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1. Introduction 

Forecasts of hydrometeors (e.g., snowflakes and raindrops) are important for the 
testing of high-speed flight systems since they can be damaged by interactions with 
hydrometeors. Therefore, we investigate improving forecasts of hydrometeors by 
assimilating radar data into a numerical weather prediction model over the Ronald 
Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll (Republic of the 
Marshall Islands). 

Weather radar provides meteorological information at much higher spatial and 
temporal resolution than many other sources of weather observations and thus is an 
attractive data set to assimilate into numerical weather prediction models. However, 
there are a variety of methods that can be used to assimilate these data and more 
than one field is observed by modern weather radars. Therefore, assimilating radar 
data involves choosing which fields to assimilate and which methods to use to 
assimilate them. 

Reflectivity and radial velocity are two commonly assimilated radar fields. 
Reflectivity is a measure of the power of the portion of the radar beam that is 
backscattered to the radar (e.g., Markowski and Richardson 2010), and thus 
provides information on the objects that caused the backscattering, such as 
hydrometeors. Radial velocity is the component of the velocity along the radar 
beam and can be computed in Doppler radars. Dual-polarization radars provide 
additional fields that can assist in characterizing the hydrometeors present. In this 
study we focus on assimilation of reflectivity since it seemed the radar field most 
likely to lead to improvements in forecasts of hydrometeors. 

Some methods available to assimilate reflectivity include 3-dimensional variational 
data assimilation (3DVAR), 4-dimensional variational data assimilation (4DVAR), 
and the ensemble Kalman filter (EnKF). The process of assimilating reflectivity is 
made less direct due to reflectivity being a diagnostic variable rather than a 
prognostic variable in numerical weather prediction models such as the Advanced 
Research version of the Weather Research and Forecasting model (WRF-ARW; 
Skamarock et al. 2008).  

3DVAR builds an analysis that minimizes a cost function that includes terms 
measuring the difference between the analysis and the background (first-guess) 
field and the difference between the analysis and the observations. It includes a 
matrix of the covariance of the background errors and a matrix of the covariance of 
the observation errors; these allow the analysis to account for errors in the 
background and observations and how the errors relate spatially and among 
variables. However, in practice these may be simplified; for example, the 
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observation error between any two observations might be assumed to not be related. 
This technique will perform best if one has a good estimate of the background error 
covariance; however, this can be difficult to obtain. Additionally, the background 
error covariance in pure 3DVAR is not flow dependent, and so does not account 
for temporal variations. In applying 3DVAR to radar-reflectivity observations, one 
must determine how the radar-reflectivity observations relate to prognostic fields 
in the model such as hydrometeors. Determining adequate background error 
covariances may be especially difficult for assimilating reflectivity given that 
reflectivity and hydrometeors are highly heterogeneous with large areas where they 
are effectively nonexistent; this may require a different variable be used to calculate 
background error covariances (e.g., Xiao and Sun 2007). One example of a system 
that can assimilate radar reflectivity data using 3DVAR is WRF Data Assimilation 
(WRFDA; Barker et al. 2012) with methods used in WRFDA for 3DVAR 
assimilation of radar reflectivity described in the user’s guide 
(http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_V3.9.1/users_gui
de_chap6.htm#precipitation) and various publications (e.g., Xiao and Sun 2007; 
Wang et al. 2013).  

4DVAR builds on 3DVAR by incorporating the time dimension through integrating 
some representation of the numerical weather prediction model forward and 
backward. This allows an analysis of the initial conditions to be created based on a 
cost function that includes the numerical weather prediction model as a dynamical 
constraint. This method is more computationally intensive than 3DVAR and 
requires an adjoint model to integrate backward. Carlin et al. (2017) indicate that 
the application of 4DVAR methods to radar assimilation have been limited and cite 
nonlinearities in microphysics and challenges in creating and updating adjoint 
models as contributing to this.  

EnKF uses an ensemble of simulations to better capture the background error 
covariance specific to the current conditions. However, running multiple ensemble 
members necessarily increases the computational requirements; also, many 
ensemble members would be necessary to adequately represent the background 
error covariance and so techniques must be applied to account for this. An example 
of radar assimilation via EnKF is the National Severe Storms Laboratory 
Experimental Warn-on-Forecast system for ensembles (Lawson et al. 2018). 

Other techniques have also been used to apply information gained from radar 
reflectivity observations to the numerical weather prediction model. One example 
is the cloud analysis in the variational Local Analysis and Prediction System 
(vLAPS; Jiang et al. 2015). Although vLAPS uses variational assimilation for some 
variables, the cloud analysis remains nonvariational—a technique first described in 
Albers et al. (1996). As described in Reen et al. (2017), radar observations are 

http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_V3.9.1/users_guide_chap6.htm#precipitation
http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_V3.9.1/users_guide_chap6.htm#precipitation
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combined with other data sources to create a cloud analysis, which is then used to 
determine a 3-D hydrometeor field and a vertical velocity that influences the 3-D 
wind field. Carlin et al. (2017) notes various other techniques, but latent heat 
techniques are of particular interest in this report since that technique was applied 
for the research reported herein. 

Using radar reflectivity data to solely specify hydrometeors in a numerical weather 
prediction (NWP) model may not be effective, because without dynamics to 
support the hydrometeors they will tend to evaporate or sublimate. In other words, 
if you simply insert rain into the model but the vertical motion fields in the model 
do not even support clouds, the rain will likely evaporate and cool the column and 
thus the observed radar reflectivities on which the assimilation was based will not 
be seen in the model-predicted reflectivities.  

The assimilation of weather radar information through the addition of latent heating 
terms has been applied in a variety of models. For example, Wang and Warner 
(1988) used a precipitation estimate based on radar and gauge data to construct a 
3-D latent heat field that was applied for either 1 or 2 h to 30-km horizontal grid 
spacing simulations of the Pennsylvania State University–National Center for 
Atmospheric Research (NCAR) mesoscale model Version 4. Jones and 
Macpherson (1997) described the latent-heating-nudging methodology 
implemented into the then-operational 17-km horizontal grid-spacing mesoscale 
version of the United Kingdom Met Office’s (UKMET) Unified Model. (They also 
note the use of nudging as the methodology they use for assimilation of other 
observations). The heating calculated by the model to be due to cloud processes 
was scaled by the ratio of observed rain rate to modeled rain rate, where the 
observed rain rate was a 3-h analysis combining radar and gauge data; these data 
were temporally interpolated and generally applied for a 6-h period. One 
challenging aspect of this methodology is that in cases where observations indicate 
rainfall but the model indicates no (or much less) rainfall, scaling the latent heating 
profile is problematic and so a nearby latent-heating profile must be found in the 
model where more precipitation is occurring. UKMET no longer uses nudging as 
their primary assimilation technique; they still use latent heat nudging, although 
now based on radar reflectivity (Barker 2019). 

Stephan et al. (2008) modified the scheme of Jones and Macpherson (1997) and 
applied it to the Deutscher Wetterdienst’s (Germany’s national weather service) 
operational 2.8-km horizontal grid spacing COSMO-DE model (high resolution 
version of the Consortium for Small Scale Modelling model). One of the 
modifications they applied included changing the quantity used to compare against 
observed precipitation to be the vertically integrated precipitation flux rather than 
the modeled precipitation rate. This is an attempt to account for the fact the latent 
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heat release associated with precipitation occurs before the precipitation reaches 
the ground. They also prevented the use of observation-derived negative heating 
rates, and used much finer temporal resolution precipitation observations (every 5 
min), along with other modifications.  

As of Benjamin et al. (2016), the 13-km WRF-ARW-based Rapid Refresh (RAP) 
model used 3-D radar reflectivity data to calculate a 3-D latent heating rate that was 
applied during a 20-min forward digital filter initialization (DFI) step. Lightning 
data also were used to determine the latent heating, which was then constrained by 
satellite data. Additionally, satellite and surface observations were used to adjust 
the hydrometeor fields (and other fields). The 3-km WRF-ARW-based High-
Resolution Rapid Refresh (HRRR) model also uses 3-D radar reflectivity data to 
calculate a 3-D latent heating rate. However, this is done without DFI during a 1-h 
preforecast time period using a series of 15-min radar reflectivity fields (Alexander 
et al. 2017). The use of 3-D reflectivity rather than precipitation data removes the 
difficulty of determining how to apply a 2-D field in 3-D. It also makes it easier to 
apply the latent heating at the proper time since the latent heating is based on the 
3-D reflectivity itself rather than the precipitation that falls associated with that 
reflectivity (over whatever time period the precipitation is allowed to accumulate 
before being used to compute latent heating). In this study, we apply the technique 
used in the 3-km HRRR to 1-km WRF-ARW simulations over Kwajalein Atoll. 

