
, τ̂3 =

∂U

∂ε3
,

τ̂4 =
∂U

∂ε4
, τ̂5 =

∂U

∂ε5
, τ̂6 =

∂U

∂ε6
;

(52)

which in condensed notation corresponds to τ̂ττ = ∂εεεU , and the absolute temperature:

T =
∂U

∂η
. (53)

Constraints analogous to Eq. 47 are imposed on the internal energy function U :

∂U

∂ε1
+
∂U

∂ε2
+
∂U

∂ε3
= 0. (54)

Many soft solids are so much stiffer in spherical tension or compression than in
shear that they can be idealized as incompressible. In that case, ε0 = 0 identically,
and ε0 is removed as a state variable from the thermodynamic potentials. Pressure
p does no mechanical work and is obtained from the incompressibility constraint
and boundary conditions for a given problem. The first equality in each of Eq. 44
and Eq. 52 does not apply for incompressible materials, but the stress conjugates
to the volume-preserving strain attributes (τ̂i, i > 0) are obtained by the same
constitutive equations listed in the remainder of these sets of equations. Particular
models invoking the incompressibility assumption are not addressed further herein;
finite compressibility, though perhaps very small, is presumed.

The residual dissipation inequality is what remains of Eq. 42:

−
m∑
α=1

∂Ψ

∂χχχα
· χ̇χχα − ∂Ψ

∂D
Ḋ − q · ∇0T

T
≥ 0. (55)
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3.3 Thermoelasticity and Dissipation
Let c(εεε, T,χχχα, D) denote specific heat per unit reference volume at constant defor-
mation, where from Eq. 45 and Eq. 53,

c =
∂U

∂T
= T

∂η

∂T
= −T ∂

2Ψ

∂T 2
. (56)

The rate of internal energy can be expanded as

U̇ = Ψ̇ + ηṪ + T η̇

= (∂Ψ/∂εεε) : ε̇εε+
m∑
α=1

(∂Ψ/∂χχχα) · χ̇χχα + (∂Ψ/∂D)Ḋ + (∂Ψ/∂η)η̇

=
6∑
i=0

τ̂iε̇i + T [(∂η/∂εεε) : ε̇εε+ (∂η/∂T )Ṫ +
m∑
α=1

(∂η/∂χχχα) · χ̇χχα + (∂η/∂D)Ḋ]

+
m∑
α=1

(∂Ψ/∂χχχα) · χ̇χχα + (∂Ψ/∂D)Ḋ.

(57)

Substituting Eq. 34, Eq. 56, and Eq. 57 into Eq. 37 leads to the following tempera-
ture evolution equation:

cṪ = −
m∑
α=1

(∂Ψ/∂χχχα) · χ̇χχα − (∂Ψ/∂D)Ḋ −∇0 · q + r

+ T

[
(∂2Ψ/∂εεε∂T ) : ε̇εε+

m∑
α=1

(∂2Ψ/∂T∂χχχα) · χ̇χχα + (∂2Ψ/∂T∂D)Ḋ

]
.

(58)

Thermal stress coefficients κκκ and Grüneisen coefficients g are defined as

κκκ = − ∂2Ψ

∂εεε∂T
= cg. (59)

Isothermal and isentropic, respectively, second-order thermodynamic elastic coeffi-
cients (not necessarily constants) are

CCCT =
∂2Ψ

∂εεε∂εεε
, CCCη =

∂2U

∂εεε∂εεε
. (60)
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Denote thermal expansion coefficients by A = ∂εεε/∂T , with partial differentiation
taken at constant stress and constant internal state. Denote specific heat at constant
stress by cs. Then relationships among thermoelastic coefficients can be derived
by use of Maxwell-type equalities, following procedures derived elsewhere,15 for
example:

κκκ = A : CCCT , cS − c = TA : κκκ, CCCη = CCC
T

+
T

c
κκκ⊗ κκκ. (61)

Define conjugate thermodynamic forces to internal state variables as the negative
derivatives

ζζζα = − ∂Ψ

∂χχχα
, F = −∂Ψ

∂D
. (62)

Substitution of Eq. 59 and Eq. 62 into Eq. 58 gives the energy balance in a more
compact form:

cṪ = −Tκκκ : ε̇εε+
m∑
α=1

[ζζζα − T (∂ζζζα/∂T )] · χ̇χχα + [F − T (∂F/∂T )]Ḋ −∇0 · q + r.

(63)

Any thermodynamically admissible standard model for heat conduction (e.g., Fourier
conduction such that −q · ∇0T ≥ 0) is consistent with the present framework, so q
will not be addressed further. The corresponding internal dissipation inequality and
entropy production rate are then

D =
m∑
α=1

ζζζα · χ̇χχα + FḊ ≥ 0, T η̇ = D−∇0 · q + r. (64)

A complete constitutive model requires further specification of either of the two
energy potential functions Ψ or U in Eq. 41. Also required are kinetic equations
for the rate of damage variable, Ḋ, and rates of viscoelastic internal state variables,
{χ̇χχα}, consistent with positive internal dissipation D in Eq. 64. Thermoelasticity,
viscoelasticity, and damage mechanics are considered in more detail via represen-
tative examples in subsequent sections.
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4. Hyperelasticity
A fully hyperelastic model, in the absence of internal dissipation (D = 0), is en-
abled by the theory of Section 3 with internal state variables suppressed. Thermal
and entropic effects are maintained. Free and internal energy densities of Eq. 41
reduce to the following functional forms for homogeneous continua:

Ψ = Ψ∞0 (εεε, T ), U = U∞0 (εεε, η). (65)

Superscript (·)∞ is used to denote the equilibrium (i.e., infinite time) energy in
the sense of viscoelasticity, and subscript (·)0 is used to denote the energy of the
undamaged state. In the absence of dissipation (i.e., viscous effects and damage),
the equilibrium and instantaneous responses are identical.

4.1 Symmetry Considerations
Formal arguments require that

Ψ∞0 [εεε(F), T ] = Ψ∞0 [εεε(FH), T ], U∞0 [εεε(F), η] = U∞0 [εεε(FH), η], (66)

where H is any transformation of the material’s reference configuration that leaves
the free and internal energies invariant. The scalar invariants of the symmetric ten-
sor C that enter energy potentials for standard material symmetry groups are well
known in nonlinear elasticity based on Lagrangian strain measures.39 In principle,
invariants written as functions of six components of CIJ could be expressed in
terms of six nonzero components of RIJ , which in turn could be expressed in terms
of the deformation attributes (a, b, c, α, β, γ) and finally in terms of the strain at-
tributes {εi}. The end result, however, is exceedingly cumbersome, providing little
insight into how particular potential energy functions with associated thermoelastic
constants should be constructed.

A less formal and more intuitive approach is advocated by Srinivasa,23 whereby ge-
ometric rather than group-theoretic arguments are invoked to deduce restrictions on
strain energy potentials depending onRIJ for solids of monoclinic, orthotropic, and
transversely isotropic symmetries. This methodology is invoked here for materials
with cubic and isotropic symmetries, in an approximate sense.
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First consider a solid with cubic symmetry whose three cube axes align with the
global Cartesian basis vectors {eI}. Diagonals connecting opposite corners of the
cube comprise four axes of three-fold symmetry, and each cube axis is one of at
least two-fold symmetry. The following geometric restrictions are imposed on strain
energy potentials W depending on (a, b, c, α, β, γ) or {εi}:

1. W (a, b, c, α, β, γ) should remain unchanged for any interchange or permuta-
tion of the elements in set (a, b, c): W (a, b, c, α, β, γ) = W (b, a, c, α, β, γ)

since any of the cube axes can be aligned arbitrarily with any of the global
basis vectors;

2. W (a, b, c, α, β, γ) should remain unchanged for any interchange or permuta-
tion of elements in the set (α, β, γ): W (a, b, c, α, β, γ) = W (a, b, c, β, α, γ)

for the same reason;

3. W (a, b, c, α, β, γ) should remain unchanged for isolated changes of sign of
elements in the set (α, β, γ), W (a, b, c, α, 0, 0) = W (a, b, c,−α, 0, 0) since
a reversal of the direction of simple shearing on any plane normal to a cube
axes should not change the energy;

4. W ({εi}) should remain unchanged for any change of sign of any of the
squeeze modes ε1, ε2, ε3 since these represent stretch differences normal to
the three cube axes;

5. Ψ({εi}, T ) orU({εi}, η) should demonstrate isotropic thermoelastic coupling
to first order, meaning thermal expansion should be spherical, a known result
for cubic solids.15

The above restrictions are intuitively realistic but may or may not be necessary
or sufficient for an energy potential to yield cubic symmetry in the formal sense of
group theory. Potentials obeying restrictions 1 through 5 may not necessarily satisfy
Eq. 66 for all H in the symmetry group for cubic symmetry.

Candidate energy potentials that obey this list of restrictions can be constructed
readily from the following three scalar functions {ξj}, j = 0, 1, 2 of the seven
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strain attributes {εi}, i = 0, . . . , 6:

ξ0 = ε0 = ln J,

ξ1 = (ε1)2 + (ε2)2 + (ε3)2,

ξ2 = (ε4)2 + (ε5)2 + (ε6)2 = α2 + β2 + γ2.

(67)

These functions are sufficient but are neither unique nor necessary to ensure cubic
symmetry in the sense defined above: energy may depend on other combinations
of strain attributes and still obey restrictions 1 through 5. A useful property of
W (ξ0, ξ1, ξ2) is that the strain energy analog of Eq. 47 is identically satisfied via
Eq. 25:

∂W (ξ0, ξ1, ξ2)

∂ε1
+
∂W (ξ0, ξ1, ξ2)

∂ε2
+
∂W (ξ0, ξ1, ξ2)

∂ε3

=
∂W (ξ0, ξ1, ξ2)

∂ξ1

[
∂ξ1

∂ε1
+
∂ξ1

∂ε2
+
∂ξ1

∂ε3

]
=
∂W (ξ0, ξ1, ξ2)

∂ξ1

[2(ε1 + ε2 + ε3)]

= 0.

(68)

Identical relations would hold for Ψ∞0 ({ξj}, T ) or U∞0 ({ξj}, η). Notable examples
of free energy functions Ψ∞0 ({ξj}, T ) are considered in what follows next.

4.2 Quasi-Linear Cubic Solid
The current geometrically nonlinear model is said to approach linearity in the sense
that scalar stress measures τ̂i and scalar strain attributes εi are linearly related
through a set of (three) elastic constants, and the thermal stress coefficient is a
constant. This is a three-mode solid in the terminology of Freed.19 Let T0 denote
a reference temperature at which free energy vanishes, and let ∆T = T − T0. All
material coefficients are constants measured at the reference state conditions εεε = 0

and T = T0. The free energy function is

Ψ∞0 ({ξj}, T ) =
1

2
BT

0 (ξ0)2 + 3µ0ξ1 +
1

2
G0ξ2 − κ0ξ0∆T − c0T ln(T/T0). (69)

The isothermal bulk modulus at the reference state is BT
0 . The shear modulus at

the reference state associated with squeeze modes is µ0, and the shear modulus at
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the reference state associated with simple shearing modes is G0. The lone nonzero
thermal stress coefficient in κκκ of Eq. 59 is

κ0 = A0B
T
0 = c0g0, (70)

where A0 is the volumetric thermal expansion coefficient and g0 is the Grüneisen
parameter. A constant specific heat at fixed volume, c = c0, is used. It follows
from the last of Eq. 61 that all elastic coefficients except the bulk modulus are
identical in isothermal or isentropic form. The isentropic bulk modulus obeysBη

0 =

BT
0 (1 + A0g0T0).15

Conjugate stresses {τ̂i} are obtained via use of Eq. 44:

τ̂0 = BT
0 (ε0 − A0∆T ),

τ̂i = 6µ0εi, (i = 1, 2, 3),

τ̂i = G0εi, (i = 4, 5, 6).

(71)

Pressure and rotated Kirchhoff stress components then follow, the latter from Eq. 50:

p = −B
T
0

J
ln J +

A0

J
∆T, (J = abc);

s11 = −Jp+
2

3
µ0[ln(a/b) + ln(a/c)],

s22 = −Jp+
2

3
µ0[ln(b/a) + ln(b/c)],

s33 = −Jp+
2

3
µ0[ln(c/b) + ln(c/a)];

s12 = s21 = G0
b

a
α(1 + γ), s23 = s32 = G0

c

b
β, s13 = s31 = G0

c

a
γ.

