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Basic Linear Cartesian Dynamic Models in Local
Coordinates

David Frederic Crouse∗ Member, IEEE

Abstract—Dynamic models that are linear in Cartesian coor-
dinates are nonlinear when transformed into other coordinate
systems. This note goes through derivations of such models for
constant-velocity problems in a variety of 2D polar and r-u coor-
dinates systems and in 3D spherical and r-u-v coordinate systems,
sparing tedious derivations for simple tracking problems. The
conversions for r-u and r-u-v coordinate systems do not appear
to have been previously published.

I. INTRODUCTION

The target-tracking literature typically expresses dynamic
models in Cartesian coordinates. Notable exceptions include
the use of modified polar coordinates [5], log-polar coordinates
[1], modified spherical coordinates [10], and log-spherical co-
ordinates [7] in bearings-only passive tracking applications. A
ballistic dynamic model including atmospheric drag, expressed
in spherical coordinates, is also considered in [2]. However,
when considering missile flight-control systems, where the
tracking information is fed back to a controller, much of the
literature focusses on the expression of the target state in
a local spherical coordinate system with respect to missile
guidance [6], [8], [9]. With the proliferation of small delivery
drones, such guidance and tracking problems have increasingly
non-military applications.

The expression of equations of motion for a deterministic
constant-velocity Cartesian dynamic model in polar coordi-
nates can be found in numerous classes on dynamics and
mechanics. Consider for example, Lecture 5 of a Fall 2009
MIT OpenCourseWare course on dynamics [11]. However,
expressions in spherical coordinates are harder to find (and de-
rive) and it is doubtful that expressions in range-and-direction
cosine coordinates (r-u-v coordinates), which are commonly
used in radar target-tracking applications, have been published.

This paper provides linear dynamic models in polar (Sec.
II), r-u (Sec. III), spherical (Sec. IV), and r-u-v (Sec. V)
coordinate systems. Additionally, in each instance, expressions
for converting the velocity into the local coordinate systems
are provided. The results are presented in Sec. VI. The
dynamic models are implemented in the free, open-source,
copyleft-free Tracker Component Library (TCL) [4], [12].
Hopefully, this work can save others the tedium of deriving
such transformations.

II. 2D POLAR

The simplest case is polar coordinates, which consist of a
range r and an angle θ. Here, we consider two types of polar

∗ The author is employed by the Naval Research Laboratory (e-mail:
david.crouse@nrl.navy.mil).

coordinate systems. The Type-0 system measures the angle
θ counterclockwise from the x-axis and the conversion of a
position to Cartesian coordinates is:

x =r cos(θ) y =r sin(θ). (1)

A Type-1 system measures the angle θ clockwise from the
y-axis and is given as:

x =r sin(θ) y =r cos(θ). (2)

A. Type-0 Polar Coordinates

Consider a 2D position-vector r in a polar coordinate
system:

r =rur (3)

where the unit-vector ur and an orthonormal-vector uθ are

ur =

[
cos(θ)

sin(θ)

]
uθ =

∂ur
∂θ

=

[
− sin(θ)

cos(θ)

]
. (4)

The derivatives of the basis vectors with respect to time are:

u̇r =
∂ur
∂θ

θ̇ = θ̇uθ u̇θ =− θ̇ur, (5)

so the velocity is:

ṙ =ṙur + ru̇r = ṙur + rθ̇uθ. (6)

Consequently, if one wished to convert a Cartesian velocity
vector into polar coordinates, since ur is orthonormal to uθ,
this can be done by taking the dot product of ṙ with its basis
vectors:

ṙ =ṙ′ur θ̇ =
1

r
ṙ′uθ. (7)

Taking one more derivative, the acceleration is:

r̈ =r̈ur + ṙu̇r + ṙθ̇uθ + rθ̈uθ + rθ̇u̇θ (8)

=
(
r̈ − rθ̇2

)
︸ ︷︷ ︸

ar

ur +
(
rθ̈ + 2ṙθ̇

)
︸ ︷︷ ︸

aθ

uθ. (9)

For constant radial and cross-range acceleration components,
ar and aθ, one gets the nonlinear dynamic model:

r̈ =ar + rθ̇2 θ̈ =
1

r

(
aθ − 2ṙθ̇

)
. (10)

If one were to build a complete drift function for a continuous-
time dynamic model, as in [3], then the drift function would

___________
Manuscript approved Month 00, 2019.
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be

a(x, t) =


ṙ

θ̇

ar + rθ̇2

1

r

(
aθ − 2ṙθ̇

)
 . (11)

Given a target state, in this instance consisting of x =
[r, θ, ṙ, θ̇]′, the drift function is just an expression for ẋ. Similar
drift functions can be written for the other dynamic models in
this paper, though they shall not be explicitely written out.