Section 2 describes the WRF-ARW and its configuration for this study and 
Section 3 describes the case investigated. The methodology is described in Section 
4, the experimental design in Section 5, and the results in Section 6. Section 7 
provides the summary, conclusions, and future work. 

2. Model Description and Configuration 

The WRF-ARW (often called simply WRF) V3.9.1.1 (Skamarock et al. 2008) is 
applied in this research. The Weather Running Estimate–Nowcast Realtime system 
(WREN_RT; Reen and Dawson 2018) was used to assist in the preparation of input 
data for the WRF simulations. While WREN_RT can carry out both the preparation 
of input data and the running of WRF, the capability to assimilate radar-reflectivity 
data is not yet included in WREN_RT and thus WREN_RT could not carry out the 
entire process for this study.  

The model was configured with 9-, 3-, and 1-km horizontal grid-spacing nested 
domains centered over the region of the Kwajalein Atoll (Fig. 1), which is in the 
Marshall Islands in the Pacific Ocean. The 9-km domain contains 151 × 151 
gridpoints, the 3-km 193 × 163, and the 1-km 223 × 211, and all domains contain 
56 vertical levels. 
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Fig. 1 Horizontal extent of the WRF-ARW 9-, 3-, and 1-km horizontal grid-spacing 
domains, which are centered over the region of the Kwajalein Atoll 

The first guess for initial conditions is supplied by 0.50° resolution Global Forecast 
System (GFS) data. However, the sea surface temperature is specified via the 
National Centers for Environmental Prediction (NCEP) 1/12° horizontal grid-
spacing Real-Time Global Sea Surface Temperature (Gemmill et al. 2007). 

The GFS-derived first-guess fields used to specify the WRF-ARW initial 
conditions are enhanced by applying a multiscan Cressman-based analysis via the 
Obsgrid program (NCAR 2017). The observations included in the analysis are 
obtained from the Meteorological Assimilation Data Ingest System (MADIS; 
https://madis.ncep.noaa.gov/) database. Specifically, any available MADIS 
observations from its Aircraft Communications Addressing and Reporting System, 
rawinsonde, and satellite wind categories are ingested. Surface observations are 
avoided because early simulations suggested that assimilation of surface 
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observations could be problematic; the 1-km domain contains a single observation 
and thus the observation can serve to create a warm bubble that erroneously causes 
convection early in the simulation over Kwajalein Atoll. The multiscan Cressman 
analysis is carried out separately on each model domain, but an area larger than the 
domain is used to carry out the analysis to ensure that observations outside the 
domain, and yet within the radius of influence, can be included. 

The parameterizations chosen closely match the WRF-ARW tropical 
parameterization suite (http://www2.mmm.ucar.edu/wrf/users/wrfv3.9/ 
tropical_suite.html). As in the tropical physics suite, the following physics 
parameterizations are used: YSU (Yonsei University in Seoul, South Korea) 
planetary boundary layer (PBL) parameterization (Hong et al. 2006), WSM6 (WRF 
single-moment 6-class) microphysics (Hong and Lim 2006), new Tiedtke cumulus 
parameterization (Zhang and Wang 2017), the Noah land-surface model (Tewari et 
al. 2004), and the RRTMG (rapid radiative transfer model for general circulation 
models) shortwave and longwave radiation schemes (Iacono et al. 2008). However, 
the revised Pennsylvania State University–NCAR mesoscale model Version 5 
(MM5) surface-layer scheme (Jimenez et al. 2012) is used instead of the standard 
MM5 surface-layer scheme included in the tropical suite. Additionally, the cumulus 
parameterization is only applied on the 9-km domain in this study since deep 
convection should be partially resolved on the 3- and 1-km domains.  

3. Case Description 

Two forecast starting times on the same day, 0100 and 0600 coordinated universal 
time (UTC) on 10 Sep 2016, were examined as two cases (referred to as Case A 
and Case B). Note that local time (Marshall Islands Time [MHT]) is 12 h ahead of 
UTC and thus the forecast starting times are 1300 and 1800 MHT. For many 
experiments, the model was run before the forecast starting time to spin up the 
model and assimilate the radar-reflectivity data, so times before the forecast start 
time are also of interest. Plots of the 1-km above ground level (AGL) reflectivity 
from the Kwajalein radar are shown in Fig. 2 for 1900 UTC on 9 Sep through 1200 
UTC on 10 Sep 2016. The radar data were interpolated to the 1-km numerical 
weather-prediction domain used in this study to facilitate comparison with model 
forecast reflectivity. While returns are visible throughout the period shown, how 
much of the domain is covered and the size of the structures seen in the reflectivity 
vary widely. For example, at 1900 UTC there are only a few small reflectivity 
structures, whereas by 0100 UTC there are much larger-scale structures visible in 
the reflectivity. 
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Fig. 2 Radar reflectivity at 1 km AGL observed by the radar at Kwajalein Atoll (the thin 
black line shows the location of the atoll) and shown here at hourly intervals starting at 1900 
UTC on 9 Sep (a) through 1200 UTC on 10 Sep 2016 (x); reflectivity is interpolated to the  
1-km NWP model domain; the radar observation closest to each hour is shown and it is labeled 
as being at that hour although the actual observation was not necessarily exactly at the hour  
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Fig. 2 Radar reflectivity at 1 km AGL observed by the radar at Kwajalein Atoll (the thin 
black line shows the location of the atoll) and shown here at hourly intervals starting at 1900 
UTC on 9 Sep (a) through 1200 UTC on 10 Sep 2016 (x); reflectivity is interpolated to the  
1-km NWP model domain; the radar observation closest to each hour is shown and it is labeled 
as being at that hour although the actual observation was not necessarily exactly at the hour 
(continued)  
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4. Methodology 

Data from the Kwajalein Atoll weather radar were obtained and converted to the 
format required for ingestion by the Gridpoint Statistical Interpolation (GSI; Shao 
et al. 2016) software. GSI then created a series of 3-D fields of radar-derived latent 
heating temperature tendency terms (LHT) for ingestion by WRF-ARW. These 
fields were used by WRF-ARW during a preforecast data-assimilation period and 
the results were evaluated using two metrics. 

4.1 Preparing Radar Data for GSI 

Radar data come in various formats depending on the kind of radar system that 
collects the data as well as the radar manufacturer. The radar on Kwajalein Atoll is 
an S-band Doppler radar similar to the WSR-88D radar network that covers the 
continental United States (CONUS). We obtained the Kwajalein radar data, which 
has been preprocessed and quality controlled by NASA, in a format called 
Universal Format (UF). Unfortunately, GSI requires all of its input data in BUFR 
(the Binary Universal Form for the Representation of meteorological data), which 
is a binary format maintained by the World Meteorological Organization to 
facilitate data sharing among its member nations. A thorough survey of radar-
processing software was conducted and no off-the-shelf software tool was available 
to convert UF to BUFR format. We thus needed to develop a new software tool to 
perform the radar-data format conversion so assimilating radar data from Kwajalein 
using GSI would be possible. 

NCAR developed a software package called RADX, which is open source and 
readily available as a community resource. RADX can read radar data in UF format, 
perform interpolation of radar data from radar coordinates onto 3-D Cartesian 
coordinates, and write out the gridded radar data in NetCDF format. 
Complementary to this, the software package “process_mosaic” provided by Dr 
Ming Hu from the National Oceanic and Atmospheric Administration/Global 
System Division (NOAA/GSD) can read a 3-D Cartesian grid in NetCDF format 
and then convert it to BUFR format. The process_mosaic software is designed to 
process the National Severe Storms Laboratory’s multiradar multisensor (MRMS; 
https://mrms.nssl.noaa.gov/; Zhang et al. 2005) product that is a mosaic of radar 
data available over the continental United States. Therefore, to achieve our goal of 
converting UF format to BUFR, we modified Dr Hu’s code so it can ingest the 
NetCDF data created by RADX and put them in the proper arrays needed for 
converting them into BUFR format; this variant of process_mosaic is known as 
process_radx. The software tool encompassing RADX and process_radx, which is 
called radx2bufr, was thus developed, tested, and used in this project. Its flowchart 

https://mrms.nssl.noaa.gov/
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is shown in Fig. 3, which summarizes the processes necessary to accomplish the 
data-format conversion required by GSI. As illustrated in Fig. 3, there are two major 
components of the software tool: one is RADX developed by NCAR, the other is 
process_radx developed by the CCDC Army Research Laboratory based on Dr 
Hu’s code, and these work together to fulfill the conversion of original radar data 
in UF format to 3-D gridded radar data in BUFR format.  