(72)

In the limit of small deformations with Q → 1 in the QR decomposition, σσσ =

k/J ≈ k → s, ε0 approaches the trace of the small strain tensor, each of ε1, ε2, ε3
approaches a difference between two diagonal components of the small strain ten-
sor, and each of ε4, ε5, ε6 approaches twice the value of an off-diagonal component
of the small strain tensor. In this limit, if C11, C12, and C44 are the (isothermal) cubic
elastic constants of usual Lagrangian elasticity,15 then consistency with the present
model is achieved by the correspondences

BT
0 =

1

3
(C11 + 2C12), µ0 =

1

2
(C11 − C12), G0 = C44. (73)
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The present theory diverges from linear anisotropic thermoelasticity for large de-
formations since logarithmic strain attributes comprise the volumetric and squeeze
entries of {εi}, J may differ significantly from unity, and nonlinear factors enter the
shear components of sαβ as is evident from Eq. 72.

An inherent advantage of this model is its reliance on only the usual thermoelastic
constants BT

0 , µ0, and G0 that can be deduced immediately from the material’s
mechanical response under the decoupled respective loading protocols of volume
change, pure shear, and simple shear according to Eq. 71. The coefficient of thermal
expansion A0 and specific heat at constant volume c0 can also be obtained using
standard methods since these constants obey their classical definitions.15

4.3 Cubic Solid with Equation-of-State and Pressure-Shear Coupling
The pressure-volume relation in Eq. 71 and Eq. 72 may be insufficient to account
for nonlinear behavior at large deformations. For example, most solids decrease
dramatically in compressibility as their specific volume shrinks towards zero. De-
note the isothermal tangent bulk modulus by BT and its pressure derivative under
isothermal hydrostatic loading by B′T . Let zero subscripts (·)|0 correspond to the
reference state wherein T = T0 and εεε = 0. Then

B′T0 =

[
d
dp
BT

]∣∣∣∣
0

=

[
d
dp

(
−J ∂p

∂J

)]∣∣∣∣
T=T0,εεε=0

=

[
d
dp

(
∂

∂ ln J

∂Ψ

∂J

)]∣∣∣∣
T=T0,εεε=0

.

(74)
Furthermore, many solids demonstrate a change in tangent shear modulus under
hydrostatic compression or tension.40 Denote tangent shear moduli under squeeze
and simple shear by µ andG, respectively. Their isothermal pressure derivatives are
defined as

µ′0 =

[
d
dp
µ

]∣∣∣∣
0

=

[
d
dp

(
1

6

∂2Ψ

∂ε2i

)]∣∣∣∣
T=T0,εεε=0

, (i = 1, 2, 3); (75)

G′0 =

[
d
dp
G

]∣∣∣∣
0

=

[
d
dp

(
∂2Ψ

∂ε2i

)]∣∣∣∣
T=T0,εεε=0

, (i = 4, 5, 6). (76)

Note that µ and G defined in this manner are tangent moduli with respect to cor-
responding strain attributes and do not necessarily correspond to wave propagation
coefficients referred to Lagrangian or Eulerian coordinates. The quasi-linear model
of Eq. 69 corresponds to a fixed value of B′T0 = 2 verified by differentiation, and,
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since pressure and shears are completely decoupled in Eq. 71, µ′0 = G′0 = 0.

The nonlinear model forwarded in the present subsection includes a logarithmic
equation-of-state41,42 for the isothermal pressure-volume response and pressures-
shear coupling to account for nonzero values of µ′0 and G′0:

Ψ∞0 ({ξj}, T ) =
1

2
BT

0 (ξ0)2

[
1− 1

3
(B′T0 − 2)ξ0

]
− κ0ξ0∆T − c0T ln(T/T0)

+ 3µ0ξ1

[
1− BT

0

µ0

µ′0ξ0

]
+

1

2
G0ξ2

[
1− BT

0

G0

G′0ξ0

]
.

(77)

Constant thermal stress and specific heat coefficients are retained, and quantities in
square braces reduce to unity for the quasi-linear model of Eq. 69.

Conjugate stresses {τ̂i} are again determined with Eq. 44:

τ̂0 = −Jp = BT
0 ε0

[
1− 1

2
(B′T0 − 2)ε0

]
− 3BT

0 µ
′
0ξ1 −

1

2
BT

0 G
′
0ξ2 −BT

0 A0∆T,

τ̂i = 6µ0

[
1− BT

0

µ0

µ′0ξ0

]
εi, (i = 1, 2, 3),

τ̂i = G0

[
1− BT

0

G0

G′0ξ0

]
εi, (i = 4, 5, 6).

(78)

Under spherical deformation, εi = 0 for i > 0, so ξ1 = ξ2 = 0 and τ̂i = 0 for i > 0.
Thus, only pressure from the logarithmic equation-of-state and thermal stress arise
for purely volumetric loading, and vice-versa: hydrostatic compression/tension cor-
responds to spherical deformation. However, under imposed shear deformations,
volumetric compression (ξ0 = ε0 = ln J < 0) will amplify shear stresses τ̂i (i > 0)
for positive values of µ′0 and G′0. Since ξ1 and ξ2 are always non-negative, shear
strains will induce a positive Cauchy pressure p under isochoric motions for posi-
tive µ′0 and G′0.

The tangent isothermal bulk modulus corresponding to Eq. 77 is

BT = −
(
J
∂p

∂J

)∣∣∣∣
T=T0

=
B0

J

[
1− ln J{1 + (B′T0 − 2)}+

1

2
(ln J)2(B′T0 − 2)

]
.

(79)

An internal energy consistent with Eq. 77 is, with ∆η = η − η0 the entropy change
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from the reference state,

U∞0 ({ξj}, η) =
1

2
Bη

0 (ξ0)2

[
1− 1

3
(B′η0 − 2)ξ0

]
+ T0∆η[1− g0ξ0 + (∆η)/(2c0)]

+ 3µ0ξ1

[
1− Bη

0

µ0

µ′0ξ0

]
+

1

2
G0ξ2

[
1− Bη

0

G0

G′0ξ0

]
.

(80)

Stresses can be obtained from internal energy using Eq. 52. Temperature is then,
from Eq. 53,

T = ∂U∞0 /∂T = T0[1− g0 ln J + ∆η/c0]. (81)

This model requires only the nonlinear elastic parameters B′T0 , µ′0, and G′0 above
the base parameters of the model of Section 4.2. These are physically measured by
monitoring changes in bulk, squeeze, and simple shear moduli as the pressure in the
material is varied.

4.4 Pseudo-Isotropic Solids
Isotropy corresponds to permitting H in Eq. 66 to be any rotation, meaning H is
any member of the 3-D orthogonal group with positive determinant [SO(3)]. The
model advanced next, though not proven isotropic in such a group sense, is labeled
pseudo-isotropic in that its linearization is consistent with linear isotropic elasticity
theory.

Careful examination of the theory of Section 4.2 (e.g., Eq. 73) demonstrates that
isotropic linear elasticity is recovered in the limit of small deformations whenG0 =

µ0. Accordingly a set of only two scalar functions {Ξj}, j = 0, 1, of the strain
attributes is proposed:

Ξ0 = ξ0 = ε0 = ln J,

Ξ1 = 6ξ1 + ξ2 = 6[(ε1)2 + (ε2)2 + (ε3)2] + α2 + β2 + γ2.
(82)

Strain energy dependence on this set of variables is not claimed to be sufficient for
isotropy in the formal sense of Eq. 66. The list of only two scalar variables in Eq. 82
is clearly incomplete because isotropic solids depend on three scalar invariants of
C. Since the material contains no intrinsic preferred directions (unlike the cubic
solid), the global coordinate basis {eI} is now chosen arbitrarily.
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The quasi-linear, pseudo-isotropic free energy function is

Ψ∞0 ({Ξj}, T ) =
1

2
BT

0 (Ξ0)2 +
1

2
G0Ξ1 − κ0Ξ0∆T − c0T ln(T/T0). (83)

The pressure-volume response is unchanged from the cubic model of Section 4.2,
and the deviatoric response is identical to that of Eq. 72 with the substitution µ0 =

G0. Only the standard, physically measurable, isotropic linear thermoelastic con-
stants enter this model.

Extending this idea to the nonlinear regime, a pseudo-isotropic free energy function
can be constructed from the model of Section 4.3 by setting µ0 = G0 and µ′0 = G′0:

Ψ∞0 ({Ξj}, T ) =
1

2
BT

0 (Ξ0)2

[
1− 1

3
(B′T0 − 2)Ξ0

]
+

1

2
G0Ξ1

[
1− BT

0

G0

G′0Ξ0

]
− κ0Ξ0∆T − c0T ln

(
T

T0

)
,

(84)

U∞0 ({Ξj}, η) =
1

2
Bη

0 (Ξ0)2

[
1− 1

3
(B′η0 − 2)Ξ0

]
+

1

2
G0Ξ1

[
1− Bη

0

G0

G′0Ξ0

]
+ T0∆η

[
1− g0Ξ0 +

∆η

2c0

]
.

(85)

Stresses, entropy, and temperature follow readily from differentiation that is omitted
here. Only the standard linear thermoelastic constants plus the measurable nonlinear
constants B′T0 and G′0 enter this model.

A final example proposes a nonlinear pseudo-isotropic model with exponential
stress-strain response. Such descriptions are widely used for biological tissues.2,43,44

The following free and internal energy functions are proposed that combine dis-
tinct exponential pressure and shear responses with potential pressure-shear stiff-
ness coupling:

Ψ∞0 ({Ξj}, T ) =
1

2

BT
0

c1

{exp[c1(Ξ0)2]− 1}+
1

2

G0

c2

{exp[c2Ξ1]− 1}
[
1− BT

0

G0

G′0Ξ0

]
− κ0Ξ0∆T − c0T ln

(
T

T0

)
,

(86)
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U∞0 ({Ξj}, η) =
1

2

Bη
0

c1

{exp[c1(Ξ0)2]− 1}+
1

2

G0

c2

{exp[c2Ξ1]− 1}
[
1− Bη

0

G0

G′0Ξ0

]
+ T0∆η

[
1− g0Ξ0 +

∆η

2c0

]
.

(87)

All parameters that have been introduced already in prior models (e.g., referential
bulk and shear moduli) have identical physical and mathematical meanings and are
readily measurable. This model has a fixed initial pressure derivative of the bulk
moduli B′T0 = B′η0 = 2. Parameters c1 and c2 control the exponential scaling;
these should be non-negative for strain energy to be positive in compression. These
parameters can be calibrated to the very large strain response of the material under
hydrostatic and shear loading, respectively. The quasi-linear theory of Eq. 83 is
recovered in the limit c1, c2 → 0 and G′0 = 0.

Conjugate thermodynamic stresses are

τ̂0 = −Jp = BT
0 ε0 exp[c1(ε0)2]− 1

2
BT

0 G
′
0Ξ1 −BT

0 A0∆T,

τ̂i = 6G0εi

[
1− BT

0

G0

G′0ε0

]
exp[c2(Ξ1)], (i = 1, 2, 3),

τ̂i = G0εi

[
1− BT

0

G0

G′0ε0

]
exp[c2(Ξ1)], (i = 4, 5, 6).

(88)

The absolute temperature T can be obtained from differentiation of Eq. 87 with
respect to η, producing a result identical to Eq. 81.

The tangent isothermal bulk modulus corresponding to Eq. 86 is

BT = −
(
J
∂p

∂J

)∣∣∣∣
T=T0

=
BT

0

J
[1 + ln J(2c1 ln J − 1)] exp{c1(ln J)2}. (89)

Compared in Fig. 2 are normalized Cauchy pressure p and tangent isothermal bulk
modulus BT for the logarithmic equation-of-state inherent in Eq. 84 and the ex-
ponential equation-of-state inherent in Eq. 86. Deformation is spherical (i.e., F =

J1/31) and isothermal at T = T0. Different choices of nonlinear elasticity parame-
ters B′T0 and c1 are evaluated, where B′T0 = 2 corresponds to the quasi-linear theory
of Eq. 83. All results in Fig. 2a demonstrate increasing pressure with a reduction
in volume, and with the exception of the logarithmic model with B′T0 = 0, a bulk
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modulus that increases steadily under compression in Fig. 2b.
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Fig. 2 Predictions for isothermal spherical elastic deformation, normalized by reference bulk
modulusBT

0 : a) Cauchy pressure p computed from Eq. 78 (logarithmic model) or Eq. 88 (expo-
nential model) and b) tangent isothermal bulk modulusBT computed from Eq. 79 (logarithmic
model) or Eq. 89 (exponential model)

Results in Fig. 2 show how the present theoretical framework successfully encom-
passes behaviors representative of stiff and soft solids depending on the choice of
free energy function Ψ∞0 . The logarithmic model is physically realistic for many
strong single and polycrystalline solids deformed to large compression, as encoun-
tered in structural engineering materials (ceramics) and geomechanics (rocks and
minerals).41,42,45,46 It has also been used as a standard model of compressible neo-
Hookean elasticity, appropriate for nearly incompressible rubber and some other
polymers.8,47 The logarithmic theory predicts a negative bulk modulus for B′T0 ≤ 2

and J ≥ 2.8, implying instability under large dilatation is possible depending on
nonlinear elastic parameters.

