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1. Summary 
 
Dynamic force measurement methodologies were developed for potential use in AEDC’s 
Hypervelocity Tunnel No. 9. They are the Time Domain Deconvolution Method (TDDM), 
Frequency Domain Inverse Method (FDIM) and Sum of Weighted Acceleration Technique 
(SWAT). The effectiveness of each method was validated both on numerical spring-mass-
damper systems as well as on a test article in the Balance Calibration Laboratory at Tunnel 9. 
 
To improve the performance of SWAT, modal separation and a damping matrix was added to the 
formulation to allow for high frequency modal amplitude reduction where the conventional 
method showed significant, undesirable modal amplification.  
 
A novel TDDM was developed based on the convolution relationship between input and output. 
In this new approach, an impulse response function is assumed to be linear or cubic over each 
time segment as in the finite element formulation. The time segment for the impulse response 
function can be selected as an integer multiple of the time segment for input/ output sampling. 
This allows for stable solution of the deconvolution problem without the need for conventional 
regularization of the inverse problem. Additionally, considering only a small segment of the 
output at a time, large segment can be reconstructed in a more reasonable amount of time. 
 
The FDIM was also reformulated for direct solution of the frequency response function (FRF) 
through the use of multiple calibration tests.  It is shown that the new approach helps reduce 
significantly the effect of experimental error and noise as the number of calibration tests 
increases, expanding the applicability of this method. The result of this investigation is included 
in this report. 
 
The work conducted through this project has resulted in a Ph.D. dissertation (by John Draper III) 
and two journal papers as follows: 
 
Journal papers published: 
Draper, J.W., Lee, S.W. and Marineau, E.C., ‘Numerical Construction of Impulse Response 
Functions and Input Signal Reconstruction,’ J. Sound and Vibration, vol 432, 259–271, 2018. 
 
Draper, J.W. and Lee, S.W., ‘Smooth Construction of Impulse Response Functions and Applied 
Loads using a Time Domain Deconvolution Method,’ J. Sound and Vibration, vol. 443, pp. 430–
443, 2019.  
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1 Introduction

Inverse signal reconstruction is an interest in many fields such as force, heat flux[18], and acoustic[?]

measurement. One often wishes to observe a quantity that is not directly measurable or propor-

tional to a measurable quantity. In this paper, we refer to these measurements as ”dynamic” and

the reconstruction of such quantities requires more elegant techniques.

The chief focus for this work is dynamic force measurement. The authors seek an effective

method for measuring transient, high frequency, or unsteady forcing in hypersonic wind tun-

nels. This work is intended to support future implementation of dynamic force measurement at

the Arnold Engineering Development Complex’s (AEDC) Hypervelocity Wind Tunnel No. 9[9].

There are many relevant applications of dynamic force measurement in hypersonic wind tunnel

testing. Examples include jet-flow interaction[6, 8], scramjet engine unstart[10, 11], and control

surface deployment[12, 5]. As the development of flightworthy hypersonic vehicles continues to

mature, so too will the need for measurement of these transient phenomenon.

Many techniques are relevant to this applications. For example, Draper et al. applied an ex-

tension to the typically used static calibration methodology[7] known as the sum of weighted

accelerations technique (SWAT)[2]. In this method, modally separated acceleration measurements

are used to remove the inertial response from the statically calibrated response. However, sensor

response delay band limited the effectiveness of the SWAT to approximately 200 Hz. Researchers
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at the CALSPAN-University of Buffalo Research Center (CUBRC) for example, also used an

acceleration compensated strain measurement to remove the inertial response[14, 13]. Deconvo-

lution methods are also very applicable for point force applications. Draper et al.[3] developed

a linearized time domain solution of the convolution problem and then generalized this formu-

lation to any order[4]. Many other time domain deconvolution methods (TDDMs) exist and are

arguably the most popular approach to force reconstruction. For example a TDDM was utilized

by researchers at the University of Queensland to measure startup drag on a slender test article in

a shock tunnel[16, 15].

One major drawback of TDDMs is the computational expense of the formulation. The size of

the matrix to be inverted grows as the length of the time history squared. Therefore, the computa-

tional effort can be excessive for long time histories (e.g. many seconds) sampled in the kilohertz

range. To circumvent this limitation, the frequency domain couple to TDDM is often employed.

This is referred to as the frequency domain inverse method (FDIM). For example researchers at

NASA Ames Research Center attempted to reconstruct unsteady aerodynamic forcing on a launch

vehicle[17]. However, they noted a difficulty in accurately reconstructing the frequency response

functions which caused an inability to accurately isolate unsteady aerodynamic loads.

Expanding the capability of the FDIM is the primary focus of this work. In particular, we

choose to directly solve for the frequency response function (FRF). Although this alone can cause

noise amplification, this formulation allows for the use of multiple calibration inputs which ulti-

mately can reduce the influence of user error and noise. Additionally, the application of this method

on acceleration responses is shown. In the first section, the conventional FDIM and the alterations

in this paper are presented. Following this, a numerical validation is performed on single and mul-

tiple degree of freedom systems to highlight some of the advantages of the alterations. Finally, the

methods are validated on an experimental system in AEDC’s Balance Calibration Laboratory.