 

Fig. 3 Processes employed by the radx2bufr software tool to convert original radar-
reflectivity data from UF format to 3-D gridded radar-reflectivity data in BUFR format 

The details of the radx2bufr software tool are not relevant for this report and are 
therefore not included here (the tool will be documented in a separate report: Cai et 
al. [forthcoming]). However, note that 1) this tool only deals with radar-reflectivity 
data, 2) the 3-D gridded radar-reflectivity data produced by the tool has the same 
map projection and domain as the WRF model, and 3) some special considerations 
have to be made within the software so that at each grid point, the BUFR data 
contains only one of the three kinds of possible output values (i.e., a regular radar-
reflectivity value, a flag representing no storms [–63], or a flag representing missing 
data [–64]). The ability to distinguish these three kinds of data is crucial for radar 
data assimilation using GSI, as will be demonstrated later in this report. 

4.2 Preparing WRF Initial Condition Files for GSI 

Before executing GSI, the user must create WRF initial condition files—named 
wrfinput_dXX, where XX is the 1-based domain number (e.g., wrfinput_d01)—into 
which GSI will place the radar-derived LHT. GSI will need a separate WRF initial 
conditions file for each time it creates LHT. For this investigation we are solely 
using GSI to create LHT (and not using the analyses of other fields created by GSI). 
It appears the only way in which the WRF initial condition file affects the LHT is 
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that it uses the fields in the WRF input file to find an atmospheric boundary layer 
(ABL, also known as the PBL) depth to use in determining how deep of a layer to 
exclude the LHT from near the surface. Due to the impact of the GSI-diagnosed 
ABL depth on the LHT, it is best if the user does not provide the same WRF input 
file to GSI for creating LHT over a long period. In other words, the WRF input file 
provided to GSI as an input for creating LHT at a given time should be different 
than the WRF input file provided to GSI as an input for creating LHT at a time 6 h 
later because in that 6-h time period the ABL depth will vary. If the WRF input 
valid at the earlier time was also used 6 h later, the diagnosed ABL depth at the 
later time may have significant errors and thus the depth of the layer near the surface 
where LHT is not applied will not be consistent with the ABL depth. Thus, LHT 
may be needlessly excluded from use above the ABL or unintentionally used within 
the ABL. However, it should not be problematic to use the same WRF initial 
condition file for short periods since in general, the ABL depth should not have 
large variations over short periods and because even if it did, these variations are 
unlikely to be resolved in the coarse grid model (e.g., GFS) that is used to create 
the WRF input files.  

For this study where LHTs were created every 15 min, WRF initial condition files 
were created hourly and thus the time mismatch between any LHT file and the WRF 
initial condition file used by GSI to create it was no more than 30 min. Note that 
even if one has 3-h coarse grid model data, the WRF Preprocessing System 
component Ungrib will temporally interpolate to create hourly data if the user sets 
interval_seconds=3600. Ultimately, one will need to execute the WRF software 
real.exe one time for each WRF initial condition file to be created since real.exe 
only creates one of these files at the beginning of the specified simulation time 
because initial conditions are only needed at the start of the simulation. It is not 
clear if GSI can process a WRF initial condition file that is not exactly at an hour. 

Once the WRF initial condition files are created, the 3-D field into which GSI will 
place the LHT must be added. GSI requires the field to already be present in the 
WRF initial condition file for it to place the LHT into the file. Thus, the user should 
add the term and set it to zero. One way to do this is via the NetCDF Operators 
(NCO; http://nco.sourceforge.net) software component ncap2. For example: 

ncap2 -s 
'RAD_TTEN_DFI=T;RAD_TTEN_DFI=0;RAD_TTEN_DFI@description="Radar-
derived T Tendency for DFI";RAD_TTEN_DFI@units="K s-1"' 
wrf_input_without_tendency wrf_input_with_zeroed_tendency.nc 
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4.3 Preparing Standard Observation Files for GSI 

No method to prevent GSI from completing 3DVAR analyses was found and so a 
file containing standard observations was needed to provide the basis of these 
analyses. The 6-h GFS BUFR files are available from 1997 through the present via 
NCAR (https://rda.ucar.edu/datasets/ds337.0/index.html#access) and the last 10 
days are available via NCEP (https://nomads.ncep.noaa.gov/pub/data 
/nccf/com/gfs/prod/gdas.YYYYMMDD/HH/gdas.tHHz.prepbufr.nr).† These files 
contain observations for the 6-h period surrounding their valid time (i.e., ±3 h from 
the valid time).  

4.4 Preparing, Configuring, and Running GSI 

While GSI V3.6 was used for this study, the source code needed to be altered to 
allow generation of the LHT. The official documentation included instructions on 
the modifications needed, but these modifications were insufficient to allow GSI to 
produce the LHT. The required changes were reported to the GSI maintainers for 
potential inclusion in a future release of GSI. The changes were not included in the 
initial release of GSI V3.7. 

The GSI file comgsi_namelist.sh needs to be altered to allow the NOAA/GSD cloud 
analysis capability of GSI to generate the LHT. In the 
&RAPIDREFRESH_CLDSURF section, the following settings are relevant: 

dfi_radar_latent_heat_time_period=15, 
i_use_2mq4b=0, 
i_use_2mt4b=0, 
i_gsdcldanal_type=1, 
i_gsdsfc_uselist=0, 
i_lightpcp=0, 
i_sfct_gross=0, 

The setting dfi_radar_latent_heat_time_period specifies the number of minutes 
over which the LHT will be applied so that it can take the total heating calculated 
and turn that into a rate (Ks–1). Thus, since in this study we applied a new radar data 
set every 15 min, we set dfi_radar_latent_heat_time_period to 15 so the full latent 
heating associated with the observed reflectivities is applied. However, a user may 
also set this value differently than the interval between radar updates to adjust the 
strength of the term. The default GSI value is 30 min. 

                                                 
† Here, the valid time of the file is specified in time UTC where YYYY is the four-digit year, MM the two-
digit month, DD the two-digit day of month, and HH represents the two-digit hour and can be 00, 06, 12, or 
18. 

https://rda.ucar.edu/datasets/ds337.0/index.html#access
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/HH/gdas.tHHz.prepbufr.nr
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/HH/gdas.tHHz.prepbufr.nr
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To accelerate the production of LHT, the number of iterations used for the 3DVAR 
analyses was reduced to one since we are not using the 3DVAR analyses. To do 
this, in the &SETUP section: 

miter=1,niter(1)=1,niter(2)=1, 

To avoid issues with time mismatches, the user may need to set the following in the 
&SETUP section: 

offtime_data=.true. 

Setting this value to .true. specifies that GSI will still use observations, even if their 
timestamp does not match the timestamp of the background data. If the value is not 
set to true, GSI can find a timestamp mismatch even when you are using a file that 
includes observations at the time you are creating an analysis because the valid time 
of the observation file is considered to be too far from the analysis time. For 
example, if one is using a 0600 UTC observation file to create an analysis at 
0400 UTC, even though the observation file contains observations from 0300 to 
0900 UTC, GSI will see this as an issue. 

In addition to altering comgsi_namelist.sh, the user will also need to alter 
run_gsi_regional.ksh. The user must set the time the LHT is being created for via 
the setting ANAL_TIME. Another alteration required is to ensure that refInGSI links 
to the radar BUFR file. One way this can be implemented is via the following: 

REFBUFR=${OBS_ROOT}/NSSLRefInGSI_${ANAL_TIME}.bufr 
ln -s ${REFBUFR} refInGSI 

Finally, GSI must be run once (via run_gsi_regional.ksh) for each time an LHT is 
required. 

4.5 GSI Calculation of LHT 

The NOAA/GSD cloud analysis in GSI can use other data sources in conjunction 
with radar data. The sources include surface observations, satellite cloud products, 
and lightning data. Since those data were not used in this investigation, details are 
not provided here regarding how they are processed. 