The exponential model is physically realistic for soft solids including biological tis-
sues1,2,30,48–50 that exhibit a very compliant response at small deformation and stiffen
considerably at large extensional strain. Such behavior is characteristic of biologi-
cal fibers containing elastin and collagen.28 Under large expansion, the exponential
model predicts an increasing bulk modulus that can significantly exceed the ini-
tial modulus BT

0 . Such stiffening, which occurs both in tension and compression at
large deformations, is amplified by increasing the value of parameter c1.
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5. Viscoelasticity
The finite strain thermo-viscoelastic framework of Holzapfel and Simo,9 which in
turn implements some features from earlier work of Simo,8 is adapted for use in
the present formulation. A fundamental distinction is that, in the present approach,
scalar viscous stress components conjugate to strain-like internal variables mirror
elastic strain attributes of the QR kinematics. In contrast, used in other theories9,10

are various viscous second Piola-Kirchhoff stress tensors conjugate to tensor inter-
nal state variables that mirror the Lagrangian deformation tensor C or Lagrangian
strain tensor E = 1

2
(C − 1). The general theory posited herein admits isotropic or

anisotropic viscoelastic responses depending on the particular forms prescribed for
the equilibrium and configurational energy potentials.

5.1 General Thermodynamics
Attention is restricted here to a free energy-based formulation, for which the first of
Eq. 41 in the absence of damage [(·)0 subscripts] is written

Ψ = Ψ0(εεε, T,χχχα) = Ψ∞0 (εεε, T ) + Υ0(εεε, T,χχχα). (90)

Dimensionless viscoelastic state variables are {χαi }, i = 0, . . . , 6 and χχχα, α =

1, . . . ,m, where the latter are defined in the second of Eq. 40. The first term on the
right, Ψ∞0 , accounts for the equilibrium (i.e., infinite-time) hyperelastic response,
where examples have been given in Section 4. The second term on the right, Υ0,
accounts for the configurational free energy from which viscous effects on stress
and entropy emerge. Each α corresponds to a different relaxation process affiliated
with time scale tα.

Substitution of Eq. 90 into Eq. 44, Eq. 45, and Eq. 64 provides the conjugate stress
measures, entropy density, and dissipation inequality:

τ̂0 =
∂Ψ∞0
∂ε0

+
∂Υ0

∂ε0
, τ̂1 =

∂Ψ∞0
∂ε1

+
∂Υ0

∂ε1
, τ̂2 =

∂Ψ∞0
∂ε2

+
∂Υ0

∂ε2
,

τ̂3 =
∂Ψ∞0
∂ε3

+
∂Υ0

∂ε3
, τ̂4 =

∂Ψ∞0
∂ε4

+
∂Υ0

∂ε4
, τ̂5 =

∂Ψ∞0
∂ε5

+
∂Υ0

∂ε5
,

τ̂6 =
∂Ψ∞0
∂ε6

+
∂Υ0

∂ε6
;

(91)
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η = −∂Ψ∞0
∂T

− ∂Υ0

∂T
= η∞ − ∂Υ0

∂T
; (92)

D =
m∑
α=1

ζζζα · χ̇χχα ≥ 0, ζζζα = −∂Υ0

∂χχχα
= −∂χχχαΥ0. (93)

The conjugate internal force vector ζζζα is defined as a usual negative partial deriva-
tive (i.e., thermodynamic force) according to Eq. 62. Components are, from Eq. 90,

ζζζα = [ζα0 , ζ
α
1 , ζ

α
2 , ζ

α
4 , ζ

α
5 , ζ

α
6 ]T = −∂χχχαΨ0 = −∂χχχαΥ0; (94)

ζα0 = −∂Υ0

∂χα0
, ζα1 = −∂Υ0

∂χα1
, ζα2 = −∂Υ0

∂χα2
, ζα3 = −∂Υ0

∂χα3
,

ζα4 = −∂Υ0

∂χα4
, ζα5 = −∂Υ0

∂χα5
ζα6 = −∂Υ0

∂χα6
.

(95)

These viscous stress components are defined analogously to elastic stress compo-
nents in Eq. 91 such that dissipation from the sum of products of seven scalar at-
tributes equals that from the dot product of the seven-element vectors of thermody-
namic conjugates:

6∑
i=0

ζαi χ̇
α
i = ζζζα · χ̇χχα ⇒ D =

m∑
α=1

6∑
i=0

ζ̂αi χ̇
α
i . (96)

5.2 General Kinetics
A kinetic law for evolution ofχχχα and a configurational free energy Υ0, both consis-
tent with the dissipation requirement Eq. 93, are needed. Positive dissipation can be
ensured by prescribing, where VVVα = VVVα(εεε, T,χχχα) is a positive definite 6× 6 matrix
of inverse viscosities,

χ̇χχα = VVVαζζζα, (97)

which in turn requires specification of the viscous stresses ζζζα.

A realistic and flexible kinetic model for viscous stresses, motivated by the standard
viscoelasticity model of (i) a spring element for equilibrium response in parallel
with (ii) m Maxwell (i.e., spring-dashpot) elements, is expressed in tensor form
in other works.9,10 In the present kinematic and thermodynamic framework, the
analogous differential equations and initial conditions (i.e., instantaneous internal
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stresses measured when a load is applied at t = 0) are, respectively,

ζ̇ζζ
α

+
1

tα
ζζζα =

d
dt

[∂εεεΨ
α
0 ]−ωωωα, ζζζα|t=0 = ζζζα0 = ∂εεεΨ

α
0

∣∣
εεε,T at t=0

. (98)

Denoted by Ψα
0 = Ψα

0 (εεε, T ) is a free energy function that corresponds to relaxation
process α with time scale tα > 0. Though not mandatory, these configurational
energy potentials should logically be constructed such that they inherit the same
material symmetry as the equilibrium free energy Ψ∞0 .

The coupling function ωωωα accounts for temperature-dependent viscous properties
and will be defined in more detail later. The solution of Eq. 98 can be written in the
form of a convolution integral for each α:

ζζζα(t) = exp

(
−t
tα

)
ζζζα0 +

∫ t

0+
exp

[
−(t− s)

tα

](
d
ds

[∂εεεΨ
α
0 (s)]−ωωωα(s)

)
ds. (99)

The present model, like those formulated elsewhere,9,10 is geometrically and mate-
rially nonlinear and admits up to any number m of discrete relaxation times tα that
may be needed to capture the relaxation spectrum. However, the exponential kernel
in Eq. 99 that results from the differential equation assigned in Eq. 98 is remi-
niscent of linear viscoelasticity. It remains to be seen if this approach is capable
of addressing the highly nonlinear cyclic viscoelastic response of some biological
tissues,3,29,43 or if modifications are necessary. Notably, a large number of Kelvin
elements—each Kelvin element being an aforementioned Maxwell spring-dashpot
unit and spring unit in parallel—have been recommended for describing the fre-
quency response of soft tissues.2

Extending the propositions of Holzapfel and Simo9 to the present context, the fol-
lowing three assumptions are imposed in addition to Eq. 98, beginning with

∂χχχα∂χχχβΥ0 = µαδαβIII, µα = µα(T ), (100)

with µα ≥ 0 a temperature-dependent parameter for each α with dimensions of
elastic stiffness and III the 7 × 7 identity matrix. The second assumption is that the
thermo-viscoelastic coupling function obeys

ωωωα = µ̇αχχχ
α = µ′αṪχχχ

α, µ′α = dµα/dT. (101)
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The third assumption is that internal dissipation is of the form

D =
m∑
α=1

1

να
ζζζα · ζζζα =

m∑
α=1

1

µαtα
|ζζζα|2 ≥ 0, να = µαtα, (102)

with να ≥ 0 a viscosity coefficient.

The configurational free energy that emerges from these assumptions is

Υ0(εεε, T,χχχα) =
m∑
α=1

[
1

2
µα(T )|χχχα|2 − ∂εεεΨα

0 (εεε, T ) ·χχχα + Ψα
0 (εεε, T )

]
. (103)

The proof follows the same steps as those in prior work,9 albeit with different defi-
nitions for elastic and viscous stress-strain variables. Comparing Eq. 96 and Eq. 97
with Eq. 102,

ζζζα = ναχ̇χχ
α, VVVα = (1/να)III. (104)

Integrating Eq. 100 successively gives

∂χχχαΥ0 = µαχχχ
α + ΞΞΞα, ΞΞΞα = ΞΞΞα(εεε, T ); (105)

Υ0(εεε, T,χχχα) =
m∑
α=1

[
1

2
µα(T )|χχχα|2 + ΞΞΞα(εεε, T ) ·χχχα

]
+ Υ̃(εεε, T ). (106)

Differentiating Eq. 105 with respect to strain and temperature, respectively, pro-
vides

∂εεε∂χχχαΥ0 = ∂εεεΞΞΞ
α, ∂T∂χχχαΥ0 = µ′αχχχ

α + ∂TΞΞΞα. (107)

The material time derivative of the second of Eq. 93 is

ζ̇ζζ
α

= − d
dt

(∂χχχαΥ0) = −
m∑
β=1

(
[∂χχχα∂χχχβΥ0] · χ̇χχβ

)
− [∂εεε∂χχχαΥ0] · ε̇εε− [∂T∂χχχαΥ0] · Ṫ .

(108)
Substitution of Eq. 100, Eq. 101, Eq. 104, and Eq. 107 into Eq. 108 results in

ζ̇ζζ
α

+
µα
να
ζζζα = −∂εεεΞΞΞα · ε̇εε− Ṫ ∂TΞΞΞα −ωωωα. (109)

The left side of Eq. 109 is identical to the left side of Eq. 98. Equating the right
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sides of Eq. 98 and Eq. 109 then integrating with respect to time gives

ΞΞΞα(εεε, T ) = −∂εεεΨα
0 (εεε, T ). (110)

Finally, defining the integration scalar Υ̃ =
∑m

α=1 Ψα
0 and substituting Eq. 110 into

Eq. 106 produces the internal configurational energy of Eq. 103.

The resulting important constitutive equations are summarized as follows. Total free
energy of Eq. 90 is

Ψ0(εεε, T,χχχα) = Ψ∞0 (εεε, T ) +
m∑
α=1

[
1

2
µα(T )|χχχα|2 − ∂εεεΨα

0 (εεε, T ) ·χχχα + Ψα
0 (εεε, T )

]
.

(111)
The thermodynamic stress vector τ̂ττ is a sum of equilibrium elastic and m viscous
parts:

τ̂ττ =
∂Ψ0

∂εεε
=
∂Ψ∞0
∂εεε

+
m∑
α=1

[
∂Ψα

0

∂εεε
− ∂2Ψα

0

∂εεε∂εεε
·χχχα

]
. (112)

Entropy η = −∂TΨ0 can be obtained from differentiation of Eq. 111 as an analo-
gous sum of equilibrium elastic and m viscous contributions. The evolution equa-
tion for viscous internal stresses is Eq. 98 with general solution Eq. 99.

Internal strains and their rates obey, from Eq. 105 and Eq. 104,

χχχα =
1

µα

[
∂Ψα

0

∂εεε
− ζζζα

]
, χ̇χχα =

1

να
ζζζα, (να = µαtα > 0). (113)

Comparing Eq. 112 and Eq. 113, total thermodynamic stress is the direct sum of
equilibrium stress andm conjugate internal stresses ζζζα when the following inessen-
tial constraints are imposed:

∂2Ψα
0

∂εεε∂εεε
·χχχα = µαχχχ

α ⇒ τ̂ττ =
∂Ψ∞0
∂εεε

+
m∑
α=1

ζζζα. (114)

Temperature can be computed via use of Eq. 63 with Ḋ = 0, where the summation
overm internal configurational variables accounts for viscous heating, for example.