2 Formulation

In this section, we present the typical FDIM for solution of dynamic forces. Following this, we

present a new approach to dynamic calibration that allows for less reliance on a single test.
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2.1 Conventional FDIM

We begin with the convolution integral that relates the input, u(t), and output, y(t), via a convolu-

tion with the impulse response function (IRF), h(t). The continuous form of this expression for a

system initially at rest is given as

y(t) =
ˆ t

0
h(t− τ)u(τ)dτ. (1)

To solve this using the FDIM, a Fourier Transform is performed on Eq. (1). If this is done, the

result is given by

Y (ω) = H(ω) ·U(ω) (2)

where capital variables signify frequency domain functions. Note that the complex convolution

of two time domain functions has become a more simple multiplication of two frequency domain

functions.

Typical solution for the IRF invokes the assumption that system response to a finite pulse is

approximately the impulse response[15]. If the response is scaled by the area and time shifted by

half the width of the pulse, this is a decent assumption. Any output response can be deconvolved

with this impulse response to reconstruct the input. To appreciate this, observe Figure 1. The

Figure 1: Typical IRF solution using scaling and time shifting of the displacement.

unaltered output (red) from the applied finite pulse does not appear to match the analytical IRF.
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However, when the displacement is scaled by the area under the pulse and shifted by half of the

width of the pulse, it nearly perfectly matches the analytical IRF. Note that the magnitude of the

pulse has be reduced considerably for visualization purposes.

With the IRF known, one may utilize the discrete Fourier Transform (DFT) to convert the IRF

into the frequency domain. This is commonly referred to as the FRF. Next, one may measure a

response caused by an applied dynamic load. Again using the DFT, one may obtain the frequency

domain couple to the output (i.e. Y (ω)).

Finally, to obtain the unknown applied force, one may perform a piecewise division of the

output by the FRF at every frequency, i.e.

U(ω) =
Y (ω)

H(ω)
. (3)

The time domain couple to this input force is obtained using the inverse discrete Fourier Transform

(IDFT).

One may note that since a division is required rather than a matrix inversion, this operation

requires O(N) operations rather than O(N2) where N is the length of a measured channel. As

expected, the computational efficiency has increased significantly and much longer time segments

can be deconvolved.

Alternatively, Eq. (2) could be solved for H(ω) given a measured input and output. However,

the former approach is usually taken for simplicity. Additionally, instrumented impulse hammers

are commercially available and therefore the determination of area and pulse width is simple.

In the SIMO case, the solution is obtained in a very similar fashion to the conventional FDIM.

Begin by obtaining all FRFs between the input location and all output channels. For the conven-

tional FDIM, this is obtained by performing a Fourier transform on the scaled and time shifted

output to an applied hammer pulse. Each FRF at a frequency is denoted as (H j)ω and the Fourier

Transform of each measured output at a particular frequency (Yj)ω , where the output location is

denoted by the subscript j and the frequency of interest is denoted by the subscript ω . Note, re-

construction of the input force requires information from all outputs. Therefore, Eq. (2) is stacked
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for all output locations to obtain 
Y1

Y2
...

YM


ω

=


H1

H2
...

HM


ω

U(ω) (4)

or in compact form as

Y(ω) = H(ω)U(ω) (5)

which holds for every frequency, ω . Note that M represents the arbitrary number of output channels

used for the reconstruction.

Since this is a matrix equation, point wise division is no longer applicable. However, a simple

least squares inversion can once again be used to solve for the input force as

U(ω) = H+(ω)Y(ω). (6)

This is evaluated at each frequency which requires much less computation time compared to a

typical TDDM.

Finally, a scenario where the force reconstruction at multiple input locations is of interest is

considered. Such scenarios may be referred to as MIMO. As in the TDDMs, the MIMO formula-

tion is simply a superposition of SIMO formulations. This is represented as
Y1

Y2
...

YM


ω

=


H11 H12 . . . H1P

H21 H22 . . . H2P
...

... . . . ...

HM1 HM2 . . . HMP


ω


U1

U2
...

UP


ω

(7)

where P input locations are of interest. Again this is represented in compact form as

Y(ω) = H (ω)U(ω) (8)

and solved using a least squares pseudo inverse as

U(ω) = H +(ω)Y(ω) (9)

provided M > P.
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If N frequencies are of interest, this requires the pseudo inversion of N MxP matrices. Since

inversion is O(P3) for this inversion, the MIMO computation is O(N ·P3). The inversion for the

typical MIMO TDDM is O(N3 ·P3), a factor of N2 larger. The computational efficiency of the

FDIM is obvious as N becomes large.

2.2 FRF Solution

In this section, the assumption of the IRF being equivalent to a multiple of the response to a

hammer pulse is no longer made. Rather, the convolution relationship is solved in the frequency

domain with a known applied load and measured response.