GSI calculates the top of the ABL by finding the first level where virtual potential 
temperature is more than 1 K above the value at the lowest model level. It uses the 
relationship between virtual potential temperature at this level, the level below, and 
the surface to determine which model vertical level the ABL top is at. If this 
algorithm fails, then the ABL top is set to the second model level from the ground. 



 

14 

In the innermost model domain used in this study, the second level from the ground 
is at approximately 47 m. 

The radar-reflectivity input to GSI is on specific height levels. This is interpolated 
to the heights on which GSI is completing analyses (the WRF levels). GSI then 
attempts to hypothesize what reflectivities exist below the bottom of the radar 
coverage so that it can replace the missing reflectivities with reflectivities consistent 
with those measured within the vertical extent of radar coverage. This allows GSI 
to calculate an LHT below the bottom of the radar coverage and thus apply a more 
vertically consistent profile of LHT. GSI hypothesizes values of reflectivity in 
profiles where nonmissing reflectivity values extend at least down to the middle 
WRF sigma level (and missing reflectivity values extend above the ABL), and the 
maximum column reflectivity exceeds 19 dBZ. In these profiles, the maximum 
column reflectivity is used to build a reference reflectivity profile that is 
interpolated to the heights of the analysis. The measured reflectivity at the lowest 
level within the radar coverage (i.e., the level above the first missing level) is 
compared to the reference reflectivity profile; we will refer to this difference as Y. 
If this difference Y is less than 10 dBZ, then the reference reflectivity profile is 
applied over its range (750–12,000 m AGL) but the entire reference reflectivity 
profile is adjusted by Y; that is, if Y = 5 dBZ then 5 dBZ is added to the reference 
reflectivity profile at each level to determine the reflectivity that replaces the 
missing reflectivity. If the difference Y is larger than 10 dBZ, then instead of using 
the reference reflectivity profile, reflectivities below the bottom of the radar 
coverage are set to a constant value, namely the reflectivity measured at the bottom 
of the radar coverage (i.e., at the first nonmissing level). After all of these 
processing steps are carried out, the radar reflectivity within the ABL is then set to 
missing. 

To calculate the LHT, first calculate the reflectivity factor converted to rain/snow 
condensate (f[Ze]): 

 𝑓𝑓[𝑍𝑍𝑒𝑒] =  1
264083

∗ 1.5 ∗ 10(𝑍𝑍/17.8), (1) 

where 

Z = radar reflectivity 

Then the LHT is calculated using the following equation: 

 𝐿𝐿𝐿𝐿𝐿𝐿 =  �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝐿𝐿𝐿𝐿

=  �1000
𝑝𝑝
�
𝑅𝑅𝑑𝑑 𝑐𝑐𝑝𝑝�

∗ �𝐿𝐿𝑣𝑣+𝐿𝐿𝑓𝑓�(𝑓𝑓[𝑍𝑍𝑒𝑒])

𝑑𝑑𝑐𝑐𝑐𝑐𝑝𝑝
, (2) 

where: 
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p = pressure (hPa) 

Rd = dry gas constant (≈287.059) 

cp = specific heat of dry air at constant p (≈1004.705)—note that Rd/cp is 1/3.5 

Lv = latent heat of vaporization at 0° C (2.501E6 J kg–1) 

Lf = latent heat of fusion at 0° C (0.3335E6 J kg–1) 

tc = time period of condensate formation (in seconds, converted from the minutes 
value set by the user in the GSI namelist for dfi_radar_latent_heat_time_period; if 
not set by the user, this defaults to 30 min) 

f[Ze] = reflectivity factor converted to rain/snow condensate 

LHT is set to zero if 

• Echoes are weak: Radar reflectivity does not equal or exceed 0.001 dBZ. 
Also, it is set to zero throughout a column if after three horizontal 
smoothings of LHT (yielding LHTsmooth), no vertical layer in a column of 
LHT exceeds 0.00002 Ks–1. 

• Bright banding may be a problem: Temperature is >277.15 K while 
reflectivity is <28 dBZ (and it is suspected this criterion is included in GSI 
to deal with bright banding but is not known for certain). 

• Near the surface: Within the deeper of 1) the ABL and 2) the lowest six 
model levels. 

In addition, LHT is limited to the range –0.1 Ks–1 to +0.1 Ks–1. However, it is 
not clear there is a way for the value to be negative and so effectively it appears 
to be limited to the range 0.0 to 0.1 Ks–1. If there are no data available to 
determine the tendency term, it is set to missing (which is signified by setting 
it to –20).  

In the top level of the field where LHT is stored, a flag is stored indicating 
whether convection should be suppressed in cumulus parameterizations (see 
Section 4.7 for more information on this suppression). This flag is set to indicate 
a) insufficient information is available to set the flag (–10; i.e., missing), b) no 
convection in the column (0), or c) there may be convection in the column (1). 
It is assumed to be missing unless LHTsmooth is nonmissing for at least a  
300-hPa-thick layer and there is at least one level in that layer where  
LHTsmooth ≥0.00002 Ks–1. 
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4.6 Preparing GSI Output for Use in WRF 

GSI creates one WRF initial condition file named wrf_inout for each time it is 
executed. The wrf_inout file contains the wrfinput_dXX file, provided as input to 
GSI but then altered based on the GSI 3DVAR analyses and with the radar-derived 
LHT included. Since we are only interested in the radar-derived LHT, we extract 
that field from each time to create a file containing only that field. 

To extract the radar-derived LHT (RAD_TTEN_DFI), use the NCO component 
ncks as follows to create a file rad_tten_dfi_temp.nc that contains only the LHT: 

ncks –v RAD_TTEN_DFI,Times wrf_inout rad_tten_dfi_temp.nc 
 
We must now modify the timestamp of this file, if needed. Since the time of the 
WRF initial condition file provided to GSI (and the analysis time specified to GSI) 
is exactly on the hour, the rad_tten_dfi_temp.nc file will have a timestamp exactly 
on the hour even if it is not valid exactly on that hour. Additionally, and 
importantly, the timestamp in the file should be set not necessarily to the valid 
time of the radar data but to the time at which we want to start using the 
heating term. For a radar-reflectivity field valid at Time X, the LHT we calculate 
is based on the amount of heating associated with the creation of the radar 
reflectivity field at Time X. Thus, we want to apply that heating in the time leading 
up to Time X so that by Time X all of the needed heating has been applied and, 
hopefully, the modeling reflectivity matches that observed at Time X. If we are 
using 15-min radar data, as we are in this study, then if we have the 1830 UTC radar 
field we want to set the time of the file to 1815 UTC using the NCO component 
ncap2 as follows: 

ncap2 -O -s 'Times(0,0:18)="2018-04-02_18:15:00"' 

rad_tten_dfi_temp.nc rad_tten_dfi_20180402_1815UTC.nc 

Now combine the rad_tten_dfi* files from all of the times needed for this 
simulation using the NCO component ncrcat: 

ncrcat rad_tten_dfi_*UTC.nc rad_tten_dfi_d03.nc 

Since we are not using the GSI 3DVAR analyses we use the wrfinput_dXX file 
provided to GSI as the WRF initial condition file. If the user wanted to leverage the 
GSI 3DVAR analyses, the wrf_inout file created by GSI at the initial WRF time 
could be used as the WRF initial conditions file (in this case the user may want to 
remove the RAD_TTEN_DFI field after the wrf_inout file is moved to 
wrfinput_dXX so there is no chance that RAD_TTEN_DFI is read from this file). 
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4.7 WRF Use of LHT 

While the standard version of WRF V3.9.1.1 can use LHT, it can only do so in 
conjunction with the DFI. However, we do not want to apply DFI, since in applying 
LHT to 3-km HRRR simulations, the developers of that system found it problematic 
to apply DFI as it smoothed out realistic structures at that scale; therefore, they did 
not apply DFI. Since we are running at an even higher resolution (1-km horizontal 
grid spacing) than HRRR, we modify WRF to be able to use LHT while not using 
DFI. To use LHT without DFI, WRF still must be compiled with radar DFI 
capabilities via setting an environmental variable (WRF_DFI_RADAR=1) or 
passing the option radardfi to the configure script. To enable the use of LHT 
without DFI, the radar_lh_tend option was introduced. 

WRF was modified so if the LHT field was not present it would set LHT to missing 
rather than the default setting of 0. Setting it to 0 indicates there is no convection 
present; thus, if LHT is enabled, WRF would work to suppress convection across 
the entire domain. 