The initial internal stress is calculated as follows, from which the internal strain
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vanishes at t = 0 according to the first of Eq. 113:

ζζζα0 =
∂Ψα

0

∂εεε

∣∣∣∣
t=0

, χχχα0 = χχχα|t=0 = 0. (115)

The instantaneous total stress at t = 0 is then, from Eq. 112, regardless of whether
Eq. 114 applies:

τ̂ττ 0 = τ̂ττ |t=0 =
∂Ψ∞0
∂εεε

+
m∑
α=1

ζζζα0 . (116)

The condition imposed for thermodynamic equilibrium is that internal stresses van-
ish at infinite time, which leads to the following limiting thermoelastic relations,
from Eq. 113:

ζζζα∞ = ζζζα|t→∞ = 0 ⇒ χχχα∞ = χχχα|t→∞ =
1

µα

∂Ψα
0

∂εεε
, χ̇χχα∞ = 0. (117)

Furthermore, when special condition Eq. 114 applies, then the equilibrium stress is
simply τ̂ττ∞ = ∂Ψ∞0 /∂εεε.

The model is complete upon specification of the free energy potentials Ψ∞0 and Ψα
0

for α = 1, . . . ,m along with the viscoelastic stiffness function(s) µα(T ) and the
relaxation time constant(s) tα. Three representative examples are presented in what
follows subsequently.

5.3 Quadratic Configurational Energy
The first example of the framework of Section 5.1 and Section 5.2 invokes the
quasi-linear, pseudo-isotropic free energy of Section 4.4 for the equilibrium ther-
moelastic response in combination with a simple quadratic form summation for the
configurational free energy that obeys Eq. 114:

Ψα
0 =

1

2
µα|εεε|2 ⇒ Υ0 =

m∑
α=1

1

2
µα|εεε−χχχα|2. (118)

The total free energy in Eq. 90 is the sum of Eq. 83 in square brackets below and
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the latter sum of quadratic forms from Eq. 118:

Ψ0 = Ψ∞0 + Υ0

=

[
1

2
BT

0 (Ξ0)2 +
1

2
G0Ξ1 − κ0Ξ0∆T − c0T ln(T/T0)

]
+

1

2

m∑
α=1

µα|εεε−χχχα|2.

(119)

An equilibrium thermodynamic stress vector is defined as follows (not necessarily
at t→∞, which will be demonstrated later):

τ̂ττ∞ = ∂εεεΨ
∞
0 = {τ̂i}∞ =



τ̂0

τ̂1

τ̂2

τ̂3

τ̂4

τ̂5

τ̂6


∞

=



BT
0 (ε0 − A0∆T )

6G0ε1

6G0ε2

6G0ε3

G0ε4

G0ε5

G0ε6


. (120)

The viscous stress vector is

ζζζα = −∂χχχαΥ0 = ∂εεεΨ
α
0 − µαχχχα = µα(εεε−χχχα) = ναχ̇χχ

α = µαtαχ̇χχ
α. (121)

Total stresses at any time are the sum of Eq. 120 and Eq. 121:

τ̂ττ = ∂εεεΨ0 =



BT
0 (ε0 − A0∆T ) +

∑m
α=1 µα(ε0 − χα0 )

6G0ε1 +
∑m

α=1 µα(ε1 − χα1 )

6G0ε2 +
∑m

α=1 µα(ε2 − χα2 )

6G0ε3 +
∑m

α=1 µα(ε3 − χα3 )

G0ε4 +
∑m

α=1 µα(ε4 − χα4 )

G0ε5 +
∑m

α=1 µα(ε5 − χα5 )

G0ε6 +
∑m

α=1 µα(ε6 − χα6 )


. (122)

The evolution equation for internal stresses with initial conditions is

ζ̇ζζ
α

+
1

tα
ζζζα = µαε̇εε+ µ′α(εεε−χχχα)Ṫ , ζζζα0 = ζζζα(εεε0, T0) = µα(T0)εεε0. (123)

The general solution is obtained by Eq. 99 with straightforward substitutions. Initial
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total stresses are given in Eq. 122 with χαi = 0. Internal strains and their rates are
obtained from Eq. 113:

χχχα = εεε− ζζζα/µα, χ̇χχα = ζζζα/να, (να = µαtα > 0). (124)

The equilibrium values of internal variables are, from Eq. 117 and the first of
Eq. 118,

χχχα∞ = χχχα|t→∞ =
1

µα

∂Ψα
0

∂εεε
= εεε. (125)

This verifies in Eq. 122 that τ̂ττ → τ̂ττ∞ as t→∞. Furthermore, the condition Eq. 39
is now imposed for the internal strains entering the free energy function Υ0. With
this constraint in place along with Eq. 25, verification is straightforward that τ̂1 +

τ̂2 + τ̂3 = 0, thus satisfying the restrictions in Eq. 33 and Eq. 47.

If α = m = 1, then parameters tα and µα can be obtained from an isothermal
stress relaxation test, presuming the hyperelastic potential Ψ∞0 is known. Consider
a 1-D shear relaxation test where εεε has the lone nonzero component ε4 = γ = γ0 =

constant and T is held fixed at T0. In this constant strain and constant temperature
case, the right side of the differential equation in Eq. 123 vanishes identically, as
does the convolution integral in Eq. 99. The lone nonzero shear stress component
relaxes according to

τ̂4(t, T0) = γ0[G0 + µ1(T0) exp(−t/t1)]. (126)

If the initial total stress is measured, then µ1(T0) = τ̂4(0, T0)/γ0 − G0. The relax-
ation time t1 can be obtained by fitting the decay behavior for t > 0. The ease at
which the two physically relevant viscoelastic parameters is calibrated in this case
is clear. However, this simple model may be overly restrictive since the same vis-
coelastic parameters (stiffness, relaxation times, and thus viscosity) are assigned to
volumetric and shear behaviors.

5.4 Proportional Configurational Energy
A second, perhaps more realistic, approach follows ideas in a different prior work
on nonlinear viscoelasticity.10 In lieu of the first of Eq. 118, the configurational free
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energy for process α is assigned proportional to the equilibrium free energy:

Ψα
0 (εεε, T ) = βαΨ∞0 (εεε, T ), βα ∈ (0,∞), (α = 1, . . . ,m), (127)

where βα are constants for a given material. The total free energy of Eq. 111 be-
comes

Ψ0 = Ψ∞0 + Υ0 = Ψ∞0 +
m∑
α=1

[
1

2
µα|χχχα|2 − βα(τττ∞ ·χχχα −Ψ∞0 )

]
. (128)

Note that the inessential relation Eq. 114 does not generally apply for this model.

The viscous stress vector is

ζζζα = −∂χχχαΥ0 = βατττ∞ − µαχχχα = ναχ̇χχ
α = µαtαχ̇χχ

α. (129)

The total thermodynamic stress vector of Eq. 112 is

τ̂ττ =
∂Ψ0

∂εεε
=
∂Ψ∞0
∂εεε

+
m∑
α=1

βα

[
∂Ψ∞0
∂εεε
− ∂2Ψ∞0

∂εεε∂εεε
·χχχα

]
= τττ∞ +

m∑
α=1

βα
[
τττ∞ −CCCT∞ ·χχχα

]
,

(130)

where CCCT∞ = ∂τττ∞/∂εεε is the 7 × 7 equilibrium isothermal tangent elastic stiffness
matrix with respect to εεε.

The same quasi-linear form of Ψ∞0 is invoked as in the previous example, so Eq. 120
still holds for the equilibrium stress vector. For the thermoelastic potential of Eq. 83,

CCCT∞ =



BT
0 0 0 0 0 0 0

0 6G0 0 0 0 0 0

0 0 6G0 0 0 0 0

0 0 0 6G0 0 0 0

0 0 0 0 G0 0 0

0 0 0 0 0 G0 0

0 0 0 0 0 0 G0


. (131)
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Substituting Eq. 120 and Eq. 131 into Eq. 130 produces

τ̂ττ = ∂εεεΨ0 =



BT
0 [(ε0 − A0∆T ) +

∑m
α=1 βα(ε0 − A0∆T − χα0 )]

6G0[ε1 +
∑m

α=1 βα(ε1 − χα1 )]

6G0[ε2 +
∑m

α=1 βα(ε2 − χα2 )]

6G0[ε3 +
∑m

α=1 βα(ε3 − χα3 )]

G0[ε4 +
∑m

α=1 βα(ε4 − χα4 )]

G0[ε5 +
∑m

α=1 βα(ε5 − χα5 )]

G0[ε6 +
∑m

α=1 βα(ε6 − χα6 )]


. (132)

Again, Eq. 39 is imposed for internal strains entering Υ0. Upon use of this constraint
in conjunction with Eq. 25, verification is straightforward that Eq. 33 and Eq. 47
are satisfied.

The evolution equation for internal stresses with initial conditions is

ζ̇ζζ
α

+
1

tα
ζζζα = βατ̇ττ∞ − µ′αχχχαṪ , ζζζα0 = ζζζα(εεε0, T0) = βα∂εεεΨ

∞
0 (εεε0, T0). (133)

The general solution is obtained by integration of Eq. 99 with the appropriate sub-
stitutions. Initial total stresses are given by Eq. 132 with χαi = 0. Internal strains
and their rates are obtained from Eq. 113:

χχχα =
1

µα
[βατττ∞ − ζζζα] , χ̇χχα = ζζζα/να, (να = µαtα > 0). (134)

At equilibrium as t→∞ from Eq. 117 and Eq. 127, χχχα∞ = βατττ∞/µα.

For this model, three independent material parameters are needed for each viscosity
mode α: the energy factor βα, the relaxation time tα, and the stiffness factor µα,
where the latter two are related to viscosity via the rightmost expression in Eq. 134.
Consider a simple shear stress relaxation test of the same form as that discussed for
the previous model of Section 5.3. For the present model, Eq. 126 is replaced with
the following, where µ1 = µ1(T0):

τ̂4(t) = G0γ0

[
1 + β1{1−

β1G0

µ1

[1− exp(−t/t1)]}
]
. (135)

An obvious logical choice is β1 = µ1/G0, which yields behavior identical to
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Eq. 126:
τ̂4(t, T0) = G0γ0 [1 + β1 exp(−t/t1)] . (136)

The analogous equation to Eq. 135 for isothermal spherical stress (i.e., pressure)
relaxation at constant volume [J = J0 = exp(ε0) = constant] is

p(t) = − τ̂0(t)

J0

= −B
T
0 ε0
J0

[
1 + β1{1−

β1B
T
0

µ1

[1− exp(−t/t1)]}
]
. (137)

Notice that although viscous stress contributions are scaled by different factors for
t > 0, the initial total stress is (1 + β1) times the equilibrium stress for different
loading protocols in Eq. 135 and Eq. 137, regardless of the choice of µ1. The model
presented next rectifies this situation, albeit at the expense of one additional material
parameter per viscous mode α.

5.5 Proportional Configurational Energy with Volumetric-Shear Split
The equilibrium free energy density is next assumed additively separable into volu-
metric and shear contributions, where all thermal effects are embedded in the former
and pressure coupling is included in the latter. All example thermoelastic potentials
presented in Section 4 can be represented in this format.

Specifically, considering pseudo-isotropic formulations of Section 4.4,

Ψ∞0 (Ξj, T ) = ΨV∞
0 (Ξ0, T ) + Ψ∆∞

0 (Ξ0,Ξ1)

= Ψv∞
0 (Ξ0, T ) + ψ∞(T ) + Ψδ∞

0 (Ξ1)ι(Ξ0),
(138)

recalling from Eq. 82 that Ξ0 = ε0 = ln J and Ξ1 is a scalar function of the squeeze
and simple shearing modes {εi}, i ≥ 1. The coupling function ι(ε0) accounts for
pressure dependence of the tangent shear modulus. The total thermal-volumetric
energy ΨV∞

0 is further decomposed into a sum of thermoelastic strain energy Ψv∞
0

and purely thermal energy ψ∞(T ), where the latter accounts for specific heat. For all
models with constant specific heat presented in Section 4, ψ∞ = −c0T ln(T/T0).

The superscript and subscript notation used for energy potentials is summarized
below for ease of reference:

• (·)V : volumetric part with thermal energy ψ;
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• (·)v: volumetric part without thermal energy ψ;

• (·)∆: deviatoric part with pressure coupling ι;

• (·)δ: deviatoric part without pressure coupling ι;

• (·)∞: equilibrium thermoelastic part;

• (·)0: damage-free part;

• (·)α: part corresponding to viscoelastic mode α.