Return to Eq. (2) with U(ω) known (measured) and the FRF unknown. As in the solution of

an unknown applied force, the solution of the FRF is simply a division of the output by the input

at each frequency, i.e.

H(ω) =
Y (ω)

U(ω)
. (10)

Although this formulation requires more computation than the conventional one (i.e. assuming

the measured response to a pulse loading is proportional to the FRF), this formulation is required

for the alternative approach to be presented in the next section. Additionally, this allows for a

variety of calibration load types as opposed to just pulses.

2.3 Use of Multiple Calibration Sets

In this section, we again assume the FRF of the system is not dependent on the applied load.

That means that any applied load at a particular location should exhibit an identical FRF as any

other load applied at the same location. This is capitalized upon to reduce the ill effects of noise

amplification by performing multiple calibration tests. This approach is similar in spirit to that

performed by Draper et al. on their TDDM[?] but this time applied to a FDIM.

Applying p input calibration tests at the same location results in
Y1

Y2
...

Yp


ω

=


U1

U2
...

Up


ω

H(ω) (11)
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2 FORMULATION Jack Draper

at each frequency and written compactly as

Y(ω) = U(ω)H(ω). (12)

Since the noise is random from test to test, utilizing repeat tests will hopefully result in a more

accurate FRF construction. As in Eq. (6), the FRF is solved using a least squares pseudo inverse as

H(ω) = U+(ω)Y(ω). (13)

Since each FRF is unique, this technique can be repeated for solving for the FRF at each input-

output pair when considering the SIMO or MIMO case.

2.4 Acceleration Deconvolution

In this section, we show the differentiability of the convolution integral, i.e.

d
dt

y(t) =
d
dt

h∗u(t) (14)

or in compact notation as

ẏ(t) = ḣ∗u(t) (15)

where the dot signifies a time derivative and ∗ represents the convolution operation. Obviously, us-

ing the commutative property of the convolution, we could apply the time derivative to the function

u(t) instead. However, applying the derivative to h(t) is more useful for the applications discussed

in this paper.

This property is most easily derived using the inverse Fourier Transform, i.e.

f (t) =
ˆ

∞

−∞

exp2πiωt F(ω)dω (16)

which transforms frequency domain signals back to the time domain. Evaluating the time deriva-

tive of Eq. (16) we obtain

ḟ =
d
dt

ˆ
∞

−∞

exp2πiωt F(ω)dω = 2πiω
ˆ

∞

−∞

exp2πiωt F(ω)dω. (17)

Hence the Fourier Transform of the time derivative of an arbitrary function is

F
{

˙f (t)
}
= 2πiωF(ω). (18)
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Returning to Eq. (15), we may apply the Fourier Transform to gain additional insight, i.e.

F
{

˙y(t)
}
= 2πiωF {y(t)}= 2πiωF {h∗u(t)}= 2πiωH(ω) ·U(ω). (19)

Performing an inverse Fourier Transform results in Eq. (15).

One may also note that this operation is repeatable so long as a differential exists. Therefore,

we may repeat this operation to prove

ÿ(t) = ḧ∗u(t) (20)

and all subsequent time derivatives.

Acceleration measurements are significantly easier to obtain than strain/displacement. For

strain, one typically needs to ensure all load can travel through the strain gages which often requires

designing around sensors. Alternatively, accelerometers need be simply placed on a surface of the

body. Therefore acceleration measurement can offer more design flexibility. Additionally, force

measurement can theoretically be made without the need for complex strain balances. This may

be advantageous in smaller tunnels or small budget experiments.

Returning to our continuous convolution of displacement and applied force, both sides are

differentiated twice to obtain Eq. (20).

The unknown is now the acceleration FRF (Ḧ(ω)) rather than the typical displacement/strain

FRF (H(t)). Using the FDIM, one may construct the acceleration FRF and then use it to reconstruct

an arbitrary applied dynamic force u(t).

It also should be noted that all of the previously mentioned extensions to the developed FDIM

variant are completely applicable to acceleration deconvolution as well. Therefore multiple input

tests are used at the same location to solve for the acceleration FRFs. Therefore Eq. (11) becomes
Ÿ1

Ÿ2
...

Ÿp


ω

=


U1

U2
...

Up


ω

Ḧ(ω). (21)

To solve for the unknown applied load using acceleration-only deconvolution, all of the accel-
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2 FORMULATION Jack Draper

eration FRFs are used in the solution. Therefore, the SIMO form becomes
Ÿ1

Ÿ2
...

Ÿna


ω

=


Ḧ1

Ḧ2
...

Ḧna


ω

U(ω) (22)

where na denotes the number of accelerometers. Additionally, the MIMO formulation becomes
Ÿ1

Ÿ2
...

Ÿna


ω

=


Ḧ11 Ḧ12 . . . Ḧ1P

Ḧ21 Ḧ22 . . . Ḧ2P
...

... . . . ...