Using a similar approach, it is possible to obtain higher-
order models. This is demonstrated in Appendix A for the
constant-jerk model.

B. Type-1 Polar Coordinates

The equations for r̈ and θ̈ for a Cartesian constant-velocity
model in Type-1 polar coordinates are the same as those for
type-0 coordinates (given in (10)). However, the elements of
the basis vectors have changed order:

ur =

[
sin(θ)

cos(θ)

]
uθ =

∂ur
∂θ

=

[
cos(θ)

− sin(θ)

]
. (12)

III. 2D RANGE-AND-DIRECTION COSINE

2D range-and-direction cosine measurements assume that
the target is in front of the sensor with the pointing direction of
the sensor specified by the y-axis. Rather than using an angle,
a direction-cosine value u ∈ [−1, 1] is used. The direction-
cosine u can be interpreted as the projection of a unit vector
onto the x-axis. The conversion to Cartesian coordinates is
thus:

x =ru y =r
√
1− u2. (13)

A position can be represented using the orthonormal basis
vectors:

ur =

[
u√

1− u2

]
(14)

uu =
√

1− u2 ∂ur
∂u

=

[√
1− u2

−u

]
(15)

as
r = rur. (16)

The derivatives of the basis vectors are:

u̇r =
u̇√

1− u2
uu (17)

u̇u =u̇

− u√
1− u2
−1

 = − u̇√
1− u2

ur (18)

leading to the following expression for the first derivative of
position (velocity):

ṙ =ṙur + ru̇r = ṙur + r
u̇√

1− u2
uu. (19)

Since ur and uu are orthonormal, if one wished to obtain ṙ
and u̇ from ṙ, it could be done using dot products of ṙ with
its basis vectors:

ṙ =ṙ′ur u̇ =

√
1− u2
r

ṙ′uu. (20)

The second derivative with respect to position is:

r̈ =ṙu̇r + r
u̇√

1− u2
u̇u + r̈ur

+

(
ṙu̇+ rü√
1− u2

+ r
uu̇2

(1− u2)
3
2

)
uu (21)

=

(
r̈ − r u̇2

1− u2

)
︸ ︷︷ ︸

ar

ur +

(
2ṙu̇+ rü√
1− u2

+ r
uu̇2

(1− u2)
3
2

)
︸ ︷︷ ︸

au

uu.

(22)

Assuming that the accelerations ar and au are constant, then
the differential equations for the linear Cartesian dynamic
model in 2D range-and-direction cosine coordinates are:

r̈ =ar +
ru̇2

1− u2
(23)

ü =
1

r

(
au
√
1− u2 − 2ṙu̇

)
− uu̇2

1− u2
. (24)

IV. 3D SPHERICAL

We consider three types of spherical coordinate systems that
commonly arise. All systems have a range component r. The
Type-0 measures the azimuth θ from the x-axis counterclock-
wise in the x− y plane. The elevation φ is measured up from
the x− y plane towards the z-axis. The conversion is thus:

x =r cos(θ) cos(φ) y =r sin(θ) cos(φ) z =r sin(φ). (25)

In the Type 1 system, azimuth is measured counterclockwise
from the z-axis in the z − x plane. Elevation is measured up
from the z − x plane towards the y-axis. The conversion is
thus:

x =r sin(θ) cos(φ) y =r sin(φ) z =r cos(θ) cos(φ). (26)

The Type-2 system is the same as the Type-0 system, except
the definition of φ differs. In the Type-2 system, φ is measured
down from the z-axis towards the x− y plane rather than up
from the x− y plane. Thus

x =r cos(θ) sin(φ) y =r sin(θ) sin(φ) z =r cos(φ). (27)

A. Type-0

A position can be represented using the orthonormal basis
vectors:

ur =

 cos(θ) cos(φ)

sin(θ) cos(φ)

sin(φ)