The present model invokes the following generalization of Eq. 127:

Ψα
0 (εεε, T ) = βVα ΨV∞

0 (ε0, T ) + β∆
α Ψ∆∞

0 (εi)|i≥0;[
βVα , β

∆
α ∈ (0,∞), (α = 1, . . . ,m)

]
,

(139)

where βVα and β∆
α are constants for a given material. When βVα = β∆

α ∀α ∈ [1,m],
then the model of Section 5.4 is recovered.

Define the following modified stress vector that is obtained from differentiation of
Eq. 139 with respect to εεε for each α:

τ̃ττα∞ = ∂εεεΨ
α
0 = {τ̃i}α∞ =



βVα (∂ΨV∞
0 /∂ε0) + β∆

α Ψδ∞
0 (dι/dε0)

β∆
α (∂Ψ∆∞

1 /∂ε1)

β∆
α (∂Ψ∆∞

1 /∂ε2)

β∆
α (∂Ψ∆∞

1 /∂ε3)

β∆
α (∂Ψ∆∞

1 /∂ε4)

β∆
α (∂Ψ∆∞

1 /∂ε5)

β∆
α (∂Ψ∆∞

1 /∂ε6)


. (140)

The total free energy and viscous stress vectors of Eq. 128 and Eq. 129 are then
generalized to

Ψ0 = Ψ∞0 +Υ0 = Ψ∞0 +
m∑
α=1

[
1

2
µα|χχχα|2 − τ̃ττα∞ ·χχχα + βVα ΨV∞

0 + β∆
α ΨD∞

0

]
. (141)

ζζζα = −∂χχχαΥ0 = τ̃ττα∞ − µαχχχα = ναχ̇χχ
α = µαtαχ̇χχ

α. (142)
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The quasi-linear hyperelastic potential of Eq. 83 is now selected, as was the case in
the prior two viscoelastic examples. With regard to Eq. 138, ι = 1 and

ΨV∞
0 =

1

2
BT

0 (ε0)2 −BT
0 A0ε0∆T − c0T ln(T/T0),

Ψ∆∞
0 =

1

2
G0{6[(ε1)2 + (ε2)2 + (ε3)2] + (ε4)2 + (ε5)2 + (ε6)2}.

(143)

With this potential, Eq. 140 becomes

τ̃ττα∞ =



βVαB
T
0 (ε0 − A0∆T )

6β∆
α G0ε1

6β∆
α G0ε2

6β∆
α G0ε3

β∆
α G0ε4

β∆
α G0ε5

β∆
α G0ε6


. (144)

The total thermodynamic stress vector of Eq. 112 is

τ̂ττ =
∂Ψ0

∂εεε
=
∂Ψ∞0
∂εεε

+
m∑
α=1

[
∂Ψα

0

∂εεε
− ∂2Ψα

0

∂εεε∂εεε
·χχχα

]
= τ̃ττ∞ +

m∑
α=1

[
τ̃ττα∞ −CCCTα∞ ·χχχα

]
,

(145)

where CCCTα∞ = ∂τ̃ττα∞/∂εεε is the 7 × 7 equilibrium isothermal tangent elastic stiffness
matrix of Ψα

0 with respect to εεε. For the thermoelastic potential of Eq. 143 with
Eq. 139,

CCCTα∞ =



βVαB
T
0 0 0 0 0 0 0

0 6β∆
α G0 0 0 0 0 0

0 0 6β∆
α G0 0 0 0 0

0 0 0 6β∆
α G0 0 0 0

0 0 0 0 β∆
α G0 0 0

0 0 0 0 0 β∆
α G0 0

0 0 0 0 0 0 β∆
α G0


. (146)
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Substituting Eq. 144 and Eq. 146 into Eq. 145 produces

τ̂ττ = ∂εεεΨ0 =



BT
0 [(ε0 − A0∆T ) +

∑m
α=1 β

V
α (ε0 − A0∆T − χα0 )]

6G0[ε1 +
∑m

α=1 β
∆
α (ε1 − χα1 )]

6G0[ε2 +
∑m

α=1 β
∆
α (ε2 − χα2 )]

6G0[ε3 +
∑m

α=1 β
∆
α (ε3 − χα3 )]

G0[ε4 +
∑m

α=1 β
∆
α (ε4 − χα4 )]

G0[ε5 +
∑m

α=1 β
∆
α (ε5 − χα5 )]

G0[ε6 +
∑m

α=1 β
∆
α (ε6 − χα6 )]


. (147)

Constraint Eq. 39 is imposed for this Υ0. As such, with Eq. 25, verification is
straightforward that Eq. 33 and Eq. 47 hold as desired.

The evolution equation for internal stresses and initial conditions are, respectively,

ζ̇ζζ
α

+
1

tα
ζζζα =

d
dt
τ̃ττα∞ − µ′αχχχαṪ , ζζζα0 = ζζζα(εεε0, T0) = τ̃ττα∞(εεε0, T0). (148)

The general solution is again obtained by Eq. 99 with the straightforward substitu-
tions. Initial total stresses are given by Eq. 122 with χαi = 0. Internal strains and
their rates are obtained from Eq. 113:

χχχα =
1

µα
[τ̃ττα∞ − ζζζα] , χ̇χχα = ζζζα/να, (να = µαtα > 0). (149)

As t→∞ from Eq. 117 and Eq. 139, χχχα∞ = τ̃ττα∞/µα.

Four independent material parameters are needed for each viscosity mode α: the
energy factors βVα and β∆

α , the relaxation time tα, and the stiffness factor µα, where
the latter two are related to viscosity via the rightmost expression in Eq. 149. Con-
sider again an isothermal, simple shear, stress relaxation test whereby ε4 = γ0 =

constant, T = T0 = constant, and µ1 = µ1(T0). For the present model, Eq. 126 of
Section 5.3 is replaced with

τ̂4(t) = G0γ0

[
1 + β∆

1 {1−
β∆

1 G0

µ1

[1− exp(−t/t1)]}
]
. (150)

Analogously, for isothermal spherical stress (i.e., pressure) relaxation at constant
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volume [J = J0 = exp(ε0) = constant],

p(t) = − τ̂0(t)

J0

= −B
T
0 ε0
J0

[
1 + βV1 {1−

βV1 B
T
0

µ1

[1− exp(−t/t1)]}
]
. (151)

Unlike the previous two examples, here the initial total stress is (1+β∆
1 ) or (1+βV1 )

times the equilibrium stress for shear and pressure loading protocols in Eq. 150
and Eq. 151, which is more amenable to data fitting, albeit at the expense of an
additional parameter for each viscous mode α. Thus, the energy factors β∆

1 and
βV1 are physically related to initial stress and can be calibrated from the ratios of
initial to equilibrium stresses for respective simple shear and hydrostatic pressure
loadings. The time-dependent relaxation behavior can then be used to obtain µ1 and
t1.

Though perhaps overly restrictive, upon choosing β∆
1 = µ1/G0, the response in

Eq. 126 can be obtained, where τ̂4 → G0γ0 as t→∞:

τ(t) = τ̂4(t) = G0γ0

[
1 + β∆

1 exp(−t/t1)
]
. (152)

Choosing βV1 = µ1/B
T
0 gives similarly, with the equilibrium response pJ0 →

−BT
0 ε0 as t→∞,

p(t) = − τ̂0(t)

J0

= −B
T
0 ε0
J0

[
1 + βV1 exp

(
−t
t1

)]
. (153)

Shown in Fig. 3a is the shear stress relaxation response predicted by Eq. 152 for
different prescriptions of β∆

1 and t1, where τ = τ̂4. Denoted by t0 is an arbitrary
time constant for normalization. Faster decay corresponds to lower t1. The instan-
taneous (dynamic) simple shear modulus is G0 · (1 + β∆

1 ). Evolution of the corre-
sponding shear component of internal configurational strain, reported in Fig. 3b, for
this shearing mode is given by the first of Eq. 149:

χ = χ1
4 =

β∆
1 G0γ0

µ1

[
1− exp

(
−t
t1

)]
= γ0

[
1− exp

(
−t
t1

)]
. (154)

Notably, the internal strain increases independently of parameters β∆
1 , µ1, and G0.

As t→∞, χ = χ1
4 → ε4 = γ0 in Eq. 147, and the total shear stress degenerates to

the equilibrium shear stress: τ̂4 → G0ε4 = G0γ0. Results in Fig. 3 demonstrate the
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capability of the present formulation to address a physically meaningful viscoelastic
response. Specifically, the exponential decay to an equilibrium value under stress re-
laxation experiments is characteristic of standard (e.g., linear and quasi-linear) vis-
coelastic media,30,51 including rubber and other polymers,9,10 as well as many soft
biological tissues.2,52,53 Analogous relaxation behaviors can be well-represented by
the model for pressure, pure shear, and their combinations such as uniaxial loading.
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Fig. 3 Predictions for isothermal viscoelastic stress relaxation of a solid with equilibrium shear
modulus G0 under constant simple shear deformation γ0: a) shear stress τ computed from
Eq. 152 and b) internal state variable (internal shear strain) χ computed from Eq. 154

6. Damage
Mechanics and thermodynamics of damage, described mathematically via internal
state variable D first introduced in Section 3, are now addressed. The theory initi-
ated by Simo8 for coupled finite viscoelasticity and damage is adapted in the present
work to consider nonlinear elastic and viscoelastic models based on the QR decom-
position and stress-strain attributes. More descriptive degradation functions and ki-
netic equations than those proposed elsewhere8 are also advanced herein, capable
of addressing a variety of behaviors observed in stiff materials (e.g., polycrystals,
plastics) and softer solids such as rubbery polymers and biomaterials.

6.1 General Theory
A free-energy based theory is considered, corresponding to the first of Eq. 41. This
is consistent with the viscoelastic framework set forth in Section 5 and is most
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suitable for isothermal problems. Internal energy-based models are often more con-
venient for adiabatic events (e.g., most wave propagation problems) and will be
addressed in future work.

Recall that Ψ0 corresponds to free energy when the material is undamaged (i.e., when
D = 0). In some cases damage can reasonably be assumed to affect total free energy
multiplicatively through a single degradation function f :

Ψ(εεε, T,χχχα, D) = f(D) ·Ψ0(εεε, T,χχχα); f ∈ [0, 1], f(0) = 1. (155)

For example, the familiar model of classical continuum damage mechanics54 advo-
cated elsewhere8 takes f = 1−D for isothermal problems. The quadratic degrada-
tion function f = (1−D)2 is standard in variational and phase field representations
of fracture55–57 and other generalized continuum theories,58–60 though in the current
framework, surface energies associated with material gradients of D are omitted.
More elaborate continuum damage theories consistent with the laws of thermody-
namics are described in the literature,15,37,61 for example. Correspondence between
D and microstructure depends on the particular material under consideration. Par-
ticular linkages of damage variable D to physical entities such as cracks and voids
will be provided subsequently in demonstrative examples in Section 6.2 and Sec-
tion 6.3, respectively.

Limiting the present scope to materials of cubic or isotropic elastic symmetry, free
energy of Eq. 41 in the undamaged state is further decomposed into volumetric,
thermal, and shearing contributions generalizing the scheme outlined in Section 5.5:

Ψ0 = Ψ(ξ0, ξ1, ξ2, T,χχχ
α, 0) = ΨV

0 (ξ0, T, χ
α
0 ) + Ψ∆

0 (ξ0, ξ1, ξ2, {χαj }|j≥0)

= Ψv
0(ξ0, T, χ

α
0 ) + ψ(T ) + Ψ∆

0 (ξ0, ξ1, ξ2, {χαj }|j≥0).

(156)

Recall from Eq. 67 that ξ0 = ε0 = ln J , and that ξ1 and ξ2 account for isochoric
pure and simple shearing deformations, respectively. Energy function ψ accounts
for specific heat but not thermoelastic coupling, which is embedded in Ψv

0. Effec-
tive deviatoric energy Ψ∆

0 includes possible dependence on (ε0, χ0) as results from
pressure-shear coupling (e.g., ι 6= 1 in Eq. 138). Any of the example hyperelas-
tic potentials presented in Section 4 can be partitioned according to the forms in
Eq. 156, as can the example viscoelastic potentials in Section 5.
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The basic model of Eq. 155 is extended and applied as follows, where now degra-
dation functions f v(D, q) and f∆(D) are possibly distinct scalar multipliers:

Ψ(ξi, T, χ
α
i , D) = f v(D, q) ·Ψv

0(ξ0, T, χ
α
0 )

+ f∆(D) ·Ψ∆
0 (ξ0, ξ1, ξ2, {χαj }|j≥0) + ψ(T ).