Ḧna,1 Ḧna,2 . . . Ḧna,P


ω


U1

U2
...

UP


ω

. (23)

Note the similarity with Eq. (7). Although acceleration measurements are used, the solution

methodology is functionally equivalent.

2.5 Combined Acceleration-Strain Deconvolution

Finally, one may note that Eqs.(7) and (23) both solve for the same input forces. Therefore, all of

the FRFs are used in the solution. The SIMO form then becomes

Y1

Y2
...

Yns

Ÿ1

Ÿ2
...

Ÿna


ω

=



H1

H2
...

Hns

Ḧ1

Ḧ2
...

Ḧna


ω

U(ω) (24)
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where ns denotes the number of strain sensors and na denotes the number of accelerometers. Ad-

ditionally, the MIMO formulation becomes

Y1

Y2
...

Yns

Ÿ1

Ÿ2
...

Ÿna


ω

=



H11 H12 . . . H1P

H21 H22 . . . H2P
...

... . . . ...

Hns,1 Hns,2 . . . Hns,P

Ḧ11 Ḧ12 . . . Ḧ1P

Ḧ21 Ḧ22 . . . Ḧ2P
...

... . . . ...

Ḧna,1 Ḧna,2 . . . Ḧna,P


ω


U1

U2
...

UP


ω

. (25)

Note that adding the acceleration measurements increases the row dimension of the inverted matrix.

This in theory should improve performance for a least squares solution.

3 Numerical Validation

In this section a few numerical examples of the FDIM solution approach are presented. Due to the

more complex nature of these methods, we begin with the more simple SISO numerical systems.

This allows for concrete conclusions about each methodology without the complexity of multiple

mode interaction. An example single degree of freedom (SDOF) SISO system is given in Figure

2.

To be consistent with the formulation, the output displacement and input force have been as-

signed the variables y(t) and u(t), respectively. Assuming constant mass, stiffness, and damping

values (i.e. m, k, and c) this system is subject to the differential equation

mÿ+ cẏ+ ky = u(t) (26)

where m = 1 kg, k = 1000 N/m, and c = 0.6325 Ns/m. Additionally, the analytical IRF can be

solved as

h(t) =
1

mωd
exp−σt sinωdt (27)

10
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Figure 2: SDOF spring mass damper system.

where

ωd =ωn

√
1−ζ 2 (28a)

σ =ζ ωn (28b)

and ωn =
√

k/m, the natural frequency and ζ = c/(2mωn), the non-dimensional damping ratio.

The selection of the input calibration force (i.e. the force measured when constructing the IRF)

is arbitrary. However, the standard FDIM requires a hammer pulse calibration force. Furthermore,

this load is easy to measure using an instrumented impulse hammer. Therefore, in these numerical

studies, the chosen calibration force is

F(t) = u(t) =
b

a
√

π
exp−(

t−0.5ε

a )2
, (29)

where a = 1 · 10−3 controls the pulse width, b = 1
30 is a scaling constant used to select a desired

area (and consequently peak magnitude), and ε is the pulse width used to shift the pulse from the

t = 0 axis. This simulates a steep hammer impulse force with an approximate width of 2 ms and

height of 20 N.

Finally, to further simulate experimental studies, Gaussian numerical noise is added to the

output data. This additive noise is defined as

ε =
σ(ye)

SNR
randn (30)
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where σ(·) is the standard deviation operator of the vector of interest, ye is the calculated exact

output, ε is a vector of noise values to be added to yc, randn is a vector of points selected from a

Gaussian distribution with a standard deviation equal to one, and SNR is the Signal to Noise Ratio

defined as

SNR =
σ(ye)

σ(randn)desired
. (31)

Defining noise in this manner allows the user to supply unbiased noise to the ”measured” signal as

y = ye + ε at a desired SNR.

3.1 SISO Example of the Conventional FDIM

The most basic reconstruction problem is first considered. Consider the single input single output

(SISO) spring-mass-damper system depicted in Figure 2. Since there is only one output, the SISO

case is much less desirable than the single input multiple output (SIMO) case which measures

much more information. Only information from one location is available and one cannot over

constrain the solution.

Applying the conventional FDIM (i.e. scaling and time shifting output to obtain IRF), the IRF

and reconstructed pulse force shown in Figure 3 are obtained. Note that no noise was injected into

this problem (aside from unavoidable numerical noise).

(a) (b)

Figure 3: Conventional FDIM noiseless force reconstruction. IRF (a) and reconstructed force (b)

are both shown.

As expected, the IRF matches very well with the analytical solution. Furthermore, when this

12
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IRF is used to reconstruct a new load, the reconstruction matches well with the applied load. Note

some small errors which can be attributed to numerical error accumulation and inability to perfectly

shift the response by half of the impulse width.

Next it is important to observe the detrimental effects of noise to the reconstruction. Repeat-

ing the above analysis with SNR= 150, the results in Figure 4 are obtained. Although minimal

(a) (b)

Figure 4: Conventional FDIM noisy force reconstruction. IRF (a) and reconstructed force (b) are

both shown.

influence is observed on the FRF solution, large error is present in the pulse force reconstruction.