While LHT use is active, at locations where LHT is not marked as missing, 3-D 
LHT is used in place of the temperature tendency term calculated by the 
microphysics scheme. Thus, there are three possible scenarios for each model grid 
cell: 

1) The radar indicated sufficiently large reflectivities to result in a positive 
LHT (subject to the previously discussed conditions). This positive LHT is 
applied to initiate convection where the model may not have previously 
predicted convection. The temperature tendency predicted by the 
microphysics scheme is ignored as the model may not have previously been 
predicting convection and thus the microphysics-produced heating term 
may have been zero or at least smaller than the LHT. As discussed later in 
the report, an option was added (radar_lh_tend_ref_limit) that allows the 
user to specify that in the current scenario, if the model-predicted 
reflectivity exceeds the observed reflectivity, the LHT applied is set to zero 
to not further strengthen already-too-strong convection.  

2) The radar indicated sufficiently weak reflectivities to result in a zero LHT. 
The temperature tendency predicted by the microphysics scheme is ignored 
so that if the model is predicting convection the radar indicates does not 
exist, the removal of the microphysics heating term will hopefully suppress 
the convection. 
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3) No radar data are available for the grid cell and so the microphysics heating 
term is applied normally to predict convection as it would if LHT was not 
being ingested at all. 

Code was added to WRF to allow the user to more strongly suppress erroneous 
convection. The user can specify a heating term (radar_lh_tend_when_fp) to apply 
in cases where LHT is effectively zero, but the temperature tendency term from the 
microphysics scheme is positive; the user would presumably set this to a small 
negative value to more effectively suppress convection. 

Code was also added to WRF so the user can choose (via radar_lh_tend_ref_limit) 
to have the LHT term not be applied at grid points where the current  
model-predicted reflectivity exceeds the radar-observed reflectivity equivalent to 
the LHT term. The goal of this setting is to prevent overstimulation of convection 
via the LHT term. The LHT term is set to zero when model-predicted reflectivity 
exceeds the observed value. Thus, if the model is already predicting convection 
stronger than observed, by setting this term to zero the convection is damped to 
allow the strength to be weakened to more closely match observations. The user 
must specify radar_lh_gsi_length to be consistent with the GSI setting 
dfi_radar_latent_heat_time_period so that the conversion from LHT to observed 
reflectivity can be properly carried out. To save computational expense, the user 
can also choose not to recalculate model-predicted reflectivity at every timestep 
(radar_lh_tend_dbz_int). Note that these options are only available when using the 
microphysics scheme WSM6 or Thompson and the user must have do_radar_ref=1 
set in the &physics section. 

In addition to the replacement of the microphysics temperature tendency term with 
LHT, if a cumulus parameterization is used, the cumulus parameterization’s 
potential temperature tendency will be set to zero if 1.0e-7 ≤ LHT ≤ 10 Ks–1. In this 
study, no cumulus parameterization was used on the model domain on which LHT 
was applied and so this aspect was not relevant. 

Additionally, for specific cumulus parameterizations, the cap suppression flag 
described earlier is applied. This is currently applied to the Grell 3-D scheme and 
the Grell–Frietas scheme. In addition to being applied while the LHT is applied, 
the cap suppression flag can also be applied for a period after the period of LHT 
application finishes. Previously, this additional time period was 31 timesteps, 
whereas WRF was modified so that the period is a user-specified length of time set 
via radar_lh_cu_suppress_end. This capability does not affect this study because 
no cumulus parameterization was used in this study on the 1-km domain where 
LHT was applied. 
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4.8 Running WRF with the LHT 

Since the standard version of WRF V3.9.1.1 can only use LHT in conjunction with 
DFI, the description here is in regard to running LHT in the modified version of 
WRF V3.9.1.1 used for this study.  

The user must configure WRF to read in the file with the LHT. The WRF 
configuration file namelist.input should have the following settings included in 
section &time_control for a 3-domain simulation in which LHT is applied only to 
the third domain: 

iofields_filename = "iofields_blank.txt", "iofields_blank.txt", 
"iofields.txt", 
ignore_iofields_warning = .TRUE., 
io_form_auxinput17 = 2, 
auxinput17_interval = 999999, 999999, 15, 
auxinput17_inname = "rad_tten_dfi_d<domain>.nc", 
auxinput17_end_m = 0, 0, 60, 

These settings specify that auxiliary input Stream 17 is in netCDF format 
(io_form_auxinput17), is to be read from every 999999 minutes for Domains 1 and 
2, but every 15 min for Domain 3 (auxinput17_interval). The files to be read are 
named rad_tten_dfi_d<domain>.nc where <domain> is the two-digit  
one-based domain number (auxinput17_inname), and the last time WRF should 
read in this input stream is at 0 min for Domains 1 and 2 and 60 min for Domain 3 
(auxinput17_end_m).  

The settings also specify that WRF should adjust which input/output (I/O) streams 
are used for which fields by checking iofields_blank.txt for Domains 1 and 2 and 
iofields.txt for Domain 3 (iofields_filename). If there are problems with ingesting 
the files in iofields_filename, the setting ignore_iofields_warning=.TRUE. 
indicates this should not cause a fatal error. The user should not create the file 
iofields_blank.txt (since we do not need to adjust I/O streams for those domains as 
we are not applying LHT to those domains) but should create iofields.txt with the 
following contents: 

-:i:0:RAD_TTEN_DFI 
+:i:17:RAD_TTEN_DFI 
+:h:0:RAD_TTEN_DFI 

The first line indicates the LHT field (RAD_TTEN_DFI) should not be read in via 
input Stream 0 (the WRF initial conditions file wrfinput_dXX), and the second line 
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indicates the field should be read in from auxiliary input Stream 17. The final line 
indicates the field should be included in the history Stream 0 (wrfout_d0*).  

In the modified version of WRF, the setting radar_lh_tend_init_end specifies the 
end of the initialization period in minutes and indicates when the LHT-related code 
switches from behaving according to the option specified via radar_lh_tend_init 
and instead begins behaving according to the option specified via 
radar_lh_tend_final. For this study, the following were used: 

radar_lh_tend_init = 0, 0, 1 
radar_lh_tend_final = 0, 0, 2 

The settings specified that the LHT-related code is not used on Domains 1 and 2 
(since it is set to 0), but that on Domain 3 it would initially apply the LHT (since it 
was set to 1); then, during the rest of the simulation it would not apply LHT 
directory, but potentially enable the convective suppression in the cumulus 
parameterization (since it was set to 2). The setting radar_lh_cu_suppress_end (not 
shown) indicates the time in minutes since the model started when the cumulus 
suppression via the cumulus parameterization ends (whether this is enabled is also 
dependent on how radar_lh_tend_init and radar_lh_tend_final are set and whether 
a cumulus parameterization with this capability was being used). However, since 
no cumulus parameterization was used on Domain 3 where LHT was applied, this 
setting (radar_lh_cu_suppress_end) was not relevant for the current study.  

The user must also choose how to set the previously described settings regarding 
1) limiting the LHT based on the relationship between model-predicted and 
observed reflectivity and 2) imposing a heating rate (that the user would 
presumably set to be negative) to more effectively suppress convection. 

Finally, the user must execute WRF to integrate forward and create forecasted 
weather conditions. 

4.9 Evaluation Metrics 

Both subjective and objective evaluation of the results are included. The objective 
metrics used in this evaluation are fractions skill score (FSS) and bias.  

The FSS is used to evaluate how well the model predicts the placement of 
convection because standard metrics such as mean absolute error (MAE) can be 
problematic for evaluating high-resolution forecasts of convection. This is because 
those metrics can fail to show the benefit of near misses. For example, consider the 
case where a thin line of convection is observed, and the model forecasts this line 
of convection with a small temporal error (i.e., a near miss) such that at any given 



 

21 

time the observed and modeled line do not overlap. The MAE for the near miss 
would be identical to the MAE for a model forecast with a much larger temporal 
error for the line of convection. Additionally, MAE may indicate a forecast that 
does not even indicate any line of convection as performing better than a forecast 
with a small temporal error, since the MAE will penalize for not forecasting the 
line of convection at its actual location and will also penalize for forecasting a line 
of convection where it did not occur.  

FSS is a neighborhood method that is applied here to compare between the model 
forecast and the observations to determine the fraction of grid cells exceeding a 
reflectivity threshold within a given neighborhood size. For a given neighborhood 
size, each possible neighborhood of that size within the evaluation domain is 
evaluated. By examining neighborhoods instead of merely comparing grid points 
individually, the FSS is able to include the value of near misses. A perfect forecast 
results in an FSS of 1.0. In this study we use an 11 × 11 km2 neighborhood with a 
20-dBZ threshold. 