(157)

The sign of volumetric strain is q = sgn(ε0) and is used as an indicator in f v to
account for potentially different deterioration of the tangent bulk modulus in ten-
sion versus compression.56,57 Notably, in compression when cracks and voids are
fully closed, the tangent bulk modulus may not appreciably differ from that of its
reference value in the absence of damage. This is in contrast to dilatation (i.e., vol-
umetric expansion), whereby open cracks and voids should increase compliance.

The following constraints are imposed:

f v, f∆ ∈ [0, 1], f v(0, q) = f∆(0) = 1;

f ′v = ∂f v/∂D ≤ 0, f ′∆ = df∆/dD ≤ 0.
(158)

Accordingly, volumetric and deviatoric strain energy densities are degraded via
possibly different functions fV and f∆, respectively, and the thermal energy ψ

(e.g., specific heat capacity) is not affected by damage. The latter assumption im-
plies that a material with cracks or tears requires the same amount of heat energy to
raise its temperature as an undamaged material. Bounds on f v and f∆ ensure that
damage does not cause the free energy to change sign or the tangent elastic stiffness
to increase above its nominal initial value. The rightmost two inequalities lead to
monotonically decreasing degradation multipliers as D increases.

With the prescription in Eq. 157, dissipation due to damage in Eq. 64 is

−∂Ψ

∂D
Ḋ = FḊ = F vḊ + F∆Ḋ = −f ′vΨv

0Ḋ − f ′∆Ψ∆
0 Ḋ ≥ 0, (159)

and is here forced to be non-negative according to the rightmost inequality. Moti-
vated by the derived forms of driving forces F v and F∆, the following dimension-
less energies and their maximums achieved over the time history of deformation are
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introduced:

ϕv(t) =

〈
2Ψv

0(t)

BT
0

〉R
, ϕvm(t) = max

s∈(−∞,t]
[ϕv(s), ϕv0];

ϕ∆(t) =

〈
2Ψ∆

0 (t)

G0

〉R
, ϕ∆

m(t) = max
s∈(−∞,t]

[ϕ∆(s), ϕ∆
0 ].

(160)

Angled brackets parse positive values: 〈X〉 = 1
2
(X + |X|). Dimensionless mate-

rial parameter R > 0 modulates the strength of the driving force. Dimensionless
threshold energies for the onset of damage growth are the non-negative constants
ϕv0 and ϕ∆

0 .

A kinetic law for damage is proposed as follows, where H(·) is the Heaviside func-
tion:

Ḋ(ϕv, ϕ̇vm, ϕ
∆, ϕ̇∆

m, D, q) =
dD
dt

(ϕv, ϕ̇vm, ϕ
∆, ϕ̇∆

m, D, q)

=
[
αv(ϕ

v, ϕ∆, q)ϕ̇vm + α∆(ϕv, ϕ∆, q)ϕ̇∆
m

]
· H(1−D)

≥ 0.

(161)

Dimensionless material dependent functions are denoted by αv and αD; these obey
αv ≥ 0 and α∆ ≥ 0. The Heaviside function caps maximum damage at D = 1.

Rates of ϕvm and ϕ∆
m are non-negative by definition:

d
dt
ϕvm = ϕ̇vm =

 ϕ̇v if ϕ̇v > 0 and ϕv = ϕvm,

0 otherwise;
(162)

d
dt
ϕ∆
m = ϕ̇∆

m =

 ϕ̇∆ if ϕ̇∆ > 0 and ϕ∆ = ϕ∆
m,

0 otherwise.
(163)

These rates are positive only when respective initial thresholds φv0 ≥ 0 and φ∆
0 ≥ 0

are exceeded, meaning when strain energy densities Ψv
0 or Ψ∆

0 are non-negative as
imposed from Eq. 160.

According to Eq. 161, damage increases in the material only when conjugate strain
energy densities are increasing above prior maximums or their initial thresholds.
It follows from Eq. 158 and Eq. 161 that dissipation in Eq. 159 is unconditionally
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non-negative.

The kinetic model of Eq. 161–Eq. 163 could equivalently be expressed in terms of
loading criteria from a damage surface in state space, extending the viewpoint of
Simo.8 If the volumetric-deviatoric split and q are omitted, the conjugate force ϕ
is defined instead as

√
2Ψ0 with historic maximum ϕm, and R = 1

2
are imposed,

then the present kinetic model reduces to that proposed elsewhere.8 In other words,
a dissipation potential could be constructed in strain space to arrive at a similar (or
even identical, under less mathematically restrictive conditions) kinetic equation
for damage evolution. Both the present, direct evolution equation and the potential
function of Simo8 ensure thermodynamic admissibility (i.e., non-negative dissipa-
tion), and ultimately, both require similar material parameters either calibrated to
macroscopic test data or derived/extracted from micromechanics or other multi-
scale methods. See also approaches for modeling damage kinetics of biomaterials
invoking a damage surface4 and a conditional, history-dependent evolution equa-
tion5 similar to Eq. 161.

Examples in the following two subsections demonstrate how the foregoing dam-
age theory is superimposed on representative hyperelastic and viscoelastic models
introduced in Section 4 and Section 5, respectively. The first shows how damage
D can be related physically to micro-cracks distributed in a hyperelastic material.
The second shows how D can be related physically to porosity from voids in a
viscoelastic material.

6.2 Nonlinear Hyperelastic Solid with Isotropic Damage from
Micro-Cracks

In the present example, the free energy functional of Eq. 83 for the undamaged solid
is invoked. This energy is partitioned according to Eq. 156 as follows, noting that
χχχα are not needed in the absence of viscosity:

Ψ0({Ξj}, T ) = Ψ∞0 ({Ξj}, T ) = Ψv∞
0 (Ξ0, T ) + ψ∞(T ) + Ψ∆∞

0 (Ξ1); (164)

Ψv∞
0 =

1

2
BT

0 (Ξ0)2 −BT
0 A0Ξ0∆T, (165)

Ψ∆∞
0 =

1

2
G0Ξ1, (166)
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ψ∞ = −c0T ln(T/T0). (167)

Damage consists of an isotropic distribution of penny-shaped micro-cracks. The
mean radius of micro-cracks contained in a volume element at X and time t is de-
noted by ac(X, t). The number of micro-cracks per unit reference volume is denoted
by nc(X, t). The damage variable is defined as

D(X, t) = 8[ac(X, t)]3 · nc(X, t). (168)

At percolation, D → 1 corresponds to one micro-crack of radius ac per cubic vol-
ume element of material of edge length 2ac. Define the Poisson’s ratio of the un-
damaged material at its initial state by the usual isotropic linear elastic relation:

ν0 = (3BT
0 − 2G0)/(6BT

0 + 2G0). (169)

The bulk modulus and shear modulus are then presumed to degrade according to
the linear elastic theory of Bristow,32 in the absence of analytical formulae relating
cracks to moduli in nonlinear elastic materials of the present type with strain energy
corresponding to Eq. 164. Two coefficients depending on Poisson’s ratio are defined
as

κv =
2

9

1− ν2
0

1− 2ν0

, κ∆ =
4

45
(1− ν0)(5− ν0). (170)

The following degradation functions are then used for 0 ≤ D < 1, based on work
of Bristow32:

f v(D, q) =


1− κvD if q ≥ 0 and D < 1/κv,

0 if q ≥ 0 and D ≥ 1/κv,

1 if q < 0;

f∆(D) =

 1− κ∆D if D < 1/κ∆,

0 if D ≥ 1/κ∆.

(171)

The value of q indicates compression (q < 0) versus tension (q > 0) or neutral
loading (q = 0) such that under volumetric compression with ε0 < 0⇒ q = −1⇒
f v = 1, the volumetric strain energy density Ψv∞

0 is not degraded. Under compres-
sive pressure, closed cracks are presumed to leave the bulk modulus unaffected.56,57

This way, the material’s response becomes akin to a compressible fluid when the
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tangent shear modulus is fully degraded due to damage, preventing interpenetration
of matter that might occur were the bulk modulus reduced to zero in compression.
If κv ≥ 1 or κ∆ ≥ 1, the corresponding minimum of f v or f∆ is set to zero when
D ≥ 1/κv or D ≥ 1/κ∆, respectively.

At percolation, whenD = 1, a physically reasonable limiting assumption is that the
tangent bulk modulus degrades to zero in tension or neutral loading, and the tangent
shear modulus vanishes (i.e., frictionless crack surfaces):

f v(1, q) =

 0 if q ≥ 0,

1 if q < 0;
f∆(1) = 0. (172)

Constraints f v ∈ [0, 1] and f∆ ∈ [0, 1] as required from Eq. 158 always hold from
Eq. 171 and Eq. 172.

Shown in Fig. 4 are effective bulk and shear moduli obtained from Eq. 171 for
D ∈ [0, 1). The bulk modulus decreases more rapidly with increasing crack content
as Poisson’s ratio increases. The shear modulus demonstrates the converse behavior,
decreasing more rapidly as Poisson’s ratio decreases. When D = 1, moduli drop
abruptly to 0 according to Eq. 172; this behavior is not shown in Fig. 4.
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Fig. 4 Effects of damageD from isotropic distribution of penny-shaped micro-cracks of radius
ac and number per unit reference volume nc: a) tangent bulk isothermal modulusBT for q ≥ 0
(neutral or tensile loading) and b) shear modulus G, both measured at null applied strain.
Relations among moduli and crack variables extracted from literature.32
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Derivatives of Eq. 171 with respect to damageD ∈ [0, 1) obey, with thermodynamic
bounds −1 < ν0 <

1
2

on Poisson’s ratio,

f ′v(D, q) =

−κv < 0 if q ≥ 0, D < 1/κv,

0 otherwise;

f ′∆(D) =

−κ∆ < 0 if D < 1/κ∆,

0 otherwise.

(173)

If conditions in Eq. 172 are invoked, then f ′v = f ′∆ = 0 when the material element
fails by total fracture at D = 1. Therefore, Eq. 171 and Eq. 172 collectively obey
all required constraints in Eq. 158 for D ∈ [0, 1].

Conjugate stresses to the strain attributes, {τ̂i}, are computed using Eq. 44:

τ̂0(ε0, D, T ) = f v(D, ε0) ·BT
0 [ε0 − A0∆T ] ,

τ̂i(εi, D) = 6f∆(D)G0εi, (i = 1, 2, 3);

τ̂i(εi, D) = f∆(D)G0εi, (i = 4, 5, 6).

(174)

The temperature rate equation Eq. 63 becomes

c0Ṫ = −f vBT
0 A0T ε̇0 + [F − T (∂F/∂T )]Ḋ −∇0 · q + r. (175)

The total thermodynamic force conjugate to D and its temperature derivative are

F = F v + F∆ = −f ′vΨv∞
0 − f ′∆Ψ∆∞

0 (176)

and
∂F

∂T
= −f ′v∂TΨv∞

0 = f ′vBT
0 A0ε0. (177)

The model is complete upon specification of evolution law Eq. 161 with initial
conditions D0 on the distribution of damage:

Ḋ =
[
αv · ϕ̇vm + α∆ · ϕ̇∆

m

]
· H(1−D), D(X, 0) = D0(X). (178)

If no cracks exist initially, then D0 = 0; however, many brittle solids (e.g., rocks
and ceramics) have a non-negligible content of micro-cracks in their natural, as-
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fabricated, or as-received states.

Time differentiation of Eq. 168 provides a relationship between the damage growth
rate and the rates of extension and nucleation of micro-cracks:

Ḋ(X, t) = 8[ac(X, t)]2 · [3ȧc(X, t) · nc(X, t) + ac(X, t) · ṅc(X, t)] . (179)

Driving forces for damage in Eq. 160 whose rates enter Eq. 178 are

ϕv =

〈
2Ψv

0

BT
0

〉R
= 〈ε0(ε0 − 2A0∆T )〉R,

ϕ∆ =

〈
2Ψ∆

0

G0

〉R
= (Ξ1)R = {6[(ε1)2 + (ε2)2 + (ε3)2] + (ε4)2 + (ε5)2 + (ε6)2}R.