Unfortunately, with this conventional approach, there are no more knobs to turn and one is forced

to accept this level of accuracy.

3.2 SISO Example of FDIM with Solved FRF

Next consider the solution of the FRF alteration suggested Section 2.2. Applying this approach,

the IRF construction and pulse force reconstruction shown in Figure 5 are obtained.

Again, as expected, the FRF and pulse force are reconstructed with high accuracy. Interestingly,

the results actually appear more accurate than the simple scaling of output approach (i.e. Figure

3b). It would seem that solving for the FRF is more accurate than the conventional scaling and

time shifting of the response.

Next it is important to observe the detrimental effects of noise to the reconstruction. Repeating

the above analysis with SNR= 150, the results in Figure 6 are obtained.

13
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(a) (b)

Figure 5: FRF solved FDIM noiseless force reconstruction. IRF (a) and reconstructed force (b) are

both shown.

Comparing Figure 6a with Figure 4, it is evident that the FRF solution is worse in the noisy

case. Furthermore, if this noisy FRF is used to reconstruct a pulse force, the accuracy is once again

unacceptable. The level of error in the reconstructions is comparable with that of the conventional

FDIM. Again, no additional alterations are possible for this stage of the method.

3.3 Multiple Calibration Sets

One possible way of increasing accuracy for the FRF construction is by utilizing multiple calibra-

tion sets in the FDIM formation. Since each input-output location pair has a unique FRF, one may

perform multiple tests and use all of the information to construct the FRF. To compactly observe

the influence of repeat tests on FRF construction accuracy, consider Eq. (32)

ε=
1
N
|hexact−hrec|2 (32)

and compute this accuracy versus number of calibration tests. A plot of this is shown in Figure

7. Since the FRF often displays high frequency error (e.g. Figure 9b) computing an error metric

based on the FRF is often less informative.

Since the FDIM is so computationally efficient, one may perform many numerical studies with

very little computational effort. Upon review of Figure 7, a very clear linear trend in log space

is evident for the multiple calibration approach. One can achieve about an order of magnitude

14
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(a) (b)

Figure 6: FRF solved FDIM noisy force reconstruction. IRF (a) and reconstructed force (b) are

both shown.

decrease in error by increasing the number of calibration tests by about an order of magnitude.

Although performing 100+ tests at the same hole location in real life may be unreasonable, it is

useful to show that performing multiple tests can improve the accuracy.

Although higher accuracy than the conventional approach is achievable, this method still under

performs for any practical number of tests on this SISO case study. Regardless, this at least gives

the tester an option to change where previously they could not.

3.4 SIMO Example

In this section SIMO force reconstruction is presented for a ten DOF lumped mass oscillator. This

is ten of the SDOF systems linked together with springs and dampers. The stiffness and damping

values were selected randomly from 0-1000 and 0-100, respectively.

The FDIM presented in Section 2.2 is validated here. Using this more simplified method, one

may observe the advantages of adding multiple calibration sets later in the section. Using this

method, the pulse shown in Figure 8 is obtained.

As expected, excellent accuracy is achieved for the noiseless case. When reviewing the various

IRFs, a curious phenomenon is observed. This is shown in Figure 9a. Ringing is present in the

beginning and end of the reconstruction. This is primarily due to the large high frequency error in

the FRF which is shown in Figure 9b. However, this error does not materialize into large errors in

15
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Figure 7: FDIM SISO IRF construction accuracy versus number of calibration tests

the force reconstruction.

This high frequency error in the FRF is due to the finite pulse used for calibration. The Fourier

Transform of an infinitesimal width pulse is constant at a value of 1. When a finite pulse is used,

this constant value drops off steeply at high frequencies. When the frequency response is divided

by the Fourier Transform of the pulse, this manifests as large FRF contributions at high frequencies.

This is an unavoidable consequence of using a finite pulse. One may attempt to remedy this by

filtering the signal at a value of

fc =
1
ε

(33)

the inverse of the pulse width. For this example, that value is 159 Hz, approximately the value

where this steep increase in the FRF begins. For accurate view of the FRF, this filtering is required,

however, why this is not required for pulse reconstruction is shown below.

The reconstructed force was a new pulse with different magnitude, pulse width, area, and noise

properties than the pulse used for calibration. Therefore, any claim of over fitting is invalid. Clearly

the use of the erroneous FRF still yields excellent results for the noiseless case.

Next it is of interest to investigate the negative effects of noise and how it may degrade the

results. This is shown in Figure 10. Once again substantial high frequency error is observed in

the FRF due to the finite pulse. However, with the presence of noise, the pulse reconstruction is

no longer unaffected. Substantial under prediction of the pulse is observed. This trend is consis-

16
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Figure 8: FDIM SIMO noiseless force reconstruction at input DOF 3

tent across many tests with varying sampling frequencies, pulse widths, DOFs, and noise levels.