While FSS helps to evaluate how well we forecast the placement of convection, 
bias measures how well we forecast the percentage of the domain covered by 
reflectivities exceeding a threshold. (Here, we use 20 dBZ.) A perfect forecast 
results in a bias of 1.0 whereas a value greater than 1.0 indicates too much coverage, 
and a value less than 1.0 indicates too little coverage. 

5. Experimental Design 

Experiments were carried out for the two temporally overlapping cases described 
in Section 3 that investigated the value of assimilating LHT. While the forecast 
started at 0100 UTC on 10 Sep 2016 for Case A, and at 0600 UTC on 10 Sep 2016 
for Case B, the model was integrated before these times during a preforecast time 
period during which the radar data were assimilated. The length of the preforecast 
assimilation period was varied with lengths of 1, 2, and 6 h investigated. Figure 4 
demonstrates the timing of the assimilation of the radar data for a 1-h preforecast. 
During the preforecast, for every 15-min time period, the observed radar reflectivity 
from the end of the 15-min time period converted to an LHT is applied to WRF. 
This continues throughout the preforecast time period (0000 to 0100 UTC in this 
example) with the goal of creating the best possible initial conditions (for 0100 
UTC in this example) so that the forecast (starting at 0100 UTC) is as accurate as 
possible. Note that the LHT was only applied to the 1-km WRF domain since data 
were only available from one radar and most of the area covered by the radar data 
in use were within the 1-km domain. 
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Fig. 4 In the application of radar-derived LHT in WRF, during preforecast data 
assimilation (here, lasting 1 h), during each 15-min period the LHT from the radar 
observation valid at the end of the 15 min replaces the temperature tendency from the model’s 
microphysics parameterization 

All experiments are assigned names to simplify referring to the experiments. The 
names consist of the following components in the order given: 

• A/B: indicates Case A (0-h forecast at 0100 UTC on 10 Sep 2016) or Case 
B (0-h forecast at 0600 UTC on 10 Sep 2016). 

• 1/2/6: indicates length of the preforecast (in hours). Note that for the 
experiments not applying LHT, any time simulated before the designated  
0-h forecast time for the case is considered the preforecast even though 
observations are not being assimilated during that time period. 

• Y/N: indicates whether LHT is (Y) or is not (N) applied. 

• R: indicates the LHT was limited by comparisons between modeled and 
observed reflectivity and the presence of “R” means that 
radar_lh_tend_ref_limit was enabled. The term was calculated every 10 
timesteps (radar_lh_tend_dbz_int = 10).  

• S: indicates that additional convective suppression was included. Namely, 
in this study the presence of “S” indicates that radar_lh_tend_when_fp was 
set to –0.0001 Ks–1, so that when the microphysics scheme indicates a 
positive temperature tendency but the LHT is effectively zero, this cooling 
term is applied to more strongly suppress apparently erroneous convection. 
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6. Results 

6.1 Benefits of LHT and Dependence on Preforecast Length  

The HRRR implementation of LHT used a preforecast length of 1 h in which to 
apply the LHT and so our initial use of LHT was with a 1-h assimilation length. 
Figure 5 compares our WRF 0-h forecasts of reflectivity with observations for 
Case A (0-h forecast time of 0100 UTC [1300 MHT] on 10 Sep). For the model 
data, the level closest to 1-km AGL was used for comparison with the radar data 
processed to 1-km AGL. Integrating the model for 1 h without using LHT (Fig. 5a, 
Exp. A1N) results in reflectivity not exceeding 5 dBZ at this level, in contrast to 
the observations (Fig. 5g) that indicate regions of ≥35 dBZ. At least without 
applying LHT, 1 h is not long enough for the model to spin up convection. If we 
apply LHT for the 1-h preforecast (Fig. 5d, Exp. A1Y), reflectivities of ≥35 dBZ 
occur in regions of the domain, and model reflectivities ≥5 dBZ occur in areas 
where observations also indicate positive reflectivity values. However, the positive 
reflectivities are notably more widespread in the observations than in A1Y.  
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a)  
 

b) c) 

   
d) 
 

e) f) 

 

 
 
 

g)   

Fig. 5 Comparison of radar reflectivity from model level closest to 1-km AGL and observed 
1-km AGL radar reflectivity at 0100 UTC on 10 Sep 2016: experiments are a) A1N, b) A2N, 
c) A6N, d) A1Y, e) A2Y, f) A6Y, and g) the observed field closest to this time; for all 
experiments this is the 0-h forecast but length of preforecast varies among experiments, as 
does whether or not LHT was assimilated. 

We investigated if increasing the length of assimilation would allow the 0-h 
forecast to more closely match observations. Increasing the preforecast length to 
2 h shows that without use of LHT, the reflectivity still does not reach 5 dBZ 
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(Fig. 5b, Exp. A2N). Adding use of LHT through the 2-h preforecast period 
(Fig. 5e, Exp. A2Y) shows somewhat more widespread convection than with the  
1-h preforecast period (Fig. 5b), but still not as widespread as observations 
(Fig. 5g). Therefore, the preforecast length was increased to 6 h. Without use of 
LHT (Fig. 5c, Exp. A6N) we now have very small areas of mostly weak 
reflectivities but this is not at all consistent with the organization of convection 
observed (Fig. 5g). However, when LHT is used (Fig. 5f, Exp. A6Y), convection 
is more widespread than with the 1- or 2-h preforecast period, and appears to be 
more consistent with the observed field (Fig. 5g). 

The HRRR 1-h preforecast is initialized from the 13-km hourly updated RAP model 
that is assimilating the network of radars over CONUS. In contrast, Kwajalein is 
outside the coverage of the RAP model and we are using 0.5° data from GFS, which 
runs a new cycle every 6 h and is not thought to be assimilating Kwajalein radar 
data. Thus, while a 1-h preforecast may perform well for HRRR, it does not appear 
sufficient for these 1-km simulations over Kwajalein Atoll.  

Moving from the 0-h forecast (Fig. 5) to the 1-h forecast (Fig. 6), using the same 
experiments, allows an evaluation of whether the convection introduced via the 
LHT maintains itself after the LHT is removed. Assimilation of radar-reflectivity 
data can result in the introduction of hydrometeors that are not supported 
dynamically in the model and thus disappear as soon as the forcing from data 
assimilation is removed. However, in this case it is clear that after 1 h the 
hydrometeors introduced via the LHT remain even though the LHT is no longer 
being applied. 
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a) 
 

b) c) 

   
d) 
 

e) f) 

  

 
  g) 

Fig. 6 Comparison of radar reflectivity from model level closest to 1-km AGL and observed 
1-km AGL radar reflectivity at 0200 UTC on 10 Sep 2016: experiments are a) A1N, b) A2N, 
c) A6N, d) A1Y, e) A2Y, f) A6Y, and g) the observed field closest to this time; for all 
experiments this is the 1-h forecast but length of preforecast varies among experiments, as 
does whether or not LHT was assimilated. 

An objective evaluation of how the preforecast length affects the ability to forecast 
the placement of convection is seen in the FSS time series in Fig. 7a. Note that the 
x-h lead time on the x-axis is equivalent to the x-h forecast time. Thus, the 0-h 
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forecast is at left edge of the figure where it is labeled as having a 0-h lead time. 
The longer the preforecast assimilation period, the higher the FSS during the first 
3 h of the forecast. At the 0-h forecast, the FSS is <0.4 for the 1-h preforecast (A1Y) 
but >0.7 for a 6-h preforecast (A6Y). Between 3 and 4 h into the forecast the various 
preforecast lengths begin to have very similar FSS values and thus there is no longer 
added value to a longer preforecast data-assimilation period in terms of convection 
placement.  

However, the time series of bias (Fig. 7b) indicates that longer preforecast usually 
produces biases closer to 1 through the first 8 h of the forecast. During the first 2 h, 
increasing preforecast length clearly improves the bias. For example, at 1 h into the 
forecast, a 1-h preforecast (A1Y) leads to a bias of approximately 0.25, a 3-h 
preforecast (A3Y) leads to a bias approximately 0.50, and a 6-h preforecast (A6Y) 
leads to a bias approximately 0.75. After the first 2 h, while longer preforecasts 
usually lead to better biases through the first 8 h, the differences among the 
experiments vary substantially.  
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a) 

 

b) 

 
Fig. 7 Time series for Case A of a) FSS using an 11 × 11 km2 neighborhood and b) bias and 
observed rate (all using a 20-dBZ threshold): FSS and bias are for experiments using LHT for 
various lengths of time; note the x-h forecast is equivalent to x-h lead. 