(180)

When R = 1
2

and αv and α∆ are constants, then the damage growth rate is propor-
tional to a measure of strain rate, or an effective stress rate via Eq. 174, for isother-
mal deformation. The effective stress in this context would be that in the material
were its moduli not degraded by damage. Furthermore, under monotonic loading at
constant rate,D would increase proportionally to strain or effective stress exceeding
threshold values for these model choices. In practice, constant R and functions αv
and αD can be calibrated to some combination of macroscopic stress-strain and tan-
gent modulus data and microscopic information on evolving densities and/or mean
radii of micro-cracks under different loading protocols. Such steps are beyond the
present generic treatment, since micro-crack kinetics are complex and highly mate-
rial dependent. Representative examples of damage growth laws for different brittle
solids (ceramics, minerals, concrete) are available elsewhere.62–65

6.3 Nonlinear Viscoelastic Pseudo-Isotropic Solid with Voids
In the final example, the thermo-viscoelastic model of Section 5 is extended to ac-
count for damage, with full nonlinearity maintained via inclusion of parametersB′T0
and G′0. Free energy function of Eq. 138 for the undamaged solid in the equilibrium
limit is invoked. Variable D is explicitly related to void volume fraction later in this
section.

The total free energy of the undamaged solid, including configuration energy, is
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Eq. 141 .This energy is partitioned according to Eq. 156 as follows:

Ψ0 = Ψ∞0 + Υ0 = ΨV
0 + Ψ∆

0 ; (181)

Υ0 =
m∑
α=1

[
1

2
µα|χχχα|2 − τ̃ττα∞ ·χχχα + Ψα

0

]
=

m∑
α=1

[
1

2
µα|χχχα|2 − τ̃ττα∞ ·χχχα + βVα ΨV∞

0 + β∆
α Ψ∆∞

0

]
;

(182)

Ψα
0 (εεε, T ) = βVα ΨV∞

0 (ε0, T ) + βDαα Ψ∆∞
0 (εi)|i≥0[

βVα , β
∆
α ∈ (0,∞), (α = 1, . . . ,m)

]
;

(183)

Ψ∞0 (Ξj, T ) = ΨV∞
0 (Ξ0, T ) + Ψ∆∞

0 (Ξ0,Ξ1)

= Ψv∞
0 (Ξ0, T ) + ψ∞(T ) + Ψδ∞

0 (Ξ1)ι(Ξ0),
(184)

Ψv∞
0 =

1

2
BT

0 (Ξ0)2

[
1− 1

3
(B′T0 − 2)Ξ0

]
−BT

0 A0Ξ0∆T,

Ψ∆∞
0 =

1

2
G0Ξ1

[
1− BT

0

G0

G′0Ξ0

]
;

(185)

Ψv
0 = Ψv∞

0 +
m∑
α=1

[
1

2
µα(χα0 )2 − βVα

(
∂ΨV∞

0

∂ε0
χα0 −Ψv∞

0

)]
, (186)

Ψ∆
0 = ΨD∞

0 +
m∑
α=1

[
1

2
µα(
∑
i 6=0

χαi )2 − β∆
α

(∑
i 6=0

∂Ψ∆∞
i

∂εi
χαi + Ψδ∞

0

dι
dε0

χα0 −Ψ∆∞
0

)]
,

(187)

ψ = ψ∞ · (1−
m∑
α=1

βVα ) = −c0T ln(T/T0) · (1−
m∑
α=1

βVα ). (188)

Define the following modified stress vector that is obtained from differentiation of
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Eq. 183 with respect to εεε for each α:

τ̃ττα∞ = ∂εεεΨ
α
0 = {τ̃i}α∞ =



βVα (∂ΨV∞
0 /∂ε0) + β∆

α Ψδ∞
0 (dι/dε0)

β∆
α (∂Ψ∆∞

1 /∂ε1)

β∆
α (∂Ψ∆∞

1 /∂ε2)

β∆
α (∂Ψ∆∞

1 /∂ε3)

β∆
α (∂Ψ∆∞

1 /∂ε4)

β∆
α (∂Ψ∆∞

1 /∂ε5)

β∆
α (∂Ψ∆∞

1 /∂ε6)



=



βVαB
T
0 [ε0 − 1

2
(B′T0 − 2)(ε0)2 − A0∆T ]− β∆

α B
T
0 [1

2
G′0Ξ1]

6β∆
α G0ε1[1− (BT

0 /G0)G′0ε0]

6β∆
α G0ε2[1− (BT

0 /G0)G′0ε0]

6β∆
α G0ε3[1− (BT

0 /G0)G′0ε0]

β∆
α G0ε4[1− (BT

0 /G0)G′0ε0]

β∆
α G0ε5[1− (BT

0 /G0)G′0ε0]

β∆
α G0ε6[1− (BT

0 /G0)G′0ε0]


.

(189)

The total viscous stress vector (now undegraded) is redefined from Eq. 62 as

ζζζα = −∂χχχαΨ0 = −∂χχχαΥ0 = τ̃ττα∞ − µαχχχα = ναχ̇χχ
α = µαtαχ̇χχ

α. (190)

The kinetic equation for internal stresses with initial conditions is

ζ̇ζζ
α

+
1

tα
ζζζα =

d
dt
τ̃ττα∞ − µ′αχχχαṪ , ζζζα0 = ζζζα(εεε0, T0) = τ̃ττα∞(εεε0, T0). (191)

The general solution obeys Eq. 99 with convolution integrand containing the rate of
Eq. 189. Internal strains and their rates are obtained from Eq. 190:

χχχα =
1

µα
[τ̃ττα∞ − ζζζα] , χ̇χχα = ζζζα/να, (να = µαtα > 0). (192)

Terminal equilibrium values of internal strains are found by use of Eq. 183 in
Eq. 117: χχχα∞ = τ̃ττα∞/µα. The preceding formulae in Eq. 181–Eq. 192 are unaffected
by damage variable D.
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Following Eq. 157, the total free energy function including damage is

Ψ(Ξi, T, χ
α
i , D) = f v(D, q) ·Ψv

0(Ξ0, T, χ
α
0 )

+ f∆(D) ·Ψ∆
0 (Ξ0,Ξ1, {χαj }|j≥0) + ψ(T ).

(193)

Possible degradation functions f v and f∆ will be prescribed later, after derivation
of total stresses. The latter, in thermodynamic form, are

τττ =
∂Ψ

∂εεε
= f v

∂Ψv
0

∂εεε
+ f∆∂Ψ∆

0

∂εεε
. (194)

Substituting Eq. 181–Eq. 187 into Eq. 194 gives

τ̂ττ =



f vBT
0 [{ε0 − 1

2
B̄(ε0)2 − A0∆T}+

∑m
α=1 β

V
α {ε0 − 1

2
B̄(ε0)2 − . . .

. . .− A0∆T − (1− B̄ε0)χα0}]− τ̄0

6f∆G0[1− (BT
0 /G0)G′0ε0][ε1 +

∑m
α=1 β

∆
α (ε1 − χα1 )]− τ̄1

6f∆G0[1− (BT
0 /G0)G′0ε0][ε2 +

∑m
α=1 β

∆
α (ε2 − χα2 )]− τ̄2

6f∆G0[1− (BT
0 /G0)G′0ε0][ε3 +

∑m
α=1 β

∆
α (ε3 − χα3 )]− τ̄3

f∆G0[1− (BT
0 /G0)G′0ε0][ε4 +

∑m
α=1 β

∆
α (ε4 − χα4 )]− τ̄4

f∆G0[1− (BT
0 /G0)G′0ε0][ε5 +

∑m
α=1 β

∆
α (ε5 − χα5 )]− τ̄5

f∆G0[1− (BT
0 /G0)G′0ε0][ε6 +

∑m
α=1 β

∆
α (ε6 − χα6 )]− τ̄6



, (195)

where B̄ = B′T0 − 2 and pressure-shear coupling is

τ̄0 = f∆BT
0 G
′
0

[
Ξ1

2

+
m∑
α=1

β∆
α {

Ξ1

2
χα0 − 6(ε1χ

α
1 + ε2χ

α
2 + ε3χ

α
3 )− (ε4χ

α
4 + ε5χ

α
5 + ε6χ

α
6 )}
]
,

τ̄1 = −6f∆BT
0 G
′
0

m∑
α=1

β∆
α ε1χ

α
0 , τ̄2 = −6f∆BT

0 G
′
0

m∑
α=1

β∆
α ε2χ

α
0 ,

τ̄3 = −6f∆BT
0 G
′
0

m∑
α=1

β∆
α ε3χ

α
0 , τ̄4 = −f∆BT

0 G
′
0

m∑
α=1

β∆
α ε4χ

α
0 ,

τ̄5 = −f∆BT
0 G
′
0

m∑
α=1

β∆
α ε5χ

α
0 , τ̄6 = −f∆BT

0 G
′
0

m∑
α=1

β∆
α ε6χ

α
0 .

(196)

The condition Eq. 39 is invoked for internal strains entering the configurational en-
ergy function Υ0. With this constraint in place and Eq. 25, verification is straightfor-
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ward that τ̂1+τ̂2+τ̂3 = 0; thus restrictions in Eq. 33 and Eq. 47 are obeyed. Initial to-
tal stresses are given by Eq. 195 with χαi = 0 and f v = f∆ = 1, presuming that the
material is undamaged initially; otherwise initial conditions D(t = 0) = D0 > 0

should be used in f v and f∆.

Entropy density is

η = −∂Ψ

∂T
= c0[1 + ln(T/T0)]

(
1 +

m∑
α=1

βVα

)
+ f vBT

0 A0ε0

+
m∑
α=1

[f vβVαB
T
0 A0(ε0 − χα0 )− 1

2
{f vµ′α(χα0 )2 + f∆µ′α

∑
i 6=0

(χαi )2}].

(197)

Temperature evolution can be calculated via Eq. 63:

c0Ṫ = −f vBTA0T

(
1 +

m∑
α=1

βVα

)
ε̇0

+
m∑
α=1

να[f v(χ̇α0 )2 + f∆
∑
i 6=0

(χ̇αi )2]

+ T
m∑
α=1

[f v{βVαBT
0 A0 + µ′αχ

α
0}χ̇α0 + f∆µ′α

∑
i 6=0

χαi · χ̇αi ]

+ [F − T (∂F/∂T )]Ḋ −∇0 · q + r,

(198)

with, from Eq. 159,

F = −f ′vΨv
0 − f ′∆Ψ∆

0 ,

∂F

∂T
= f ′v{BT

0 A0ε0 +
m∑
α=1

[βVαB
T
0 A0(ε0 − χα0 )− 1

2
µ′α(χα0 )2]}

− 1

2
f ′∆

m∑
α=1

µ′α
∑
i 6=0

(χαi )2,

(199)

where Ψv
0 and Ψ∆

0 are given in Eq. 186 and Eq. 187, respectively.

The internal dissipation inequality in the first of Eq. 64 becomes

D = −
M∑
α=1

(
f v
∂Ψv

0

∂χχχα
+ f∆∂Ψ∆

0

∂χχχα

)
· χ̇χχα + FḊ ≥ 0. (200)

59



The viscoelasticity theory of Section 5 ensures that Eq. 93 and Eq. 102 are uncon-
ditionally satisfied, that is,

−
M∑
α=1

(
∂Ψv

0

∂χχχα
+
∂Ψ∆

0

∂χχχα

)
· χ̇χχα ≥ 0 (201)

follows directly from the total and configurational energy functions Eq. 181 and
Eq. 182 in conjunction with kinetic law Eq. 191. Obviously when f v = f∆ ≥ 0,
then the viscoelastic contribution to Eq. 200 is always non-negative. Physics per-
mitting, this would be a preferred choice to ensure thermodynamic consistency;
otherwise, functions f v and f∆ should be constrained such that Eq. 200 holds over
the loading regime to which the model is applied. The term FḊ in Eq. 200 is al-
ways non-negative when the damage degradation constitutive equations and kinetic
framework of Section 6.1 are imposed.

A simple phenomenological degradation model, and perhaps the most prevalent for
rubbery solids and other polymers8,54 as well as biological tissues,5 that fulfills all
properties in Eq. 158 is

f v = f∆ = f = 1−D, f ′ = df/dD = −1. (202)

A specific form of Eq. 161 is needed; an example kinetic law like Eq. 178 is equally
applicable to the present setting. Parameters entering the damage framework should
ideally be calibrated after viscoelastic properties are determined. The former are
preferably obtained by consideration of the time-dependent response when load-
ing at intensities below the threshold(s) for damage initiation. Subsequently, the
material parameters controlling degradation and damage kinetics can be calibrated
by considering the response to more severe loadings above these threshold(s). A
similar approach to calibration was undertaken elsewhere,5 where hyperelastic and
damage properties were calibrated for biological tissues for respective loadings in
physiological and supra-physiological domains.