Therefore, one may conclude that noise causes unavoidable error in the FRF solved FDIM. Note

that there are slight differences in the analytical FRF from Figure 9b and 10a. This is due to the

random selection of system parameters during a particular numerical experiment. However, these

trends are very repeatable.

Next multiple calibration tests are incorporated to investigate the repeat formulation. The hy-

pothesis is that with more calibration inputs, a better approximation of the FRF will be obtained

resulting in more accurate reconstructions. The results of the same FDIM experiment with ten

calibration tests at the same location is shown in Figure 11.

No discernible accuracy increase is evident in Figure 11a, however, the pulse reconstruction

is clearly more accurate. To more concretely observe this effect, the force reconstruction for a

varying number of input calibration tests is performed and the peak and area difference of each

reconstruction is computed. These error metrics are

AD =

∣∣∣∣∣1−
´

ε

0 frec(t)dt´
ε

0 fapp(t)dt

∣∣∣∣∣ ·100% (34)

PD =

∣∣∣∣1− max| frec(t)|
max| fapp(t)|

∣∣∣∣ ·100% (35)
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(a) (b)

Figure 9: IRF (a) and FRF (b) construction at DOF 5 using FDIM with FRF solution.

(a) (b)

Figure 10: FRF solved SIMO FDIM noisy force reconstruction. FRF at DOF 5 (a) and recon-

structed force (b) are both shown. SNR= 150 used for this example.

where AD and PD stand for Area Difference and Peak Difference, respectively. The symbols

fapp(t) and frec(t) represent the discrete applied and reconstructed force, respectively. Finally, ε

is the time width of the specific impulse under investigation; selected to be the location where the

magnitude of the pulse drops below an arbitrarily chosen low value of 0.001 N. We use trapezoidal

integration to solve for the area as only the points at each sampling interval are known. These error

metrics versus the number of calibration inputs are displayed in Figure 12 with varying levels of

SNR.

As expected, the peak error reduced considerably when increasing the number of calibration

tests. The most substantial accuracy increase occurs after the first few repeat tests. The influence
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(a) (b)

Figure 11: FRF solved SIMO FDIM noisy force reconstruction with ten calibration tests at same

input. FRF at DOF 5 (a) and reconstructed force (b) are both shown. SNR= 150 used for this

example.

(a) (b)

Figure 12: Peak (a) and Area (b) Difference versus number of calibration tests for FDIM SIMO

numerical studies

on the area difference is more dramatic at lower SNR. Interestingly, the same accuracy with ten

repeats for the SNR= 50 case is achieved as with a single test from a data set with a third the noise

level. Clearly performing repeat tests can reduce the ill effects of noise.
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3.5 MIMO Example

In this section the FDIM’s ability to reconstruct pulses for the multiple input multiple output

(MIMO) case is validated. The same ten DOF system discussed in the previous section is used.

However, this time pulses are applied simultaneously at multiple locations. For this study all out-

puts (i.e. n = 10) and inputs at four locations (i.e. p = 4) are considered. Performing the FRF

solved FDIM with no repeat tests or noise, the results in Figure 13 are obtained.

(a) (b)

(c) (d)

Figure 13: MIMO hammer pulse reconstruction for 10 DoF system. Applied force reconstruction

at input nodes 2 (a), 4 (b), 6 (c), and 8 (d) are all shown. The FRF solved FDIM with no noise and

fs = 5 kHz were used for this study.

Note the high accuracy of the reconstructions for this MIMO case study. All three simultane-

ously applied input pulses have been accurately reconstructed. Additionally, the hole location with

no applied load was correctly reconstructed as well.
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Next it is of interest to investigate the effects of noise. Adding Gaussian noise to all output data

at SNR = 150, the results in Figure 14 are obtained. This figure reveals that the FRF solved FDIM

(a) (b)

(c) (d)

Figure 14: MIMO hammer pulse reconstruction for 10 DoF system. Applied force reconstruction

at input nodes 2 (a), 4 (b), 6 (c), and 8 (d) are all shown. The FRF solved FDIM with SNR= 150

and fs = 5 kHz were used for this study.

does a very poor job at reconstructing the pulse. Both the peak and width of the reconstructed

pulses are highly inaccurate.

Next, one may investigate the influence of performing multiple calibration sets on the accuracy

of the reconstruction. Note that since the accuracy of multiple input locations is of interest, a new

set of error metrics are considered. These are defined as

AD =
1
Pa

Pa

∑
i=1

ADi (36)
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PD =
1
Pa

Pa

∑
i=1

PDi (37)

where Pa is the number of locations where a force was applied. Therefore the accuracy of the zero

load location is not considered. For the example case depicted in Figure 15, Pa = 3. For each

of these locations, the area and peak difference are computed using Eqs. (34) and (35), respec-

tively and then the results are averaged. The averaged peak and area differences versus number of

calibration tests is depicted in Figure 15.