 (28)

uθ =
1

cos(φ)

∂ur
∂θ

=

− sin(θ)

cos(θ)

0

 (29)



3

uφ =
∂ur
∂φ

=

− cos(θ) sin(φ)

− sin(θ) sin(φ)

cos(φ)

 (30)

as
r = rur. (31)

The first derivatives of the basis vectors are:

u̇r =
∂ur
∂θ

θ̇ +
∂ur
∂φ

φ̇ = θ̇ cos(φ)uθ + φ̇uφ (32)

u̇θ =
∂u̇θ
∂θ

θ̇ +
∂u̇θ
∂φ

φ̇ = −θ̇ cos(φ)ur + θ̇ sin(φ)uφ (33)

u̇φ =
∂u̇φ
∂θ

θ̇ +
∂u̇φ
∂φ

φ̇ = −φ̇ur − θ̇ sin(φ)uθ, (34)

which leads to the expression for the velocity:

ṙ =ṙur + ru̇r (35)

=ṙur + rθ̇ cos(φ)uθ + rφ̇uφ. (36)

Due to the orthonormality of the basis vectors, the values ṙ,
θ̇, and φ̇ can be obtained from ṙ using dot products with the
basis vectors:

ṙ =ṙ′ur θ̇ =
1

r cos(φ)
ṙ′uθ φ̇ =

1

r
ṙ′uφ. (37)

Taking a second derivative leads to the expression for the
acceleration:

r̈ =ṙu̇r + rθ̇ cos(φ)u̇θ + rφ̇u̇φ

+ r̈ur + ṙθ̇ cos(φ)uθ + rθ̈ cos(φ)uθ − rθ̇φ̇ sin(φ)uθ
+ ṙφ̇uφ + rφ̈uφ (38)

=r̈ur + ṙu̇r + rθ̇ cos(φ)u̇θ + rφ̇u̇φ

+
(
ṙθ̇ cos(φ) + rθ̈ cos(φ)− rθ̇φ̇ sin(φ)

)
uθ

+
(
ṙφ̇+ rφ̈

)
uφ (39)

=
(
r̈ − rθ̇2 cos(φ)2 − rφ̇2

)
︸ ︷︷ ︸

ar

ur

+
((

2ṙθ̇ + rθ̈
)
cos(φ)− 2rθ̇φ̇ sin(φ)

)
︸ ︷︷ ︸

aθ

uθ

+
(
2ṙφ̇+ rφ̈+ rθ̇2 cos(φ) sin(φ)

)
︸ ︷︷ ︸

aφ

uφ. (40)

Assuming that the acceleration components ar, aθ, and aφ are
all constant, then the dynamic model is:

r̈ =ar + rφ̇2 + rθ̇2 cos(φ)2 (41)

θ̈ =
1

r

(
−2ṙθ̇ + aθ

cos(φ)
+ 2rθ̇φ̇ tan(φ)

)
(42)

φ̈ =
1

r

(
aφ − 2ṙφ̇− rθ̇2 cos(φ) sin(φ)

)
. (43)

B. Type-1

The dynamic equations in (41), (42), and (43) for the Type-0
spherical coordinate system still hold. However, the associated

basis vectors have changed the ordering of their elements to:

ur =

 sin(θ) cos(φ)

sin(φ)

cos(θ) cos(φ)

 (44)

uθ =
1

cos(φ)

∂ur
∂θ

=

 cos(θ)

0

− sin(θ)

 (45)

uφ =
∂ur
∂φ

=

− sin(θ) sin(φ)

cos(φ)

− cos(θ) sin(φ)

 . (46)

C. Type-2

The Type-2 spherical coordinate system differs from the
Type-0 system only in that φ has been replaced by π/2 − φ.
Thus, the new set of orthonormal basis vectors is:

ur =

 cos(θ) sin(φ)

sin(θ) sin(φ)

cos(φ)

 (47)

uθ =
1

sin(φ)

∂ur
∂θ

=

− sin(θ)

cos(θ)

0

 (48)

uφ =
∂ur
∂φ

=

 cos(θ) cos(φ)

sin(θ) cos(φ)

− sin(φ)

 , (49)

which modified the velocity expression to:

ṙ =ṙur + rθ̇ sin(φ)uθ + rφ̇uφ (50)

so

ṙ =ṙ′ur θ̇ =
1

r cos(φ)
ṙ′uθ φ̇ =

1

r
ṙ′uφ. (51)

Assuming that the acceleration components ar, aθ, and aφ are
all constant, the modified dynamic model is:

r̈ =ar + rφ̇2 + rθ̇2 sin(φ)2 (52)

θ̈ =
1

r

(
−2ṙθ̇ + aθ

sin(φ)
− 2rθ̇φ̇

1

tan(φ)

)
(53)

φ̈ =
1

r

(
aφ − 2ṙφ̇+ rθ̇2 cos(φ) sin(φ)

)
. (54)

V. 3D RANGE-AND-DIRECTION COSINES

Like 2D range-and-direction cosine measurements, 3D
range-and-direction cosine measurements assume that the tar-
get is in front of the sensor. Here, the pointing direction of
the sensor is given by the z-axis. Rather than using an angle,
a pair of direction-cosine values u, v ∈ [−1, 1] are used. The
pair (u, v) can be interpreted as the the first two elements
of a unit vector pointing from the receiver to the target. The
conversion into Cartesian coordinates is:

x =ru y =rv z =r
√

1− u2 − v2. (55)
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As in all of the other coordinate systems, one might wish
to choose a set of orthonormal bases. The first basis vector is
:

u1 =

 u

v√
1− u2 − v2

 (56)

so that, as in the other systems,

r = ru1. (57)

A second basis vector can be a scaled version of ∂u1

∂u , so

u2 =

√
1− u2 − v2

1− v2
∂u1

∂u
=


√

1− u2 − v2
1− v2
0

− u√
1− v2

 (58)

u3 =u1 × u2 =


− uv√

1− v2√
1− v2

−v
√

1− u2 − v2
1− v2

 . (59)

As in the previous sections, one might assume that a scaled
version of ∂u1

∂v would finish an orthonormal set of basis vec-
tors. However, ∂u1

∂v is not orthogonal to ∂u1

∂u . An orthonormal
third basis vector is the cross product:

u3 = u1 × u2. (60)

The variables u and v are symmetric in u1. Thus, when
performing simplifications, we know that if a simple solution
is obtained for derivatives of u (or v) then there will exist
an equally simple solution for derivatives of v (or u) that can
be obtained by switching u and v and x and y. In such an
instance, the following switched versions of u2 and u3 can be
useful:

us2 =


√

1− u2 − v2
1− u2
0

− v√
1− u2

 us3 =


√
1− u2

− uv√
1− u2

−u
√

1− u2 − v2
1− u2

 . (61)

The time derivatives of the basis vectors are:

u̇1 =
∂u1

∂u
u̇+

∂u1

∂v
v̇ = c1u2 + c2u3 (62)

u̇2 =
∂u̇2

∂u
u̇+

∂u̇2

∂v
v̇ = c3u1 + c4u3 (63)

u̇3 =
∂u̇3

∂u
u̇+

∂u̇3

∂v
v̇ = −c2u1 − c4u2 (64)

where

c1 =
u̇(1− v2) + uvv̇√

(1− v2) (1− u2 − v2)
(65)

c2 =
v̇√

1− v2
(66)

c3 =−

(√
1− u2 − v2 + u2

√
1

1−u2−v2

) (
u̇
(
1− v2

)
+ uvv̇

)
(1− v2) 3

2

(67)

c4 =
v
(
u̇
(
1− v2

)
+ uvv̇

)
(1− v2)

√
1− u2 − v2

. (68)

The velocity is the first derivative of (57):

ṙ =ṙu1 + ru̇1 (69)
=ṙu1 + rc1u2 + rc2u3. (70)

Since u1, u2, and u3 are orthonormal, taking the dot product
of ṙ with each of the basis vectors produces the value of the
coefficient of that vector in (70). From the coefficient for u1

and u3, one can easily obtain expressions for ṙ and v̇. The
expression for u̇ is more complicated, but due to the symmetry
of u and v, we can use an equivalent for as for v̇:

ṙ =ṙ′u1 (71)

v̇ =

√
1− v2
r

ṙ′u3 (72)

u̇ =

√
1− u2
r

ṙ′us3. (73)

The acceleration is the second derivative:

ṙ =r̈u1 + ṙu̇1 + (ṙc1 + rċ1)u2 + rc1u̇2

+ (ṙc2 + rċ2)u3 + rc2u̇3 (74)
=r̈u1 + ṙ (c1u2 + c2u3) + (ṙc1 + rċ1)u2

+ rc1 (c3u1 + c4u3) + (ṙc2 + rċ2)u3

+ rc2 (−c2u1 − c4u2) (75)

=
(
r̈ + r

(
c1c3 − c22

))︸ ︷︷ ︸
a1

u1 + (2ṙc1 + r (ċ1 − c2c4))︸ ︷︷ ︸
a2

u2

+ (2ṙc2 + r (ċ2 + c1c4))︸ ︷︷ ︸
a3

u3. (76)

The derivative of c1 will turn out to be unnecessary for the
solution and is omitted. The derivative of c2 is:

ċ2 =
vv̇2 +

(
1− v2

)
v̈

(1− v2)
3
2

. (77)

Assuming that a1 = a2 = a3 = 0, the second derivatives of r̈
and v̈ can be found from the expressions for a1 and a3:

r̈ =r
(
c22 − c1c3

)
(78)

=r
u̇2(1− v2) + 2uvu̇v̇ + v̇2(1− u2)

1− u2 − v2
(79)

v̈ =−
√
1− v2

(
c1c4 +

2c2ṙ

r
+

vv̇2

(1− v2)
3
2

)
(80)

=− 2ṙv̇

r
−
v
(
u̇2
(
1− v2

)
+ v̇2

(
1− u2

)
+ 2uvu̇v̇

)
1− u2 − v2

.

(81)

Using the symmetry of u and v in u1, the expression for v̈
comes from switching u and v in (81) to get:

ü = −2ṙu̇

r
−
u
(
v̇2
(
1− u2

)
+ u̇2

(
1− v2

)
+ 2uvu̇v̇

)
1− u2 − v2

. (82)
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VI. CONCLUSION

Expressions for the acceleration terms necessary for drift
functions, like that written out in (11), representing constant-
velocity motion in non-Cartesian coordinate systems were
presented. The expressions for dynamics in r-u and r-u-v
coordinates do not appear to have been previously published.
The functions are implemented as aCVPolar, aCVRu2D,
aCVSpherical, and aCVRuv in the TCL [4], [12]. Addi-
tionally, this paper presents expressions for the velocity coor-
dinates in non-Cartesian coordinate systems. These are used to
implement full state conversions in the TCL via the functions
in /Coordinate Systems/State Coordinate System Conversion/.
Appendix A contains an example of a constant-acceleration
linear dynamic model converted into polar coordinates to
illustrate how the general approach can be applied to higher-
order moments.
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APPENDIX A
A 2D POLAR CONSTANT-JERK MODEL

Starting from the expression for the acceleration given in
polar coordinates in (9), we take another derivative to obtain
jerk:
...
r =

(
r̈ − rθ̇2

)
u̇r +

(
rθ̈ + 2ṙθ̇

)
u̇θ+(...

r − ṙθ̇2 − 2rθ̇θ̈
)
ur +

(
ṙθ̈ + r

...
θ + 2r̈θ̇ + 2ṙθ̈

)
uθ

(83)

=
(
r̈ − rθ̇2

)
θ̇uθ −

(
rθ̈ + 2ṙθ̇

)
θ̇ur+(...

r − ṙθ̇2 − 2rθ̇θ̈
)
ur +

(
ṙθ̈ + r

...
θ + 2r̈θ̇ + 2ṙθ̈

)
uθ

(84)

=
(...
r − 3θ̇

(
ṙθ̇ + rθ̈

))
︸ ︷︷ ︸

jr

ur +
(
3ṙθ̈ + 3r̈θ̇+r

(
θ̈ − θ̇3

))
︸ ︷︷ ︸

jθ

uθ.

(85)

If the jr and jθ components of jerk are constant, then one gets
the dynamic model:

...
r =jr + 3θ̇

(
ṙθ̇ + rθ̈

)
(86)

...
θ =θ̇3 +

1

r

(
jθ − 3ṙθ̈ − 3r̈θ̇

)
. (87)

Similar techniques could be used to obtain constant-jerk
dynamic models for other coordinate systems.
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