An alternative degradation model rooted in micromechanics explicitly defines D as
the void volume fraction φ̂:

D(X, t) = φ̂(X, t) = 1− ρ̂(X, t)
ρ0(X)

. (203)
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where ρ0 > 0 is the mass density of the material in the unloaded reference state
without any voids, and ρ̂ is the mass density of the material, externally unloaded at
the reference temperature, with voids. Since 0 ≤ ρ̂ ≤ ρ0, bounds D ∈ [0, 1] are
fulfilled by this physical definition. Following the scheme used for modulus degra-
dation in the presence of micro-cracks in Section 6.2, dilatational and deviatoric
free energy densities now are affected by voids using coefficients obtained from the
isotropic elastic analysis of Mackenzie,31 with Poisson’s ratio ν0 defined in Eq. 169:

κv =
3(1− ν0)

(1 + ν0)D + 2(1− 2ν0)
, κ∆ =

15(1− ν0)

(7− 5ν0)
. (204)

Note that the first of Eq. 204 is not a constant since it depends on D = φ̂. The
following degradation functions are then used for 0 ≤ D < 1, based on the above-
quoted theory31 for effective moduli:

f v(D, q) =


1− κvD if q ≥ 0 and D < 1/κv,

0 if q ≥ 0 and D ≥ 1/κv,

1 if q < 0;

f∆(D) =

 1− κ∆D if D < 1/κ∆,

0 if D ≥ 1/κ∆.

(205)

Recall that q = sgn(ε0) indicates compression (q < 0, J < 1) versus tension (q > 0,
J > 1) or neutral loading (q = 0, J = 1) such that under volumetric compression,
the volumetric strain energy density Ψv∞

0 is not degraded. Under compressive pres-
sure, voids collapse in viscoelastic solids and are presumed to leave the bulk modu-
lus unaltered.56,57 Interpenetration of matter that might occur were the bulk modulus
to reduce to zero in compression is thereby avoided. If κv ≥ 1 or κ∆ ≥ 1, the cor-
responding minimum of f v or f∆ is set to zero when D ≥ 1/κv or D ≥ 1/κ∆,
respectively.

Relations from the literature31 for κv and κ∆ are accurate to O(D3) and O(D2),
respectively, in linear isotropic elastic solids. They are extrapolations for nonlinear
elastic solids like the one considered here, since analogous analytical formulae do
not exist. If D = 1 occurs in a material element, then that element is completely
voided, with no solid material. Although this extreme limiting condition can never
be fully realized physically, the tangent bulk modulus degrades to zero by default
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for q ≥ 0 in Eq. 205, and vanishing of the tangent shear modulus results automati-
cally as D → 1 since κ∆ > 1 for −1 < ν0 <

1
2
: f v(1, q) = f∆(1) = 0. Constraints

f v ∈ [0, 1] and f∆ ∈ [0, 1], as required from Eq. 158, always hold from Eq. 205.
Derivatives of Eq. 205 with respect to damageD ∈ [0, 1] can be verified, using ther-
modynamic bounds BT

0 > 0 and G0 > 0, to satisfy f ′v(D, q) ≤ 0 and f ′∆(D) ≤ 0.
Therefore, Eq. 205 obeys all required constraints in Eq. 158 for D ∈ [0, 1].

Shown in Fig. 5 are effective bulk and shear moduli obtained from Eq. 205 for
D ∈ [0, 1]. The bulk modulus decreases more rapidly with increasing void volume
fraction as Poisson’s ratio increases. The shear modulus demonstrates the converse
behavior, decreasing more rapidly as Poisson’s ratio decreases. The minimum value
of G is capped at 0 at some damage level 0.46 . D . 0.6 for the cases shown per
Eq. 205, since κ∆ > 1. When D = 1, moduli all equate to 0 according to Eq. 205;
this feature need not be manually imposed according to results in Fig. 5.
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Fig. 5 Effects of damage D from isotropic distribution of spherical voids of volume fraction
φ̂: a) tangent bulk isothermal modulus BT for q ≥ 0 (neutral or tensile loading) and b) shear
modulus G, both measured at null applied strain. Relations among moduli and porosity ex-
tracted from literature31 are most realistic for small φ̂.

Under tensile loading, many rubber solids and other ductile polymers fail by void
nucleation, growth, and coalescence. Nucleation often occurs by debonding of a
matrix phase from small particles of a dilute, stiffer second phase. Analytical, nu-
merical, and experimental studies have related the onset of void formation to a
threshold cavitation pressure pC .58,66,67 The present model framework is now adapted
to address this phenomenon in a rubbery solid in the quasi-static isothermal limit.
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The material is assumed nearly incompressible, with ν0 = 0.49 and a default value
of B̄ = 0. Temperature is fixed at T = T0. The deformation gradient for spherical
expansion is F = J1/31, with J ≥ 1, so ε0 = ln J ≥ 0 and q ≥ 0. Furthermore,
since squeeze and shear strain attributes vanish, Ξ1 = 0. In the quasi-static limit,
χ0
α → ε0 and Υ0 → 0 with µα = βαB

T
0 , such that viscoelasticity does not subse-

quently enter the analysis. Free energy, the degradation function, the single nonzero
stress component in Eq. 195, and Cauchy pressure become, respectively,

Ψ =
1

2
[1− κv(D) ·D]BT

0 (ln J)2, κv(D) =
3(1− ν0)

(1 + ν0)D + 2(1− 2ν0)
;

τ̂0 = [1− κv(D) ·D]BT
0 ln J, p = −[1− κv(D) ·D]BT

0

ln J

J
.

(206)

The static driving force for damage is, since J ≥ 1,

ϕv = (ln J)2R. (207)

Porosity initiates when cavitation pressure p = −pC is attained, where the latter is
defined as positive in tension. Let JC be the volume ratio of a material element at
this pressure, and φv0 the corresponding threshold driving force:

pC
BT

0

=
ln JC
JC

, ϕv0 = (ln JC)2R. (208)

Experimental or theoretical knowledge of pC thus allows identification of damage
initiation threshold ϕv0 through implicit solution of Eq. 208.

The damage rate in Eq. 161 is equal to the rate of void volume fraction through
Eq. 203:

d
dt
φ̂ = Ḋ = αv · ϕ̇vm · H(1−D), ϕvm(t) = max

t∈(−∞,s]
[ϕv(s), ϕv0]. (209)

The simplest physically plausible version of Eq. 209 invokes αv =constant. Making
this choice, along with initial condition D(t = 0) = 0, Eq. 209 can be integrated
analytically for monotonic tensile expansion:

D(J) = min[αv〈(ln J)2R − ϕv0〉, 1]. (210)

For this simple model under hydrostatic expansion, two elastic constants and three
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damage parameters suffice: the initial bulk modulus BT
0 , the initial Poisson’s ra-

tio ν0, the cavitation pressure pC , and the void kinetic parameters αv and R. The
latter two require calibration to macroscopic pressure-volume data and/or transient
measurements of void volume fraction D = φ̂. Since these are highly material-
and microstructure-dependent, they are varied parametrically in what follows rather
than assigned absolute values. As remarked already, for a rubbery solid, ν0 = 0.49

is deemed reasonable. Energy and pressure can be normalized by BT
0 so that the

latter does not affect normalized results of the model. Following analysis reviewed
elsewhere,66 pC = 5

2
G0 is appropriate for nearly incompressible isotropic hypere-

lastic solids. With ν0 = 0.49, this estimate yields pC = 1
20
BT

0 , giving JC = 1.0542.

Predictions of the model are shown in Fig. 6. Damage (i.e., void volume fraction) is
reported in Fig. 6a versus volume expansion as computed from kinetic law Eq. 210.
Cauchy pressure computed from Eq. 206, normalized by cavitation pressure pC , is
shown in Fig. 6b. At fixed R, increasing αv increases void growth and reduces the
normalized pressure more rapidly with increasing J . At fixed αv, decreasing R has
a similar effect on trends in evolution of porosity and pressure since 0 ≤ ε0 < 1

for results shown here. The case with R = 1
2

and αv = 2 attains the total failure
condition D = 1 at J ≈ 1.6JC . The other cases never achieve this maximum in D
over the range of J reported in Fig. 6a, but all would attain D = 1 eventually at
larger J . The very stiff response when damage is omitted is shown for reference in
Fig. 6b.

When R = 1
2
, the magnitude of pressure peaks at pC and drops abruptly thereafter

with further expansion. When R = 1, the maximum tensile load supported exceeds
the initial cavitation pressure (−p > pC for J > JC) , and strain softening due
to damage is more gradual with increasing J . Both types of behavior (i.e., abrupt
failure and gradual softening) have been observed in different rubbers and glassy
polymers,68–70 though plastic deformation that may emerge in some such materi-
als under local, non-hydrostatic stress states is omitted here. This simple damage
mechanics framework enables representation of either trend when parameters are
chosen appropriately. It is understood that more elaborate models are required to
account complex behaviors of degradation of viscoelastic polymers and biomateri-
als observed under dynamic cyclic loading.5,8

64



0.8 1.0 1.2 1.4 1.6 1.8 2.0

J/JC

0.0

0.2

0.4

0.6

0.8

1.0
D
=
φ̂

R=1
2
,αv =1

R=1,αv =1

R=1
2
,αv =2

R=1,αv =2

0.8 1.0 1.2 1.4 1.6 1.8 2.0

J/JC

0.0

0.5

1.0

1.5

2.0

−p
/
p
C

R=1
2
,αv =1

R=1,αv =1

R=1
2
,αv =2

R=1,αv =2

αv =0⇒D=0

(a) void volume (b) pressure

Fig. 6 Model predictions for evolution of damage under static isothermal, spherical expansion
J of a nearly incompressible solid with ν0 = 0.49: a) damage-equivalent void volume fraction
φ̂ and b) Cauchy pressure p accounting for degraded bulk modulus from voids.31 Expansion
ratio at onset of cavitation is JC corresponding to cavitation pressure pC = 1

20B
T
0 .

7. Conclusions
A comprehensive theoretical framework for finite deformation mechanics and ther-
modynamics of continuous bodies has been constructed in the context of the Gram-
Schmidt (QR) decomposition of the deformation gradient. The present work ap-
pears to be the first to apply QR kinematics of total deformation towards both vis-
coelastic and damage phenomena, though a different kinematic formulation with
upper triangular residual deformation and a flow rule for its evolution were invoked
elsewhere16 in the context of thermo-viscoelasticity. More specifically, noteworthy
developments reported herein include the following:

• A geometrically nonlinear thermodynamic and internal variable framework
complementing the QR description of conjugate stress-strain attributes;

• Finite hyperelasticity with temperature and entropy effects, including exam-
ples for quasi-linear and fully nonlinear solids with certain cubic or isotropic
symmetries in the context of QR kinematics;

• Nonlinear thermo-viscoelasticity with configurational energies and kinetics
obeying physical and thermodynamically admissible behaviors;
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• Continuum damage mechanics accounting for initial thresholds of damage
growth, differing behaviors in spherical tension/compression and shear, and
simultaneous viscoelasticity.

Advantages of the present strain attribute-based framework over classical C-invariant-
based theories discussed in the context of (hyper)elastic response16,20,21,23–25 are re-
tained in the current hyperelastic-thermo-viscoelastic-damage framework.

Various examples presented herein have considered physically relevant energy po-
tentials and kinetic relations. Effective moduli for solids with micro-cracks and
pores have been incorporated. Solutions for simple 1-D cases have been discussed in
the context of isothermal hyperelastic pressure-volume response, isothermal shear
stress relaxation, and void nucleation and growth under static expansion. Physically
reasonable trends are apparent in results for each case.

The present theory can be used for any classes of materials demonstrating a hypere-
lastic response in conjunction with possible viscoelasticity or damage mechanisms,
including biological tissues, polymers, and even (poly)crystalline solids in the ab-
sence of plastic flow. Inelastic deformation and remnant strains are not considered
here and thus await extension of the theory.20 Proper definition of a reference state
is crucial and often challenging for soft tissues43,71; this will be given detailed con-
sideration in subsequent applications. Notably, future work will apply the theory
towards modeling and simulation of a compressible soft biological tissue.50
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