(a) (b)

Figure 15: Peak (a) and Area (b) Difference averaged over each application location versus number

of calibration tests for FDIM MIMO numerical studies

Interestingly, the results aren’t nearly as drastic as in the SIMO case study. Although some

improvement is observed in the peak and area difference as the number of input calibration tests

increases, the effect is much smaller and never reaches a very low level of error (e.g. < 10% AD

and PD). Additionally, the MIMO case study seems much more sensitive as compared to that of

the SIMO. For the high noise case, the solution occasionally blows up. Clearly imposing the added

constraint on the FRF solution (i.e. additional calibration input tests) is not enough to adequately

reduce the ill conditioning in the force reconstruction solution for the MIMO case.

3.6 Acceleration Deconvolution

The final FDIM investigation is deconvolution of acceleration data. This section only considers

the SISO system case. However, further experimental investigations demonstrate some of the

advantages for the SIMO and MIMO cases.
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Consider the numerical system shown in Figure 2. Assume the displacement and acceleration

of this mass is measured. Next, a known load such as a pulse is applied to this system and the

resultant response is recorded. The acceleration and known applied force can be used in conjunc-

tion with Eq. (21) to solve for the resultant acceleration FRF, Ḧ. For this example, consider the

more simplified case where no repeat tests are used (i.e. p = 1). An acceleration IRF construction

using this approach is displayed in Figure 16a. Next, the FRF can be used to solve for an applied

(a) (b)

Figure 16: Acceleration IRF construction (a) and pulse force reconstruction (b) using FDIM ac-

celeration deconvolution. SISO system with SNR = 150 used for these studies.

force given a measured dynamic acceleration response. An example pulse force reconstruction is

displayed in Figure 16b. Note the excellent pulse reconstruction even with these noisy signals.

As noted in Section 2.4, this can be combined with the displacement data to reconstruct an ap-

plied load. A comparison pulse force reconstruction considering displacement-only, acceleration-

only, and combined acceleration-strain deconvolution is shown in Figure 17.

Interestingly, the acceleration-only and combined acceleration-displacement deconvolution far

outperform the displacement-only deconvolution. All methods perform well with no added noise.

Therefore, the presence of noise appears to be more detrimental to the displacement deconvolution

than acceleration. Future studies should be performed to determine the cause of this difference.
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Figure 17: Pulse force reconstruction for acceleration-only (Frec,a), displacement-only (Frec,d),

and combined acceleration-displacement (Frec,c) deconvolution SISO example. The FDIM with

fs = 2500 Hz, and SNR = 150 used for this example.

4 Experimental Validation

In this section, the FDIM is validated on a test article in the Balance Calibration Laboratory at

AEDC White Oak. In this section only the alterations of the FDIM: the FRF solved version and

using multiple input tests at the same location are of interest. The majority of this section considers

strain data as the output. However, the acceleration response is also used to quantify some trends

about the method.

4.1 Experimental Setup

To create a test setup that closely resembled that of a tunnel run, a similarly sized test article

was developed. The fully assembled model can be seen in Figure 18. This test article, designed by

Collopy et al[1], was chosen to maximize the number of orthogonal loading locations and simulates

the approximate size, weight, and natural frequencies of typical test articles used in Tunnel 9. A

steel plate is affixed to the test article that has mounting holes for the load cells.

The strain sensors, discussed in a later section, must be constrained between the model and
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Figure 18: CAD representation of dynamic calibration bench top test article with sample input

locations

sting to ensure the load travels through the sensors. For this reason, the strain sensors are mounted

between the balance adapter (which connects to the sting) and the model. One may note that only a

single load path exists between the model and support structure which passes through the sensors.

Any other load path may inhibit the sensors performance.

The primary support structure used in most of the experimental studies is shown in Figure 19.

4.2 SIMO FDIM Experimental Results

Using the repeat formulation discussed in Section 2.3, a sample result shown in Figure 20 is ob-

tained. As expected, excellent pulse reconstruction is observed and this accuracy is characteristic

of the other hole locations. Four of the sample hole locations are displayed in Figure 18. The hole

locations were chosen to orthogonal one of the three axes and spanning most of the test article.

Eleven to fourteen calibration tests were performed at each hole. As discussed in Section 3.4,

adding these tests during calibration should improve reconstruction accuracy.

To further justify the need of using multiple calibration tests at a single hole, the above analysis

is repeated with a varying number of calibration tests. All 188 test pulses are reconstructed at

each step and the average and max of each are recorded. When plotting these error metrics, as

depicted in Figure 21 versus the number of calibration tests used to generate the FRF, a clear trend

is observed. As in Section 3.4, it is clear that additional calibration loads substantially improve the

performance of this method.
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Figure 19: Calibration test article mounted on support structure

4.3 MIMO FDIM Experimental Results

The most difficult force reconstruction case is MIMO. This section details the validation of the

FDIM MIMO force reconstruction using the same data set from the previous section. The capabil-

ity to supply multiple loads simultaneously is not possible with our current equipment. However,

one may still perform a MIMO reconstruction but expect zero reconstructed load at each location

other than the application location.