While the previous plots (Fig. 7a, b) illustrate the differences in the accuracy of the 
forecast from varying the length of the preforecast assimilation period, Fig. 8 shows 
the value of using the best-performing preforecast length (6 h, A6Y) compared with 
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not applying the radar-derived LHT at all (A6N). For the first portion of the forecast 
the difference caused by using LHT is large. For FSS, with LHT the FSS starts 
>0.70, whereas without LHT it starts at approximately 0.05. The two experiments 
have roughly equivalent FSS starting a little after 3 h into the forecast. For bias, 
with LHT the bias starts at approximately 0.45 but rises to approximately 0.75 and 
stays near that value until after 2 h into the forecasts, whereas without LHT the bias 
starts at approximately 0.10 and remains there for the first 3 h. After 3 h the 
magnitude of the biases of the two experiments are similar for a short time before 
it shifts to the experiment with LHT (A6Y) having bias with a higher magnitude 
(and almost always closer to the perfect bias of 1.00) until about 9 h into the 
forecast. Thus, the use of LHT benefits the placement of convection (as measured 
by FSS) through the first 3 h of the forecast and benefits the overall coverage of 
convection (as measured by bias) for at least the first 3 h, but then also for the 5–9-
h forecast. 

 

Fig. 8 Time series of FSS (left axis) and bias (right axis) for experiments during Case A 
having a 6-h preforecast with use of LHT (A6Y) and without use of LHT (A6N); proportion 
of domain observed to exceed the reflectivity threshold (20 dBZ) is also plotted using left axis 

The results of Case B (0-h forecast at 0600 UTC [1800 MHT] on 10 Sep 2016) will 
now be evaluated to determine how similar these results are to those of Case A. In 
Fig. 9a, the 2-h (B2Y) and 6-h (B6Y) preforecast periods produce higher FSS than 
the 1-h preforecast period (B1Y) as in Case A. However, unlike the clear benefit 
seen in Case A for the 6-h preforecast period compared to the 2-h preforecast period 



 

30 

(Fig. 7a), in Case B, while the 6-h preforecast performs better than the 2-h 
preforecast at the 0-h forecast, the 2-h preforecast performs better than the 6-h 
preforecast period in terms of FSS during the rest of the first hour of the forecast. 
While the differences in FSS among the preforecast times lasted for the first 
approximately 3 h in Case A, in Case B the difference appears to cease after the 
first 1 h. Finally, the magnitude of the FSS even at the 0-h forecast is lower in 
Case B (0.1–0.4) than Case A (0.4–0.7). 

In terms of bias, in Case B (Fig. 9b) the bias overall improves with increasing 
preforecast length for the first approximately 4 h. Besides a spike in bias during 
part of the first hour, during the first 4 h bias remains between approximately 0.65 
and 1.10 for the 6-h preforecast length. In contrast to this, for the 2-h preforecast, 
bias remains between approximately 0.15 and 0.40 for the first 3 h and between 
approximately 0.00 and 0.20 for the 1-h preforecast; in both the 1- and  
2-h preforecasts, the magnitude of bias increases to 0.50–0.55 by 4 h into the 
forecast. For the 5–6 h forecast, the three experiments have similar biases, after 
which the 1- and 2-h preforecast lengths have biases whose magnitude is larger and 
generally closer to the desired 1.00 value than the 6-h preforecast for the remainder 
of the simulation. Compared with Case A (Fig. 7b), bias in Case B is often closer 
to 1.00 and has a higher magnitude during the first 4 h for the 6-h preforecast (B6Y 
vs. A6Y). Both cases show the magnitude of bias increasing with preforecast length 
(and usually increasing to a value closer to 1.00 and thus better) during the 
beginning of the forecast, but this difference between the 6-h and the shorter 
preforecast times is larger in Case B and lasts longer (although in Case A the 
difference eventually reappears and the second instance lasts until well after the 
initial instance in Case B ends). 
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a) 

 

b) 

 
Fig. 9  Time series for Case B of a) FSS using an 11 × 11 km2 neighborhood and b) bias and 
observed rate (all using a 20-dBZ threshold); FSS and bias are for experiments using LHT for 
various lengths of time 

The benefit of assimilating radar data (LHT) during a 6-h preforecast (B6Y) is 
examined via comparison against an experiment with a 6-h preforecast without 
LHT (B6N, Fig. 10). The equivalent figure for Case A is Fig. 8. In Case B, in terms 
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of placement of convection (FSS), the benefit of LHT lasts about 1 h; this is much 
shorter than the 3 h seen for Case A (A6Y vs. A6N in Fig. 8). To better understand 
potential reasons for this difference we examine the observed reflectivity fields at 
the 0-h forecast times for these experiments. In Case A (e.g., A6Y), the 0-h forecast 
time is 0100 UTC (1300 MHT), whereas in Case B (e.g., B6Y), the 0-h forecast 
time is 0600 UTC (1800 MHT). In Fig. 2, at 0100 UTC, organized areas of 
convection with reflectivity ≥35 dBZ are seen. One hour later (0200 UTC), 
although convection has evolved, areas of organized convection remain that are 
clearly associated with the convection seen an hour earlier. Organized convection 
of nontrivial strength persisting over time provides an opportunity for 0-h forecasts 
improved by LHT to result in continued improvements as the forecast evolves. In 
Case B, the observed reflectivity at the 0-h forecast time (0600 UTC, Fig. 2) shows 
a north–south-oriented area of reflectivity with very limited areas having 
reflectivities exceeding 30 dBZ. While there are some other areas of returns with 
very limited locations reaching 35 dBZ, in general the returns are weaker and less 
widespread than at the 0-h forecast of Case A. One hour later (i.e., the 1-h forecast 
in B6Y and B6N), the area of returns in the center of the domain has almost 
disappeared and thus there are limited structures seen in the reflectivity whose 1-h 
forecast we can improve via the assimilation of radar–reflectivity-derived latent 
heating. This difference in the strength, spatial coverage, and temporal continuity 
of reflectivity elements between Case A and Case B appears to explain the drastic 
differences in the magnitude of FSS at the 0-h forecast time and in the length of 
time over which LHT benefits FSS. It is harder to correctly forecast the placement 
of reflectivity structures when they are weak and do not last long.  
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Fig. 10 Time series of FSS (left axis) and bias (right axis) for experiments during Case B 
having a 6-h preforecast with use of LHT (A6Y) and without use of LHT (A6N); proportion 
of domain observed to exceed the reflectivity threshold (20 dBZ) is also plotted using left axis 

In terms of bias, benefits of LHT appear to last until about 9 h into the forecast 
(although experiments with shorter preforecast lengths showed better bias in the 9–
12 h forecast). The length of time over which bias is overall improved with a  
6-h preforecast data-assimilation period is similar to Case A, with the caveats that 
1) in Case A there was a period around 3–4 h when the biases between the 
experiments were very similar and 2) there is a spike in bias in the period just before 
the 1-h forecast in Case B that is not present in Case A.  

6.2 Reflectivity Limiter and Cooling Term 

Because we are applying LHT over a much longer period (6 h) than used in previous 
work (1 h in HRRR), it may be that application of LHT could overstimulate 
convection. In the nudging data-assimilation technique, the nudging–diagnosed 
tendency that is imposed evolves with time since it is based on a comparison of the 
observed quantity to the modeled quantity at (or near) the time at which the nudging 
term is applied. Thus, as the modeled quantity evolves in time, the nudging term 
for a given observation varies in time; it is larger when the modeled value differs 
more from the observation and smaller when the modeled value differs less from 
the observation. This means that when the modeled value matches the observed 
value, the nudging term goes to zero. However, with the technique used to apply 
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LHT, for a given reflectivity observation the same heating term is applied to the 
model regardless of the reflectivity forecast by the model. This means that the same 
heating term will be applied to the model whether the model predicts a reflectivity 
much lower or much higher than the observation. Since the radar-derived latent 
heating term replaces the term calculated by the model’s microphysics scheme, this 
may provide a method to damp overenthusiastic model convection, but it may be 
more effective to set the LHT to zero in locations where the model is overpredicting 
convection. This technique was applied in A6YR and B6YR.  

