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Automating Alert Handling Reduces Manual Effort 

Static analysis tools search code for flaws without executing it – providing alerts about flaws that cyber 

intruders might exploit as vulnerabilities.  

Today, those alerts require costly human effort to determine if they are trueabout two minutes 

eachand to repair the code.  

 

[show on screen or delete] 

The number of alerts per lines of code varies according to the  

 code language,  

 expertise of the coders, and  

 quality of the static analysis tool 

 

As a result, organizations often severely limit the types of alerts they manually examine to the types of 

code flaws they most worry about.  

That approach results in a tradeoff where true flaws never get fixed. 

To make alert handling more efficient, the SEI developed and tested novel software that enables the 

rapid deployment of a method to classify alertsautomatically and accurately. 

 

 [possible screen view under voice-over] 

 

Those classified as expected true go directly to code repair; others recognized as expected false are 

ignored; and the remainder identified as indeterminate are prioritized for manual adjudication.  
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The goal: focus a development team’s manual effort only on the flaws that are most likely to yield 

vulnerabilities.  

We aim to significantly reduce the effort needed to inspect static analysis results and prioritize 

confirmed defects for repair. 

We are implementing our solution in a new version of the SEI’s SCALe – the Source Code Analysis Lab 

– application.  

 

[B-roll: identify SCALe as Source Code Analysis Lab and show views from the SCALe interface that track 

with (1) finding flaws, (2) fusing flaws using the taxonomy, and (3) classifying alerts as true, false, or 

prioritized indeterminate] 

 Show on screen in conjunction with the B-roll  

 SCALe uses source code and output from static analysis tools that were run on the code as input. 

 It provides the analyst with a browser-based interface to the alerts and their associated code. 

 And it enables analysts to prioritize alerts with relevant information about  

o potential vulnerabilities and  

o how to fix the code based on the CERT Secure Coding Standards and common weakness 

enumerations or CWEs 

 

We started by generating more alerts for more types of code flaws, by using multiple static analysis 

tools on the same set of programs.  

Why increase the number of alerts to adjudicate? Because we can mine the enlarged set of results for 

features to train our alert classifier – to make it more accurate.  

We developed our training data using the Juliet test suite, a collection of over 81,000 synthetic C/C++ 

and Java programs with known flaws. We used the pre-audited true and false results on those programs 

from eight static analysis tools.  
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[possible screen view under voice-over] 

 

 

Then, we automatically fused alerts from the different tools for the same code flaw, creating classifiers 

for both CWEs and for CERT secure coding rules.  

 

[possible screen view under voice-over] 

 

 

Our fusion script also counts alerts per file and per function. From this fusion step, we identify features 

for the classifiers, such as  

 significant lines of code,  

 cyclomatic complexity metrics,  

 coupling metrics, and  
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 language 

Next, we classified alerts using regression methods and machine learning algorithms.  

 

[show the classification techniques on screen] 

 Lasso logistic regression (LR),  

 classification and regression trees (CART),  

 random forest (RF), and  

 eXtreme Gradient Boosting (XGBoost)  

 

Finally, we validated our classifiers using DoD-collaborator audits of their own codebases. We compared 

the predictions our classifiers made for the alerts to the adjudications made by the collaborators’ 

auditors. 

SCALe available for download from GitHub. 

 

[possible screen view under voice-over] 

 

 

Our research to rapidly deploy automated alert classifiers continues, including.  

• algorithms to pre-seed classifier development with test suites 

• an adaptive heuristic for precise alert classifiers 

• automatic hyper-parameter optimization, and  

• APIs for wide variety of applicable tools 
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[possible screen view under voice-over] 

Our reference architecture and research focus areas 

 

For more information, visit the below URL. 

[on screen – url below points to information on SEI website but is unwieldly for use on screen; as an 

alternate, we could point to https://github.com/cmu-sei/SCALe, though pointing to our website is 

preferable] 

 

https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=6453 

 

[Word count and length estimate 415/130 = 3.2 min.] 

  

 

https://github.com/cmu-sei/SCALe
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