An example MIMO reconstruction using the hole locations depicted in Figure 18 is shown in

Figure 22.

Next, it may be of interest to see the effects of number of input locations, p on the accuracy

of the reconstruction. To demonstrate this, the number of input locations are varied from one to

fifteen. During each study, the MIMO FDIM is used to reconstruct the force contributions at each

input location as is seen in Figure 22. Next, the peak and area difference of the reconstruction at

the application location is computed and recorded. The mean and maximum of these peak and area

differences are depicted versus number of input locations in Figure 23.

Several interesting conclusions can be drawn from Figure 23. First, there is a clear decline

in performance as the number of input locations increases. This is expected as the inversion at
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Figure 20: FDIM SIMO force reconstruction experimental example result. Eleven calibration input

tests used for this reconstruction.

each frequency becomes closer to a square matrix. This method appears extremely effective at

reconstructing the pulse even when multiple input locations are of interest. Interestingly, even

when the number of inputs exceeds the number of outputs (i.e. p > 12), the FDIM still adequately

reconstructs the input pulses.

4.4 Acceleration Deconvolution

As discussed previously in this paper, deconvolution of acceleration data is also an option for

FDIMs. Many advantages of acceleration deconvolution exist such as ease of implementation.

In this section, acceleration deconvolution and combined acceleration-strain deconvolution are

validated for the experimental system.

First the SIMO case study discussed in Section 4.2 is repeated but we consider strain-only,

acceleration-only, and combined acceleration-strain deconvolution. An example result is shown

in Figure 24. Note the excellent reconstruction accuracy of all three deconvolution variants. No

obvious advantage of one method over another is observed.

It is important to quantify the accuracy across all tests. Therefore, the peak and area difference

for each deconvolution variant across all 188 reconstructions is computed. The maximum number

of available calibration tests per hole were used. This ranges from eleven to fourteen depending on
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(a) (b)

(c) (d)

Figure 21: Area and peak difference of FDIM input pulse force versus number of calibration tests.

Max area (a), average area (b), max peak (c), and average peak (d) difference are all shown.

the hole location. These results are presented in Table 1.

Upon review of Table 1, it is clear that all three deconvolution variants perform admirably for

the SIMO case study. The FDIM with multiple calibration input solution of the FRF is extremely

effective for SIMO pulse reconstruction.

Next, the study shown in Figure 21 is repeated. The results for acceleration-only, strain-only,

and combined acceleration-strain deconvolution are shown in Figure 25. Again, a trend between

accuracy and number of calibration inputs is observed for each deconvolution variant. Clearly,

using more calibration inputs improves the accuracy of the reconstruction. Interestingly, no clear

advantage is observed between the three variants.
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(a) (b)

(c) (d)

Figure 22: FDIM MIMO force reconstruction of point load applied at location C. A sampling rate

of 50 kHz was used. Reconstructions at hole locations A (a), B (b), C (c), and D (d) shown in

Figure 18 are all shown.

Table 1: Peak and area differences for strain-only, acceleration-only, and combined strain-

acceleration FDIM force reconstruction.

Maximum Average

S A C S A C

AD 46.75 37.91 31.80 6.69 6.96 6.59

PD 28.12 22.90 19.55 4.76 5.55 4.64
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(a) (b)

(c) (d)

Figure 23: Area and peak difference of input pulse force versus number input locations using the

FDIM MIMO formulation. Max area (a), average area (b), max peak (c), and average peak (d)

difference are all shown.
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Figure 24: FDIM SIMO acceleration deconvolution force reconstruction experimental example

result. Eleven calibration input tests used for this reconstruction.
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(a) (b)

(c) (d)

Figure 25: Area and peak difference of FDIM input pulse force versus number of calibration

tests. Max area (a), average area (b), max peak (c), and average peak (d) difference are all shown.

Acceleration-only, strain-only, and combined acceleration-strain deconvolution are all shown.
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5 Conclusions

In this work, several alterations to the conventional FDIM were formulated. Most notably, the

use of multiple calibration inputs at a particular location to reduce the ill effects of noise and user

error. Additionally, the applicability of the FDIM was extended to acceleration measurements

which have a number of advantages in the dynamic case such as larger response magnitudes and

ease of implementation.

These alterations were first validated on SISO, SIMO, and MIMO numerical systems. These

proved the validity of the alterations and served to highlight the advantage of increasing accuracy

with increased number of repeat tests at a particular location.

Finally, these alterations were validated on an experimental system in AEDC’s Balance Cali-

bration Laboratory. This demonstrated the method’s effectiveness on a real system with measure-

ment noise and user error.

Future work will include the reconstruction of dynamic applied loads such as ramp-step and

loads applied to a wind tunnel test article where the applied load is not measured directly. Ad-

ditionally, the quantification of uncertainties is also a topic for future research. Results from this

work will be used to support future dynamic wind tunnel tests at AEDC Tunnel 9.
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