By comparing model forecasts with and without the reflectivity limiter, the effects 
of this technique can be evaluated. For Case A, the effects of applying the 
reflectivity limiter can be seen in Fig. 11 by comparing without the limiter (A6Y) 
and with the limiter (A6YR) for FSS (Fig. 11a) and bias (Fig. 11b). Overall, the 
results appear to be very similar. In general, the bias is below 1.0 before the 
reflectivity limiter and so there may not have been an issue with overprediction due 
to overstimulation in this case. There is a small decrease in overprediction around 
forecast hour 5.75 with application of the reflectivity limiter, but since this is well 
into the forecast, this difference may not be important. Figure 12 is the equivalent 
figure for Case B (as Fig. 11 is for Case A) and here there is a more noticeable 
impact during the beginning of the forecast. The use of the reflectivity limiter 
decreases an overprediction bias in the second half of the first hour of the forecast 
(in Fig. 12b B6YR with the reflectivity limiter compared to B6Y without the 
limiter). However, it also results in the model underpredicting more than without 
the limiter in the first 15 min of the forecast. The FSS does improve with the use of 
the limiter during the first hour of the forecast, indicating the model does better 
placing the convection. The results of applying the reflectivity limiter for these 
cases suggest that there may be benefit to this technique, but testing over additional 
cases is necessary to determine whether a benefit exists. 
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a) 

 

b) 

 

Fig. 11 Time series for Case A of a) FSS using an 11 × 11 km2 neighborhood and b) bias and 
observed rate (all using a 20-dBZ threshold); FSS and bias are for experiments using LHT for 
6 h and testing effects of adding reflectivity limiter (A6YR) and extra suppression (A6YRS) to 
standard configuration (A6Y) 
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a) 

 

b) 

 

Fig. 12 Time series for Case B of a) FSS using an 11 × 11 km2 neighborhood and b) bias and 
observed rate (all using a 20-dBZ threshold); FSS and bias are for experiments using LHT for 
6 h and testing effects of adding reflectivity limiter (B6YR) and extra suppression (B6YRS) to 
standard configuration (B6Y) 
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Some results suggested the LHT technique was not sufficiently suppressing 
erroneous convection; that is, scattered weak convection in the southwestern corner 
of the domain at 0100 UTC in A6Y in Fig. 5f when compared to the observed field 
in Fig. 5g. Thus, in an effort to more effectively suppress convection, in cases where 
the model’s microphysics schemes indicated a nonzero temperature tendency term 
but the radar reflectivity suggested no heating term should be imposed, instead of 
merely ignoring the microphysics temperature tendency term, a small cooling term 
is introduced. However, applying this technique resulted in very little change in 
verification statistics in Case A (A6YR without the cooling term and A6YRS with 
cooling term for FSS [Fig. 11a] and bias [Fig. 11b]) or Case B (B6YR without 
cooling term and B6YRS with cooling term for FSS [Fig. 12a] and bias [Fig. 12b]). 
There is some amount of worsening of the underforecasting bias in Case B for much 
of the 2–8-h forecast, but the importance of this difference is unclear. Overall, it 
may be that the cooling term of 0.0001 Ks–1 was insufficiently strong to have an 
effect, or that areas where additional suppression is needed are very limited and 
thus effects of applying this modification are not seen in the verification statistics.  

In regard to the erroneous scattered weak convection in Fig. 5f, the chosen 
verification statistics are not likely to measure effects of the additional suppression 
on these since they appear to generally be weaker than the 20-dBZ threshold used 
to calculate verification. However, comparison of the model A6YR and A6YRS 
reflectivity fields at 0100 UTC (not shown) suggest the suppression term has done 
little to suppress this erroneous convection. The level being evaluated (≈1-km 
AGL) is very close to the GSI-diagnosed ABL top, and so the exclusion of the LHT 
from the GSI-diagnosed ABL may be limiting the ability of the LHT to suppress 
this convection.  

7. Summary, Conclusion, and Future Work 

Kwajalein Atoll radar reflectivity for two cases—two forecast start times on the 
same day—was converted to a 3-D temperature tendency and applied to WRF 
simulations. The 3-D temperature tendency was based on the latent heating that 
would have occurred to create the observed radar-reflectivity fields. The 
temperature tendency replaced the microphysics temperature tendency on the 1-km 
horizontal grid spacing domain and had substantial positive impact on the short-
term reflectivity forecast. The impact was measured in terms of improvements in 
the placement of convection (via the neighborhood method FSS) and the overall 
coverage of convection (bias) using a neighborhood size of 11 × 11 km2 and a 
reflectivity threshold of 20 dBZ. These results indicated improvements in the 
placement of convection were substantial, but persisted much longer (≈3 h vs.  
<1 h) for the case with more widespread, stronger convection (Case A) compared 
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with the other case (Case B). Improvements in bias appear to last perhaps 
approximately 9 h; this is much longer than improvements in predictions of 
convection placement. 

The benefits were overall largest with the longest preforecast time period over 
which a series of reflectivity observations was assimilated. Prior application of this 
technique in the operational 3-km horizontal grid spacing HRRR used a 1-h 
assimilation period. For our application, for these cases, a 6-h assimilation length 
was overall superior to 1- and 2-h assimilation lengths. Some ways in which our 
simulations differ from HRRR are that 1) our simulations are not over CONUS 
where many radars are available to assimilate, and 2) our simulations are initialized 
via a much coarser simulation that is updated much less frequently and presumably 
does not assimilate radar data over our domain. These differences appear to require 
a longer assimilation period to gain sufficient improvement from the radar data. 

The benefits of modifications to the technique were unclear for the limited number 
of cases tested. Not applying the LHT when the model overforecast reflectivity did 
result in some potential improvements. Adding a cooling term to more effectively 
suppress erroneous convection appeared to have very little effect on verification 
metrics, although the metrics employed in this study would not measure 
suppression of erroneous weak convection. Subjective evaluation suggested that 
some erroneous convection remains even with use of LHT with the added 
suppression term because it is within or near the GSI-diagnosed ABL in which the 
LHT is not applied. 

While the results of this study indicate the application of radar-derived LHT can 
substantially improve short-term forecasts of reflectivity, additional work is 
needed. These experiments were only carried out on two cases, and these two cases 
had 0-h forecast times within the same 24-h period. Testing on additional cases is 
needed to determine the generality of these results.  

Broadening the verification applied could provide additional insights regarding the 
performance of the technique. While this study focused on 11- × 11-km2 
neighborhoods and a 20-dBZ threshold, evaluation at other neighborhood sizes and 
thresholds would be beneficial. In addition, Raby et al. (forthcoming) investigated 
a wavelet-based scale decomposition-verification technique that could help us 
better understand the scale dependence of this technique’s performance. 

While the version of WRF in WREN_RT has been updated to include the capability 
to apply this technique, WREN_RT does not have the capability to prepare the input 
data and run simulations with this technique. The techniques described in this report 
can also be applied in locations other than Kwajalein. We have used the CONUS 
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MRMS radar product as the basis for calculating the radar-derived latent heating 
term for application to WRF.  
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AGL above ground level 
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CCDC US Army Combat Capabilities Development Command 

CONUS continental United States 

DFI digital filter initialization 
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FSS fractions skill score 

GFS Global Forecast System 
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GSI Gridpoint Statistical Interpolation 

HRRR High-Resolution Rapid Refresh 

I/O input/output 

LHT latent heating temperature tendency terms 

MADIS  Meteorological Assimilation Data Ingest System 

MAE mean absolute error 

MET Model Evaluation Tools 

MHT Marshall Islands time 

MM5  Pennsylvania State University–NCAR mesoscale model  
Version 5 
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NASA National Aeronautics and Space Administration 

NCAR  National Center for Atmospheric Research 

NCEP  National Centers for Environmental Prediction 

NCO NetCDF Operators 

NOAA National Oceanic and Atmospheric Administration 

NWP  numerical weather prediction 

PBL  planetary boundary layer 

RAP Rapid Refresh 

RRTMG rapid radiative transfer model for general circulation models 

UF Universal Format 

UKMET  United Kingdom Met Office 

UTC coordinated universal time 

vLAPS  variational Local Analysis and Prediction System 

WREN_RT Weather Running Estimate–Nowcast Realtime system 

WRF Weather Research and Forecasting  

WRF-ARW Advanced Research version of the Weather Research and 
Forecasting model 

WRFDA WRF Data Assimilation 

WSM6  WRF single-moment 6-class microphysics parameterization 

YSU Yonsei University in Seoul, South Korea 
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